
Analysis of electronic voting protocols
in applied pi calculus

Mark Ryan
University of Birmingham

based on joint work with

Ben Smyth
Steve Kremer

Mounira Kourjieh

IFIP WG 1.3, Udine, Italy
September 2009

Outline

Electronic voting

Applied pi calculus

Privacy properties and verifiability properties

Case studies

Voting system: desired properties

Eligibility: only legitimate voters can vote, and at most once (This also
implies that the voting authorities cannot insert votes)

Fairness: no early results can be obtained

Privacy: the fact that a particular voter in a particular way is not
revealed to anyone

! Receipt-freeness: a voter cannot later prove to a coercer that she voted
in a certain way

Coercion-resistance: a voter cannot interactively cooperate with a
coercer to prove that she voted in a certain way

! Individual verifiability: a voter can verify that her vote was really counted

Universal verifiability: a voter can verify that the published outcome
really is the sum of all the votes

. . . and all this even in the presence of corrupt election authorities!

Electronic voting: current situation

Country Status

UK

Worrying

Germany Abandoned

Netherlands Abandoned

USA Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany Abandoned

Netherlands Abandoned

USA Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany

Abandoned

Netherlands Abandoned

USA Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany Abandoned

Netherlands Abandoned

USA Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany Abandoned

Netherlands

Abandoned

USA Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany Abandoned

Netherlands Abandoned

USA Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany Abandoned

Netherlands Abandoned

USA

Disaster

Electronic voting: current situation

Country Status

UK Worrying

Germany Abandoned

Netherlands Abandoned

USA Disaster

How could it be secure?

Security by trusted client software

→ → → → → → → → →

trusted by user

does not need to be
trusted by authorities
or other voters

not trusted by user

doesn’t need to be
trusted by anyone

The applied π-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

based on the π-calculus [Milner et al., 92]

in some ways similar to the spi-calculus [Abadi & Gordon, 98],
but more general w.r.t. cryptography

Advantages:

naturally models a Dolev-Yao attacker

allows us to model less classical cryptographic primitives

both reachability-bases and equivalence-based specification of
properties

automated proofs using ProVerif tool [Blanchet]

powerful proof techniques for hand proofs

successfully used to analyze a variety of security protocols

Equations to model the cryptography: examples

1 Encryption and signatures

decrypt(encrypt(m,pk(k)), k) = m
checksign(sign(m,k), m, pk(k)) = ok

2 Blind signatures

unblind(sign(blind(m,r), sk), r) = sign(m,sk)

3 Designated verifier proof of re-encryption
The term dvp(x,renc(x,r),r,pkv) represents a proof designated for the
owner of pkv that x and renc(x,r) have the same plaintext.

checkdvp(dvp(x,renc(x,r),r,pkv),x,renc(x,r),pkv) = ok
checkdvp(dvp(x,y,z,skv), x, y, pk(skv)) = ok.

4 Zero-knowledge proofs of knowledge
pf(k,x,y) represents proof that I know k such that dec(x,k)=y.

checkpf(pf(k,x,dec(x,k)), x, dec(x,k)) = ok.

Applied pi calculus: Grammar [Abadi/Fournet 02]

L,M,N,T ,U,V ::= terms
a, b, c , k,m, n, s, t, r , . . . name
x , y , z variable
g(M1, . . . ,Ml) function

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q conditional

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x .A variable restriction
{M/x} active substitution

Applied pi calculus: Operational semantics I [Abadi/Fournet 02]

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P

New-0 ν n.0 ≡ 0
New-C ν u.ν w .A ≡ ν w .ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u &∈ fv(A) ∪ fn(A)

Alias ν x .{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡{ N/x}

where M =E N

Comm c〈x〉.P | c(x).Q −→ P | Q
Then if N = N then P else Q −→ P
Else if L = M then P else Q −→ Q

for ground terms L,M where L &=E M

Applied pi calculus: Operational semantics II [Abadi/Fournet 02]

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−−→ P

Open-Atom
A

c〈u〉−−→ A′ u &= c

ν u.A
ν u.c〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B

α−→ A′ | B

Struct
A ≡ B B

α−→ B ′ B ′ ≡ A′

A
α−→ A′

Receipt-freeness

Receipt-freeness: leaking secrets to the coercer

To model receipt-freeness we need to specify that a coerced voter
cooperates with the coercer by leaking secrets on a channel ch

P ::=
0
P | P
νn.P
in(u, x).P
out(u,M).P
if M = N then P else P
!P
. . .

Pch in terms of P

0ch = 0

(P | Q)ch = Pch | Qch

(νn.P)ch = νn.out(ch, n).Pch

(in(u, x).P)ch = in(u, x).out(ch, x).Pch

(out(u,M).P)ch = out(u,M).Pch

. . .

We denote by P\out(chc,·) the process νchc .(P |!in(chc , x)).

Lemma: (Pch)\out(chc,·) ≈# P

Receipt-freeness: definition

Intuition

There exists a
process V ′ which

votes a,

leaks
(possibly
fake) secrets
to the
coercer,

looks indistin-
guishable to
coercer from
situation in
which she
voted c

Definition (Receipt-freeness)

A voting protocol is receipt-free if there exists a
process V ′, satisfying

V ′\out(chc,·) ≈# VA{a/v},
S [VA{c/v}chc | VB{a/v}] ≈# S [V ′ | VB{c/v}].

Case study: Lee et al. protocol
We prove receipt-freeness by

exhibiting V ′

showing that V ′\out(chc,·) ≈# VA{a/v}
showing that
S [VA{c/v}chc | VB{a/v}] ≈# S [V ′ | VB{c/v}]

end-to-end verifiability

Election results can be fully verified by voters/observers

The software provided by election authorities does not need to be
trusted

The software used to perform the verification can be sourced
independently

Election verifiability

Individual
verifiability

A voter can
check her own
vote is included
in the tally.

Universal
verifiability

Anyone can
check that the
declared
outcome
corresponds to
the tally.

Eligibility
verifiability

Anyone can
check that only
eligible votes are
included in the
declared
outcome.

Remarks

Verifiability &= correctness

What system components need to be trusted in order to carry out
these checks?

Individual verifiability

Intuition: a protocol satisfies individual verifiability if there is a test

R IV
(
my vote , my data , bb entry

)

that a voter can apply after the election.

The test succeeds iff the bulletin board entry corresponds to the voter’s
vote and data.

Acceptability conditions for R IV

For all votes s, there is an execution of the protocol that produces
M̃ such that some bulletin board entry T satisfies R IV (s, M̃,T).

The bulletin board entry determines the vote, that is:

∀s, t, M̃, Ñ,T
(

R IV (s, M̃,T) ∧ R IV (t, Ñ,T) ⇒ s = t
)

Universal verifiability

Intuition: a protocol satisfies universal verifiability if there is a test

RUV
(
declared outcome , bb entries , proof

)

that an observer can apply after the election.

The test succeeds iff the declared outcome is correct w.r.t. the bb entries
and the proof.

Acceptability conditions for RUV

T̃ determines s̃, that is,

RUV (s̃1, T̃ , p1) ∧ RUV (s̃2, T̃ , p2) ⇒ s̃1 = s̃2

The observer opens the bb entry the same way as the voter:

R IV (s, M̃,T) ∧ RUV (s̃, T̃ , p′) ⇒ ∃p′.RUV (s̃ ◦ s, T̃ ◦ T , p′)

Election verifiability

A voting process C [!νã.(P | Q[c〈U〉])] satisfies election verifiability if
voter’s credentials and bulletin board entries are unique and there exists
tests R IV ,RUV ,REV with

fv(R IV) ⊆ bv(P) ∪ {v , z}
fv(RUV) ⊆ {v , z}
fv(REV) ⊆ {y , z}
(fn(RUV) ∪ fn(REV)) ∩ bn(P) = ∅

such that the augmented voting process satisfies the following conditions:

the unreachability assertion: fail〈true〉.
the reachability assertion: pass〈true, x〉.

Augmented process

Given a voting process C [!νã.(P | Q[c〈U〉])] and tests R IV ,RUV ,REV ,
the augmented voting process is

νb.(C [!νã, b′.(P̂ | Q̂)] | R | R ′) | R ′′ | R ′′′

where

P̂ = b(v).P.c(z).b′(y).(pass〈R IV , z〉 | fail〈ψ〉)
Q̂ = Q[b′〈U〉 | D〈U〉 | c〈U〉]
R = !νs.((!b〈s〉) | c〈s〉)
R ′ = b(v ′).b(v ′′).c(x ′).c(x ′′).c(y ′).c(y ′′).c(z ′).fail〈φ′ ∨ φ′′ ∨ φ′′′〉
R ′′ = pass(e).pass(e′).fail〈e1 ∧ e′

1 ∧ (e2 = e′
2)〉

R ′′′ = D(e).D(e′).fail〈¬(e = e′)〉

ψ = (R IV ∧ ¬RUV) ∨ (R IV ∧ ¬REV) ∨ (¬R IV ∧ REV)

φ′ = R IV {v ′,x̃′,z′
/v ,x̃,z} ∧ R IV {v ′′,x̃′′,z′

/v ,x̃,z} ∧¬ (v ′ = v ′′)
φ′′ = RUV {v ′,z′

/v ,z} ∧ RUV {v ′′,z′
/v ,z} ∧¬ (v ′ = v ′′)

φ′′′ = REV {y ′,z′
/y ,z} ∧ REV {y ′′,z′

/y ,z} ∧¬ (y ′ =E y ′′)

Results and trustworthiness requirements

Property FOO’92 Civitas ’08 Helios/UCL ’09

Vote-privacy ! ! !
trusted compnts client client client

Receipt-freeness × ! ×
trusted compnts client

Coercion resist. × ! ×
trusted compnts client

Individual verif. ! ! !
trusted compnts client client client

Universal verif. ! ! !
trusted compnts

Elig. verif. × ! ×
trusted compnts

Conclusions and future work

Conclusions

First generic formal
definitions of election
verifiability.

Suitable for automation.

Automatic verification for
PostalBallot, FOO, Civitas.

Future work

Completion of homomorphic
cases (Helios/UCL)

Voting systems that are not
client-crypto-based.

	Applied pi calculus
	Election verifiability
	Conclusions

