
 
Design and Evaluation of a Trilateral Shared-Control 

Architecture for Teleoperated Training Robots 

Abstract— Multilateral teleoperated robots can be used to train 
humans to perform complex tasks that require collaborative 
interaction and expert supervision, such as laparoscopic surgical 
procedures. In this paper, we explain the design and performance 
evaluation of a shared-control architecture that can be used in 
trilateral teleoperated training robots. The architecture includes 
dominance and observation factors inspired by the determinants 
of motor learning in humans, including observational practice, 
focus of attention, feedback and augmented feedback, and self-
controlled practice. Toward the validation of such an 
architecture, we (1) verify the stability of a trilateral system by 
applying Llewellyn’s criterion on a two-port equivalent 
architecture, and (2) demonstrate that system transparency 
remains generally invariant across relevant observation factors 
and movement frequencies. In a preliminary experimental study, 
a dyad of two human users (one novice, one expert) collaborated 
on the control of a robot to follow a trajectory. The experiment 
showed that the framework can be used to modulate the efforts of 
the users and adjust the source and level of haptic feedback to the 
novice user. 

Keywords- Trilateral Teleoperation; Stability and 
Transparency; Motor Learning; Haptic Feedback; Multilateral; 
Surgical Robotics; Surgical Training 

I. INTRODUCTION 

ELEOPERATED robotic systems allow humans to 
perform remote tasks that require movement/force scaling 

and additional degrees of freedom [1]. This has led surgeons 
to use teleoperated robotic systems to perform thousands of 
minimally invasive general abdominal, gynecologic, urologic, 
and cardiac surgeries every year [1]. As the popularity of such 
systems grows, there will be an increasing need for platforms 
and methods to train novice surgeons to use them [2-5]. 
Improved training devices and methods that allow novice 
surgeons to learn while doing (rather than the traditional 
method of “see one, do one, teach one”) on the job can pave 
the way for more prevalent and effective use of teleoperated 
robotic systems in surgical procedures [4, 6].  

Training novice surgeons to perform robot-assisted surgery 
has been explored separately as a motor learning problem [7-
12] and a control problem [13-17]. In the current study, we 
integrate knowledge in motor learning and control of 
teleoperated systems to create a framework (Fig. 1) for 
trilateral teleoperated systems that can be used to teach robot-
assisted surgical procedures.  

It is currently unknown how to implement transparent and 

stable multilateral control architectures that consider motor 
learning characteristics of the human neuromuscular system. 
Researchers have extensively studied motor learning in able-
bodied humans, with the most relevant finding being that 
observational practice, focus of attention, feedback, and self-
controlled practice determine motor learning progress in 
humans [18]. 

The observational practice determinant suggests that 
humans should physically and observationally interact in 
dyads to better learn new motor skills [18]. This factor has 
been shown to be effective in both expert-novice and novice-
novice dyad forms and for both observational and physical 
practice [19], suggesting that a platform for training surgical 
procedures should allow for dyadic training with possibility of 
observation and physical interaction between the novice and 
expert, as well as novice and environment.  

The focus of attention determinant suggests that in order to 
improve motor learning, the trainee’s attention should be 
directed towards the effects of a movement synergy on the 
environment rather than an internal synergy [18, 20]. For 
example, to teach a complex suturing task in a surgical 
procedure, the trainee should be directed to focus on the knot 
tying rather than the associated movements of the hands and 
fingers. This factor has been shown to be effective even in the 
late phases of motor learning [19]. 

To improve motor learning, various studies suggest that 
feedback and augmented feedback should be provided to 
novice users in a more informed way, depending on the 
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Fig. 1.  Schematic shared-control architecture designed for trilateral 
teleoperated training robots. The inputs (F’s and V’s) to the robots are scaled 
using a dominance factor (α ϵ [0,1]) and an observation factor (β ϵ [0,1]). 
Images ©2015 Intuitive Surgical, Inc. 



learning phase and task complexity [4, 10, 11, 21-23]. Humans 
undergo three learning phases when acquiring a motor skill 
including an early phase where a motor program of the task is 
generated, a mid-phase where the motor program is refined, 
and a late phase where the movements are automatized [21]. A 
task is considered "complex" if it requires more than one 
session to be mastered [21, 24]. This categorizes laparoscopic 
surgical tasks as complex. Previous research suggests that 
novice users need more concurrent feedback (and probably 
augmented feedback) during the early phases of learning 
complex tasks [18, 21, 24], implying that a surgical training 
platform should be able to provide more feedback at the early 
stages of acquiring the surgical tasks; this hypothesis is 
supported by previous studies [11, 25]. 

The self-controlled practice determinant states that the 
learner should be able to control the practice conditions by 
exploring the movement possibilities and adjusting the level of 
feedback [26, 27], which in addition to the third factor imply 
that any training platform should allow the learner to explore 
and obtain feedback on the movements of the trainer and slave 
robot as desired. 

Multilateral teleoperated robots can be used to train new 
motor skills to healthy humans, as well as rehabilitate 
impaired limbs of patients with neuromuscular deficiency [28, 
29]. This includes teaching robot-assisted teleoperated surgical 
procedures and aviation, manipulation of objects in remote 
environments, and physical therapy to patients in remote 
locations. Despite substantial research in the design of 
multilateral robots, these systems have seen limited use for 
training motor skills and performing cooperative surgical tasks 
at a clinical level. The current study is a first step toward 
implementing a multilateral training robot for training novice 
surgeons to use robotic laparoscopic devices. 

Among various multilateral teleoperated platforms, trilateral 
dual-user single-slave architectures have been well studied in 
terms of stability and transparency [14-17, 30-32]. Despite 
differences in the control architectures, trilateral teleoperated 
robots generally have one common characteristic: They give 
authority over the performance of a task to one side inherently 
or using a dominance factor, which can range from zero to one 
[15, 30, 31]. For example, in a trainer-novice dyad interacting 
with the environment through a trilateral system, the trainer 
would have full control over the slave robot and the novice 
when the dominance factor is one; whereas, the novice would 
have full control when the dominance factor is zero. A two-
master-console version of the da Vinci Si system (Intuitive 
Surgical Inc., Sunnyvale CA) is an example of a trilateral 
system that allows for dominance factors of only zero and one.  

Implementation of the determinants of motor learning in 
trilateral robots for training surgical tasks is challenging. First, 
it is not clear how the authority of the trainer and trainee 
should be arbitrated to ensure safety during the learning 
process. Second, the ideal tradeoff between the ability of a 
learner to control the practice conditions and the ability of a 
trainer to supervise the execution of surgical tasks is unknown. 
Finally, it is difficult to provide force feedback using current 

surgical systems given that there is a tradeoff between the 
system stability and transparency. 

In this paper, we present the design of a shared-control 
architecture for trilateral teleoperated robots tailored to 
training motor skills. The architecture allows for any level of 
authority over the slave robot as a well as adjustment of force 
feedback source to the learner. We analyze the stability and 
transparency of the controller and show how the architecture 
considers the motor learning determinants in that it allows: 

a. for dyadic practice between two users 
b. the trainee to set the level of the haptic feedback 
c. direction of the learner’s focus of attention to external 

effects on the environment, and  
d. the trainee to explore the possibilities and environment. 

As a proof of concept, we present a preliminary experiment 
involving two participants collaborating in a trajectory-
following task with three haptic devices (two masters and one 
slave) on which the trilateral architecture was implemented. 

II. DESIGN AND PERFORMANCE ANALYSIS 

A. Shared-Control Architecture 

The proposed shared-control architecture includes two master 
ports for the trainer and novice and one slave port for the robot 
that performs tasks in the environment, as shown in Fig. 1. 
The input signals to the robots are modulated using a 
dominance factor α ϵ [0,1] set by the trainer, and an 
observation factor β ϵ [0,1] set by the novice. For consistency, 
we use parameters similar to those used in previous studies 
[15, 30, 31], as shown in Table I. The control architecture of 
Fig. 1 is characterized as:  
ଵௗܨ                         ൌ ܨߙ  ሺ1 െ  ଶ (1-a)ܨሻߙ
                        ܸଵௗ ൌ ߙ ܸ  ሺ1 െ ሻߙ ܸଶ (1-b) 
ଶௗܨ                         ൌ ܨߚ  ሺ1 െ  ଵ (1-c)ܨሻߚ
                        ܸଶௗ ൌ ߚ ܸ  ሺ1 െ ሻߚ ܸଵ (1-d) 
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                        ܸௗ ൌ ߙ ܸଵ  ሺ1 െ ሻߙ ܸଶ (1-f) 
where Fed and Ved are the desired force and velocity of the 
slave robot, Fh1d and Vh1d the desired force and velocity of the 
trainer robot, and Fh2d and Vh2d are the desired force and 
velocity of the novice robot. Fe and Ve are the measured force 
and velocity of the slave robot, Fh1 and Vh1 the measured force 
and velocity of the trainer robot, and Fh2 and Vh2 are the 
measured force and velocity of the novice robot.  

We chose to constrain the (α , β) values to the space of 
direct feedback defined as Ω = {(α , β) | 0 ≤ α ≤ 1 , 0 ≤ β ≤ 1, 
and β ≥ 1 – α } to ensure that the novice obtains force and 
velocity feedback directly from the environment at least as 
much as the authority of the novice over the tasks being 
performed. For example, if the novice user has 80% authority 
over the slave robot (α = 0.2), the system ensures that at least 
80% of the force and velocity feedback to the novice comes 
directly from the environment and not from the trainer. As 
another example, when the trainer is performing a task using α 
= 1, the novice user can observe the movements of the expert 
setting β → 0, the environment setting β → 1, or any case in 
between as shown in Fig. 2-left; whereas, when the trainer 
gives the full control to the novice using α = 0, the novice 



would primarily interact with the environment given that β can 
only be 1, as shown in Fig. 2-right. 

For the block diagram of the closed-loop shared-control 
architecture of Fig. 4, we have: 
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Here the impedance matrix Z = A-1B assuming linear time-
invariant impedances and terminations [31], where: 
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Here, Cmi, Cs, C6mi, and C5 are local position and force 
feedback gains, and C4mi, C1, C2mi and C3 are position and force 
feedforward gains. Using the abovementioned architecture, we 
can implement several designs including position-position-
position (PPP), and position-position-force (PPF) spanning a 
range of stability and transparency characteristics [33]. In the 
case of the PPP architecture, we can use Cmi = -C4mi = Kdmi  + 
Kpmi / s and Cs = C1 = Kds  + Kps / s, and C2mi = C6mi = C5 = C3 
= 0; whereas, in a FFF architecture we would use C2mi= C3 = 
1, Cmi = C4mi = C6mi = Cs = C1 = C5 = 0. In the implementation 
considered in this paper, we use the PPP architecture. 

B. Performance Analysis 

The stability and transparency of shared-control trilateral 
architectures have been analytically studied elsewhere [15, 30, 
31, 33]. Researchers implemented a series of criteria for the 
assessment of unconditional stability of the shared-control 
architectures and showed that it is not possible to design PPP 
and FFP shared-control architectures that include derivative 
gain for the position controllers and are unconditionally stable 
for all α values [31]. Other researchers developed a framework 
for analysis of unconditional stability of shared-control 
architectures where the trilateral architecture is reduced to a 

two-port architecture and investigated using Llewellyn’s 
criterion [29]. This framework allows us to investigate a 
shared-control architecture for given values of Ze, ω, α, and β. 
Here, we use this framework to develop a numerical method to 
investigate the stability of the proposed class of architecture 
that includes dominance and observation factors. 

First, we obtain the equivalent two-port impedance matrix 
of the architecture as: 

          ܼᇱ ൌ ቈ
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where, Zjk (j, k ϵ {1,2,3}) are the elements of the impedance 
matrix Z. Next, we evaluate the unconditional stability of the 
architecture using the Llewellyn’s criterion [34], which 
confirms that the proposed architecture is unconditionally 
stable if and only if [29]: 
1. Z’

11 and Z’
22 are positive real, where Z’

jk (j, k ϵ {1,2}) are the 
elements of the impedance matrix Z’. 

ሺ߱ሻߟ .2 ൌ
ଶோ൛ᇲభభൟோ൛ᇲమమൟିோሼᇲభమᇲమభሽ
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where Re{X} is the real component of X and |X| is the absolute 
value of X. We evaluate these two conditions across all Ze 
values on the right hand plane using the transformation of 

ܼ ൌ
ଵା
ଵି

  and evaluating the stability criterion in |Γ| ൏ 1 

[29]. For certain values for the controller gains, the system 
might not have an impedance matrix. In that case, Z and Z’ 
should be replaced by the hybrid or scattering matrix of the 
system [29]. 

Alternatively, we can numerically and experimentally study 
the stability of the proposed architecture via the input energy 
of the trainer Eh1 and also novice Eh2, in that the system is 
stable if and only if: 

ሻݐሺܧ                     ൌ 	 ሺ߬ሻܨ ܸሺ߬ሻ݀߬
௧
  0  (6) 

for all t > 0, when the other two ports are connected to passive 
components [31]. This method requires force measurement at 
the master ports. 

We also study the transparency of the proposed architecture 
by evaluating the transparency transfer function of the trainer 
(Gt1) and novice (Gt2) defined as [30]: 
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where, Zti are impedances transferred to the users [33, 35]: 
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Fig. 3.  The space of direct feedback defined as Ω = {(α , β) | 0 ≤ α ≤ 1 , 0 ≤ β
≤ 1, and β ≥ 1 – α } and shown by orange. The trainer and novice should be
able to set values of (α , β) during a training session. 

  
 

 
Fig. 2. Two special cases of the shared-control architecture. Left: Using α = 1,
the trainer is the primary performer and the novice is primarily observing the
movements of the trainer (β = 0) or slave (β = 1). Right: Using α = 0, the
novice is the primary performer and β = 1 given that (α , β) values are chosen
from Ω. In this case, the controller gives the full control over the trainer
master robot and slave robot to the novice. 



The transparency transfer function approaches 1 when the 
system is transparent. 

III. PERFORMANCE EVALUATION 

We numerically studied the stability and transparency of a 
PPP version of the proposed architecture and experimentally 
studied the performance of two human participants using a 
trilateral system with the proposed architecture implemented. 

A. Analysis of Stability and Transparency 

A PPP architecture was investigated with Cmi = -C4mi = Cs = C1 
= 5  + 120 / s, and C2mi = C6mi = C5 = C3 = 0 for the control 
parameters. Our analysis included Zmi = Zs = M s = 0.3 s for 
the robot impedances, and T = 0.001 s. for the system delay. 
Our analysis were across 6 values of {0, 0.2, 0.4, 0.6, 0.8, 1} 
for α and β as well as 4 frequencies of ω (rad/s) = {0.1, 1, 10, 
100} for analysis of stability and ω (rad/s) = [0.1, 100] for 
analysis of transparency. We found that this system remains 
unconditionally stable for all values of (α , β). We found 
similar results for the sampling time T = 0.0001 s. and T = 0 s. 

Fig. 5-left and right respectively show the transparency 
transfer function for the trainer under soft and hard contacts 
with the environment. In Figs. 5 and 6, the first columns 
include the data for the no grasp condition and the second 
columns for the average grasp condition. The figures 
additionally show Gt1 for the (α , β) values chosen from the 
bottom left half of Ω in red.  

It can be seen that the original selection of Ω (upper right 
half shown in Fig. 3) renders the system transparency 
relatively independent of the β values, given that the red 
graphs in Fig. 5 are unacceptable. It can also be seen that the 
system transparency transfer function remains close to 0 dB up 
to ω = ~10 Hz across different values for α, implying that the 
system is transparent for a given α value.  However, as α value 
changes the perceived impedance for the trainer also changes 
suggesting that the system transparency is dependent on the 
dominance factor. This finding suggests a tradeoff between the 
ability to arbitrate authority and the system transparency. 

Comparing the transparency transfer functions of the loose 
and firm grasps in Fig. 5 shows that the transparency of the 
system from the trainer’s point of view remains relatively 
independent of the novice impedance at frequencies of up to 
10 Hz except for the case with α = 0. Comparing the left and 
right columns of Fig. 5 shows that the transparency of the 
system decreases when the slave robot is in contact with hard 
surfaces. The transparency of the system presented here is 
from the trainer’s prospective, because the impedance 
transferred to the novice (Zt2) is a subcase of Zt1 and we found 
similar results for Zt2, not presented here. 

 
Fig. 4. Trilateral shared-control architecture. The input signal to the trainer
and slave robot are gauged using the dominance factor α, and the input to the
novice robot is gauged using the observation factor β. 
 

TABLE I. DEFINITION OF MATHEMATICAL PARAMETERS 
Prm. Definition Prm. Definition 
ܨ Master robots force ܨௗ	 Master robots desired force 
ܨ Slave robot force ܨௗ	 Slave robot desired force 

ܸ Master robots velocity ܸௗ	 Master robot desired velocity 

ܸ Slave robot velocity ܸௗ	 Slave robot desired velocity 
ߙ Dominance factor ߚ	 Observation factor 

Ω Space of allowable (α , β) 
values i	ൌ	1	 Trainer identifier  

i	ൌ	2 Novice identifier  i	ൌ	3	 Slave identifier  

Cmi
Position feedback gain of 
master robots C2mi	

Force feedforward gains of master 
robots 

C4mi
Position feedforward gain of 
master robots C6mi	 Force feedback gain of master robots 

Cs
Position feedback gain of slave 
robot C3	 Force feedforward gains of slave robot 

C1
Position feedforward gain of 
slave robot C5	 Force feedback gain of slave robot 

T Time delay M	 Robot mass 
Zmi Master robot impedance Zs	 Slave robot impedance 
Zhi Human operator impedance Ze	 Environment impedance 
Fcmi Master robot controller force Fcs	 Slave robot controller force 

෨ܨ
Human operator endogenous 
force ܨ෨	 Environment endogenous force 

Z Impedance matrix with 
elements of Zjk (j, k = {1,2,3}) Z’	 Equivalent two-port impedance matrix 

with elements of Z’jk (j, k = {1,2}) 
η Stability parameter ω	 Frequency 
߁ Transformed impedance ܧ	 Operator energy 

Kpmi
Master robot controller position 
gain Kdmi	 Master robot controller derivative gain 

Kps
Slave robot controller position 
gain Kds	 Slave robot controller derivative gain 

ܼ௧
Impedance transferred to the 
operators ܩ௧	 Transparency transfer function 

Ci Motion jerk of the ith robot ሺx,yሻ	 Coordinates of the haptic devices  
eij Position error Pi	 Position of the haptic device stylus 
Tc Completion time ܨത	 Average force 

 



B. Experimental Implementation and Evaluation 

We implemented a trilateral PPP architecture on three 
Phantom Omni haptic devices, as shown in Fig. 6. The 
proportional and derivative gains selected were Kp = 90 N.m-1 
and Kd = 1 N.s.m-1, and the sampling time was chosen to be T 
= 0.001 s. The velocity values were filtered using a 
Butterworth 3rd order filter with cutoff frequency of 150 Hz, 
but we were not able to increase the derivative gains more 
than 1 N.s.m-1and still have a stable system. This unexpected 
instability could be related to the quantization noise, which 
were not captured in the analysis of the previous section. 
Having stated that, the system remained stable under different 
contact and grasp conditions.  

The trilateral system was used in a simple experiment 
involving two normal participants as the trainer and novice 
(Fig. 6) with the details being:  

Task: The users were asked to move the stylus is the grasped 
master manipulator in order to cause motion of the stylus of 
the slave robot along a star-shape path, with less than ±4 mm 

deviation from the desired path. The gimbals of the slave robot 
stylus were taped allowing rotation only in 3 degrees of 
freedom (DOFs). 

Trainer: The trainer was given more control over the task 
performance in that the stylus gimbals of the trainer haptic 
device were taped similarly to those of the slave robot, and the 
trainer used the dominant hand supported on the table. The 
trainer was instructed to focus on the movement of the slave 
robot and make sure it remains within the trajectory 
boundaries. 

Novice: The novice participant was instructed to focus on the 
movement of the stylus endpoint of the slave haptic device and 
try to move it along the trajectory with the non-dominant hand 
and remain inside the boundaries. The gimbals of the novice 
haptic device were free leaving more DOFs to the novice who 
was moving his stylus without his hand supported on the table. 

The experiments used 5 values of {0, 1/4, 1/2, 3/4, 1} for α 
and β making a total number of 25 trials which were 
randomized using a randomized 5×5 Latin square design. The 
participants practiced using the setup for 4 min., then 
performed the experiment. For each set of α and β values, the 
participants practiced the trajectory following task 10 times, 
rested for 20 s, performed the task 5 times for data analysis, 
and then rested for 1 min. All sessions took place subsequently 
and within one day.  

For each trial, we collected the position of the endpoints of 
the haptic devices’ stylus and calculated the sum of position 
errors as the sum of distance between the robot position and 
the closest point on the trajectory. We also calculated the 
effort of the users as the average magnitude of the forces 
generated by the haptic devices (i.e. Fcmi and Fcs). The time of 
completion of the task was also recorded. 

C. Experimental Results 

Fig. 6 shows also the trajectories of the haptic device styluses 
for a sample trial with α = β = 1/2. Figs. 9 shows the time of 
completion, sum of position errors, and average forces across 

 
Fig. 5.  Impedance transferred to the trainer (Zt1) versus frequency for
contact with a simulated soft surface (left) and hard surface (right). For each
contact condition, the left column includes the data for the case without the
user grasping the robot and the right column data for the case with an
average grasp impedance. Six values of {0, 0.2, 0.4, 0.6, 0.8, 1} are included
for α and similarly for β. The gray scale indicates the value of β, with the
darker being closer to 1. The red curves indicate the condition where (α , β)
are chosen from the bottom left half of space. 

Fig. 6. A dyad of human users performed a trajectory following task. The
first user was given more control and moved the stylus of his haptic device
by the dominant hand (allowed to be supported on the table). The second
user was the novice and moved the stylus of the haptic device using the non-
dominant hand (not allowed to be supported on the table). The gimbals of the
trainer and slave robots were similarly fixed using tape. 



different α and β values, respectively. The following trends 
can be observed in these figures. 

Completion Time: The completion time increased as α 
increased, implying that the trainer preferred slower 
performance of the task. An increase in β value resulted in an 
increase in the completion time, implying that when the novice 
received haptic feedback from the slave robot, the task was 
performed more slowly.  

Position Error: The slave robot position error was 
maximum for the case where the trainer had full control (α = 
1), implying that collaboration resulted in better performance. 
It can be seen that for α = 0 case, an increase in β value 
resulted in an increase in slave robot error; whereas, no 
noticeable trend was observed for other cases. 

Robot Force: An increase in the β value and a decrease in α 
value resulted in an increase in the trainer effort and a 
decrease in the novice effort. Interestingly, the less authority 
the participant had over the task performance, the more efforts 
they contributed to the task performance suggesting that both 
and were involved in modulation of the trainee’s effort. The 
slave robot force remained mostly constant, as expected. 

IV. DISCUSSION AND CONCLUSIONS 

This paper presents the design and performance evaluation of 
a control architecture for master-master-slave trilateral 
teleoperated robots that can be used for training robot-assisted 
surgical procedures. The proposed architecture allows for 
regulation users' authority over the slave robot using a 
dominance factor determined by the trainer, and coordination 
of the attentional focus and feedback for the novice using an 
observation factor that is determined by the novice.  

The numerical analysis showed that the system remains 
stable and relatively transparent across different values for the 
dominance and observation factors, novice grasp impedance, 
and frequencies. It was found that the main contributors to the 
decrease in the system transparency were the contact 
impedance and dominance factor, which is in in agreement 
with the findings of others [30].  

The experimental evaluation of the system showed that an 
increase in the authority of the users resulted in a decrease in 
the efforts they made. The dyadic performance was superior to 
the individual performance and also the control framework 
allows for the trainer supervision and modulation of the efforts 
of the users. The experiment only included one dyad to 
validate the framework and identify trends, thus no statistical 

inference should be made using the results. It is unclear how 
the trainer and novice contributed to the task. Future research 
could measure the leader/follower contributions and corrective 
roles that users take across different α and β values. 

The design of the control architecture was inspired by the 
determinants of motor learning in humans, including 
observational practice, focus of attention, feedback, and self-
controlled practice. Using a trilateral platform that implements 
this architecture, a trainer-novice dyad can perform 
collaborative training procedures giving supervision to the 
trainer using the dominance factor. The combination of the 
dominance and observation factors allows for modulation of 
the level of feedback and focus of attention for the novice. 
Moreover, the observation factor allows the novice user to 
control the source of feedback and explore the environment 
and motor variability, as suggested by others [26]. 

The proposed architecture is a continuation to the efforts of 
other researchers who studied shared-control architectures 
from a control point of view [15, 16, 29-32], with the 
difference being that we integrated the determinants of motor 
learning in humans into the design of the control architectures. 
Particularly, the proposed architecture allows for modulation 
of the determinants of motor learning, which allows us to 
study the human response to different levels and profiles of 
haptic feedback and focus of attention. 

Researchers have previously obtained contradictory results 
regarding the effects of haptic feedback on performing and 
learning surgical procedures [4, 10, 36]. One potential 
explanation could attribute these contradictory results to 
uninformed administration of haptic feedback during task 
performance or skill acquisition. Previous research shows that 
humans need more feedback in the early stages of learning 
complex motor skills [21], implying that more feedback (and 
probably augmented feedback) should be provided at the 
beginning of learning surgical tasks; with the evidence shown 
in a previous study [11]. One aim of the current line of study is 
to understand how haptic feedback should be provided in 
training surgical tasks. The proposed architecture provides a 
combination of visual feedback and adjustable haptic 
feedback, which were shown to have the potential to 
significantly improve the performance and perception of 
surgeons and skill transfer [4, 36]. 

In this study, we explained the steps to investigate 
transparency and stability of the architecture for different 

Fig. 9. Average time of completion, sum of position error (absolute value of the difference between the robots position and the trajectory) and average force
magnitude for the trainer, and novice robots across different α and β values. 



controller gains, dominance and observation factors, and 
environment impedance. We used this methodology to study 
the stability and transparency of a case with local position 
control at the robots (i.e. position-position-position). Similar 
methodology can be used for cases with other control forms 
(e.g. force-force-force or position-position-force) and 
environment impedances. Alternatively, designers can use the 
generic analytical stability criteria proposed by others [31], to 
design unconditionally stable architectures. 

The design of the proposed architecture assumes that the 
trainer and the novice can constantly adjust the dominance and 
observation factors using a pedal, grasp force sensors, or other 
means. Future research efforts could be devoted to the 
development of methods to convey information on the 
dominance and observation factors within the dyad.  

It is unclear at this point how human users respond to 
training systems that realize this framework. As a future 
research direction, we intend to implement this framework on a 
trilateral teleoperated platform for training laparoscopic robotic 
surgeries and experimentally evaluate the response of the 
human users under different feedback and task complexity 
conditions aiming to implement a platform for training surgical 
skills “on the job”, as suggested by others [4, 37]. 
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