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LINEARIZATION BY COMPLETELY GENERALIZED 
INPUT-OUTPUT INJECTION1 

VIRGILIO LOPEZ MORALES, F. PLESTAN AND A. GLUMINEAU 

The problem addressed in this paper is the linearization of nonlinear systems by gener­
alized input-output (I/O) injection. The I/O injection (called completely generalized I/O 
injection) depends on a finite number of time derivatives of input and output functions. 
The practical goal is the observer synthesis with linear error dynamics. The method is 
based on the I/O differential equation structure. Thus, the problem is solved as a realiza­
tion one. A necessary and sufficient condition is proposed through a constructive algorithm 
and is based on the exterior differentiation. 

1. INTRODUCTION 

The problem addressed in this paper is the linearization of a nonlinear system by 
a generalized state coordinate transformation (cf. [5]), and completely generalized 
I/O injection (i. e. function of a finite number of input and output time derivatives, 
cf. [6, 15]). Its solution plays a key role in the synthesis of nonlinear observers 
[1, 2, 8, 16, 17]. The final goal is to build an observer, which has exact linear error 
dynamics, converges and is stable. 

The linearization by I/O injection has been mainly tackled with geometric tools 
[9, 11, 12, 18] and algebraic tools [6, 7, 10, 13], and used in also some practical 
applications [3, 14, 17]. Since about ten years ago, and specially in [17], time deriva­
tives are used in the observer synthesis for bilinear systems with an application to 
biological systems. In [8], it is stated as a problem of resolution of partial differen­
tial equations and solved only for 2 and 3 dimensional systems. In [16], only first 
order time derivatives are dealt with an algebraic method while [15] considers only 
input time derivatives. This paper is motivated by some recent results, where it is 
used numerical differentiation for observer synthesis (cf. [4]). Since the observabil­
ity property assumption asked in [4], numerical differentiation is used to compute 
the necessary time derivatives of inputs and outputs, the state being derived with 
a static map. The main shortcoming is the high sensitivity to measurement noise 
(especially whether the derivatives are computed within a short sampling period). 

1Th is work was supported by the Institut de Recherche en Cybernétique de NANTES, IRCyN, 
UMR 6597, and CONACyT, Mexico. 
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In this paper, necessary and sufficient conditions (NSC) are given for the lineariza­
tion of MIMO nonlinear systems by a generalized state coordinate transformation 
and completely generalized I/O injection. The fully constructive conditions of the 
existence of a solution are stated in terms of exterior differential systems. The 
method is based on the study of the structure of the I/O differential equations, and 
then the problem stated as a realization problem. Our practical goal is to build a 
Luenberger-like observer, which has stable linear error dynamics. 

This frame has been already used [6, 15]. In [6], a NSC is given for linearization 
by state coordinate transformation and I/O injection. In [15], linearization by a 
generalized I/O injection with only input time derivatives for MIMO systems is 
studied. This paper is a generalization of these results. The main problem for the 
generalization to MIMO case is that I/O differential equations associated to the 
output functions could be linearly dependent. The characterization of these output 
functions plays a key role in the solution of MIMO case. 

2. PROBLEM STATEMENT 

Let us consider the nonlinear system 

i = f(x,u), 

y = Kx)> 

where x G -Kn is the state, u G Mm is the input, y G Sip is the output; / and h are 
meromorphic functions of their arguments. 

In the sequel, nonlinear systems considered here are supposed to be generically 
observable [15] and will be called observable. 

Example . The following nonlinear system 

i i = x\u, 
(2) 

x2 = f(x,u), y = xx, 

is observable (generically) with a singular set in (x2 = 0, u = 0). 
Moreover, the k order time derivative of y (resp. u) is denoted t/*) (resp. u^). 

The system (1) is supposed to be under its I/O representation. Denoting A:,- the 
observability index of the output t/,- (cf. [9]). One gets a system of p I/O differential 
equations given by (1 < i < p) 

rikt) = Pi(yu--,y[kl-1\---,yP,---4k'-1\u). (3) 

where u := (u, u^\ • •, t^*1"1)) and Y%=i *f = n with ki > Ar2 > • • • > kp. 
The problem can be stated as a realization one and it consists in testing if the 

nonlinear system (1) is locally equivalent to a linear system up to a completely 
generalized I/O injection. The former system is assumed to be composed by p 
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blocks as follows (1 < i < p): 

CtT = C»2 

Ct2 = C»3 

C»5, = Ct«.+1 

6..+1 = Ci..+2 + ^ . . + i ( y ( 0 ) , - - , y ( 5 , ) , « , - - , « ( ? , ) ) 

Ci..+2 = C i . . + 3 + V i . , + 2 ( » ( 0 ) , - - - , I V ( ' ' ) , « , - - - , « ( ' i ) ) 

U = m.(iv (0 ) ,---,y ( , , ) ,«,--,« (« , )) 

Vi = Ci 

(4) 

where: 

- Si is the higher time derivative order of the outputs in the generalized I/O 
injection terms, 

- qi is the higher time derivative order of the input in the generalized I/O injec­
tion terms, 

- y(r) is composed by the r-order time derivatives of outputs, which have an 
observability index greater than r — 1. 

Remark 1. 

- Obviously ki > 5,-. 

- The I/O differential equation associated to each block (4) can be written as 
follows: 

^]= E 4"j)- (5) 
j = j . + i 

The synthesis of an observer with linear error dynamics for (4) is then an easy 
task. For 

C = AC + y ( y , y ( 1 ) , - - , y ( , ) , « , « ( 1 ) , - - - , « w ) (6) 

where A and C are dual of Brunovsky form, an observer closed to the Luenberger 
one exists 

C = AC + r (y, i/(1), • • •, y ( , ) , « , « (1 ), • • • ,« ( ? ) ) + IC(C - 0 - (7) 

The choice of the eigenvalues of (A+LC) allows to have an arbitrarily fast estimation 
error decay. 
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Pгe l iminaг ies 

The method descгibed in this papeг is based on a structuгal study of the system 

I/O diffeгential equations. T h e next L e m m a is helpful to verify the integгability and 

independency of some I/O functions in order to proof the main гesult. This Lemma 

is based on the Poincaré's Lemma. 

D e f i n i t i o n 1. Let us use the vaгiables a Є Лix (resp. 6 Є Mp) where a i , • • • ,aд 

(resp. 6i, • • •, bp) aгe lineaгly independent. Moreoveг, let us define K(a, b) as the set 

of meromorphic functions. 

L e m m a 1. (Poincaгé) The differentialfoгmu; Є Span^/д b\ {dcti, • • • ,daл, dбi, • • •, 

d6 p } (a Є Rx and b £ Rp) is locally exact if and only if, dш = 0. 

A modified version of this Lemma follows 

L e m m a 2. Let us consider a diffeгential form UJ Є Span^/^ 6Ч {dai , • • •, da\) 

(a Є Mx and 6 Є Mp). There exists locally a function r)(a,b) such t h a t 

л дrj 

дa{ E u 

if and only if du A d&i A • • • A dbp = 0. 

R e m a r k . From now on, take the set of meromorphic functions K(ayb) as 

3. MAIN RESULT 

3.1 . P r e l i m i n a r y e x a m p l e 

Let us consider the system 

xi = xi — x 2 , yi = x i , 

X2 = — #3 + (^2 — ^ l ) • X4 — (Xl ~ X2)2, 

X3 = - x i + x 2 - x 3 + (xi - x 2 - 2 ) ( x i - x 2 ) 2 , 

X4 = x i , y2 = x 4 . 

(8) 

T h e o u t p u t t/i (resp. r/2) has an observability index k\ (resp. fc2) equal to 3 (resp. 1). 

T h e I/O differential equations are described by 

yi3) = yFim + iy^+y^iyi + yr), 
(i) _ ( 9 ) 

1/2 = m-
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By using [15], it is proved that it does not exist a state transformation such that 
system (8) is locally equivalent to a linear system modulo an output injection (with­
out time derivatives of output). Consider now the following system in the particular 
form (4) 

Cn = C12, 2/1 = Cn, 

C12 = Ci3 + v?i2 (y i ,y i 1 ) ,y2) , 
(10) 

yuy\ .2/2J, 

C21 = y > 2 i ( y i , 2 / 2 ) , 2/2 = C21, 

with si = 1(< k\) and s2 = 0(< k2). If system (8) is locally equivalent to (10), then 
equations (9) have to have the form (5) 

(3) (1) , (1) 
Vi =¥>12 + P - 3 , 2/2 = ¥>21. 

Then, the functions (p\2i y?i3, ^21 have to verify 

<P21 = 2/1-

Note that these two equations are not independent: the first equation depends on 

t/2 . Then, the differential equation t/j is a function of (2/1,2/1,2/1 ,2/2,2/2) but y2 

is a known function given by the second equation of (9). y\ is then a function only 

of (yi, 2/i> 2/i2)> y2). A solution is 

*>» = y (
1

1)-(y (
1

1) + J / 1 ) ' *" = y \ l ) - { y [ l f - y ? ) + y2), 
<p2\ = y i -

3.2. Necessary and sufficient condition 

The main result is obtained using the exterior differential system theory, and gives 
the linearizing generalized state coordinate transformation, whether it exists. Non­
linear system (1) is supposed to be observable and previously transformed in the p 
I/O differential equations (after state elimination). 

G.I.O.I.d. Algorithm 

(Al) For i := 1 to p, set <pia. := 0 and (from (3)) Pt
5t := P,. 

(A2) Si := 0 (to be increased up to ki — 1 if necessary) 

(A3) qi := 0 (to be increased up to ki — 1 if necessary) 

(A4) For k := st- + 1 to £,-, set 

pt-.= pt-x-['Pik-ip--k+1). (ii) 
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Let d\ (resp. p8i) denote the number of outputs whose the observability index is 
greater than (ki — k + Si) (resp. Si — 1). The differential form u;* is defined as (with 
A as the exterior product) 

W * - = V ---- dt/.^ + V ---- d u ^ (12) 

and 

. . f Ady A • • • A d^*-"1) A dyW. A • • • A d t / ^ for rff < p. , 
A d y t ' ' l : = ; d - + 1 (13) 

[ Adj/Adj/1) A • • • A dj/^'"1) A 1, for d ,*=p. . . 

f A 1 for <?.- = 0, 
Adu^'l := { (14) 

[ Adu A du A • • • A dm'1 1), otherwise. 

- If dw* A dj/'*'l A du^'l = 0, the function y?,jt is a solution of 

Y " g y > " dt/ ( , , ) I V aV>'* du ( ? , ) - u* for Jfc<Jfc-

h^ h^r1 " <15) 
y?ifc. = P*1, for k = ki. (last step). 

Return to A4. 

- If duJi A dt/t**l A du^'J T*- 0, the algorithm stops. System described by the I/O 
differential equation (3) is not linearizable for both values Si and qi. Return (whether 
k < ki, otherwise algorithm stops) to A3, A2 successively. 

A necessary and sufficient condition for the existence of the linearizing transfor­
mation C = <l>(x, u, it, • • •, u(q~1)) is given by the following Theorem. 

Theorem 1. Nonlinear system (1) described by (3) is locally equivalent to (4) if 
and only if 

dw? Adyf5»lAdu^l = 0, (16) 

where 1 < i < p, Si + 1 < k < ki and uf}Adj^8t\ and A d u ^ as in the former 
algorithm. 

Whether conditions of Theorem 1 hold, the generalized state transformation C = 
<t>(x}u, • • •, u ^ - 1 ) ) steers system (1) into system (4). This transformation can be 
obtained for each block associated to the output y;, (1 < i < p), from system (4) as 
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follows 
<.i = M * ) . C,-2 = /.S1), ••• 

C.-..+2 = h\'-+1) - <pu,+i&0), • • • - y ( a , )-«, • • • -« ( ? , )) (17) 

c,-,.+3 = / lS
, , + 2 ) -^. )+i(-) -^.+ 2 ( ) 

C„. = ̂ - ^ - ^ . + i " + 1 ) ) - ^ " + 2 ) ) - • • • - m.-

Remark 3. Theorem 1 generalizes the results of [15]. In order to find this former 
result, consider st- = 0 in (13) (i.e. no output time derivatives are allowed in the 
I/O injection). Then ps% := p (the number of outputs) and equation (13) becomes 

{ Adydfc . ! A • • • A dypi for d\ < p, 
08) 

Al, for df =p. 

as in [15]. 

P r o o f of T h e o r e m 1. 
Sufficiency. Suppose that condition of Theorem 1 is verified. Then, there exists a 
function such that 

V* d(pik dviSt) + V " dVih dti(.«° - u>k for Jb < *• 

k*i9i) k^rJ (19) 
<Pikt=P?\ for * = *--. 

It is then possible at the end of the algorithm, to derive from (17), the generalized 
state diffeomorphism, which transforms (1) into (4). 

At each step, one gets (fik(y, • • •, y^St), u, • • •, TI^»)) for each block associated to an 
output variable of system (1) and from (17), dynamics of state variables of system 
(4) are known. From (5) one has that the (ki — Sj)th dynamic depends on the last 
(ki — 5, — l)th's one. Thus, the whole coordinate transformation is well characterized. 
System (4) is then fully known: system (1) is then locally equivalent to the system 
(4) by a generalized state coordinate transformation (17). Sufficiency of Theorem 1 
is proved. 

Necessity. Suppose that the generalized state coordinate transformation (17), 
which transforms (1) into (4), exists. Then the equation (5) is verified to both 
systems and for all the y,- functions. Applying the G.I.O.I.d. Algorithm, one gets: 

(k ) 
Suppose that i = 1 and k = s\ + 1, P[x := y\ , <p\Sl := 0 

P 5 - — f / iC * 1 " * - " 1 ) -1_ , „ ( * - - 5 - - 2 ) _L _L /„ 
M - V n + ¥>12 + }r{Plkl-3l 

Only the (k\ — l)th time derivatives of output functions that have an observability 
index larger to (ki — (s\ + l) + $i) := (k\ — 1) are independent of the lower-order time 
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derivatives, because the other time derivatives of output functions can be written 
as function on both I/O functions and their time derivatives with a smaller degree 
(see equation (3)). Note that all the generalized I/O functions of degree (Jfci — 1) 
are obtained from the <£>ii1_5l~ function. In d j 1 + 1 , one gets then the number of 
outputs that have an observability index greater than (ky — (s\ + 1) + si) = (ki — 1). 
Since the output function time derivative independency, and Lemma 2, there exists 
locally a function v^isi+i s u c h that a differential form (o>) can be written as follows 

rfM+-

Thus, (16) trivially holds for k = s\ + 1. The next steps follow the same lines for 
k = s\ + 2 to ki. Necessity is then proved for the first step, and by the same way 
for the following steps. D 

4. EXAMPLE 

Consider system (8) and the output yi (i = 1) (with k\ = 3). Set si = 0, (p\o := 0 
and Pi° := Pi . First one checks if there is a solution without output time derivatives 
in the output injection in the block associated to yi. 

Step 0. k = l. From (11), P / := P° - [y>i0]
(3) = Pf. 

By definition d\ (resp. pSl := po) is equal to 1 (resp. 2). 

The differential u\ is derived from (12) as u\ := [y\ +2y[ M dyi. 

From (13), da;} Ady2 ^ 0. Theorem condition does not hold. Then, a state coordinate 
transformation steering system (8) into (10) with s\ = 0 does not exist. 

Set 5i = 1, Pi := Pi and p n := 0. 

Step 1. k = 2. From (11), Pj2 := P / - fcnp) = P / . 
By definition d\ (resp. p\) is equal to 1 (resp. 2). 

From (12), one gets as u\ := [y\ +2y[ M dy[ K 

From (13), du\ A dyi A dy2 A dy^ = 0, Theorem condition holds and from (15) a 
solution reads as 

(1) , ( - )2 

v?i2 := yi -y\ + y\ • 

Step 2. k = 3. From (11), P 3 := Px
2 - [<pl2]M = y[l) • ( y ^ 2 - y ^ + w ) -

By definition, one gets df = 1, p\ = 2. 

From (12), one gets a;3 := (3y(
x

1)2 - 2y(
1
1) + y2) dy[l). 

From (13), da;3 A dyi A dy2 A d y ^ = 0, and then Theorem condition is satisfied. 
From (15) a solution reads as 

( i ) 3 , ( i ) ( i ) 2 

pis := y\ + y\ - yi - y\ • 
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The algorithm converges for the output t/i. 

Applying the algorithm, in a similar way, a solution reads for the output y2 as 
<P2\ = 2/1-

System (8) is then locally equivalent to: 

Cu = C12, 2/1 = Cii, 

C12 = Ci3 + 2/(
1

1)-(y(
1

1) + y 2 ) , 
' (20) 

; (i) / (1)2 (i) , \ v ' 

C13 = y \ } • \y\} -y\J + y2J , 

C21 = 2/1, 2/2 = C21-

where the state coordinate transformation defined by (17) follows: 

C11 = x\, 

C12 = xi-x2i / x 

t 4. ( 2 1 ) 

Cl3 = X\- X2 + £3 , 
C21 = X4. 

5. CONCLUSIONS 

A constructive Necessary and Sufficient Condition was obtained for the problem 
of linearization of nonlinear systems by generalized state coordinate transformation 
and generalized I/O injection for MIMO system case. The results are based on 
the computation of some differential one-forms and integrability conditions and is 
motivated by some recent results [4]. A practical goal of this result is the nonlinear 
observer synthesis with linear error dynamics, depending on both time derivatives 
of I/O functions if necessary. 

(Received December 11, 1998.) 
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