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Abstract

Most current approaches in computational
phylogenetic linguistics require as input
multilingual word lists that are categorized
into cognate classes. Cognate classifica-
tion is currently usually done manually by
experts, which is time consuming and so
far only available for a small number of
well-studied language families. Autom-
atizing this step will greatly expand the
empirical scope of phylogenetic methods
in linguistics, as raw word lists (in pho-
netic transcription) are much easier to ob-
tain than cognate-coded ones, especially
for under-studied language families.

Here we propose a method for auto-
matic cognate classification using super-
vised learning with a Support Vector Ma-
chine. The method outperforms Johann-
Mattis List’s SCA and LexStat methods
(List, 2012; List, 2014b), the current de
facto standard.

1 Introduction

Computational phylogenetic linguistics has made
great strides in recent years. Exciting progress
has been made with regard to automated language
classification (Bowern and Atkinson, 2012; Jäger,
2015), inference regarding the time depth and
geographic location of ancestral language stages
(Bouckaert et al., 2012), the identification of sound
shifts and the reconstruction of ancestral word
forms (Bouchard-Côté et al., 2013; Hruschka et al.,
2015), to mention just a few.
Most of the mentioned and related work, espe-

cially if Bayesian inference is deployed, relies on
multilingual word lists that are manually annotated
for cognacy (Bouchard-Côté et al., 2013, being
a notable exception). Manual cognate classifica-
tion is a slow and labor intensive task requiring ex-

pertise in historical linguistics and intimate knowl-
edge of the language family under investigation.
Also, building automated phylogenetic inference
on expert judgments is methodologically problem-
atic as the expert annotators necessarily base their
judgments on certain hypotheses regarding the in-
ternal structure of the language family in question.
In this way, certain assumptions about what is to
be inferred is actually fed into the input to the in-
ference process.
The literature contains a variety of proposals

to infer cognate classifications automatically from
phonetically or orthographically transcribed word
lists (Kondrak, 2002; Ellison, 2007; List, 2012;
Bouchard-Côté et al., 2013, inter alia). In the
present paper we will propose a novel approach
based on supervised learning. As baselines for
comparison we chose List’s (2012; 2014b) SCA
and LexStat methods since (a) they have been
tested on a variety of typologically different lan-
guage families and (b) a computational implemen-
tation is freely available as part of the LingPy soft-
ware package (List and Moran, 2013; List et al.,
2013).

2 Data

We used data from five different sources:1

1. the benchmark data from (List, 2014a) (part
of the supplementary material accompanying
List 2014),

2. the annotated word lists from (Wichmann and
Holman, 2013),

3. the part of the IELex data base (http://
ielex.mpi.nl/, retrieved on 4-23-2013)
that contains IPA transcriptions,

4. the part of the ABVD data base (Green-
hill et al., 2008, see http://language.

1The references give the source from where we accessed
the data. See the references for the ultimate sources.
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psy.auckland.ac.nz/austronesian/;
accessed on 12-2-2015) that contains IPA
transcriptions, and

5. the Central Asian data set from (Mennecier et
al., 2016).

The data from (Wichmann and Holman, 2013)
are transcribed in the format of the Automated Sim-
ilarity Judgment Program (ASJP; see Brown et al.,
2013 for the sound class definitions). All other
data are transcribed in IPA. Most datasets cover
versions of a Swadesh list (see the Supplementary
Material for details).
To illustrate the data format, the entries for the

concept woman in the dataset GER from (List,
2014a) are shown in Table 1.

doculect concept transcription cognate class
Danish woman kvenə 160
Dutch woman vrɑuʋ 158
English woman ʋʊmən 159
German woman frau 158
German woman vaip 159
Icelandic woman kʰɔːna 160
Norwegian woman kʋinə 160
Swedish woman kvinːa 160

Table 1: Entries for woman in GER

Two words belong to the same cognate class if
— according to historical linguistics scholarship—
they descent from the same ancient proto-form.2
We split this collection of data bases into three

parts, to be used for training (parameter estima-
tion), validation (model selection) and testing re-
spectively in the following way:

• Training: data from (List, 2014a) (except the
datasets IEL and PAN, as those overlap with
the validation data).

• Validation: data from (Wichmann and Hol-
man, 2013).

• Testing: data from IELex, ABVD and (Men-
necier et al., 2016).

This decision is partially motivated from prac-
tical consideration. As mentioned above, List’s
(2012) methods SCA and LexStat will be used as

2This criterion is not always clear-cut, even if the etymol-
ogy of the words involved is known. For instance, English
‘woman’ descends (according to the Oxford English Dictio-
nary) from Old English ‘wife+man’. Only the first of the two
components is genuinely cognate with German ‘Weib’, so the
cognacy is only partial.

benchmark. As these methods have been devel-
oped with the data from (List, 2014a), an informa-
tive comparison should be based on the same train-
ing data. Furthermore, the data from (Wichmann
andHolman, 2013) are only available in ASJP tran-
scription. Our method uses this transcription (all
IPA transcriptions are converted into ASJP format
by our method), while SCA and LexStat use IPA
as input. Therefore the data in ASJP format were
used for model selection and the new data in IPA
format were held back for final testing.
By way of a further practical consideration, Lex-

Stat, in its current implementation from LingPy,
can only be applied to datasets comprising at most
169 doculects. The ABVD data comprise 395
doculects. To facilitate the comparison between
methods, we split the ABVD data into four equally
sized subsets.

3 Methods

To automatically infer cognate classes, we proceed
in two steps:

• For each pair of words from the same dataset
with the same meaning, the goldstandard data
provide a value 0 (different cognate classes)
or 1 (same cognate class). We train a binary
classifier which predicts probabilities of bi-
nary class membership for each such word
pair. To this end, we compute a vector of
seven quantitative predictors (to be described
below).

• For each group of words from the same
database denoting the same concept, these
pairwise probabilities are transformed into
distances. The latter are used as input for hier-
archical clustering, leading to an inferred cog-
nate classification.

3.1 PMI similarity

In a first step, all IPA transcriptions are converted
into ASJP using the converter from LingPy.
All further steps are based on the point-

wise mutual information (PMI) between pairs of
strings, using the PMI scores and gap penalties
from the Supplementary Information of (Jäger,
2015); see (Jäger, 2013) for a detailed descrip-
tion on how those parameters are trained. PMI
scores were computed as global pairwise align-
ment scores as implemented in the function
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pairwise2.align.globalds of the Biopython
library (Cock et al., 2009).3

The training procedure for PMI scores between
different sound classes described in Jäger (2013)
ensures that pairs of different sounds frequently
participating in regular sound changes have high
scores. Therefore cognate word pairs tend to have
high PMI similarity even if they are separated by
sound changes. An example illustrating this, taken
from Jäger (2015), would be the comparison of
German Hand ([hant] in ASJP transcription) to
its cognate, English hand [hEnd] vs. to a non-
cognate such as Spanish mano [mano]. While
PMI(hant, hEnd)= 4.80 since mismatches such
as a/E and t/d are not very severe, PMI(hant,
mano)= −11.28 since mismatches such as h/m and
t/o are strongly penalized.
One reviewer suggested to use longest common

subsequence ratio (LCSR), cf. (Melamed, 1995),
or minimum edit distance (MED) as basic string
similarity measure instead of PMI. These mea-
sure are ill-suited for cognate detection though as
they both treat all non-identical sound pairs alike.
To stay with the example, LCSR(hant, hEnd) =
LCSR(hant, mano) = 0.5, and MED(hant, hEnd)
= MED(hant, mano) = 2. On a more general
level, the point-biserial correlation coefficient4 be-
tween PMI similarity and cognacy is 0.66 for our
training data, while it is only 0.58 for MED and
0.57 for LCSR. We therefore conclude that PMI
similarity is a good starting point for automatic
cognate identification.
Another reviewer remarked that using the same

PMI parameters for all comparisons regardless of
the languages involved might be sub-optimal as
this does not take language-specific regular sound
correspondences into account. The benchmark
method LexStat does exactly that. As will be
shown below, our approach still yields somewhat
better results than LexStat. A thorough discussion
of this important issue will have to wait for another
occasion. The main reason for this discrepancy
appears to be though that with the available data,
language-specific parameters can be trained on 40

3This implements a modification of the Needleman-
Wunsch algorithm (Needleman andWunsch, 1970), disallow-
ing a gap in one string being directly followed by a gap in the
other string.

4The point-biserial correlation coefficient is a measure of
the association strength between a continuous and a binary
variable. It is mathematically equivalent to the Pearson corre-
lation coefficient if the binary variable is numerically coded
as 0/1.

– 200 word pairs only, of which only a fraction is
cognate and can therefore provide evidence for reg-
ular sound correspondences. This leads to a severe
problem of data sparseness. The general-purpose
PMI scores from (Jäger, 2015), in contradistinc-
tion, were trained on more than one million word
pairs, so data sparseness is not an issue.

3.2 Predictors
For a given pair of words (more precisely: a pair
of strings of ASJP sound classes) w1,w2 (from
the same dataset), both denoting concept c, from
doculects D1,D2, the following (dis-)similarity
measures are computed:

1. PMI similarity.

2. Calibrated PMI distances. Following the
procedure described in (Jäger, 2013), the
PMI similarities between all pairs of non-
synomymous words from D1,D2 are com-
puted. The calibrated PMI distance between
w1 and w2 is the relative frequency of such
pairs having a higher similarity than w1/w2.
This measure can be interpreted as the p-
value for the null hypothesis that the similar-
ity between w1 and w2 is due to chance. (This
measure is monotonically decreasing in the
previous measure; it is less fine-grained but
less susceptible to chance similarities to simi-
lar sound inventories.)

3. The negative logarithm of the previous mea-
sure.

4. Doculect similarity. The mean value of the
previous measure, averaged over all synony-
mous pairs from D1/D2. (This is a measure
of the degree of relatedness between D1 and
D2.)

5. The logarithm of the previous measure.

6. Average word length. The average length,
measured in the number of ASJP symbols,
of all words for concept c (from the same
dataset). (This is motivated by Pagel et al.,
2007, — where it is shown that frequent
words are more resistent against lexical re-
placement than rare words, together with
Zipf’s 1935 observation that length of words
is negatively correlated with their frequency.
It is therefore to be expected that stable con-
cepts are, on average, expressed by shorter
words than instable ones.)
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7. Correlation between word distance and
doculect similarity. For each pair of words
for concept c, the correlation coefficient be-
tween their calibrated PMI distance (measure
2) and the similarity between the correspond-
ing doculects (measure 4) is determined. (We
expect this measure to be low for concepts
susceptible to borrowing or sound symbolism,
and to be high for stable concepts.)

Note that the first three measure quantify the
(dis-)similarity between the strings w1/w2, the
fourth and fifth pertain to the degree of relatedness
between the doculects D1/D2, while the the last
two are related to the diachronic stability of con-
cept c.5

3.3 Training a binary classifier
We trained a Support VectorMachine on those vec-
tors, using the Training Set for parameter estima-
tion and the Validation Set for model/feature se-
lection. As criterion to be maximized we chose
theAdjusted Rank Index (Hubert andArabie, 1985)
as applied to the outcome of the clustering step
(see below). Training and prediction was car-
ried out using the svm module from the Python
package sklearn http://scikit-learn.org/
stable/modules/svm.html, which is based on
the LIBSVM library (Chang and Lin, 2011).
The test score was maximal with a Radial Basis

Function kernel, a kernel coefficient γ = 9×10−4,
and a penalty parameter C = 0.6 (both parameter
were determined using a grid search). Leaving out
any of the seven predictors led to decreased perfor-
mance.
We observed that using the full collection of vec-

tors computed from the training data led to overfit-
ting. Generalization from the training set to the
test set was improved when we randomly selected
only one word pair for each data set/concept. This
means that out of 111,724 word pairs from the
training set, we used only 1,750 pairs (1.6%).
After training, the SVM predicts for each input

vector both a categorical class label (0 or 1) and a
probability distribution over class labels. Predict-
ing class membership probabilities from a trained
SVM was carried out using Platt scaling (Platt,
1999) as implemented in http://scikit-learn.
org. In the sequel we only use the predicted prob-
ability for label 0.

5The latter two measures are inspired by (Dellert and
Buch, 2016).

3.4 Hierarchical clustering
For each collection of words from the same data
set and denoting the same concept, the SVM pre-
dicts pairwise probabilities p(·, ·) of non-cognacy.
These were transformed into pairwise distances ac-
cording to the formula

d(wi,w j)
.
= log p(wi,w j)− (min

j,k
p(w j,wk))

UPGMA clustering was performed on these dis-
tance matrices. The threshold for forming flat
clusters from the UPGMA dendrogram was set at
log0.5 − min j,k p(w j,wk), i.e., at the distance cor-
responding to a 50% probability of cognacy.

4 Evaluation

We used two evaluation measures to determine
how well an automatically inferred classification
confirms to the goldstandard classification: (1) the
Adjusted Rand Index (ARI), and (2) the B-Cubed
score (Bagga and Baldwin, 1998).
As mentioned above, the performance of our

method is compared to List’s (2012; 2014b) auto-
matic cognate classification algorithms SCA and
LexStat. Perhaps the most significant difference
between SCA and LexStat is that the latter auto-
matically detects regular sound correspondences
between doculects and utilizes this information
to infer cognacy, while the former works with
the general-purpose string similarity measures for
each pair of doculects. So LexStat incorporates
an important insight of the classical comparative
method. Our method is closer to SCA in this
respect as it also uses the same general-purpose
string similarity measures for all language.
The performance of the threemethods on the test

set are displayed in Table 2.
We found that our method on average outper-

forms both LexStat and SCA. It also outperforms
them for each individual data set according to
both evaluation criteria, with one exception (for
the Mennecier et al. data set, LexStat achieves a
slightly higher B-Cubed score than our method).

5 Conclusion

In this short paper we demonstrated that a com-
bination of linguistically inspired quantitative pre-
dictors, modern machine learning techniques and
high-quality goldstandard training data achieves
state-of-the-art performance for the recalcitrant but
important task of automated cognate classification.
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Adjusted Rand Index B-Cubed score
data set SVM LexStat SCA SVM LexStat SCA

IELex 0.577 0.561 0.541 0.720 0.704 0.695
Mennecier 0.863 0.854 0.828 0.909 0.911 0.894
ABVD-1 0.497 0.451 0.398 0.660 0.642 0.593
ABVD-2 0.551 0.494 0.435 0.692 0.667 0.609
ABVD-3 0.532 0.462 0.406 0.681 0.649 0.598
ABVD-4 0.514 0.469 0.424 0.669 0.652 0.608

weighted mean 0.583 0.542 0.498 0.718 0.700 0.661

Table 2: Evaluation results. “SVM” refers to the method described here

These results are mostly to be understood as a
proof of concept. For instance, the idea — imple-
mented in LexStat— to utilize recurring sound cor-
respondences for cognate identification is undoubt-
edly highly productive. In future research it will be
exploredwhethermore and better predictors can be
inferred based on this insight.
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A Supplemental Material: Data used

dataset doculects # doculects # words # concepts # cognate classes transcription
BAI Bai dialects 9 1,028 101 205 IPA
GER Germanic languages 7 814 110 200 IPA

and dialects
IDS Romance and Germanic 4 2,429 550 1,602 IPA

languages
JAP Japanese dialects 10 1,986 200 460 IPA
KSL various languages 7 1,400 200 1,208 IPA

(partially unrelated)
OUG Uralic languages 21 2,055 110 242 IPA
PIE Indo-European languages 19 2,172 110 634 IPA
ROM Romance languages 5 589 110 178 IPA
SIN Chinese dialects 15 2,789 140 1,025 IPA
SLV Slavic languages 4 454 110 165 IPA

total 101 15,716 1,750 5,919

Table 3: Data from (List, 2014a), used for training

dataset # doculects # words # concepts # cognate classes transcription
Afrasian 21 829 40 380 ASJP
Huon 14 1,171 84 536 ASJP
Kadai 12 460 40 129 ASJP
Kamasau 8 271 36 60 ASJP
Lolo-Burmese 15 574 40 105 ASJP
Mayan 30 2,896 100 858 ASJP
Miao-Yao 6 223 39 74 ASJP
Mixe-Zoque 10 961 100 300 ASJP
Mon-Khmer 16 1,487 100 775 ASJP
Moroboe 55 2,040 138 582 ASJP

total 187 10,912 617 3,799

Table 4: Data from (Wichmann and Holman, 2013), used for validation

dataset doculects # doculects # words # concepts # cognate classes transcription
ABVD-1 Austronesian 99 14,198 210 4,592 IPA
ABVD-2 Austronesian 99 14,243 210 4,156 IPA
ABVD-3 Austronesian 99 13,878 210 4,181 IPA
ABVD-4 Austronesian 98 14,155 210 4,435 IPA
IELex Indo-European 55 8,313 207 1,998 IPA
Mennecier Central Asian 88 15,904 183 895 IPA

total 138 77,523 1,230 19,707

Table 5: Datasets used for testing
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