

Dot-Product Engine for Neuromorphic Computing: Programming
1T1M Crossbar to Accelerate Matrix-Vector Multiplication

Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle Merced Grafals, Noraica Davila,
Catherine Graves, Sity Lam, Ning Ge, R. Stanley Williams, Jianhua Yang

Hewlett Packard Labs
HPE-2016-23

Keyword(s):
Memristor; dot product; crossbar

Abstract:
Vector-matrix multiplication dominates the computation time and energy for many
workloads, particularly neural network algorithms and linear transforms (e.g, the
Discrete Fourier Transform). Utilizing the natural current accumulation feature of
memristor crossbar, we developed the Dot-Product Engine (DPE) as a high density,
high power efficiency accelerator for approximate matrix-vector multiplication. We firstly
invented a conversion algorithm to map arbitrary matrix values appropriately to
memristor conductances in a realistic crossbar array, accounting for device physics and
circuit issues to reduce computational errors. The accurate device resistance
programming in large arrays is enabled by close-loop pulse tuning and access
transistors. To validate our approach, we simulated and benchmarked one of the state-
of-the-art neural networks for pattern recognition on the DPEs. The result shows no
accuracy degradation compared to software approach (99% pattern recognition
accuracy for MNIST data set) with only 4 Bit DAC/ADC requirement, while the DPE can
achieve a speed-efficiency product of 1,000x to 10,000x compared to a custom digital
ASIC.

 External Posting Date: March 3, 2016 [Fulltext]
 Internal Posting Date: March 3, 2016 [Fulltext]
 Approved for External Publication – External Copyright Consideration

 Copyright 2016 Hewlett Packard Enterprise Development LP

Dot-Product Engine for Neuromorphic Computing:
Programming 1T1M Crossbar to Accelerate Vector-Matrix

Multiplication

ABSTRACT
Vector-matrix multiplication dominates the computation time and
energy for many workloads, particularly neural network algorithms
and linear transforms (e.g, the Discrete Fourier Transform). Utiliz-
ing the natural current accumulation feature of memristor crossbar,
we developed the Dot-Product Engine (DPE) as a high density, high
power efficiency accelerator for approximate matrix-vector multi-
plication. We firstly invented a conversion algorithm to map arbi-
trary matrix values appropriately to memristor conductances in a
realistic crossbar array, accounting for device physics and circuit
issues to reduce computational errors. The accurate device resis-
tance programming in large arrays is enabled by close-loop pulse
tuning and access transistors. To validate our approach, we simu-
lated and benchmarked one of the state-of-the-art neural networks
for pattern recognition on the DPEs. The result shows no accuracy
degradation compared to software approach (99 % pattern recog-
nition accuracy for MNIST data set) with only 4 Bit DAC/ADC
requirement, while the DPE can achieve a speed-efficiency product
of 1,000× to 10,000× compared to a custom digital ASIC [1].

1. INTRODUCTION
An ideal nanoscale memristor crossbar array structure can natu-

rally carry out vector-matrix multiplication–a computationally ex-
pensive task for many important applications–in a single constant
time step [2]. By applying a vector of voltage signals to the rows of
a memristor crossbar, multiplication by each memristor element’s
conductance is carried out by the KCL rule and the current is summed
across each column [3]. This “analog” method of vector-matrix
multiplication can be orders of magnitude more efficient than any
digital ASIC [4], particularly as the crossbar array size is scaled as
large as is feasible .

However, many circuit issues in the analog domain are not triv-
ial, as one needs to account for finite wire resistances, input/output
stage resistances, memristor device nonlinearity in the current-voltage
relationship, and all sources of noise. A naïve linear mapping from
matrix values to crossbar conductance and input/output values to
voltage signals leads rapidly to very low accuracy as the array size
grows[5]. Some researchers use hardware training schemes to min-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2016, June 5-9, 2016, Austin, Texas, USA.
Copyright 2016 ACM 978-1-4503-1199-1/12/06 ...$10.00.

Ro
w

(a)

Ideal output
Actual output

Column number

Cu
rr

en
t (

m
A)

(b)

Figure 1: Memristor crossbar for matrix multiplication. (a)
Basic concept; (b) Difference between ideal and actual output.
imize the computing error [6, 7, 8, 8, 9]. However, so far hard-
ware training approaches are slow, iterative processes with exten-
sive reading and writing of all devices, with limited performance
and energy efficiency comparing to software [10] and potential de-
vice wear out [11].

To overcome these issues, we developed the Dot-Product Engine
(DPE), together with a fast conversion algorithm, as a realistic so-
lution to accelerate matrix-vector multiplication in robust applica-
tions which can tolerate lower computing accuracy such as neural
network algorithms. Our contributions are summarized as follows:

• A general conversion algorithm accounting for device and
circuit issues has been developed to map arbitrary matrix val-
ues to memristor conductances. This conversion algorithm
can be extended to any other crossbar structures or cross-
point devices by just replacing circuit or device models.

• The simulation of DPE is based extensively on circuit and de-
vice models calibrated from real fabricated devices. The ac-
curacy, speed and energy efficiency of DPE is quantitatively
analyzed compared to a custom digital ASIC [1]. With con-
servative assumptions of DPE parameters, a 1,000 to 10,000
times better speed-efficiency product can be achieved.

• To evaluate the DPE in neural network applications, we im-
plement one of the state-of-the-art neural networks on DPEs
[10]. Simulation result shows that with 4 bits accuracy DAC/ADC
interfaces, the hardware can achieve the same recognition
accuracy(99%) as the software approach, but with much bet-
ter speed and energy efficiency.

2. PRELIMINARY

2.1 Memristor crossbar array
Memristor crossbar arrays show great application potential for

next generation non-volatile memories. For memory applications,

0 0.05 0.1 0.15 0.2 0.25
10-12

10-10

10-8

10-6

Voltage (V)

C
ur

re
nt

 (A
)

100 K

500 K

Exp device data
Model results

(a) (b)

Figure 2: (a) TaOx device experiment data and model; (b) tran-
sistor experiment data.

a large on/off ratio is desired, along with fast switching, high en-
durance, and especially high nonlinearity to suppress the leakage
current when read as well as the sneak current during write opera-
tions in larger crossbar arrays. [12].

Memristor crossbar arrays also raise great interest for computing
applications because they can naturally carry out array-size vec-
tor matrix multiplication in one constant time step. As in Fig.1
(a), in an ideal crossbar where memristors are linear and all cir-
cuit pararistics may be ignored, applying an input vector voltage
Vin to the rows of the crossbar and sensing the output voltage
Vout with Trans-Impedance Amplifiers (TIA) at all columns, we
get Vout = VinGRS, where RS is the feedback resistance, and
G is the conductance matrix of each cross-point device. For ana-
log computing applications, memristors are desired to have stable,
continuous linear conductance states for representing matrix values
[13]. The high on/off ratio and high endurance are still desired but
not as strictly required as for memory applications, and similarly
for the switching speed [2].

However, naïve mapping leads to poor computing accuracy in
real crossbars. Fig.1 (b) shows an example of all voltages across
devices in a 256×256 crossbar array, positive matrix values are
linearly mapped to memristor conductance, but the actual output
values are very different from the ideal output values due to non-
ideal device and circuit issues.

2.2 Mapping algorithms and hardware train-
ing schemes

There are many research work on using memristor crossbar for
effective computations, like matrix multiplications or synaptic op-
eration in a neural network. Generally, they can be categorized
into two approaches and still at infant stages. One approach is to
find mapping schemes and crossbar designs to tolerate device and
circuit imperfections for accurate vector-matrix multiplication, cur-
rent work either have high restriction on the matrix to map [3, 14]
and/or high requirement on the crossbar parameters [5]. A general
solution to map arbitrary matrices onto realistic crossbars is still
missing, and none of work use basic matrix-multiplication accu-
racy to evaluate their performance or compare to digital ASICs.

Another approach is to embed learning algorithms on peripheral
circuits to automatically tune memristor conductance as synapse
weight to achieve logic operations [12] or pattern recognition/ clas-
sification functions [6, 7, 8, 9, 13]. Instead of pursuing computing
accuracy of memristor crossbar, they try to improve pattern recog-
nition/ classification accuracy of crossbar-based neural networks.
Some impressive work have been done to realize basic supervised
[8, 6] or unsupervised learning schemes [15] on crossbar to handle
small scale pattern recognition/classification tasks. However, these
hardware learning chips are still far behind existing software algo-
rithms on accuracy, speed as well as power efficiency due to high
cost and uncertainty on memristor tuning operations [6].

3. METHODOLOGY

Wire resistanceInput resistance

Output
resistance

Shot noise

Thermal
noise

Vin(1)

Vin(3)

Vg(1)

Vg(3)

Vout(1) Vout(2) Vout(3)

Vin(4)

Vg(4)

Vin(2)

Vg(2)

Vout(4)

TE {1, 2, 3, 4, …., n)

G {1, 2, 3, 4, …., n)

S
{1

, 2
, 3

, 4
, …

.,
n)

S
{1

, 2
, 3

, 4
, …

.,
n)

GndGnd

Gnd Gnd

(a) (b) (c)

Figure 3: (a) Actual wafer image; (b) 4 × 4 crossbar array; (c),
Circuit diagram and noise sources for simulation.

The Dot product Engine (DPE) is developed to execute vector
matrix multiplication on memristor crossbars. It includes memris-
tor device and crossbar designs and, most importantly, a conversion
algorithm to overcome non-idealities and ensure optimized com-
puting accuracy and robustness.

3.1 Device and circuit design
Fig.2 (a) shows data from a fabricated TaOx memristor device.

These devices can be repeatedly programmed to different target re-
sistance states from 2k to 3M Ω and shows the needed linearity
at sufficiently low voltages <=0.3 V. Thus, it is a good candidate
for implementing multiplication operations. We built a compact
memristor model to capture the measured electron transport for
these devices. The model matches well the memristor’s current-
voltage (I-V) behavior with varying ambient temperatures. Fig.2
(b) shows the data of access transistor under the memristor. A tran-
sistor model is also calibrated to be used to simulations.

We also fabricated a wafer with different sizes of 1T1M cross-
bar arrays for testing, as shown in Fig. 3 (a) and (b). Control-
ling electronics for DPE operations are implemented using periph-
eral circuits built on separate printed circuit boards. The crossbar
arrays are accessed through high bandwidth multi-pin connectors
to provide sequential device programing and parallel reading for
computing. Fig. 3 (c) shows the crossbar simulation model includ-
ing all of the circuit parasitics and noise referenced above. The
model also includes a temperature dependence which is important
for most memristor devices. The current driving capability and cur-
rent sensing sensitivity of the peripheral circuits are also included.
Additionally, we model the random telegraph noise (RTN), or two-
level fluctuations , frequently present in memristor devices, which
are treated as binary noise [17]. The RC delay of the crossbar is
not considered here since, for the geometries considered here even
in large crossbar arrays, is expected to be sub-ns [5] and can be
ignored for DPE operations running here at 10 MHz. Retention is-
sues are also not expected to be of concern for these devices and
timescales allowing for many operations.

3.2 Conversion algorithm
We utilized our knowledge of the memristor device physics to

develop a conversion algorithm that transforms target matrix values
into realistic memristor conductances across the array that mini-
mize any inaccuracies in matrix multiplication due to the known
circuit issues and non-idealities .

To be of practical value, our conversion algorithm must also be
efficiently computed. We developed a solver in MATLAB that in-
cludes a crossbar simulation down to the device level based on ex-
perimental data. Unlike SPICE which uses approximations for gen-
eral purpose circuit simulation, our crossbar simulator solves ana-
lytically and is 2∼3 orders of magnitude faster than SPICE simu-

0.3
Device conductance (uS) Shifted DCT Matrix value

Map transformation matrix to ideal
xbar conductance

Optimize actual xbar conductance to
approximate ideal Xbar behavior

Get ideal xbar behavior

Actual xbar
parameters

Ideal xbar
parameters

Pre-knowledge of input pattern

Set (or map to) calibration signals

Actual xbar conductance Mapping parameters

Program conductance value to xbar
devices using close-loop pulse tuning

NO

Matrix is already
on xbar?

Begin

Input
value/signal

Pass input signal to xbar
and read output signal

Map input value/signal
to xbar input signal

Map xbar output signal
to output value/signal

Matrix

Next
comput?

NO

End

YES

YES

Converting

Programming

Computing

0 1000 2000 3000
0.0

5.0x105

1.0x106

1.5x106

2.0x106

Re
sis

tan
ce

 (Ω
)

Cycle

32-levels – 2kΩ-2MΩ

0

(a) (b) (c)

(d)

16

0

Figure 4: The DPE work flow and result example. (a) DPE work flow; (b) shifted DCT matrix value; (c) converted memristor
conductance value; (d)Tune memristor to consistently change among 32 arbitrary pre-set levels with 1% error tolerance;

lators on crossbar array simulation, with no accuracy loss. Fig.4(a)
shows the overall sequence of the DPE, including the basic flow
for the conversion algorithm. A matrix is first linearly mapped to
an ideal memristor crossbar to get the ideal crossbar behavior, it as-
sumes the ideal crossbar has zero wire resistance, zero input/output
stage resistances, perfectly linear I-V relationship in the cross-point
devices, zero noise, etc. Our conversion algorithm then efficiently
simulates the actual (non-ideal) current and voltages across the re-
alistic crossbar array, and tunes the device conductances to match
the current that should pass through each cross-point device in an
ideal crossbar. Computation of the device physics is sped-up by
using the pre-calculated Jacobian matrix. The resulting process is
very efficient and converting arbitrary matrices onto a 128 × 128
1T1M crossbar takes less than 3 seconds.

After the conversion is complete, we use close-loop tuning scheme
[16]to program memristors to desired conductance values. With the
help of access transistor, close-loop tuning scheme can be crossbar-
compatible. Fig.4(b) and (c) illustrate an example of converting
32×32 Discrete Cosine Transformation (DCT) onto a 32×32 cross-
bar. For simplicity, DCT matrix is shifted to positive. Fig.4(d)
shows that our device can be consistently (more than 3000 times)
tuned from one resistance state to any other desired states. The re-
sult demonstrate a resistance resolution of up to 32 levels with 1 %
error tolerance.

4. OPTIMIZATION
Devices/crossbars can be optimized to pursue high linearity/low

interconnect resistance, but it is important to optimize the array
mapping itself to improve the performance. In this section we go
through the optimization process of the conversion algorithm and
show that accurate computing can be achieved on 1T1M crossbars
with current material systems instead of requiring further improve-
ments at the device/circuit level. For this work, crossbar settings are
fixed to 10Ω wire resistance, and 100 Ω input/output resistance.

With fixed crossbar parameters, the DPE conversion algorithm
function have three input variable set: the initial conductance of
crossbar array, the calibration signal and the temperature. These
variables should be optimized to achieve the best computing accu-
racy, as well as keeping input/output signal amplitudes within the
peripheral circuit capability.

4.1 Optimize initial conductance
The conductance GIDEAL is the matrix of cross-point device

conductances for an ideal crossbar array. Mapping an arbitrary ma-
trix A to GIDEAL involves first performing a uniform shifting to
handle any negative values, since negative conductances are not
possible. If A contains negative values, it is shifted to positive by
the constant ASHIFT added to all entries, with this contribution to
the vector-matrix multiplication removed at the final step by sub-
tracting ASHIFT · sum(X), where sum(X is the summation of
the input vector. Two linear mapping coefficients are generated:

a = (Gon −Goff)/(Amax −Amin)); b = Gon − a · (Amax)).
(1)

Gon/Goff are maximum/minimum memristor conductance values
and Amax/Amin are the maximum/minimum matrix values. Fi-
nally, GIDEAL can be calculated by:

GIDEAL = a ·A + b (2)

To optimize initial conductance, there is a general trend that as
the crossbar size increases, it is necessary to map the matrix to a
higher initial resistance range. This is due to larger crossbar arrays
having longer wire paths and causing more signal degradation. De-
vices, particularly those on the far side of the crossbar, need to be
tuned to lower resistance to compensate. Increasing initial resis-
tance range can lower the expectation of ideal signal at each cross-
point and makes conversion process easier. Moreover, if the initial
resistive range is too low, some devices may not be able to be tuned
more conductive to compensate signal degradation and conversion
process halts. Despite such tuning required by our mapping al-
gorithm, we show that high accuracy for the final computation is
achieved with a calibration input signal. Error increases when in-
put signals are different from the calibration signal. Additionally,
it is necessary that the device can accommodate the required lower
resistances for large array sizes for convergence of the conversion
algorithm.

4.2 Optimize calibration signal
Besides the initial conductance, a calibration input signal is used

to produce the ideal crossbar behavior. For neuromorphic and data
analysis where the input data has patterns, a calibration signal can
be chosen from the input data pattern to minimize the computing

Actual vector matrix multiplication result
0 50 100 150 200 250

A
b

s
o

lu
te

 e
rr

o
r

-3

-2

-1

0

1

2

3

4

DPE output result

Er
ro

r
(a) (b) (c) (d)

Figure 5: DPE results. (a) error vs. output result; (b) DPE accuracy; (c) DPE speed; (d) DPE power efficiency
Std = 0.0085 Std = 0.0045 Std = 0.0090

Actual value/Ideal value for DCT matrix computation

1 1 1.021.01 1.030.980.97 0.990.98 0.99 1.01 1.021 1.021.01 1.030.980.97 0.99

O
cc

ur
re

nc
e

(a) (b) (c)

Figure 6: Impact of calibration signal.

error. For general purpose vector-matrix multiplications, we use a
uniform calibration signal vector. For simplicity, the input vector is
normalized to the range [0,1]. Converting the input vector X to an
input voltage signal Vin follows:

Vin = X · Vmax (3)

Vmax is the maximum voltage of the DAC. For the current DPE
design, the voltage inputs need to be positive to keep the transistor
working in the positive linear region.

Fig.6 shows the impact of calibration signal in a 128×128 cross-
bar array. The calibration signal was set to 0.25V and the DPE
accuracy tested with random inputs ranging from either 0 ∼0.5V,
0∼0.25V, or 0∼0.125V. For 0∼0.5V inputs, the results show less
compensation is provided by the algorithm. This is because TaOx
memristor devices, become more conductive and nonlinear under
high voltage excitations and a low calibration signal is not enough
to compensate for errors in large inputs. On the opposite side, for
0∼0.125V inputs, the results show over-compensation because the
conversion algorithm over-estimates the device nonlinearity, which
leads to more error for small inputs. It appears that for our device,
it is best to choose the maximum inputs as the calibration signal.
In this way, the device nonlinearity is correctly compensated by the
conversion algorithm, and a symmetric Gaussian-like distribution
can be observed with minimal standard deviation.

4.3 Optimize calibration temperature
Our memristor device model was developed including the impact

of a varying ambient temperature, and we are the first to analyze
the impact of temperature on memristor crossbar for vector-matrix
multiplication. It is clearly the best to use the working temperature
for calibration, but it is still important to analyze the robustness of
the DPE when operating temperatures exceed calibration.

Fig.7 shows the impact of temperature. The calibration temper-
ature is fixed at 300K and the DPE operation is simulated for tem-
peratures of 300K to 400K. The device nonlinearity as a function
of temperature is shown in the inset of Fig.7. The result shows
the DPE has high resilience to changing environmental tempera-
ture. The Gaussian-like distribution is always preserved, and the
DPE computing result shows only linear shifting of the mean with
no obvious increase in the standard deviation until 360K. This shift
can be restored in the post-processing of the ADC sensing data.

5. RESULTS
Using our conversion algorithm, we evaluated the overall DPE

performance. Fig.5 shows the error pattern, accuracy, speed and

Actual value/ ideal value

O
cc

ur
re

nc
e

T = 300K

T = 400K

0.95

1

1.05

1.1

Mean vs. Temperature

0
0.005

0.01
0.015

Std vs. Temperature

T = 300K

T = 400K

R^
2

fit

1

0.98
0.96
0.94

0.92
0.90

Resistance (Ω)
1E3 1E4 1E5 1E6 1E7 1E8 1E9

(a)
(b)

(c)

Figure 7: Impact of temperature. (a) error distribution vs.
working temperature; (b) mean of the error distribution; (c)
std. of the error distribution.

0.00

2.00

4.00

6.00

8.00

8 16 32 64 128 256

Bi
t-

ac
cu

ra
cy

Number of Rows/Columns N (Crossbar size (N×N))

Linear Mapping (LM) LM + restoration Conversion

Figure 8: Comparing different mapping schemes

power efficiency of the DPE. The error pattern (panel (a)) is mea-
sured by gradually increasing the input vector amplitude from 0
(minimum value) to 1 (maximum value) for a 128×128 crossbar
array. Here, we did not include any error in memristor resistance
drift or fluctuations, thermal (Johnson) and shot noise are included
in the simulation. The error pattern shows a belly shape since the
conversion algorithm is optimized to reach near 0 average error
across the whole range.

The memristor accuracy (number of repeatable and precise resis-
tance levels) is a larger concern compared to thermal or shot noise
in the system. An error here can come from both inaccurate de-
vice programming or the resistance changing after programming
(due to noise, random telegraph noise or drift). We added differ-
ent levels of RTN in the memristor conductance from 0% to 30%
[17]. Accuracy (panel (b)) is measured in “bits”, or log[number of
distinguishable levels]. As expected, the final computation accu-
racy, in bits, will depend on the number of bits of accuracy present
in the memristor programming (called “Memristor bit-accuracy”).
The worst-case scenario refers to a very sparse matrix with only
one value per column. In such a case, the overall DPE computa-
tion accuracy equals the individual memristor accuracy; in contrast,
for dense matrices, over 7-Bit computing accuracy can be achieved
even with memristors of only 6-bit accuracy. This is because the
memristor noise (limiting memristor bit accuracy) is assumed to be
un-correlated and has a reduced effect for large array sizes. More-
over, it is also observed that the computing accuracy begins to sat-
urate near 8-bits even with increased device accuracy. It is because
the intrinsic current-voltage nonlinearity of devices becomes the
dominating factor. Excluding the impact of RTN, our result shows
device nonlinearity contributes ∼80% of the total noise, whereas

d
a
t
a

1×784

w1

784×500

× soft
max

-5 0 5
0

0.5

1

soft
maxw2

500×500

× soft
max

w3

500×2000

×
w
_cl
as
s

2000×10

× max
out Result

Softmax: y = 1/(1+exp(-x))

w1

784×500

Xbar
(1,1)

Xbar
(1,2)

Xbar
(1,3)

Xbar
(1,4)

Tune memristor to very resistive state (like 100 M) to match NaN value
Xbar
(1,5)

NaN

full DAC+ADC support (use DPE core)

SUM
N-bit DAC signal
to next layer

Digital processing:
Softmax

N-bit DAC signal
from previous layer

Pure analog implementation

Xbar
(1,1)

Xbar
(1,2)

Xbar
(1,3)

Xbar
(1,4)

Xbar
(1,5)

Analog signal to next layer

Analog buffering:
Softmax

Analog signal
from previous layer

Error will accumulate
and propagate!Low accuracy output but

error will not propagate to
next layers

Figure 9: (a) Algorithm flow of Auto-encoder classifier for pattern recognition on MNIST data set. (b) Implementation with DPEs of
digital interfaces such as DAC and DAC; (c) Implementation with DPEs of analog interfaces such as analog buffer and amplifier.

shot noise contributes ∼15% and thermal noise contributes the re-
maining ∼5%.

Fig.8 compares conversion algorithm to other mapping schemes.
“LM + restoration” improves LM method by assuming memris-
tors’ resistance in crossbar follows Gaussian distribution, and use
specific filters to restore the signal. However, the matrix it can ap-
ply is very limited and restoration also cause large overhead. All in
all, our conversion algorithm provides the best accuracy as well as
high robustness, and it has near zero overhead.

For the speed and power efficiency (panels (c) and (d)), we care-
fully compared DPE with a state-of-the-art ASIC [1]. Included in
our simulation for the DPE is the peripheral circuitry, including
the DACs, TIAs, and ADCs. Each channel is assumed to be 8-
bit, operate at 10MHz and consume 100µW [1]. The peripheral
circuit consumes >90% of the total power and >95% of the total
chip area. The major speed bottleneck also comes from the DAC
and ADC.This result calls for more efficient and compact DAC and
ADC design for low speed parallel signal processing. However,
the DPE can still achieve the same speed-efficiency product at a
crossbar size of 32 × 32, and becomes more than 1,000× higher
(when ASIC is in “maximum speed mode”), or more than 10,000×
(ASIC in “maximum energy efficiency mode”), when crossbar size
is scaled up to 512×512. Such crossbar sizes are conservative esti-
mations of what can be fabricated [18, 19].

6. NEURAL NETWORK IMPLEMENTATION

6.1 Auto-encoder classifier on DPEs
To demonstrate the capability of the DPE as a key accelerator

for real-world workloads, we implemented and simulated one of
the state-of-the-art neural networks, the auto-encoder classifier on
pattern recognition for MNIST data sets [10].

Fig. 9 (a) shows the full neural network implemented in the
algorithm, which contains 4 layers and large scale matrices (e.g.,
784 × 500). Fig.9 (b) and (c) shows two different ways to imple-
ment the DPE for each layer of the neural network, using either
digital (DAC + ADC) or analog interfaces (analog buffer + am-
plifiers). To enable large scale neural networks, we partitioned the
large matrices into 125×125 sub-matrices so they can be converted

onto 128 × 128 crossbar arrays, then the partitioned outputs are
collected to construct the final output signal to the next layer. The
reason behind using larger crossbar for matrix mapping is first, to
fight the yield problem, and second, to evenly distribute the weight
of biasing signal into multiple arrays. Since the weight of the bi-
asing signal is usually much larger than the weight matrix values,
directly putting them in a single crossbar causes that row of mem-
ristors to be significantly more conductive than all others, resulting
in degradation of the biasing accuracy. By evenly distributing the
biasing weight across multiple crossbars, each part of the biasing
weight will be comparable to other weight values. Comparing the
two designs, digital interfaces consume more area and power than
analog interfaces and the signals are quantized resulting in accu-
racy loss. But signal errors do not accumulate from same-layer
crossbars or propagate to the next layers of the neural network.

6.2 Performance
Fig.10 shows the simulation result with the pattern recognition

accuracy (out of 10,000 test patterns) using the DPE-based neural
network. For the software approach in Fig.10(a), binary random
noise is added to all weight matrices and the auto-encoder classi-
fier neural network exhibits a high tolerance to this random noise.
Even with 30% noise, the error rate only increased from 1.18% to
1.54%. An additional noise source, random telegraph noise (RTN)
in which the device conductance discretely fluctuates between val-
ues, has been experimentally observed in memristors with vary-
ing amplitudes, has also been simulated here. A notable result for
the DPE with a digital interface (Fig.10 (b)), is that only a 4-Bit
ADC/DAC is needed and results in no performance degradation.
Note that a software approach requires at least 8-10 bits of storage
accuracy to ensure a similar computing accuracy. This difference
is based on DPE’s unique advantage that it effectively measures the
most significant bits (MSB) of a result while software needs enough
least significant bits (LSB) to compute the correct MSBs.

For the analog approach in Fig.10 (c), since error accumulates
and propagates, the accuracy is reduced by 1.5% even with no
RTN. The error at each layer of the neural network is observed
in Fig.11 with 100 different testing patterns. In the ideal case, the
error should be independent to input patterns and appears as white
noise. However, it is observed that this dependency does exist in the

Figure 10: Recognition accuracy on 10k testing samples (a) Original software algorithm; (b) Neural network on DPEs of digital
interfaces; (c) Neural network on DPEs of analog interfaces; (d) Add mean removal function to (c).

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

5

10

15
0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

× w1

Softmax

× w3

× w2

× w_class

Softmax

Softmax

Maxout

Error (1,500)
at 1st layer

Error(1,500)
at 2nd layer

Error(1,2000)
at 3rd layer

Error(1,10)
at 4th layer

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

10

Ab
so

lu
te

 e
rr

or

Data pattern number

Data pattern

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

6

Figure 11: Error pattern accumulated from multiple crossbar
arrays at each layer of the neural network.

analog approach, due mainly to device nonlinearity, and the error
accumulates across the entire neural network. This phenomenon
is clearly observed in the final stage of the neural network where
2000 inputs collapse to only 10 outputs.

As a significant improvement to the analog approach, we imple-
mented an additional mean removal function in the system, which
is simply a mapping between the known mean error and the actual
output. This modification dramatically reduced the impact of error
accumulation and propagation from a 1.5% to only a 0.2% recog-
nition error increment, as shown in Fig.10 3(d). This indicates the
great potential of using DPE to accurately and efficiently accelerate
pattern recognition and other machine learning workloads.

7. CONCLUSION
In this work, we developed the Dot-product Engine (DPE) as an

accelerator for approximated vector-matrix multiplications. One
key difference of DPE from previous crossbar-based computing en-
gines is our conversion algorithm that finds the correct mapping
between mathematical calculations and circuit operations to over-
come the known circuit issues and other limitations to maximize
computing accuracy. The mapping is currently run on an exter-
nal computer but can be embedded on-chip for higher efficiency.
With conservative assumptions, we built a 1T1M crossbar simu-
lation platform calibrated to experimental data and quantitatively
analyzed the performance and efficiency of the DPE compared to
a state-of-the-art ASIC. Our result shows the DPE can have 1,000
to 10,000 better speed-energy efficiency product than the ASIC us-

ing 512×512 crossbars. We demonstrated the DPE’s application in
neuromorphic computing by implementing the auto-encoder clas-
sifier neural network. Our results show 99% recognition accuracy,
which yields no degradation compared to a software approach, and
using only 4-bit accuracy DAC/ADCs. The DPE is the first com-
plete crossbar-based computing engine design that leverages and
integrates existing technologies to pursue a near-term accelerator
product. We show the potential of the DPE for accelerating many
important applications, including machine learning, low power sig-
nal processing for Internet of Things (IoT), and linear transforma-
tions such as the Fourier transform.

8. REFERENCES[1] S. K. Hsu et al., “A 280 mv-to-1.1 v 256b reconfigurable simd vector
permutation engine with 2-dimensional shuffle in 22 nm tri-gate cmos,” IEEE
JSSC, vol. 48, no. 1, pp. 118–127, 2013.

[2] J. J. Yang et al., “Memristive devices for computing,” Nature nanotechnology,
vol. 8, no. 1, pp. 13–24, 2013.

[3] M. Hu et al., “Hardware realization of bsb recall function using memristor
crossbar arrays,” in DAC. ACM, 2012, pp. 498–503.

[4] K. Fatahalian et al., “Understanding the efficiency of gpu algorithms for
matrix-matrix multiplication,” in ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. ACM, 2004, pp. 133–137.

[5] P. Gu et al., “Technological exploration of rram crossbar array for matrix-vector
multiplication,” in ASP-DAC. IEEE, 2015, pp. 106–111.

[6] G. Burr et al., “Experimental demonstration and tolerancing of a large-scale
neural network (165,000 synapses), using phase-change memory as the synaptic
weight element,” in IEEE IEDM. IEEE, 2014, pp. 29–5.

[7] B. Liu et al., “Vortex: variation-aware training for memristor x-bar,” in DAC.
ACM, 2015, p. 15.

[8] M. Prezioso et al., “Training and operation of an integrated neuromorphic
network based on metal-oxide memristors,” Nature, vol. 521, no. 7550, pp.
61–64, 2015.

[9] M. Hu et al., “Memristor crossbar-based neuromorphic computing system: A
case study,” IEEE TNNLS, vol. 25, no. 10, pp. 1864–1878, 2014.

[10] R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear embedding by
preserving class neighbourhood structure,” in ICAIS, 2007, pp. 412–419.

[11] Y. Y. Chen et al., “Endurance/retention trade-off on cap 1t1r bipolar rram,”
TED, vol. 60, no. 3, pp. 1114–1121, 2013.

[12] H.-S. P. Wong et al., “Metal–oxide rram,” Proceedings of the IEEE, vol. 100,
no. 6, pp. 1951–1970, 2012.

[13] S. Jo et al., “Nanoscale Memristor Device as Synapse in Neuromorphic
Systems,” Nano Letter, vol. 10, no. 4, pp. 1297–1301, 2010.

[14] M. Tarkov, “Mapping weight matrix of a neural network?s layer onto memristor
crossbar,” Optical Memory and Neural Networks, vol. 24, no. 2, pp. 109–115,
2015.

[15] S. Choi et al., “Data clustering using memristor networks,” Scientific Reports,
vol. 5, 2015.

[16] F. Alibart et al., “High precision tuning of state for memristive devices by
adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23, no. 7, p.
075201, 2012.

[17] S. Choi et al., “Random telegraph noise and resistance switching analysis of
oxide based resistive memory,” Nanoscale, vol. 6, no. 1, pp. 400–404, 2014.

[18] X. Dong et al., “Pcramsim: System-level performance, energy, and area
modeling for phase-change ram,” in ICCAD. ACM, 2009, pp. 269–275.

[19] S.-S. Sheu et al., “A 4mb embedded slc resistive-ram macro with 7.2 ns
read-write random-access time and 160ns mlc-access capability,” in IEEE
ISSCC, 2011, pp. 200–202.

