
© Copyright Khronos Group 2013 - Page 1

OpenCL 2.0 Overview

Allen Hux
Intel Corporation

© Copyright Khronos Group 2013 - Page 2

Goals
• Enable New Programming Patterns

• Performance Improvements

• Well-defined Execution & Memory Model

• Improve CL / GL sharing

© Copyright Khronos Group 2013 - Page 3

Shared Virtual Memory
• In OpenCL 1.2 buffer objects can only be passed as kernel arguments

• Buffer object described as pointer to type in kernel

• Restrictions

- Pass a pointer + offset as argument value

- Store pointers in buffer object(s)

• Why?

- Host and OpenCL device may not share the same virtual address space

- No guarantee that the same virtual address will be used for a kernel argument

across multiple enqueues

© Copyright Khronos Group 2013 - Page 4

Shared Virtual Memory
• clSVMAlloc – allocates a shared virtual memory buffer

- Specify size in bytes

- Specify usage information

- Optional alignment value

• SVM pointer can be shared by the host and OpenCL device

• Examples

• Free SVM buffers

- clEnqueueSVMFree, clSVMFree

clSVMAlloc(ctx, CL_MEM_READ_WRITE, 1024 * 1024, 0)

clSVMAlloc(ctx, CL_MEM_READ_ONLY, 1024 * 1024, sizeof(cl_float4))

© Copyright Khronos Group 2013 - Page 5

Shared Virtual Memory
• clSetKernelArgSVMPointer

- SVM pointers as kernel arguments

- A SVM pointer

- A SVM pointer + offset

kernel void

vec_add(float *src, float *dst)

{

 size_t id = get_global_id(0);
 dst[id] += src[id];

}

// allocating SVM pointers

cl_float *src = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_ONLY, size, 0);

cl_float *dst = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_WRITE, size, 0);

// Passing SVM pointers as arguments

clSetKernelArgSVMPointer(vec_add_kernel, 0, src);

clSetKernelArgSVMPointer(vec_add_kernel, 1, dst);

// Passing SVM pointer + offset as arguments

clSetKernelArgSVMPointer(vec_add_kernel, 0, src + offset);

clSetKernelArgSVMPointer(vec_add_kernel, 1, dst + offset);

© Copyright Khronos Group 2013 - Page 6

typedef struct {

 …

 float *pB;

 …

} my_info_t;

kernel void

my_kernel(global my_info_t *pA, …)

{

 …

 do_stuff(pA->pB, …);

 …

}

// allocating SVM pointers

my_info_t *pA = (my_info_t *)clSVMAlloc(ctx,

 CL_MEM_READ_ONLY, sizeof(my_info_t), 0);

pA->pB = (cl_float *)clSVMAlloc(ctx,

 CL_MEM_READ_WRITE, size, 0);

// Passing SVM pointers

clSetKernelArgSVMPointer(my_kernel, 0, pA);

clSetKernelExecInfo(my_kernel,

 CL_KERNEL_EXEC_INFO_SVM_PTRS,

 1 * sizeof(void *), &pA->pB);

Shared Virtual Memory
• clSetKernelExecInfo

- Passing SVM pointers in other SVM pointers or buffer objects

© Copyright Khronos Group 2013 - Page 7

Shared Virtual Memory
• Three types of sharing

- Coarse-grained buffer sharing

- Fine-grained buffer sharing

- System sharing

© Copyright Khronos Group 2013 - Page 8

Shared Virtual Memory – Coarse & Fine Grained
• SVM buffers allocated using clSVMAlloc

• Coarse grained sharing

- Memory consistency only guaranteed at synchronization points

- Host still needs to use synchronization APIs to update data
- clEnqueueSVMMap / clEnqueueSVMUnmap or event callbacks

- Memory consistency is at a buffer level

- Allows sharing of pointers between host and OpenCL device

• Fine grained sharing

- No synchronization needed between host and OpenCL device
- Host and device can update data in buffer concurrently

- Memory consistency using C11 atomics and synchronization operations

- Optional Feature

© Copyright Khronos Group 2013 - Page 9

Shared Virtual Memory – System Sharing
• Can directly use any pointer allocated on the host

- No OpenCL APIs needed to allocate SVM buffers

• Both host and OpenCL device can update data using C11 atomics and

synchronization functions

• Optional Feature

© Copyright Khronos Group 2013 - Page 10

Nested Parallelism
• In OpenCL 1.2 only the host can enqueue kernels

• Iterative algorithm example

- kernel A queues kernel B

- kernel B decides to queue kernel A again

• Requires host - device interaction and for the

host to wait for kernels to finish execution

- Can use callbacks to avoid waiting for kernels to

finish but still overhead

• A very simple but extremely common nested

parallelism example

Kernel A

Kernel B

done

Example

© Copyright Khronos Group 2013 - Page 11

Nested Parallelism
• Allow a device to queue kernels to itself

- Allow a work-item(s) to queue kernels

• Use similar approach to how host queues commands

- Queues and Events

- Functions that queue kernels and other commands

- Event and Profiling functions

© Copyright Khronos Group 2013 - Page 12

kernel void my_func(global int *a, global int *b)

{

 …

 void (^my_block_A)(void) =

 ^{

 size_t id = get_global_id(0);

 b[id] += a[id];

 };

 enqueue_kernel(get_default_queue(),

 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

 ndrange_1D(…),

 my_block_A);

}

• Use clang Blocks to describe kernel to queue

Nested Parallelism

© Copyright Khronos Group 2013 - Page 13

Nested Parallelism

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 void (^block)())

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 uint num_events_in_wait_list,

 const clk_event_t *event_wait_list,

 clk_event_t *event_ret,

 void (^block)())

© Copyright Khronos Group 2013 - Page 14

Nested Parallelism

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 void (^block)(local void *, …), uint size0, …)

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 uint num_events_in_wait_list,

 const clk_event_t *event_wait_list,

 clk_event_t *event_ret,

 void (^block)(local void *, …), uint size0, …)

• Queuing kernels with pointers to local address space as arguments

© Copyright Khronos Group 2013 - Page 15

Nested Parallelism
• Example showing queuing kernels with local address space arguments

void my_func_local_arg (global int *a, local int *lptr, …) { … }

kernel void my_func(global int *a, …)

{

 …

 uint local_mem_size = compute_local_mem_size(…);

 enqueue_kernel(get_default_queue(),

 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

 ndrange_1D(…),

 ^(local int *p){my_func_local_arg(a, p, …);},

 local_mem_size);

}

© Copyright Khronos Group 2013 - Page 16

Nested Parallelism
• Specify when a child kernel can begin execution (pick one)

- Don’t wait on parent

- Wait for kernel to finish execution

- Wait for work-group to finish execution

• A kernel’s execution status is complete

- when it has finished execution

- and all its child kernels have finished execution

© Copyright Khronos Group 2013 - Page 17

Nested Parallelism
• Other Commands

- Queue a marker

• Query Functions

- Get workgroup size for a block

• Event Functions

- Retain & Release events

- Create user event

- Set user event status

- Capture event profiling info

• Helper Functions

- Get default queue

- Return a 1D, 2D or 3D ND-range descriptor

© Copyright Khronos Group 2013 - Page 18

Generic Address Space

• In OpenCL 1.2, function arguments that are a pointer to a type

must declare the address space of the memory region pointed to

• Many examples where developers want to use the same code but

with pointers to different address spaces

• Above example is not supported in OpenCL 1.2

• Results in developers having to duplicate code

void

my_func (global int *ptr, …)

{

 …

 foo(ptr, …);

 …

}

void

my_func (local int *ptr, …)

{

 …

 foo(ptr, …);

 …

}

© Copyright Khronos Group 2013 - Page 19

Generic Address Space
• OpenCL 2.0 no longer requires an

address space qualifier for

arguments to a function that are a

pointer to a type

- Except for kernel functions

• Generic address space assumed if no

address space is specified

• Makes it really easy to write

functions without having to worry

about which address space

arguments point to

void

my_func (int *ptr, …)

{

 …

}

kernel void

foo(global int *g_ptr, local int *l_ptr, …)

{

 …

 my_func(g_ptr, …);

 my_func(l_ptr, …);

}

© Copyright Khronos Group 2013 - Page 20

Generic Address Space – Casting Rules
• Implicit casts allowed from named to generic address space

• Explicit casts allowed from generic to named address space

• Cannot cast between constant and generic address spaces

kernel void foo()

{

 int *ptr;

 local int *lptr;

 global int *gptr;

 local int val = 55;

 ptr = gptr; // legal

 lptr = ptr; // illegal

 lptr = gptr; // illegal

 ptr = &val; // legal

 lptr = (local int *)ptr; // legal

}

© Copyright Khronos Group 2013 - Page 21

Generic Address Space – Built-in Functions
• global gentype* to_global(const gentype*)

local gentype* to_local(const gentype *)

private gentype* to_private(const gentype *)

- Returns NULL if cannot cast

• cl_mem_fence_flags get_fence(const void *ptr)

- Returns the memory fence flag value

- Needed by work_group_barrier and mem_fence functions

© Copyright Khronos Group 2013 - Page 22

C11 Atomics
• Implements a subset of the C11 atomic and synchronization operations

- Enable assignments in one work-item to be visible to others

• Atomic operations

- loads & stores

- exchange, compare & exchange

- fetch and modify (add, sub, or, xor, and, min, max)

- test and set, clear

• Fence operation

• Atomic and Fence operations take

- Memory order

- Memory scope

• Operations are supported for global and local memory

© Copyright Khronos Group 2013 - Page 23

C11 Atomics
• memory_order_relaxed

- Atomic operations with this memory order are not synchronization operations

- Only guarantee atomicity

• memory_order_acquire, memory_order_release, memory_order_acq_rel

- Atomic store in work-item A for variable M is tagged with memory_order_release

- Atomic load in work-item B for same variable M is tagged with

memory_order_acquire

- Once the atomic load is completed work-item B is guaranteed to see everything

work-item A wrote to memory before atomic store

- Synchronization is only guaranteed between work-items releasing and acquiring

the same atomic variable

• memory_order_seq_cst

- Same as memory_order_acq_rel, and

- A single total order exists in which all work-items observe all modifications

© Copyright Khronos Group 2013 - Page 24

C11 Atomics
• Memory scope - specifies scope of memory ordering constraints

- Work-items in a work-group

- Work-items of a kernel executing on a device

- Work-items of a kernel & host threads executing across devices and host
- For shared virtual memory

© Copyright Khronos Group 2013 - Page 25

C11 Atomics
• Supported Atomic Types

- atomic_int, atomic_uint

- atomic_long, atomic_ulong

- atomic_float

- atomic_double

- atomic_intptr_t, atomic_uintptr_t, atomic_ptrdiff_t

- atomic_size_t

- atomic_flag

• Atomic types have the same size & representation as the non-atomic types

except for atomic_flag

• Atomic functions must be lock-free

© Copyright Khronos Group 2013 - Page 26

Images
• 2D image from buffer

- GPUs have dedicated and fast hardware for texture addressing & filtering

- Accessing a buffer as a 2D image allows us to use this hardware

- Both buffer and 2D image use the same data storage

• Reading & writing to an image in a kernel

- Declare images with the read_write qualifier

- Use barrier between writes and reads by work-items to the image
- work_group_barrier(CLK_IMAGE_MEM_FENCE)

- Only sampler-less reads are supported

© Copyright Khronos Group 2013 - Page 27

Images
• Writes to 3D images is now a core feature

• New image formats

- sRGB

- Depth

• Extended list of required image formats

• Improvements to CL / GL sharing

- Multi-sampled GL textures

- Mip-mapped GL textures

© Copyright Khronos Group 2013 - Page 28

Pipes
• Memory objects that store data organized as a FIFO

• Kernels can read from or write to a pipe object

• Host can only create pipe objects

© Copyright Khronos Group 2013 - Page 29

Pipes
• Why introduce a pipe object?

- Allow vendors to implement dedicated hardware to support pipes

- Read from and write to a pipe without requiring atomic operations to global

memory

- Enable producer – consumer relationships between kernels

© Copyright Khronos Group 2013 - Page 30

Pipes – Read & Write Functions
• Work-item read pipe functions

- Read a packet from a pipe

- Read with reservation
- Reserve n packets for reading

- Read individual packets (identified by reservation ID and packet index)

- Confirm that the reserved packets have been read

• Work-item write pipe functions

- Write a packet to a pipe

- Write with reservation

• Work-group pipe functions

- Reserve and commit packets for reading / writing

© Copyright Khronos Group 2013 - Page 31

Other 2.0 Features
• Program scope variables

• Flexible work-groups

• New work-item functions

- get_global_linear_id, get_local_linear_id

• Work-group functions

- broadcast, reduction, vote (any & all), prefix sum

• Sub-groups

• Sharing with EGL images and events

