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LINEARIZATION BY COMPLETELY GENERALIZED
INPUT-OUTPUT INJECTION!

VIRGILIO LOPEZ MORALES, F. PLESTAN AND A. GLUMINEAU

The problem addressed in this paper is the linearization of nonlinear systems by gener-
alized input-output (I/O) injection. The I/O injection (called completely generalized 1/0
injection) depends on a finite number of time derivatives of input and output functions.
The practical goal is the observer synthesis with linear error dynamics. The method is
based on the I/O differential equation structure. Thus, the problem is solved as a realiza-
tion one. A necessary and sufficient condition is proposed through a constructive algorithm
and is based on the exterior differentiation.

1. INTRODUCTION

The problem addressed in this paper is the linearization of a nonlinear system by
a generalized state coordinate transformation (cf. [5]), and completely generalized
I/0 injection (i.e. function of a finite number of input and output time derivatives,
cf. [6, 15]). Its solution plays a key role in the synthesis of nonlinear observers
(1, 2, 8, 16, 17]. The final goal is to build an observer, which has exact linear error
dynamics, converges and is stable.

The linearization by I/O injection has been mainly tackled with geometric tools
[9, 11, 12, 18] and algebraic tools [6, 7, 10, 13], and used in also some practical
applications [3, 14, 17]. Since about ten years ago, and specially in [17], time deriva-
tives are used in the observer synthesis for bilinear systems with an application to
biological systems. In [8], it is stated as a problem of resolution of partial differen-
tial equations and solved only for 2 and 3 dimensional systems. In [16], only first
order time derivatives are dealt with an algebraic method while [15] considers only
input time derivatives. This paper is motivated by some recent results, where it is
used numerical differentiation for observer synthesis (cf. [4]). Since the observabil-
ity property assumption asked in [4], numerical differentiation is used to compute
the necessary time derivatives of inputs and outputs, the state being derived with
a static map. The main shortcoming is the high sensitivity to measurement noise
(especially whether the derivatives are computed within a short sampling period).
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UMR 6597, and CONACyT, Mexico.
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In this paper, necessary and sufficient conditions (NSC) are given for the lineariza-
tion of MIMO nonlinear systems by a generalized state coordinate transformation
and completely generalized 1/0 injection. The fully constructive conditions of the
existence of a solution are stated in terrns of exterior differential systems. The
method is based on the study of the structure of the I/O differential equations, and
then the problem stated as a realization problem. Our practical goal is to build a
Luenberger-like observer, which has stable linear error dynamics.

This frame has been already used [6, 15]. In [6], a NSC is given for linearization
by state coordinate transformation and I/O injection. In [15], linearization by a
generalized 1/0 injection with only input time derivatives for MIMO systems is
studied. This paper is a generalization of these results. The main problem for the
generalization to MIMO case is that I/O differential equations associated to the
output functions could be linearly dependent. The characterization of these output
functions plays a key role in the solution of MIMO case.

2. PROBLEM STATEMENT

Let us consider the nonlinear system
z = f(z,u),

1
y = h(z), M

where z € IR" is the state, u € IR™ is the input, y € IR?P is the output; f and h are
meromorphic functions of their arguments.

In the sequel, nonlinear systems considered here are supposed to be generically
observable [15] and will be called observable.

Example. The following nonlinear system

. 2
I = Trhu,
’ (2)

i‘? = f(:r:,u), y=x,

is observable (generically) with a singular set in (z2 =0, u = 0).

Moreover, the k order time derivative of y (resp. u) is denoted y) (resp. u(")).
The system (1) is supposed to be under its I/O representation. Denoting k; the
observability index of the output y; (cf. [9]). One gets a system of p I/O differential
equations given by (1 <i < p)

ki ky— - _
v = Py, -, oM 1),-“,yp,-‘-,y,(,"" D a). (3)
where @ := (u,u®, ... uFr=D) and $F_ ki =n with ky > k2> --- > k.

The problem can be stated as a realization one and it consists in testing if the
nonlinear system (1) is locally equivalent to a linear system up to a completely
generalized I/O injection. The former system is assumed to be composed by p
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blocks as follows (1 < i < p):

h = G

Go = Ga

(.is. = Cis.+l
C.l'a.+l = <i3,+2 +Sois.+l(g(0)r"'117(‘.)"“)"'1“(%)) (4)
Cisvpz = Cista + Pisit2(F@D, -, 70D u, -, ul9)
Cikimt = Gk + @ikim1 (O, -+, 500, 4, -, ule))

éik. — <Pik,(,1,7(0),"',ﬂ("),u,"',u(q'))

yi = (G

where:

- s; is the higher time derivative order of the outputs in the generalized I/O
injection terms,

— g; is the higher time derivative order of the input in the generalized I/O injec-
tion terms,

- (") is composed by the r-order time derivatives of outputs, which have an
observability index greater than r — 1.

Remark 1.
- Obviously k; > s;.

- The I/O differential equation associated to each block (4) can be written as
follows:

ki
k, ki—j
= 3 el (5)
J=si+l

The synthesis of an observer with linear error dynamics for (4) is then an easy
task. For

ézAC+80(ﬂ.g(l),'"»g(’)»“,“(l)y"',u(“) (6)

where A and C are dual of Brunovsky form, an observer closed to the Luenberger
one exists

é: AE+ 14 (g)g(l), Tty g(’)) u, u(l)a R u(q)) + LC(g - C) (7)

The choice of the eigenvalues of (A+ LC') allows to have an arbitrarily fast estimation
error decay.
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Preliminaries

The method described in this paper is based on a structural study of the system
I/0 differential equations. The next Lemma is helpful to verify the integrability and
independency of some I/O functions in order to proof the main result. This Lemma
is based on the Poincaré’s Lemma.

Definition 1. Let us use the variables a € R* (resp. b € R?) where ay,---,ay
(resp. by,---,b,) are linearly independent. Moreover, let us define K(a,b) as the set
of meromorphic functions.

Lemmal. (Poincaré) The differential formw € Spang, ;) {da1,---,dax, dby, - -,
db,} (a € R* and b € R?) is locally exact if and only if, dw = 0.

A modified version of this Lemma follows

Lemma 2. Let us consider a differential form w € Spang, 4y {dai,---,dar}
(a € R* and b € R?). There exists locally a function n(a, b) such that

A
0
ZTl-daizw,
i=1
if and only if dw Adby A--- A db, = 0.

Remark. From now on, take the set of meromorphic functions K(a,b) as

K(z,(u,t,---,u®)).

3. MAIN RESULT

3.1. Preliminary example

Let us consider the system

Ty = 31—, Yy = I,

;1':2 = —1,'3+(.’t2—-231)-l‘4—(171_x2)21

. \ (8)
3 = —z1+z2—r3+ (1 — 12— 2) (21 — T2)°,

i4 = I, Y2 = ZI4.

The output y1 (resp. y2) has an observability index k; (resp. k2) equal to 3 (resp. 1).
The 1/0 differential equations are described by

ygs) = yﬁz) . (y1 + 2y§1)) + ygl) : (yz + y&"’) ’

9)
1
yg) = .
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By using [15], it is proved that it does not exist a state transformation such that
system (8) is locally equivalent to a linear system modulo an output injection (with-
out time derivatives of output). Consider now the following system in the particular
form (4) i

(= Go, i = Cu,

C.12 = (za+ep12 (yx,yﬁl), yz) )

| 1 (10)
Cla = @13 (ylyyg )) !,12) )

Cn = o ,v), ¥y2 = (o,

- with s; = 1(< k1) and 53 = 0(< k). If system (8) is locally equivalent to (10), then
equations (9) have to have the form (5)

¥ =P+, Y =,

Then, the functions ¢12, ¥13, @21 have to verify

0p12 N 0p12 N P12 N @ My, () (1)?
PYOR T Y Tate ten = U (J1+2y1 )+ui(v2+ 4 )

Y21 = Y-

Note that these two equations are not independent: the first equation depends on
l) Then, the differential equation y( ) is a function of (yl,gl,yﬁ”,yz,yz) but y,

is a known function given by the second equation of (9). yga) is then a function only

of (y1,91, yg2),yz). A solution is

P12 = yil) : (yﬁ” +y1) ) P13 = yﬁl) : (yi” - yﬁ" +y2) )
Y21 = Y.

3.2. Necessary and sufficient condition

The main result is obtained using the exterior differential system theory, and gives
the linearizing generalized state coordinate transformation, whether it exists. Non-
linear system (1) is supposed to be observable and previously transformed in the p
I/0 differential equations (after state elimination).

G.I.O.I.d. Algorithm
(A1) Fori:=1 top, set pjs, := 0 and (from (3)) P’* := P;.
(A2) s;:=0 (to be increased up to k; — 1 if necessary)
(A3) g¢i :=0 (to be increased up to k; — 1 if necessary)
(A4) For k :=s; + 1 to k;, set
Pt = PE-1 _ [y _q] (iR, (11)
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Let d¥ (resp. p,,) denote the number of outputs whose the observability index is
greater than (k; —k + s;) (resp. s; —1). The differential form w} is defined as (with
A as the exterior product)

. 3:) - (q.
= Z < 3y (k —k+s ) ‘/J +Z (k —k+q. (12)
and
AdGA - Adge—D A dy o) A Ay for df < py,
Adyl] = (13)
AGAAFDA - A dg(’--l) A1, for df =p,,.
A1l for ¢; =0,
Adul®] = (14)
AduAduA---Adul®=1 ) otherwise.
- If dwf A dy!*] A dul%] = 0, the function ®ik is a solution of
d* )
‘Plk (s) Opit (q- —
+ du;™ =wk, for  k <k,
Sy (15
pir, = P, for k= k;. (last step).

Return to A4.

- If dwf A dyl*] A duls] £ 0, the algorithm stops. System described by the 1/0
differential equation (3) is not linearizable for both values s; and ¢;. Return (whether
k < k;, otherwise algorithm stops) to A3, A2 successively.

A necessary and sufficient condition for the existence of the linearizing transfor-
mation ¢ = ¢(z,u, 1, ---,uld"1) is given by the following Theorem.

Theorem 1. Nonlinear system (1) described by (3) is locally equivalent to (4) if
and only if

dw¥ A dyl] A dules] =0, (16)

where 1 < i < p, si+1 < k < k; and wf ,Adyl*] and Adul%! as in the former
algorithm.

Whether conditions of Theorem 1 hold, the generalized state transformation ¢ =
é(z,u,---,ult=1) steers system (1) into system (4). This transformation can be
obtained for each block associated to the output y;, (1 < i < p), from system (4) as
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follows
Gi1 = hi(z), Gia = BV,

Cts,+1 h(, )

Cih+2 = h'('h+1) — Pis +1(!7(0), T g(")l Uy-oy u(ll;)) (17)
Cis, 43 = h(8'+2) 905:.)+1 ) — @is,42(°)

Cik, = h(,c =) ‘Pff.;(hH)) ‘Psf ;(s'“)) C = ik,

Remark 3. Theorem 1 generalizes the results of [15]. In order to find this former
result, consider s; = 0 in (13) (i.e. no output time derivatives are allowed in the
1/0 injection). Then p,, := p (the number of outputs) and equation (13) becomes

Adyge, 1 A---Ady,, for df <p,
Ady = dk 41 p (18)
Al, for df =p.
as in [15].
Proof of Theorem 1.

Sufficiency. Suppose that condition of Theorem 1 is verified. Then, there exists a
function such that

dk

9pix dyl? Opik @) = b .
Z 6 (‘l) + Z (q ) d w' ’ for k < k“ (19)
Pik, = P;k', for  k=k;.

It is then possible at the end of the algorithm, to derive from (17), the generalized
state diffeomorphism, which transforms (1) into (4).

At each step, one gets @i (¥, -, 5, u, -, u9)) for each block associated to an
output variable of system (1) and from (17), dynamics of state variables of system
(4) are known. From (5) one has that the (k; — s;)th dynamic depends on the last
(k;—s; —1)th’s one. Thus, the whole coordinate transformation is well characterized.
System (4) is then fully known: system (1) is then locally equivalent to the system
(4) by a generalized state coordinate transformation (17). Sufficiency of Theorem 1
is proved.

Necessity. Suppose that the generalized state coordinate transformation (17),
which transforms (1) into (4), exists. Then the equation (5) is verified to both
systems and for all the y; functions. Applying the G.I.O.I.d. Algorithm, one gets:

Suppose that i =1 and k =s; + 1, P! := ygk'), P15, =0

P —So(l;l 31_1)+(p5§1_81—2)+"'+Solkl—!1

Only the (k; — 1)th time derivatives of output functions that have an observability
index larger to (k; —(s1+1)+s51) := (k1 — 1) are independent of the lower-order time
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derivatives, because the other time derivatives of output functions can be written
as function on both I/O functions and their time derivatives with a smaller degree
(see equation (3)). Note that all the generalized I/O functions of degree (k; — 1)
are obtained from the ga(k' *=1 function. In d: $1+1 one gets then the number of
outputs that have an observability index greater than (ky — (s1 + 1)+ 1) = (k1 —1).
Since the output function time derivative independency, and Lemma 2, there exists
locally a function ¢1,,41 such that a differential form (w) can be written as follows

“Co 9
k_ ‘Pls;-H (n) Plsi+1 (q:
“I—Z a(s,) Y +Z (q)dJ
j=1 y]

Thus, (16) trivially holds for k = s; + 1. The next steps follow the same lines for
k = s; +2 to k. Necessity is then proved for the first step, and by the same way
for the following steps. . ]

4. EXAMPLE

Consider system (8) and the output y; (i = 1) (with k; = 3). Set s; =0, ¢10:=0
and P := Py. First one checks if there is a solution without output time derivatives
in the output injection in the block associated to y;.

Step 0. k= 1. From (11), P! := P — [10]® = P{.
By definition d} (resp. ps, := po) is equal to 1 (resp. 2).
The differential w} is derived from (12) as w} := (y1 + 2y ) dy; .
From (13), dw! Ady, # 0. Theorem condition does not hold. Then, a state coordinate
transformation steering system (8) into (10) with s; = 0 does not exist.
Set s; = 1, P} := P, and ¢;; :=0.
Step 1. k = 2. From (11), P? := P} — [p11]® = PL.
By definition d? (resp. p;) is equal to 1 (resp. 2).
From (12), one gets as w? := ( n+ 2y£1)) dy{V.
From (13), dw? Ady; Adys A dy( ) = 0, Theorem condition holds and from (15) a
solution reads as

P12 = Y1 y( )+y(1)2

Step 2. k =3. From (11), P? := P? — [p12)}) = ygl) . (y(ll)2 - ygl) + yg) .

By definition, one gets d3 = 1, p; = 2.

From (12), one gets w3 := (3y(1) (1) + y2 )dy(l)

From (13), dwd A dy; Ady2 A dy D = = 0, and then Theorem condition is satisfied.
From (15) a solution reads as

3 2
13 =" +u{) -
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The algorithm converges for the output y;.

Applying the algorithm, in a similar way, a solution reads for the output y, as
P21 = Y1-

System (8) is then locally equivalent to:

n = G2, w o= G,
G2 = Cla+y§1)-(y§’)+yz),

. (20)
G = oM (yﬁm ~ 0+ yz) )
(= w, = Ca
where the state coordinate transformation defined by (17) follows:
= =z,
Gz = 71—z,
(21)
Qi3 = z1—2z2+ 73,
(a1 = =4

5. CONCLUSIONS

A constructive Necessary and Sufficient Condition was obtained for the problem
of linearization of nonlinear systems by generalized state coordinate transformation
and generalized I/O injection for MIMO system case. The results are based on
the computation of some differential one-forms and integrability conditions and is
motivated by some recent results [4]. A practical goal of this result is the nonlinear
observer synthesis with linear error dynamics, depending on both time derivatives
of I/O functions if necessary.

(Received December 11, 1998.)
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