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Abstract

When annotating non-standard texts such
as historical texts or spoken language,
tasks that are normally considered to be
pure categorization tasks such as part-of-
speech tagging are often combined with
correcting errors in the tokenization and
even the transcribed text itself along the
way. As a consequence, inter-annotator
agreement measures are needed that mea-
sure agreement for categorization by also
taking changes in segmentation and the
underlying text into account. In this pa-
per, we present the first inter-annotator
measure of this kind, text-gamma (tγ).
Based on γ (Mathet et al., 2015), the inter-
annotator agreement is measured using an
alignment of the annotations. For this,
we consider alignments of the annotations
that follow from optimal alignments of the
underlying text sequences. Furthermore,
we use a specialized function to measure
the disorder of the alignment. For chance-
correction, we introduce a method that
takes the annotation bias introduced by
pre-annotation into account when estimat-
ing the expected (dis)agreement between
annotators.

1 Introduction

The annotation of non-standard texts such as his-
torical texts, spoken language, or user-generated
content poses specific problems for the annotation
process. Even tasks as basic as segmenting a text
into tokens for subsequent part-of-speech (POS)
tagging become considerably harder for such data
than for standard text since whitespace often does
not coincide with the boundaries of syntactical
words (Barteld et al., 2014). As a consequence,
human annotators are sometimes asked to check

and correct the underlying tokenization along the
way when annotating this kind of data. Examples
for annotation guidelines that address this task ex-
plicitly are Čibej et al. (2016), giving guidelines
for the normalization of Slovene Tweets and the
guidelines for HiTS (Dipper et al., 2013), a POS
tagset developed for historical variants of German.
Furthermore, when working with data that is not
born-digital such as historical texts or data that is
not written in nature such as spoken language, the
textual representation of the data that is annotated
is already an interpretation of the original data and
might contain errors. This adds the necessity of
correcting the text during the process of tagging.
As an example two different transcriptions of the
same text are shown in (1) where an “i” followed
by an “n” was corrected to “m”.

(1) sambt
sambt
with

aller
aller
all

vin̄stendicheit
vm̄stendicheit
circumstances

vthgelacht
vthgelacht
construed

/
/

‘construed extensively’
(Source: Verl. Sohn)

Annotation tools developed for the annotation of
non-standard text such as CoBaLT (Kenter et al.,
2012) and CorA (Bollmann et al., 2014) conse-
quently allow the annotators to change the under-
lying text and the segmentation into tokens during
the annotation process. Effectively, this is turning
the annotation from a categorization task into a
combination of string editing, segmentation, and
categorization.

While the annotation tools exist, there is no
chance-corrected inter-annotator agreement mea-
sure for this setting available. We address this is-
sue by presenting text-gamma (tγ) the first mea-
sure for categorization that takes into account the
possibility of correcting the segmentation and the
text along the way. As the quality of the tran-
scription and the segmentation presented to the
annotators affects the expected number of correc-
tions, we also introduce a method for determining
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chance correction that takes the annotation bias in-
troduced by pre-annotations into account when es-
timating the expected (dis)agreement between an-
notators.

While tγ is usable for all kinds of segments and
categories – even multiple categorizations of a seg-
ment, e.g. assigning POS tags and lemmas to to-
kens – with simultaneous correction of the seg-
mentation and the underlying text done by an arbi-
trary number of annotators, we exemplify and eval-
uate this measure on data as created in a setting of
tokenization and POS tagging of an historical text
by two annotators.

2 The annotation task

In this section, we present a formalization of the
different types of categorization tasks: (a) pure
categorization, the traditional task, where prede-
fined segments are labeled with a category, (b) cat-
egorization with segmentation correction, the ex-
tension of pure categorization to born-digital, non-
standard texts such as computer-mediated commu-
nication, where the segmentation is corrected by
the annotators, and (c) categorization with segmen-
tation and text correction, the extension of cate-
gorization to non-standard texts that are not born-
digital such as historical texts where the digitized
text might contain errors that are corrected by the
annotators as well as the segmentation.

For the formalization, we combine the quite
similar concepts that are introduced by Mathet et
al. (2015) and used in GATE (Cunningham et al.,
2014).1 We define an annotation as an entity that
has been created by a (human or automatic) anno-
tator, that has a type (e.g. token, sentence) and a
feature set realized as a set of attribute-value pairs
(e.g. POS=noun). An annotation has a position on
a continuum in terms of start and end offsets. The
continuum can be continuous, e.g. in the case of
a timeline where the offsets represent the points in
time where an annotation starts and ends. We look
at cases where the continuum is a text represented
by a character string and the start and end points
of annotations are given by character offsets, there-
fore the continuum is discrete. Furthermore, anno-
tations that are attached to the same continuum can

1Both introduce similar concepts, treating annotations as
spans over a continuum. However, there are differences. For
example, the annotations as used in GATE are more general
than the units introduced by Mathet et al. (2015), as annota-
tions are typed and allow for more than one category by using
feature sets.

be combined in an annotation set. When the con-
tinuum is text, i.e., a character string, we mark this
with the subscript text (annotation settext).

Using this terminology, the traditional task of
POS tagging – an example of pure categorization
– can be modeled as an iterative creation of anno-
tation sets on the same continuum. The first itera-
tion, which is usually done automatically by a to-
kenizer, creates annotations of the type token with
non-overlapping start and end offsets. The annota-
tions cover the continuum completely, only white-
space characters may be left uncovered.2 The re-
sulting annotation settext is the input to the sec-
ond iteration of the annotation procedure – this
phase is traditionally seen as the annotation proper:
In this second iteration, annotators are presented
with the annotated text resulting from the first iter-
ation and add new feature-value pairs (for POS) to
the annotations of type token. For inter-annotator
agreement experiments, iteration 2 is done inde-
pendently by multiple annotators, resulting in mul-
tiple annotation setstext. Fig. 1 illustrates the three
types of categorization tasks introduced above.

Fig. 1a shows the traditional setting, pure cate-
gorization. In this setting, the annotators do not
change the text or the token segmentation, i.e., in
our terminology, the continuum and the offsets of
the annotations, respectively. In this case, each re-
sulting annotation settext contains the same num-
ber of annotations and for each annotation there is
exactly one corresponding annotation in the other
sets, which are easily identified by the offsets. The
only possible difference is in the POS values. This
setting allows for a straightforward comparison of
the assigned categories.

Fig. 1b shows categorization with simultaneous
segmentation correction, i.e., the annotators occa-
sionally change the start and end offsets of an-
notations by merging or splitting them. This re-
sults in annotation setstext derived from the same
input, which possibly differ in the number of an-
notations which again might also differ in their po-
sitions on the continuum. Therefore, it is not as
straightforward to identify corresponding annota-
tions for which the assigned categories have to be

2Note that in our formalization tokens are independent of
whitespace in the underlying texts. E.g. the string ‘New York’
can be treated as a multi-word unit by creating an annotation
that covers the whole sequence or as two tokens by creating
two annotations that cover the first and the second part respec-
tively, leaving the whitespace uncovered. Therefore, chang-
ing the segmentation does not affect the underlying contin-
uum.
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. . . e t a l . . . .

4 5 6 7 8 9 10

4 6 7 10

X X

4 6 7 10

CONJ NOUN
(a) Pure categorization

. . . e t a l . . . .

4 5 6 7 8 9 10

4 10

X

4 6 7 10

CONJ NOUN
(b) Categorization with segmentation

correction

. . . e f a l . . .

4 5 6 7 8 9

. . . e f a l . . .

4 5 6 7 8 9

X

. . . e t a l . . . .

4 5 6 7 8 9 10

X X
(c) Categorization with segmentation

and text correction

Iteration 1

Iteration 2

Initial text

Initial segmentation

Annotator 1

Annotator 2

Figure 1: Different types of categorization tasks, using the universal POS tagset (Petrov et al., 2012)

compared. Still, the annotations are all attached to
the same continuum.

Fig. 1c shows the case when the data is not born-
digital and annotators are allowed to change the
textual representation, i.e., the underlying contin-
uum, as well as the segmentation. Textual changes
can also affect the annotations, e.g., when insert-
ing a character into the text, the offsets of all sub-
sequent annotations need to be adapted. This is
exemplified by the “.” that the second annotator
inserted. Therefore the last offset in the example
is 10, while it is 9 for the first annotator. In the
end, the resulting annotation sets might differ re-
garding the contained annotations. Furthermore,
the annotations are attached to different continua.

This third annotation task could be split into
three separate annotation processes where first, the
text is corrected, then this text is segmented and
in a third step the segments are labeled. Such
a pipelined annotation setting would allow us to
compute the inter-annotator agreement for each of
the three steps independently using existing mea-
sures. However, it would introduce the need to fix
the result of each step, e.g., errors in the segmen-
tation and the transcription cannot be corrected
when assigning labels. Our experience with the
creation of a corpus with Middle Low German
texts shows that many segmentation and/or tran-
scription errors only become apparent while as-
signing POS tags. Consequently, we present the
first measure for inter-annotator agreement that
can be used when categorization is combined with
segmentation and transcription-error correction.

3 Related work

There exist inter-annotator agreement (IAA) mea-
sures for each of the tasks described in Fig. 1
when performed individually. In wide use are mea-

sures like α (Krippendorff, 1980) and κ (Cohen,
1960) for categorization tasks. Artstein and Poesio
(2008) give an overview of these and other mea-
sures for categorization tasks.

A commonly-used measure for the quality of a
segmentation is WindowDiff (Pevzner and Hearst,
2002). However, this and related measures, are
geared toward comparing an automatically created
segmentation with a reference segmentation and
therefore do not apply chance correction. For man-
ually created segmentation, it is preferable to use
measures that take chance correction into account
like αU (Krippendorff, 1995) that measures the
degree to which segments overlap or B-based π∗

(Fournier, 2013) that is designed for complete seg-
mentation tasks where the annotations cover the
whole continuum.

For a setting in which the two tasks of detecting
units and categorizing them are combined, there
exist only a few measures, among them different
versions of uα (Krippendorff, 2013; Krippendorff,
2015) and γ (Mathet et al., 2015). The latter is
based on finding an optimal alignment between the
annotations from a set of annotators, i.e., identify-
ing the annotations that are most similar, aligning
them, and then calculating the mean dissimilarity
between them. For the task considered here such a
measure has to be combined with a measure quan-
tifying the dissimilarity between texts. There are
a few attempts to measure the quality of transcrip-
tions, e.g., Munyaradzi and Suleman (2013) us-
ing a normalized variant of the Levenshtein dis-
tance for manuscript transcriptions and Valenta et
al. (2014) using word accuracy for speech tran-
scription. Both do not apply chance correction.
As using chance correction for IAA is considered
state of the art (Artstein and Poesio, 2008), we aim
to apply chance correction in our measurements.
For our task the chance correction has to account
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for the fact that, at least with transcription and seg-
mentation, the annotators do not start from scratch
but are presented with pre-annotations, i.e., they
start with a tokenized transcription. When the im-
pact of these pre-annotations on IAA (Fort and
Sagot, 2010) is not considered, the actual agree-
ment would be overestimated.

In the next section, we present a method to cre-
ate alignments between the annotations from dif-
ferent annotators. Using these alignments the dis-
agreement between aligned annotations can be cal-
culated similarly to the way in which it is calcu-
lated in γ . However, differences in the underlying
texts have to be included in the disagreement. Sub-
sequently, we propose a method to estimate the ex-
pected agreement taking the pre-annotations into
account. Finally, we evaluate our measure using
corpus shuffling (Mathet et al., 2012).

4 Aligning annotations from different
continua using sequence alignment

Gamma (γ) (Mathet et al., 2015) is calculated us-
ing the mean dissimilarity between aligned annota-
tions taking the category and the position into ac-
count. The alignment used is the alignment with
the lowest mean dissimilarity. For this, all possible
alignments are considered in the original computa-
tion. Using this method directly is not possible
in our situation, as differences in the position of
units may result from different textual bases. For
instance, the insertion of one letter by only one
of the annotators shifts all following offsets of her
annotations to the right. As a consequence, anno-
tations that span only one letter would not overlap
when comparing the texts of different annotators,
leading to artificially high dissimilarities.

In example (1), the same part of the original
texts is transcribed with two letters (“in̄”) and with
one letter (“m̄”) in the two transcriptions. This in-
fluences the characeter offsets of all the following
characters, e.g., the “/” starts at the position 38 in
the first transcription and at position 37 in the sec-
ond transcription. As it only has a length of one,
there is no overlap between these two tokens when
only considering their positions in the correspond-
ing transcription.

Ignoring the position of annotations is not a so-
lution here, since it would allow the alignment of
annotations spanning the same sequence of char-
acters even if they were from different ends of the
text. Therefore, we apply a different method to

find optimal alignments between annotations by
using (multiple) sequence alignment (MSA). MSA
is a common technique in analyzing genome se-
quences and an active research topic in bioinfor-
matics (Chatzou et al., 2015). MSA has been used
in natural language processing as well (Barzilay
and Lee, 2002; Prokić et al., 2009; List, 2012;
Kirschenbaum, 2013). Given n input sequences
the result of a MSA is a set of n aligned se-
quences, i.e., the resulting sequences all have the
same length and the characters at a given position
in the sequences are aligned with each other. To
accomodate differing lengths between the input se-
quences, gaps (represented by “ ” in the examples)
are inserted (cf. example 2).

(2) v
v
f

o
o u

u

r
r
r

w
w
w

a
a
a

h

h

r
r
r

An optimal sequence alignment is one that min-
imizes the costs introduced by matches, mis-
matches and gaps. The basic algorithm to find
an optimal alignment is a specialization of the
algorithm described by Needleman and Wunsch
(1970). Normally, the alignment of mismatches
is allowed. However, then it is not always possi-
ble to perfectly align the annotations on the new
sequences as can be seen from the following ex-
ample:

(3) h
h

a
a

t
t

s
t

In (3), it is not possible to positionally align an an-
notation corresponding to hat in the first sequence
with an annotation corresponding to hatt in the
second sequence on the continuum created by se-
quence alignment. As such this is not a problem
for aligning these annotations for the calculation
of γ . However, when textual and positional dis-
similarity are both integrated into the calculation
of the alignments’ dissimilarity, the dissimilarity
between hatt and hat will be artificially high as the
annotations differ both positionally and textually.

To not over-punish such settings, we do not in-
clude the position in the dissimilarity measure of
tγ . Furthermore, we do not consider all possible
alignments of annotations but only alignments of
annotations that have the same position in an opti-
mal sequence alignment. This avoids the problem
of aligning two annotations from different regions
of the continuum as described above.

So far, we would not allow the alignment of
hat and hatt in (3). To make this alignment pos-
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sible, we only allow matches and gaps in the se-
quence alignment, e.g., by setting the cost for mis-
matches such that introducing gaps will always be
preferred.

To create possible alignments of annotations,
we introduce boundaries as elements into the se-
quences (denoted by “{” and “}” below). Now,
aligned annotations can be read off directly from
the aligned sequences.3 The strings from example
(3) lead to the following optimal sequence align-
ments in (4) and (5):

(4) {
{

h
h

a
a

t
t
} { s

t
}
}

(5) {
{

h
h

a
a

t
t t

}
}

{ s }

Both alignments ore optimal sequence alignments
even if in (4) no annotations are aligned and in (5)
the annotations covering hat and hatt are aligned.
In our approach, all alignments of annotations that
result from an optimal sequence alignment are con-
sidered for finding the best alignment of annota-
tions.

We want to point out the behavior of this
alignment method for adjacent annotations that
only partially overlap comparing two annotation
sets. Take the artificial example of {a}{bbc} and
{abb}{c}. Examples (6) and (7) show two optimal
alignments of these sequences:

(6) {
{

a
a

} { b
b

b
b } {

c
c

}
}

(7) {
{

a
a b b

}
}

{
{

b b c
c

}
}

In this case, aligning the annotations or not align-
ing them both result in optimal sequence align-
ments (both with a cost of 4×cg, where cg denotes
the cost of inserting a gap). However, in the exam-
ples (8) and (9) with the sequences {a}{bc} and
{ab}{c}, variant (9), in which the annotations are
aligned is “cheaper” and hence is the only optimal
sequence alignment:

(8) {
{

a
a

} { b
b } {

c
c

}
}

(9) {
{

a
a b

}
}

{
{

b c
c

}
}

In the examples (10) and (11) with sequences
{a}{bbbc} and {abbb}{c}, it is the other way

3Note that this method requires the annotations of one an-
notator to be non-overlapping. Otherwise, the character de-
noting the end of an annotation can be ambiguous.

round. Here the annotations are not aligned as only
option (10) is an optimal sequence alignment.

(10) {
{

a
a

} { b
b

b
b

b
b } {

c
c

}
}

(11) {
{

a
a b b b

}
}

{
{

b b b c
c

}
}

For these examples, we assumed that gaps at tex-
tual positions (gapt) have the same cost as gaps at
boundary positions (gapb). If we allow the setting
of gapb independently of gapt a preference for or
against aligning annotations that partially overlap
can be chosen. Supposing that gapt is set to 1, the
following cases apply: (i) when two boundaries
are less than 2×gapb characters apart, they are al-
ways aligned, (ii) when two boundaries are exactly
2×gapb characters apart, they can be aligned and,
(iii) when two boundaries are more than 2 × gapb
characters apart are never aligned. In our experi-
ments, we set gapt = gapb.

There exist many algorithms for MSA differing
in the computational complexity and the accuracy
of the produced alignments. In principle all of
these methods are usable to induce possible align-
ments of annotations. For the evaluation, where
we aligned two versions of one text consisting of
about 3,700 characters, we used the algorithm by
Needleman and Wunsch (1970) but followed more
than one path in the backtracking phase in order to
obtain the different possible alignments.

Simply following all possible paths leading to
optimal alignments of the sequences may be com-
putationally intractable as the simple difference in
example (1) already allows the three optimal align-
ments shown in (12).

(12) a. v
v m

i n s
s

b. v
v

i
m

n s
s

c. v
v

i n
m

s
s

As we are only interested in inducing alignments
of annotations, the above differences do not influ-
ence the result. Hence, we only follow alternative
paths when annotation boundaries are involved.
Furthermore, we exploit inequality (1) (see Sec-
tion 5) that holds for the dissimilarity measure that
we use, and bias the alignments towards aligning
annotations by aligning boundaries if possible. In
(13) only the second alignment is produced.
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(13) a. {
{

n e } { m
m

a
a

g
g

}
}

b. { n e } {
{

m
m

a
a

g
g

}
}

Aligning the text used for our experiments with its
shuffled version (see Section 7), where the text, the
segmentation and the categories are changed, and
the magnitude was set to 1, leads to only one an-
notation alignment in the mean produced by this
method (out of ten runs, only in one run two align-
ments were produced).

5 Calculating the observed disorder

As γ (Mathet et al., 2015), tγ is calculated based
on the disorder of an optimal alignment (δ (a)) be-
tween the annotations from different annotators.
An alignment ā is considered optimal when it mini-
mizes the disorder. Unlike Mathet et al. (2015), we
do not consider all possible alignments between
annotations when looking for the optimal align-
ment but only the alignments that result from an
optimal sequence alignment as described in the
previous section. Annotations from different anno-
tators are aligned when they cover the same span
in the aligned sequences. Therefore, for each of
the optimal sequence alignments exactly one align-
ment of annotations is defined consisting of uni-
tary alignments (ă) between annotations or anno-
tations and empty elements ( /0).

Following Mathet et al. (2015), the disorder of
an alignment is defined as

δ̄ (ā) =
1
x̄

|ā|
∑
i=1

δ̆ (ăi)

where δ̆ is the dissimilarity between the aligned
annotations. An alignment of an annotation
with the empty element has a dissimilarity of ∆ /0
(cf. Mathet et al. (2015)).

We define the dissimilarity of an alignment of
two annotations u and v as

dt γ(u,v) =
1

n+1
(dt(text(u), text(v))+

n

∑
i=1

di( f eati(u), f eati(v)))

where n is the number of features of the annota-
tions (cf. Section 2). dt is a dissimilarity measure
between the texts covered by the annotations and

the di are dissimilarity measures between the fea-
ture values. For the evaluation, we use the simple
nominal dissimilarity measure which is 0 in the
case of equality and ∆ /0 in the case of inequality
for all dx. Other dx are usable as well, e.g., dcat as
described by Mathet et al. (2015), that takes over-
laps between categories into account, or a string
similarity metric such as the Levenshtein distance
(Levenshtein, 1966) for textual differences.

Note that when using the dissimilarity measure
exactly as described above, the following inequal-
ity holds:

dt γ(u,v) ≤ ∆ /0 =
1
2
(dt γ(u, /0)+dt γ(v, /0)) (1)

Therefore, the dissimilarity of an alignment is
at least as high as the dissimilarity of an align-
ment where fewer annotations are aligned (i.e., it
has more alignments with /0). This means that
many alignments created by optimal sequence
alignments can be removed from the set of pos-
sible alignments for the calculation of tγ .

As pointed out above, we do not consider po-
sitional differences in our dissimilarity measure.
This is unproblematic since we do not align tokens
that are not mapped to the same position by the se-
quence alignment process.

6 Calculating the expected disorder

For state-of-the-art IAA metrics, it is expected
to take chance agreement into account (Artstein
and Poesio, 2008). Our new measure tγ – like
the original γ – measures disagreement between
aligned annotations. The standard way of incor-
porating chance-correction to disagreement based
measures is to use the ratio between the observed
disagreement (Do) and the expected disagreement
(De), i.e. the disagreement that is expected when
both of the annotators are guessing. Therefore, we
define tγ exactly as γ as 1− Do

De
.

We follow Mathet et al. (2015) and compute
De by sampling randomly generated annotation
setstext. Mathet et al. (2015) randomly create sets
for which (i) the number of units per annotators,
(ii) the categories, (iii) the length of the units of
a given category, (iv) the length of gaps, and (v)
overlaps between units of given categories are dis-
tributed as in the observed annotation set. Then
they use these samples to estimate De.

This, however, estimates De when annotations
are created without any pre-annotation which is
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not the case for text corrections and tokenization
in our case. Therefore, calculating De in this way
would underestimate the actually expected disor-
der. Take for example two annotators annotating
a text that was automatically tokenized with an er-
ror rate of 4% (Jurish and Würzner, 2013). In this
case, only a small fraction of tokens needs to be
changed. The expected agreement for two annota-
tors highly disagreeing will still be substantially
higher than the agreement to be expected when
two tokenizations are created randomly. There-
fore, we do not sample annotation sets that are ran-
domly generated, but we create annotation sets by
applying changes randomly to the pre-annotation.

Given the situation where tokenized transcrip-
tions are annotated with POS tags, the creation
of random annotation sets consists of three steps:
Firstly, the text is changed, secondly the segmen-
tation is changed, and thirdly the segments are
annotated with POS tags. When modeling ran-
dom annotations, we assume that all three steps
are independent of each other. Further, we as-
sume that the amount of changes (ct and cs for
text and segmenation) the annotators perform fol-
lows a binomial distribution with the parameter n
being the number of annotations. The parameter
p can either be derived from the (known) qual-
ity of the pre-annotation, e.g., set to 0.04 for seg-
mentation changes when the error rate of the to-
kenizer is 4%. Alternatively, it can be estimated
from the observed differences between the anno-
tation sets and the pre-annotation. Both methods
can also be combined using maximum a posteri-
ori (MAP) estimates for p (Manning and Schütze,
1999). Like Mathet et al. (2015), we use the an-
notations from all annotators for estimating distri-
butions, i.e., treating annotators as interchangeable
(Krippendorff, 2011).

Given the tokenized transcription, in the first
step, we apply ct text changes. For this ct distinct
annotations are chosen according to a uniform dis-
tribution. Then one of the three types of textual
changes (insertion, deletion and substitution) is
chosen from an equal distribution. For insertion
and substitution a character is chosen based on the
distribution of characters in the observed annota-
tion set.

In a second step, the segmentation is changed by
applying splits and mergers, i.e., adding or remov-
ing boundaries. This is done cs times. For each
change, one of the three operations (split, merge

with left, merge with right) is chosen from a uni-
form distribution. Afterwards a segment is cho-
sen again from an equal distribution, excluding the
first segment for merge with left and the last seg-
ment for merge with right. Note that the annota-
tions resulting from a split or a merger can be cho-
sen for a subsequent change.

For the third step, i.e., labelling the tokens, in
our case no pre-annotation is assumed. Therefore,
we simply add labels to the tokens following the
distribution of the labels in the observed annota-
tion sets.

Using this method to create random annotation
sets, we can estimate De by applying the same sam-
pling method as Mathet et al. (2015).

7 Evaluation

For evaluating tγ , we use the corpus shuffling
method (Mathet et al., 2012). With this method
a given reference annotation is changed randomly
with a given magnitude m. Following Mathet et
al. (2012), the shuffling is repeated with differing
values of m (ranging between 0 and 1 with a step-
size of 0.05). For each of these values, the inter-
annotator agreement is measured. These values
show how the measure reacts to differences in two
annotation sets of a specified magnitude. The val-
ues taken by the inter-annotator agreement mea-
sure should be (i) strictly decreasing with increas-
ing magnitude m – i.e. reflect the increasing dif-
ference of the annotation sets and (ii) use the full
range of possible values (Mathet et al., 2015).

We use a reference annotation settext for the eval-
uation. The text has a length of 3,706 charac-
ters. The annotation set contains 608 tokens la-
beled with POS tags. We simulate a second an-
notation settext by applying shuffling to this ref-
erence annotation. For the shuffling, three meth-
ods are applied: (i) textual change, (ii) segmenta-
tion change and (iii) label change. As shuffling all
three types with the same magnitude is unrealis-
tic (due to the pre-annotation bias), we calculate
mt for the magnitude of text changes, ms for the
magnitude of segmentation changes and ml for the
magnitude of labeling changes from a given m as
follows: mt = 0.5×m, ms = 0.1×m and ml = m.

In each of the three steps, given a magnitude
0 ≤ mi ≤ 1, c = mi × n changes are applied. For
textual and category changes, the changes are ap-
plied to distinct annotations. As our parametriza-
tion of γ only measures if two aligned annotations
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have the same text or not, each token is only con-
sidered once for text changes. The shuffling itself
follows the same procedure as for the calculation
of the expected disagreement.

We test three different settings that correspond
to the three types of categorization tasks given in
Fig. 1: (a) only categories are shuffled, (b) cate-
gories and segmentations are shuffled, and (c) cat-
egories, segmentations and the text is shuffled.

For the calculation of the expected disorder, we
do not estimate the probabilities for the changes
from the data to benchmark the influence of these
parameters on the final agreement value. We
evaluate three parameter settings: Firstly, we set
the probability for text (pt) and for segmentation
changes (ps) both to 0, i.e., the expected disorder
is calculated for pure categorization (Cat). Sec-
ondly, we simulate the situation, where a text that
is born-digital is automatically tokenized with an
error rate of 4% (Jurish and Würzner, 2013), con-
sequently pt is set to 0 and ps to 0.04 (Cat + Seg).
Thirdly, we simulate the situation, where a text
is automatically transcribed and tokenized after-
wards with 25% of the tokens needing a textual
correction. pt and ps are therefore set to 0.25 and
0.04 respectively (Cat + Seg + Text). Note, that
the values for mt and ms limit the magnitude of
the shuffling to approximately twice the expected
error rate.

As both the shuffling and the calculation of the
expected disorder is randomized, we repeat each
step ten times. Figure 2 gives the mean values.
The error bars denote the standard error.

For comparison, we used the DKPro Agreement
package (Version 2.1.0) (Meyer et al., 2014) to
compute α for the pure categorization setting and
αU with aggregation over categories for the cate-
gorization and segmentation setting. We also used
the software supplied by the authors of γ4 to cal-
culate gamma for the categorization and segmen-
tation settting. We only calculated γ for one shuf-
fling, and only for magnitudes 0, 0.25, 0.5, 0.75
and 1.
As can be seen from Fig. 2, tγ shows an almost
perfectly linear response to the increasing magni-
tude of the shuffling. The parametrizations expect-
ing less change are always lower than the other
parametrizations (except in the case of perfect
agreement). This is expected as more agreement
is attributed to chance.

4https://gamma.greyc.fr (Version 1.0).
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Figure 2: Evaluation results

When only the categories are shuffled, the
parametrization of tγ for pure categorization cov-
ers the full range between 1 and 0, i.e., between
perfect agreement and chance agreement. In this
setting it behaves indistinguishably from α . When
expecting errors in the transcription and segmenta-
tion, the agreement values stay above 0, reflecting
the fact that the perfect agreement concerning the
text and the segmentation is better than expected
by chance. Consequently, the values of tγ can go
below 0 in the other settings – as there are disagree-
ments in the segmentation and/or the text not ex-
pected by chance. This differs from what Mathet
et al. (2015) expect and is due to the fact that the
parameters for the expected disorder calculation
are not estimated from the observed annotation
sets but are fixed. When expecting categorization
and segmentation changes, tγ behaves similarly to
αU when categories and segments are shuffled. As
expected, the original γ overestimates the amount
of agreement as it does not take the pre-annotation
into account.

The agreement value with settings for the ex-
pected agreement corresponding to the shuffling
scenario is close to 0 when m is close to 1. The
fact that it is slightly below 0 is due to the fact that
ms = 0.1 is slightly higher than 2× ps = 0.08.

8 Conclusion and further work

We presented text-gamma tγ , a derivation of γ
(Mathet et al., 2015), to measure inter-annotator
agreement for categorization tasks where the an-
notators are allowed to change the underlying text
and the segmentation during the annotation pro-
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cess as it is done when annotating non-standard
data that is not born-digital. The basis of our
method is to align the texts using sequence align-
ment to create alignments of the annotations. The
best of these alignments is chosen using a special
dissimilarity measure. The inter-annotator agree-
ment is measured on the basis of the mean dissim-
ilarity between the aligned annotations. A practi-
cal point not addressed so far is that the resulting
optimal alignment between the annotations can be
used to show the annotators cases where they dis-
agree and to analyze these deviations between the
annotators.

For chance correction, we introduced a simple
model to obtain expected disorders. To take the
influence of the pre-annotation into account, our
model does not model the creation of an annota-
tion from scratch but starting with a given annota-
tion set, random changes are applied.

Our evaluation using corpus shuffling showed
that tγ reacts with a linear decrease to deviations
between two annotation sets with increasing mag-
nitude.

In its current form, tγ has some limitations. It
assumes that the annotations cover the whole text
as, e.g., with tokenization (with the possible ex-
ception of whitespace) and are not overlapping.
While tγ is usable with annotation sets that do
not cover the whole text, it is important to bear in
mind that only annotations are compared. Textual
changes outside of annotations have no influence
on the agreement value. For non-overlapping uni-
tizations, one possible way to take such changes
into account would be to transform them into seg-
mentations by treating gaps as annotations with
the special type gap and ensure that gaps are not
aligned with annotations of other types.

Changing the order of segments in the text is
another point that tγ in its current form does not
handle. This can appear, for example, when an-
notators disagree on the location where interlinear
additions are added. The global sequence align-
ment used to infer possible alignments does not
allow alignments between identical text segments
to appear in different positions or – in other words
– edges aligning annotations do not cross.

In the case of overlapping annotations of the
same type, aligning annotations by inserting the
annotation boundaries into the texts and aligning
the text does not work as is since closing bound-
aries may be ambiguous in the case of overlaps.

Furthermore, our evaluation only took one type
of annotation (tokens), categorization with one set
of categories (POS) and two annotators into ac-
count and used a basic dissimilarity metric for
nominal categories. It will be interesting to see
how tγ behaves with more than two annotators,
other dissimilarity metrics that take overlaps be-
tween categories into account, and with annotation
sets containing multiple types of segments (e.g. to-
kens and sentences as in the annotation task de-
scribed by Čibej et al. (2016)) and/or multiple la-
bels for annotations (e.g. POS tag and lemma).

Regarding the chance correction, we introduced
a simple model to randomly change the annota-
tion. This model introduced some simplifications,
for example, the three parts of the annotation pro-
cess are modelled independently and only one edit
operation is allowed for each token. Further work
could introduce a more detailed model for chance
correction, for example introducing further edit op-
erations for a token with a decreasing probability.

Resources

We provide the following resources together with
the paper:

(i) An implementation of the IAA measure de-
scribed in the paper. The program takes CorA-
XML-files, the output format of the annotation
tool CorA5, as input and outputs the IAA value
and an alignment of the annotations for further
analysis. It can be found at https://github.
com/fab-bar/TextGammaTool.

(ii) An org-file6 containing the paper and the
complete code that was used to run the experi-
ments, making the work reproducible. It can be
found at https://github.com/fab-bar/
paper-KONVENS2016.
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Primary data

Verl. Sohn De parabell vam vorlorn Szohn.
Printed 1527 in Magdeburg by Burchard
Waldis. Transcribed in the DFG-funded
project “Referenzkorpus Mittelniederdeutsch
/ Niederrheinisch (1200 - 1650)”.
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Jaka Čibej, Darja Fišer, and Tomaž Erjavec. 2016.
Normalisation, Tokenisation and Sentence Segmen-
tation of Slovene Tweets. In Proceedings of the
LREC-Workshop on Normalisation and Analysis of
Social Media Texts (NormSoMe), pages 5–10, Por-
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