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Abstract This paper studies a new kind of generalized beta distribution that is different from the GB1 and
GB2 of McDonald (1984). This new four-parameter statistical distribution, the extended x-generalized
distribution of the second kind, abbreviated ExG2, is derived as one of two kinds of generalizations from the
k-generalized distribution of Clementi et al. (2007). By empirical comparison with the GB2 using the LIS
income/consumption data, the ExG2 is found to be an overall better fit in terms of both frequency-based (FB)
evaluation criteria, such as the likelihood, and money-amount-based (MAB) evaluation criteria, such as the
accuracy of the estimated Lorentz curve. The ExG2 also overall outperforms the double Pareto-lognormal
distribution (dPLN) of Reed (2003) in terms of FB criteria. Although not necessarily superior to the dPLN in
terms of MAB criteria, the ExG2 is judged to be an overall better fit to the empirical distributions relative to
the dPLN by a combined evaluation using both FB and MAB criteria.

This paper also discusses similarities and differences in characteristics between the ExG2 and GB2,

including the shapes of the distributions.

1 Introduction

Parametric income distribution models (PIDMs) are frequently used to approximately recover the original size
distributions from grouped data for estimation of income inequality and poverty when the microdata are
unavailable. Furthermore, PIDMs that can represent income distributions using only a few parameters are also
indispensable when studying determinants for income level and income inequality. One example of such a
study is the Mincer-type equation (typically using the lognormal distribution as the error term). Many PIDMs
have been proposed and studied. In addition to the lognormal distribution (LN), other PIDMs, such as the
Singh-Maddala distribution [19], the Dagum distribution [5], and the generalized beta distribution of the
second kind (GB2) [11], are well-known; however, attempts to identify new PIDMs continue. The double
Pareto-lognormal distribution (dPLN) proposed by Reed [16] was found to be a better fit than the GB2 to
income distributions for several countries by Reed and Wu [17] and Okamoto [13, 15]. Furthermore, Okamoto
[13] showed that the Gini index for the overall income distribution can be analytically expressed by parameters
of dPLNs (as well as LNs) fitted to the distributions in subgroups (e.g., age groups and regions). By the
analytic expression of the Gini index for the mixture distributions, the LN/dPLN enables us to analyze
contributions of different subgroup characteristics to the Gini index for the overall income distribution. The
k-generalized distribution (xG) proposed by Clementi et al. [3] is a better fit for some countries than the
existing three-parameter PIDMs ([3, 13]) and tends to yield better estimates of income inequality even when
the goodness-of-fit is inferior to the existing PIDMs in terms of the likelihood value ([13]).

This study, motivated by the kG’s tendency to yield a better inequality estimation, extends the kG to
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four-parameter PIDMs to attain a stronger goodness-of-fit relative to that of the existing four-parameter PIDMs
in terms of both frequency-based (FB) evaluation criteria, such as the likelihood, and money-amount-based
(MAB) evaluation criteria, such as the accuracy of the estimated Lorentz curve and inequality indices. One’s
choice in PIDM may vary depending on how one intends to use it. For example, a PIDM that is a best fit to an
income distribution for a specific country based on a specific evaluation criterion may be an appropriate choice
in some cases. However, the purpose of this study is to derive PIDMs that would be well fitted to
income/consumption distributions for many countries in terms of both FB and MAB measures, assuming
general/multi-purpose use. For this reason, the new and existing four-parameter PIDMs are fitted to the size
distributions of six variables, i.e., gross income, disposable income, consumption and their equivalized
variables, in about twenty countries from each of waves 4-6 from the LIS database [10]. The empirical
comparisons show that, in the overall evaluation, the extended k-generalized distribution of the second kind
(ExG2), one of the two kinds of generalizations of the xG distribution, is a better fit to those size distributions
(of non-equivalized variables in particular) than the GB2 in terms of both FB and MAB criteria. The ExG2 also
outperforms the dPLN overall in terms of FB measures (especially in the cases of non-equivalized variables).
Although not necessarily superior to the dPLN in terms of MAB measures, the ExG2 is judged to be a better fit
to the size distributions (of non-equivalized variables in particular) relative to the dPLN by a combined
evaluation using both FB and MAB measures. The extended k-generalized distribution of the first kind (ExG1),
another kind of generalization of the kG, is inferior to other PIDMs in terms of FB measures; that said, in terms
of MAB measures, the ExGL1 is a better fit than the GB2 and a slightly better fit than the ExG2 to the size
distributions of equivalized/non-equivalized gross and disposable income.

This paper proceeds as follows: The next section introduces four-parameter PIDMs to be considered and
presents related characteristics, such as the analytic expressions of the distribution function, Lorentz curve and
inequality indices. The choice of PIDMs includes the new PIDMs, ExG1l and ExG2, and their inverse
distributions denoted by IExG1 and IExG2. Section 3 discusses the shape of the probability density functions
(PDFs) of the new PIDMs. The ExG1 and ExG2 are shown to have unimodal density functions in typical cases
in which the density can be regarded as zero at null income/consumption. Several methods for evaluating
goodness-of-fit are introduced in section 4 and then applied to assess and summarize the empirical results
obtained by fitting the PIDMs to the LIS datasets from waves 4-6 in section 5. Finally, the last section
concludes the discussion. The regularity of the ExG2 in terms of maximum likelihood estimation is proved, and

its Fisher information matrix is presented in appendices.

2 Statistical distributions to be compared

Among four-parameter PIDMs, the GB2 proposed by McDonald [11] is probably the most popular model. The

cumulative distribution function (CDF) of the GB2 is expressed as follows:
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where 0 < x < ; a,b,p,q > 0.
I,(p, q) denotes the incomplete beta function. The GB2 is equivalent to the Singh-Maddala distribution [19]
when p = 1 and the Dagum distribution [5] when g = 1. McDonald [11] also proposed the generalized beta
distribution of the first kind (GB1), which has a finite domain.
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Reed [16] derived the dPLN by log-transforming the normal Laplace distribution, which is defined as a sum of
two independent random variables that follow a normal distribution and an asymmetric Laplace distribution,
respectively. The dPLN attains better goodness-of-fit than the GB2 to income distributions in several countries
([13, 15, 17]).
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In the above formula, ® denotes the CDF of the standard normal distribution, and &€ denotes the
complementary function of the CDF, defined as 1 — .
The G, a three-parameter PIDM proposed by Clementi et al. [3], tends to yield better estimates of the
Lorentz curves and income inequalities, although the likelihood values are not necessarily higher than those

from the existing three-parameter PIDMs ([13]). The CDF of the kG is expressed as follows:
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where 0 < x < o0; a, 8,k > 0.
Taking note of the tendency, two kinds of generalizations of the kG are introduced below to try to produce a
better fit to empirical income/consumption distributions relative to the existing four-parameter PIDMs in terms
of both FB measures, such as the likelihood value, and MAB measures, such as the accuracy of the estimated

Lorentz curve.

1/k
The kG is derived by ‘Weibullizing’ the deformed exponential function exp, x = [ 14+ (kx)? + Kx]

of Kanidakis et al. [7]. Because the deformed logarithmic function log, = = % the inverse of exp, x, is

T by Kaniadakis et al. [8],

generalized to the two-parameter deformed logarithmic function log, ,m = n" »
it is natural to create a new PIDM by Weibullizing the two-parameter deformed exponential function, implicitly
defined as the inverse of log, , m. Hereafter, the new PIDM shall be called the extended x-generalized

distribution of the first kind (ExG1). The inverse of the CDF of the ExG1 is expressed as follows:

[
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where 0 < < 1; a,b,q>0,r<ﬁ.

The CDF of the ExG1 does not allow an explicit expression. When r =0 (and a =«a, b =8, q = i), the
ExG1 is equivalent to the kG, and when r = — i, the ExG1 is equivalent to the Singh-Maddala distribution.

Another type of generalization is based on an (implicit) analytic expression of the Lorentz curve of the kG



and GB2.
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Let parameters a« and k be replaced by a and i respectively, in the «G’s Lorentz curve (1); then, its

comparison with the GB2’s Lorentz curve (2) leads to a natural extension of the Lorentz curve (1), as follows:
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The new PIDM corresponding to the Lorentz curve (3) shall be called the generalized k-generalized

distribution of the second kind (ExG2). The new model has the following CDF:

rtan=s00 2= G| 56" 56)] o/ 146

where 0 < x < o0; a,b,p,q > 0.

The above formula indicates that the ExG2 is a new kind of generalized beta distribution, different from the
GBland GB2. When p=1 (and a=a, b=, q = i), the ExG2 is equivalent to the kG. When a random
variable X follows the GB2 with parameters (1,1,p,q), then, ¥ = X//1+X follows the ExG2 with
parameters (1,1,p,q).”> A reciprocal of a random variable from the GB2 with parameters (a, b, p,q) follows
the GB2 with parameters (a,1/b,q,p). In contrast, a reciprocal of a random variable from the ExG1/ExG2
does not follow the ExG1/ExG2. A reciprocal of a variable from the ExG1 with parameters (a, b, q,r) follows
the IExG1, listed in Table 1, with parameters (a,1/b,q,r). Similarly, the inverse distribution of the ExG2
with (a, b,p,q) is the IExG2, listed in Table 1, with (a,1/b,q,p). Note that parameters (a, b,p,r) of the
IExG1 must be in a domain definedas a,b,p > 0,7 < ﬁ, and parameters (a, b, p,q) of the IExG2 must be in
a domain defined as a, b,p,q > 0.

The moments, mean log deviation (MLD), Theil index and coefficients of variation (CV) of the new four
PIDMs can be expressed analytically. Analytic expressions for the Gini indices can also be derived in the same
way as that of the GB2 devised by McDonald [11]. Those formulas, together with those of the PDFs and
Lorentz curves, are listed in Table 1.

Some formulas in Table 1 are found in other literature. In particular, those formulas are for moments of the
dPLN ([17]), the Gini index and Lorentz curve of the dPLN ([13, 14]) and the MLD and Theil index of the
GB2 ([6]).

For the ExG2, which plays the leading role in this paper, a procedure for the maximum-likelihood
parameter estimation (when fitted to microdata) is given in Appendix 1 in addition to proof of the regularity in
terms of the maximum likelihood estimation in Appendix 2 and the Fisher information matrix in Appendix 3.
The parameter estimation procedure and information matrix are similar to those of the GB2 described by
Kleiber and Kotz [9]. Because PIDMs are fitted to grouped data in this paper, the estimation procedure in

Appendix 1 is inapplicable. The procedure actually employed is explained in section 5.

! Clementi et al. [4] give a different expression of the kG’s Lorentz curve. Their expression is equivalent to (1).
2 7=X/1+ X follows the GB1 with parameters (1,1, p, ), which is equivalent to the beta distribution. The above

ExG2 variable can be expressed as Y = VXZ.



Table 1 Distributions and population characteristics
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Table 1 Distributions and population characteristics (continued)

PIDM Lorentz curve Moments Gini index
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3F5(01,0,,03;0,4,05| -) and ¢ () denote the generalized hypergeometric function and the PDF of the standard normal distribution, respectively.



Table 1 Distributions and population characteristics (continued)

PIDM Ccv MLD Theil index
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Y(+) denotes the digamma function [logI'(:)]’ = T''/T.



3 Shape of the probability density functions for the extended kG and their inverse distributions
3.1 Shape of the extended «G distribution of the second kind
The PDF of the ExG2 is expressed as follows:
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The ExG2 has power tails s.t. fgeg(X)~c;x®~1 when x - 0 and fi o (x)~c,x72%971 when x — oo,
Because the sign of %log fexa2 (), the derivative of the log-density function with respect to z, corresponds to
the sign of a quadratic function of z shown below and z(x) is a strictly monotonic increasing function for x
with a positive derivative, the conditions for existence of the mode or local maximum of the PDF can be

derived.
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Inthe case p = % the PDF takes a finite positive value at the left limit s.t. fz, . (x) —

a
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addition, if the following inequality is satisfied, the PDF has a single peak; otherwise, the PDF is monotonic

when x — 0. In

decreasing.

The peak is located at the following point:
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The PDF is monotonic increasing on the left of the peak and monotonic decreasing on the right. In the case
p < i the PDF is infinite at the left limit s.t. fg,g2(x) = o0 when x — 0. In addition, if the following three
inequalities are satisfied, the PDF has a local maximum and minimum; otherwise, the PDF is monotonic

decreasing.
2 1 2
(p+2q)2+2(p—2q—a)+1>0; p+q—%—1<0; 3p+2q—a—1<0.

The maximum and minimum points are at the following locations:
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Figure 1 charts the PDFs for various parameter values while Figure 2 compares the PDFs of the ExG2 and GB2

for the same parameter values except the scale parameter b. The scale parameters of the ExG2 are adjusted to
equalize the mean to that of the GB2 with the unity scale parameter. The density of the ExG2 is thicker than
that of the GB2 around the peak and left tail, while the former is thinner than the latter around the right tail.?
The same condition holds for the left limit of both PDFs, i.e., both PDFs approach zero or a finite positive
value or diverge to infinity when x — 0 depending on whether p > % p= i or p< i Unimodality is also
common for the two PIDMs in the case p > i whereas the possible existence of the mode or local maximum

is a different characteristic of the ExG2 from the GB2 in the case p = % and p < é
3.2 Shape of the extended kG distribution of the first kind

The PDF of the ExG1 is implicitly expressed as follows:

1 i1t

m)2a — (1 —m) 24
1/q

al-@1 —n)r(l —

fEKGl(x; a, b, q,T) = 1 1 ’
b [(qr + %) (1-m) "2t - (qr - %) a- n)r_ﬁ_l]

T = Fgeg1(x;a,b,q,7).

% The peak of the PDF of the GB2 is located at x = b[(ap — 1)/(ag — 1)]*/% in the case p > %
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Fig. 2 PDFs of the ExG2 and GB2 with the same mean and parameter values except the scale parameters



The PDF has power tails s.t. fyegq(x)~c3x%™ 1 when x = 0 and fy,gq () ~c,x ™%/ (1/2a-1-1 when x — oo,
Because the sign of %IngEKGl(x) corresponds to the sign of the quadratic function below and w(x) is a
strictly monotonic increasing function for x with a positive derivative, the conditions for the existence of the
mode or local maximum of the PDF can be derived.

AX?>+BX +C,

1
where X = (1 —m)4; A= r+— c

2q(a —ar)—l( Zlq)’

=2q(a—ar)+1<r 1),
2(a—1)

B=—-A—C+- :
q a

In the case a > 1, fgi1(x) » 0 when x — 0, and the PDF has a single peak. The peak is located at the
following point:

X = FE_KlGl(1 _Xq)'

X_—B—\/BZ—4AC fal 1
= 24 ifqla—m) >

Cc 1
X=—§ ifq(a—r)=§,

X_—B+\/B2—4AC

1
A ifq(a—r)<§.
In the case a = 1, the PDF takes a finite positive value at the left limit s.t. fgc1(x) —>% when x = 0. In

addition, if the following inequality is satisfied, the PDF has a single peak; otherwise, the PDF is monotonic

decreasing.
S 1
r 2.
The peak is located at the following point:

-1 ¢
x = Fa(1-X9,  X=—

The PDF is monotonic increasing on the left of the peak and monotonic decreasing on the right. In the case
a < 1, the PDF is infinite at the left limit s.t. fgg2(x) = o when x — 0. In addition, if the following three
inequalities are satisfied, the PDF has a local maximum and minimum; otherwise, the PDF is monotonic

decreasing.

1
qla—71) <§ (©A<0); 0<B<—24; B?>>4AC.
The maximum and minimum points are at the following locations:
x = Fee (1 - X9,

¥ —B ++VB? — 4AC

(Maximum point),

2A
—B ++VB?% —4AC
X = Sy E— (Minimum point).

Figure 3 charts the PDFs for various parameter values.

3.3 Shape of the inverse distributions of the extended kG distributions



The IExG1 also has power tails s.t. figegq () ~csx®1/2P=1=1 when x - 0 and fig,gq (x)~cex ™%
when x — co. The PDF approaches zero or a finite positive value or diverges to infinity when x — 0
depending on whether a > % -7, a= % —rorac< % —r. In the case a > %— r, the PDF is unimodal,
otherwise, the PDF is always monotonic decreasing without further restrictions on the parameters, unlike that
of the ExG1.

Likewise, the IExG2 has power tails s.t. fipegz(®)~c,x2%?~1 when x > 0 and figga(x)~cgx ™27t
when x — co. The PDF approaches zero or a finite positive value or diverges to infinity when x — 0
according to whether p > i p= i or p< i In the case p > i the PDF is unimodal; otherwise, the PDF

is always monotonic decreasing, unlike that of the ExG2.
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4 Methods for evaluating the goodness-of-fit

4.1 Criteria for the goodness-of-fit to individual datasets

As shown by Okamoto [13, 15], a better evaluation based on FB measures such as the likelihood value does
not necessarily imply more accurate inequality estimates. Thus, in this study, the goodness-of-fit shall be
evaluated using not only FB measures but also MAB measures such as the accuracy of the estimated Lorentz
curve which are expected to more closely reflect the accuracy of inequality estimates.

Four-parameter PIDMs are fitted to grouped data using the maximum likelihood (ML) method in the next
section. The grouped data were obtained by tabulating income/consumption data in the LIS database by 22

classes defined as ventile groups, with equal subdivision of the lowest and highest ventile groups. The



log-likelihood shall be computed using the following formula (its constant term is omitted):

¢ =N, logF(x,;8) + Z 1 10g[F (x;:8) — F(x,_1; 8)] + 35 log[1 — F (xz0; é)]}
) )
+ Z‘_ logf(xi; @),

where m, =m, = My, =My, = 1/40; m; =1/20 for i =3,---,20; x; denotes the upper bound of the
income/consumption in group i for i = 1,---,21; N denotes sample size; ® denotes the ML parameters, i.e.,
® maximizes the log-likelihood in (4). In this study, the log-likelihood shall be mainly employed as a FB
measure supplemented with three other FB measures: the squared root of the sum of squared errors (RSSE), the

sum of absolute errors (SAE) and the chi-square (y?2) statistic between observed and estimated frequencies.

s [ [ (<) - 0. ®

SAE = jZ; |7 = (F(x:8) = F(xi-1;8) )| 6)

X =N Z" [TTL- - (F(xi;é) — F(xi_l,"(-j))]z )

i=1 F(xii é) - F(xi—l; 6) '

where n = 22; x, = 0.
The RSSE between the observed and estimated Lorentz curves (LRSSE) shall be employed as a MAB
measure ([13, 15]).

LRSSE = \/Z; (Li- L(Ai;’é))2, ®)

where A; = X m; /Y-, m; expresses the cumulative population share up to group i; L; expresses the

cumulative money share up to group i, i.e., a point (4;,L;) is on the empirical Lorentz curve. Because popular
inequality indices including the Gini index are sensitive to distribution tails, the LRSSE in (8) shall be

supplemented with its modified version which puts more importance on the accuracy near both ends.

LwWRSSE = \/le Wi (Li - L(li;é))z’ Wi = ﬁ/zrzl /11'(11— A) )

In addition to the LRSSE, the absolute error between the observed and estimated Gini index (AEG) shall also

be used as another primary MAB measure supplemented with the absolute error of the mean log deviation
(MLD) and the Theil index.

In this study, the overall evaluation of PIDMs shall be performed by summarizing pairwise comparisons of
the goodness-of-fit to individual datasets, as explained in the next subsection. The goodness-of-fit of two
PIDMs to each dataset shall be compared not only by each single measure but also by combinations of those
measures, such as a combination of the likelihood value and LRSSE. When one of the two models is
unanimously judged to be superior to another by the selected measures, the former shall be regarded to be a
better fit than the latter, while the pairwise comparison shall be regarded as invalid in the case of inconsistent
evaluation among combined measures. Unfortunately, there rarely exists a PIDM among the existing PIDMs
and new ones introduced in this paper that performs the best in comparison across all PIDMs, by both the
likelihood value and the LRSSE or other combinations of FB and MAB measures, although it is ideal to choose
the best model based on such across-the-board comparisons. Thus, the search for the ‘best’” PIDM that

overwhelmingly outperforms any other in terms of both FB and MAB criteria remains a future research task.



4.2 Methods for the overall evaluation

The overall evaluation shall be performed to choose the most ‘suitable’ PIDM by summarizing pairwise
comparisons of the goodness-of-fit to individual datasets among four-parameter PIDMs. The PIDMs are fitted
to the empirical size distributions of six variables, i.e., household gross income, disposable income and
consumption and their equivalized variables in countries from waves 4-6 of the LIS database. Thus, the datasets
can be divided into eighteen groups according to wave, variable and equivalization/non-equivalization. The
eighteen dataset groups shall hereafter be called ‘categories.” The evaluations of the goodness-of-fit of a pair of
PIDMs to individual datasets are aggregated using two types of scores. One is the ratio of datasets gained
(RoDG) defined below. When the RoDG of a PIDM over its counterpart PIDM is higher than 50%, the former
is identified as more frequently a better fit to the datasets than the latter in terms of a given measure or

combination of measures introduced in the previous subsection.

RODG = No. of datasets gained % 100 (%) 10
ook = No. of dataset gained + No. of datasets lost o (10)

where ‘datasets gained/lost’ is defined as datasets to which a PIDM is a better or worse fit than its counterpart
in terms of a given measure or combination of measures. In instances where the two PIDMs happen to tie for
the goodness-of-fit to a dataset, both PIDMs are regarded gaining a half. Another type of score is the number of
categories gained (NoCG) defined below. When the NoCG of a PIDM is more than 9 (categories), i.e., greater
than that of its counterpart, it means that the former is dominant in more categories in terms of number of

datasets gained.

NoCG = Z I(No. of datasets gained in category i > No. of datasets lost in category i), (11)
i

where I( ) denotes an indicator function, i.e., the function takes a value of one if the inequality in the
argument is true, a value of zero if the opposite inequality holds, or a value of 0.5 if equality holds. The reason
for employing the NoCG as well as the RoDG is that there is a possibility that a PIDM could be dominant over
its counterpart only in specific categories, such as categories of equivalized variables, even if the RoDG is
relatively higher. When combined measures (such as a combination of the likelihood value and LRSSE) are
applied to evaluate the goodness-of-fit to individual datasets, invalid cases will exist. Because a higher ratio of

valid cases is also desirable for suitable PIDMs, the following validity ratio (VR) shall also be computed.

No. of valid relevant pairwise comparisons
= X

VR 100

" Total no. of relevant pairwise comparisons
(12)
_ No.of datasets gained + No. of datasets lost

x 100 (9
Total no. of datasets (%)

5 Empirical comparisons in goodness-of-fit among four-parameter statistical distributions

5.1 Data and estimation procedure

Four-parameter PIDMs introduced in section 2 shall be fitted to empirical size distributions of gross income,
disposable income and consumption in many countries included in the LIS database. The consumption

distribution is included among the target distributions in this study in consideration of views in the literature



that the level of household consumption (during sufficiently long period of time) more accurately reflects the
standard-of-living than household income. To make the number of datasets in each category (classified
according to wave and variables) as equal as possible, countries for which all three variables are available were
selected from waves 4-6. As listed in Table 2, data for approximately 20 countries are available in each wave.
As for the consumption data, one or two countries were excluded in waves 5 and 6 because, for those countries,
the MLE procedure either does not converge or results in a very poor fit in most PIDMs. Equivalized variables

are computed by dividing the respective variables by the square root of the number of household members.

Table 2 LIS datasets used for the empirical evaluation of PIDMs

Country

Country Code Wave 4 Wave 5 Wave 6
Austrailia AU 1995 2001 2003
Austria AT 1995 2000 2003
Belgium BE 1995 2000 -
Canada CA 1994 2000 2004*
Czech Rep. Ccz - - 2004
Denmark DK 1995 2000 2004
Estonia EE - 2000 2004
France FR 1994 2000 2005
Germany DE 1994 2000 2004
Greece GR 1995 2000 2004
Hungary HU 1994 1999 2005
Ireland IE 1995 2000 2004
Israel IL 1997 2001 2005
Italy IT 1995 2000 2004
Luxembourg LU 1997 2000 2004
Netherlands NL - - 2004
Romania RO 1995 - -
Russia RU - 2000 -
Slovenia Sl 1997 1999 2004
Spain ES 1995 2000 2004
Sweden SE - 2000 2005
Switzerland CH - 2000 2004
Taiwan TW 1995 2000 2005
United Kingdom UK 1995 1999* 2004*
United States us 1997 - -
No. of countries 19 21 (20) 21 (19)

* Consumption data are not used for the evaluation. See explanation in the text.
The reference years for the data in waves 4-6 are listed in columns of ‘wave 4,
‘wave 5° and ‘wave 6,” respectively.

In a manner similar to that in the studies by Bandourian et al. [1] and Reed and Wu [17], PIDMs are fitted
to grouped data. Although ventile-grouped data are used in the literature, the LIS data are tabulated into 22
groups, defined as ventile groups with equal subdivisions of the lowest and highest ventile groups in this study;,
in consideration that popular inequality indices are sensitive to distribution tails. The slightly more detailed

grouped data are expected to make the fitting results, especially inequality estimates, closer to those obtained



from the microdata while restraining the increase of computational burden, similar to ventile grouping. The tail
subdivisions also provide another advantage in that the ML estimation empirically becomes more stable. In
certain exceptions, some of the 22 groups are collapsed for small sample data. The tabulations are made using
population weights (the product of household weights and the number of household members) for equivalized
variables, while household weights are used for tabulating non-equivalized variables.

Seven four-parameter PIDMs introduced in section 2, i.e., the dPLN, GB1, GB2, ExG1, ExG2, IExG1 and
IExG2, shall be fitted to the grouped data using the MLE procedure, which maximizes the log-likelihood in (4).
The simplex Nelder-Mead method ([12]), implemented in function ‘optim’ of statistical computer package R, is
used to solve the maximization problem. When fitting four-parameter PIDMs to grouped data, the
maximization is sometimes sensitive to the initial values. To address this issue, two or more sets of initial
values are used for the maximization, and the obtained parameters that attain the largest likelihood values are
chosen as the final estimates. The sets of initial values are obtained by fitting three-parameter PIDMs that
correspond to special cases of the respective PIDM. Empirically, the initial value-setting strategy can obtain
sufficiently accurate estimates. For example, to fit the GB2 by the MLE procedure, the Dagum and
Singh-Maddala distributions are fitted in advance to obtain the initial values. The kG and Singh-Maddala
distributions are used to obtain the initial values for the MLE fitting of the ExG1. Similarly, the kG, Dagum
and Singh-Maddala distributions are employed to fit the ExG2. Either the Dagum or Singh-Maddala
distribution is not a special case of the ExG2; that said, because the ExG2 is close to the GB2 in form, the ML

parameters of both models are used as initial values.

5.2 Goodness of fit to individual datasets and categories in wave 6

Tables 3-1 through 3-6 list the log-likelihood value, LRSSE and AEG (absolute error of the Gini index) for
each of the seven four-parameter PIDMs fitted to each dataset by 6 categories (equivalized/non-equivalized
gross income, disposable income and consumption) in wave 6. Two types of scores for PIDMs are listed in the
bottom two rows. These scores quantify the overall evaluation of the goodness-of-fit to each dataset. The scores
in the second row from the bottom indicate the number of datasets to which the respective PIDM was the best
fit among the seven PIDMs. For cases where two/three PIDMs were equally superior, value ‘1’ is equally split
into the two or three PIDMs. Thus, the scores took on values ranging from 0 to 19 for consumption data and
from 0 to 21 for gross and disposable income data. Another type of score found in the bottom row indicates the
number of pairwise comparisons in which the respective PIDM was a better fit to the dataset relative to its
counterpart PIDM more frequently than the other way around. In cases where a pairwise comparison ended in a
draw, value ‘1’ was equally split into the respective two PIDMs. Thus, those scores took on values ranging
from 0 to 6.

As for the first type of scores based on across-the-board comparisons, the ExG2 marks the highest in the
categories of non-equivalized disposable income and equivalized/non-equivalized gross income in terms of the
likelihood value, while the IExG1 marks the highest in the categories of equivalized/non-equivalized gross and
disposable income in terms of the LRSSE and AEG. No PIDM clearly attains a high score in terms of both the
likelihood value and LRSSE/AEG. For example, in the categories of non-equivalized disposable income, the
ExG2 marks the highest in terms of the likelihood value; nevertheless the ExG2 receives the lowest score
(zero) in terms of the LRSSE and AEG. In contrast, the IExG1 earns the highest mark in terms of the LRSSE

and AEG although the IExG1 received no score in terms of the likelihood value.



The second type of scores based on pairwise comparisons also indicate that the ExG2 is the best among the
seven PIDMs in the categories of non-equivalized disposable income and equivalized/non-equivalized gross
income in terms of the likelihood value. Furthermore, the ExG2 attains better scores in the categories of
consumption and in terms of the LRSSE and AEG relative to the first type of scores, whereas the ExG1
replaces the IExG1 as the best PIDM in the categories of equivalized/non-equivalized gross income in terms of
the LRSSE and AEG. In particular, the IExGI’s score decreases substantially in the category of
non-equivalized gross income. In summary, the overall evaluation using the two types of scores implies that the
goodness-of-fit of the IExG1 tends to vary substantially among countries, and the model is unsuitable for
general use. Thus, the above example provides a justification for the overall evaluation based on pairwise
comparisons.

Figure 4-1 shows the PDFs of the dPLN, GB2, ExG1 and ExG2 fitted to the empirical size distribution of
equivalized gross income in Sweden for 1995. Figure 4-2 shows the PDFs of the same four PIDMs fitted to the
non-equivalized gross income in Canada for 1994. In both charts, the income levels are proportionally adjusted
to make the scale parameter b of the GB2 to unity, and close-ups of the PDFs around the peaks and parts of the
right distribution tails are also presented. The ExG2 is the best fit to equivalized gross income in Sweden
among the four PIDMs in terms of all three criteria — the likelihood value, LRSSE and AEG. The
goodness-of-fit of the ExG1 is close to that of the ExG2 in terms of all three criteria. As for non-equivalized
gross income in Canada, the ExG2 is the best and the dPLN and ExG1 are much inferior to the ExG2 in terms
of the likelihood value, whereas the dPLN is the best and the ExG1 is also better than the ExG2 in terms of the
LRSSE and AEG. From Figures 4-1 and 4-2, one can notice that the goodness-of-fit of the PIDMs is related to
similarities in the shape of the PDFs. The ExG2’s density is thinner than the GB2’s density around the right tail,
which is similar to the comparisons with the same mean and same parameter values except the scale parameters
charted in Figure 2 (although the difference in density is substantially small relative to that in Figure 2). It
should also be noted that the ExG2’s density around the peak is slightly thinner than the GB2’s density, unlike

the comparisons in Figure 2.

5.3 The overall evaluation of the goodness-of-fit based on a single criterion

Tables 4-1 through 4-3 contain the NoCGs defined as (11) and RoDGs defined as (10) that summarize all
pairwise comparisons regarding goodness-of-fit to datasets from waves 4-6. For example, Table 4-1
summarizes all pairwise comparisons in terms of the likelihood value. The cells at the intersection of column
‘ExG2’ and row ‘dPLN’ in the panel for non-equivalized variables contain a score of 9 for the NoCG and 85.0
for the RoDG. The scores indicate that the ExG2 was more frequently a better fit to the datasets in each of the
nine categories (gross income, disposable income and consumption data in three waves) and the former was
better fitted to 85.0% of all the datasets in the nine categories relative to the dPLN in terms of the likelihood
value. The overall evaluation of Tables 4-1 through 4-3 reveals that the ExG2 outperforms the GB1, GB2 and
IExG1 in terms of the LRSSE and AEG as well as the likelihood value. The ExG2 also outperforms the IExG2
with the exception of achieving equivalent goodness-of-fit in the categories of equivalized variables evaluated
in terms of the likelihood value. As for the dPLN and ExG1, the ExG2 is superior to each in terms of the
likelihood value in the overall evaluation, whereas the ExG2 is inferior to the dPLN in terms of the AEG and
inferior to the ExG1 in terms of the LRSSE and AEG in the categories of non-equivalized variables in the

overall evaluation.
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Fig. 4-2 Fitted PIDMs to non-equivalized gross income in Canada, 2004

Tables 5-1 through 5-4 detail the overall evaluation for the pairwise comparisons among the four selected



PIDMs: the dPLN, GB2, ExG1 and ExG2. To save space, detailed results for the GB1, IExG1 and IExG2 are
omitted because of their inferior goodness-of-fit in terms of both FB and MAB measures. Because the GB2
generally produces a better fit than the GB1 in addition to its being popular, its scores are kept for reference in
Tables 5-1 through 5-4. For example, Table 5-1 details the overall evaluation in terms of the likelihood value.
The cells at the intersection of column ‘GB2 vs. ExG2’ and row ‘All categories’ in Table 5-1 contain a score of
15 for the NoCG and 63.2 for the RoDG. These scores indicate that the ExG2 is more frequently a better fit to
the datasets in fifteen of the eighteen categories and a better fit to 63.2% of all the datasets in the eighteen
categories relative to the GB2 in terms of the likelihood value. A breakdown of the overall scores into types of
categories shows that the ExG2 outperforms the GB2 in all nine categories of non-equivalized variables,
marking a higher RoDG, 70.3%, whereas the overall evaluations indicate its lower superiority in the categories
of equivalized variables (NoCG 6 and RoDG 56.1%) and, in particular, equivalized consumption. Tables 5-2
and 5-4 show that, overall, the ExG2 outperforms the GB2 in terms of the LRSSE and AEG as well as the
likelihood value. The former is dominant over the latter in each category for non-equivalized variables. The
RoDGs are above 55%, although lower relative to the corresponding ratios attained when evaluated by the
likelihood value.

As for the pairwise comparisons between the ExG1 and ExG2, the latter is dominant over the former in all
eighteen categories in terms of the likelihood value, marking a high RoDG (78.2%), whereas the NoCG falls to
7.5 under half of all categories and the RoDG decreases to 47.5% slightly below the neutral rate of 50% when
evaluated by the LRSSE. The ExG2 receives the same NoCG score as the ExG1 but the RoDG falls to 47.8%
when evaluated by the AEG, indicating that the ExG2 is slightly inferior to the ExG1 in terms of MAB criteria.

The pairwise comparisons between the dPLN and ExG2 vyield results similar to those between the ExG1
and ExG2, but accompanied by some indication of possible disagreement among the MAB criteria. In terms of
the likelihood value, the ExG2 clearly outperforms the dPLN such that the former is dominant over the latter in
sixteen of eighteen categories and especially dominant in all nine categories of non-equivalized variables,
marking the RoDG at 71.1% overall and 85.0% in the categories of non-equivalized variables. The LRSSE, one
of the MAB measures, yields an overall evaluation that slightly favors the ExG2 in that the ExG2 is dominant
over the dPLN in eleven of eighteen categories and tied with the dPLN in one category, along with a
slightly-more-than-half rate of the overall RoDG (53.3%). In contrast, the AEG, a different MAB measure,
tends to favor the dPLN such that the ExG2 is dominant over the dPLN in only four categories and ties the
dPLN in three categories, along with an overall RoDG of 46.9%, slightly lower than the neutral rate of 50%.
Thus, the LRSSE does not agree with the AEG in the overall evaluation, although it should also be noted that
both evaluations are subtle. For this reason, Table 5-3 is added to present the overall evaluation based on the
LWRSSE defined as (9), which places importance on the accuracy of the estimated Lorentz curve near both
ends; that said, the ExG2 is still dominant over the dPLN in ten of eighteen categories and its overall RoDG
over the dPLN is 51.1%, still above the neutral rate. Thus, the overall evaluation remains favorable to the ExG2
although somewhat closer to that of the AEG, relative to the LRSSE’s. Those results imply that evaluation of
goodness-of-fit should not rely on a single MAB measure.

The ExGL1 is inferior to the dPLN, GB2 and ExG2 in all eighteen categories in terms of the likelihood value,
but superior to the GB2 and ExG2 in terms of the LRSSE and AEG in the overall evaluation. As for the
pairwise comparisons between the dPLN and ExG1 in terms of MAB measures, the former appears to
outperform the latter in terms of the AEG except for equivalized gross and disposable income. On the whole, a

definitive judgment is difficult to make.



The (omitted) overall evaluations based on other FB measures, i.e., RSSE, ASE and % in (5) through (7),
are similar to those based on the likelihood value. The ExG2 outperforms other PIDMs in terms of those FB
measures as well as the likelihood value. Inconsistent evaluations can occur between FB and MAB measures
(and/or among MAB measures). Thus, in the next subsection, the overall evaluation shall be performed again

according to combinations of the two types of criteria.

5.4 The overall evaluation of the goodness-of-fit based on combined criteria

Tables 6-1 through 6-6 summarize all pairwise comparisons among the dPLN, GB2, ExG1 and ExG2 by
combined measures. In addition to a combination of the likelihood and LRSSE and that of the likelihood and
AEG, other combinations are also used for the overall evaluation. These include 1) a combination of the
likelihood and absolute error of the MLD; 2) the likelihood and absolute error of the Theil index; and 3) all four
FB measures (the likelihood value, RSSE, ASE and %?) with LRSSE/AEG.

No matter how the measures are combined, the ExG2 outperforms other PIDMs. In particular, the ExG2 is
dominant over its counterparts in almost all nine categories (although tied with the GB2 in some categories) for
non-equivalized variables, making the RoDGs higher than or about the same as 70% over the GB2 and higher
than or about the same as 80% over the dPLN and ExG1. Overall, the ExG2 is also superior to the dPLN, GB2
and ExG1 in the categories of equivalized variables, although inferior to the dPLN in the categories of
equivalized disposable income. It should be noted, however, that the VRs defined as (12) are generally not so
high. The VR indicates the rate of valid cases on which all respective measures agree regarding which PIDM is
a better fit to a given dataset. The rates are below 50% in the pairwise comparisons between the dPLN and
ExG2. Exceptions include instances of applying a combination of the likelihood value and LRSSE, as well
instances within categories of equivalized variables when applying a combination of the likelihood value and
the accuracy of the Theil index. In the pairwise comparisons between the GB2 and ExG2, the rates are
generally above 50% when applying combinations of two measures, including one from FB measures and
another from MAB measures. When combining all FB measures with LRSSE/AEG, rates fall below 50%.

The ExG1 is judged to be inferior to the dPLN, GB2 and ExG2 by any combination of FB and MAB

measures.

6 Conclusion

This paper studies two new four-parameter PIDMs derived by generalizing the «G distribution, which has
an empirical tendency to estimate inequality indices more accurately than the existing three-parameter PIDMs.
Empirical comparisons using the LIS datasets indicate that the ExG1, one of the two kinds of generalizations,
tends to be a good fit to empirical income/consumption distributions in terms of MAB criteria, such as the
accuracy of the estimated Lorentz curve and the Gini index. Thus, the ExG1 appears to inherit the features
from the «G. The ExG2, another kind of generalization, can also be viewed as a new variant of a generalized
beta distribution that is different from the GB1 and GB2 but closer to the GB2 in form. The latter new model
tends to be a good fit to empirical income/consumption distributions in terms of both MAB criteria and FB
criteria, such as the likelihood, leading to superiority over the GB1 and GB2 in both terms. Thus, the ExG2
appears to create positive synergetic effect between the «G and GB2.

The search continues for the ideal PIDM that will be a best fit to empirical income/consumption



distributions in all aspects. The research most likely requires finding new statistical distributions with at least
five or more parameters. Hopefully, the new four-parameter PIDMs in this paper may contribute to the future

research for creating better-fitting models.



Table 3-1 Goodness-of-fit to individual datasets from wave 6 — non-equivalized consumption

Log-likelihood™® LRSSE Absolute error of the Gini index
Country & Year
dPLN GB2 ExGl IExkG1 ExG2 IExG2 GB1 dPLN GB2 ExG1 IExGl ExG2 IExG2 GB1 dPLN GB2 ExG1 IExGl ExG2 IExG2 GB1

AU03 -6.20 0.00 -13.26 -200.71 -1150 3745 -1169.83 1.488 1530 1.471 0.684 1.458 1505 0.162 0.437 0.451 0.433 0.191 0.391 0.437 0.039
ATO04 -1.19 0.00 2.12 -1.06 -1.61 1.63 -15.18 0.017 0.018 0.013 0.026 0.019 0.016 0.011 0.005 0.006 0.004 0.008 0.006 0.005 0.000
Cz04 -0.73 0.00 0.09 -0.09 0.09 -0.14 -42.09 0.008 0.007 0.009 0.005 0.009 0.004 0.021 0.002 0.002 0.003 0.001 0.003 0.001 0.004
DKO04 -572.40 0.00 -630.90 -910.20  0.00 0.00 200.80 0.060 0.029 0.033 0.032 0.029 0.029 0.033 0.012 0.005 0.008 0.001 0.005 0.005 0.010
EE04 -0.67 0.00 -0.16 0.37 -0.04 0.37 -44.42 0289 0.290 0.288 0.293 0.286 0.293 0.336 0.092 0.092 0.092 0.094 0.091 0.094 0.102
FRO5 -7.86 0.00 -31.33 -39.19 0.01 -0.01 0.47 0.006 0.007 0.012 0.034 0.008 0.008 0.011 0.000 0.003 0.002 0.009 0.003 0.003 0.004
DE04 4.37 0.00 -4.44 081 -5.29 219 -116.97 0.033 0.033 0.032 0.031 0.030 0.035 0.058 0.011 0.011 0.010 0.010 0.010 0.011 0.016
GR04 3.52 0.00 -4.66 058 -4.80 2.75 -39.95 0.016 0.022 0.022 0.026 0.028 0.019 0.016 0.005 0.007 0.007 0.009 0.009 0.006 0.002
HUO05 -0.08 0.00 -3.73 -336 0.03 -0.02 -0.17 0.006 0.005 0.021 0.036 0.006 0.005 0.004 0.001 0.001 0.006 0.011 0.001 0.001 0.000
IEO4 0.60 0.00 -0.07 8.70  0.00 0.71  -209.06 0.036 0.036 0.035 0.169 0.035 0.043 0.136 0.009 0.010 0.009 0.058 0.009 0.013 0.028
ILO5 -2.66 0.00 -10.72 -1556 0.00 0.00 -0.22  0.003 0.007 0.010 0.032 0.007 0.007 0.009 0.000 0.002 0.003 0.009 0.002 0.002 0.002
ITO4 -1.31 0.00 -4.79 -4.08 -0.01 0.02 -32.61 0.007 0.004 0.015 0.029 0.005 0.003 0.047 0.002 0.001 0.005 0.009 0.001 0.000 0.013
LUO4 0.00 0.00 3.91 -1.07 069 -0.73 -33.30 0.066 0.065 0.055 0.046 0.059 0.049 0.043 0.023 0.023 0.020 0.016 0.021 0.018 0.005
NLO4 -3.14 0.00 3.35 -0.28  3.27 0.29 -129.89 0.048 0.037 0.030 0.031 0.031 0.035 0.051 0.016 0.012 0.010 0.011 0.011 0.012 0.012
S104 -5.94 0.00 -1057 -12.77 0.00 0.00 0.46 0.009 0.009 0.007 0.030 0.009 0.008 0.011 0.002 0.002 0.001 0.008 0.002 0.002 0.003
ES04 -22.32 0.00 -3221 -3426 0.00 0.00 -84.37 0.053 0.033 0.098 0.116 0.033 0.033 0.044 0.014 0.008 0.029 0.035 0.008 0.008 0.012
SEO05 -3.41 0.00 -0.11 112 085 -0.53 -39.42 0.006 0.005 0.006 0.007 0.007 0.004 0.010 0.001 0.001 0.001 0.001 0.002 0.000 0.002
CHO04 0.20 0.00 -4.04 -3.25 0.09 -0.12 -3.42 0.005 0.009 0.006 0.018 0.008 0.011 0.029 0.002 0.003 0.001 0.005 0.003 0.003 0.009
TWO05 -17.56 0.00 4.32 11.70 596 -1.37 -11.04 0.007 0.006 0.005 0.006 0.005 0.007 0.011 0.001 0.001 0.000 0.001 0.000 0.001 0.002

Score based on

across-the-boar 3 0.7 3.5 35 2.2 3.2 3 4 1 4 0 2 4 4 2 1 3 1 4 3 5

d comparisons

Score based on

pairwise 3 4 2 1 6 5 0 2 3 5 0 4 6 1 2 3 5 0 5 1 1

comparisons

* Differences from the corresponding value of the GB2 are listed. (The same is true of the subsequent tables.)



Table 3-2 Goodness-of-fit to individual datasets from wave 6 — non-equivalized disposable income

Log-likelihood™® LRSSE Absolute error of the Gini index
Country & Year
dPLN GB2 ExGl IExkG1 ExG2 IExG2 GB1 dPLN GB2 ExG1 IExGl ExG2 IEkG2 GB1 dPLN GB2 ExkGl IExG1 ExG2 IExG2 GB1

AU03 -5451 0.00 -61.05 -78.89  0.00 0.00 1293 0.032 0.019 0.020 0.025 0.019 0.019 0.026 0.004 0.007 0.007 0.002 0.007 0.007 0.010
ATO04 -2.97 0.00 -2.84 0.38 1.49 -0.68 -6.27 0.011 0.011 0.007 0.008 0.008 0.014 0.022 0.003 0.004 0.002 0.001 0.003 0.004 0.006
CA04 -22.21 0.00 -7.65 -9.82 493 -1.07 -31.59 0.027 0.030 0.027 0.011 0.027 0.032 0.038 0.009 0.010 0.009 0.004 0.009 0.010 0.011
Cz04 -2.65 000 -2283 -21.57 0.01 0.01 0.20 0.012 0.020 0.008 0.021 0.020 0.020 0.021 0.004 0.007 0.002 0.005 0.007 0.007 0.007
DKO04 -205.60 0.00 -1055.00 -1314.80 0.20 0.20 7180 0.039 0.030 0.029 0.049 0.030 0.030 0.032 0.003 0.006 0.004 0.010 0.006 0.006 0.009
EE04 0.01 0.00 -3236 -32.08 0.15 0.14 -1.35 0.030 0.030 0.074 0.127 0.024 0.026 0.014 0.007 0.007 0.021 0.037 0.005 0.005 0.004
FRO5 -3.57 0.00 -1478 -16.99 053 -0.13 -1.89 0.016 0.021 0.012 0.010 0.019 0.021 0.025 0.006 0.007 0.004 0.001 0.007 0.007 0.008
DE04 -3.91 000 -2156 -23.88 027 -0.04 -0.87 0.020 0.024 0.011 0.012 0.024 0.025 0.028 0.007 0.008 0.004 0.002 0.008 0.008 0.009
GR04 0.17 0.00 -1.99 -396 009 -0.13 -8.42 0.005 0.004 0.009 0.030 0.005 0.004 0.017 0.001 0.001 0.002 0.009 0.002 0.000 0.003
HUO05 0.07 0.00 -2.99 -2.36 0.07 -0.07 -0.81 0.004 0.006 0.015 0.034 0.005 0.008 0.020 0.000 0.001 0.004 0.010 0.001 0.002 0.005
IEO4 0.26 0.00 -0.71 -4.84  -0.66 0.14 -150.69 0.349 0.368 0.341 0.151 0.350 0.441 0.160 0.113 0.120 0.112 0.045 0.101 0.146 0.049
ILOS -20.92 0.00 -19.11 -25.27 0.00 0.00 292 0.018 0.036 0.030 0.011 0.036 0.036 0.041 0.006 0.012 0.011 0.002 0.012 0.012 0.014
ITO4 -0.14 0.00 -1495 -1764 -0.01 0.00 -0.94 0.061 0.060 0.034 0.013 0.060 0.061 0.069 0.020 0.020 0.012 0.004 0.020 0.020 0.023
LUO4 67.86 0.00 -4.96 -4.10 041 2.04 -2.29 0.013 0.005 0.041 0.066 0.007 0.013 0.023 0.004 0.001 0.012 0.020 0.001 0.005 0.007
NLO4 -3.26 000 -2752 -33.77 0.28 0.27 0.28 0.036 0.042 0.031 0.016 0.044 0.043 0.044 0.013 0.015 0.010 0.005 0.015 0.015 0.015
S104 -12.48 0.00 -2.30 -1.98  0.00 0.00 1.40 0.010 0.010 0.009 0.009 0.010 0.010 0.013 0.003 0.003 0.003 0.000 0.003 0.003 0.003
ES04 -37.67 000 -4295 -51.04 0.00 0.00 568 0.016 0.011 0.009 0.023 0.011 0.011 0.015 0.002 0.004 0.002 0.005 0.004 0.004 0.005
SEO05 -28.77 0.00 -111.13 -13545 0.03 0.03 7.33 0.029 0.022 0.022 0.037 0.022 0.022 0.024 0.002 0.005 0.002 0.007 0.005 0.005 0.007
CHO04 -0.51 0.00 -0.07 -0.53 0.11 -0.10 -6.93 0.011 0.009 0.009 0.003 0.007 0.010 0.019 0.004 0.003 0.003 0.000 0.002 0.004 0.004
TWO05 -4.06 0.00 0.05 -0.67 023 -0.10 -20.93 0.015 0.011 0.010 0.003 0.007 0.013 0.027 0.005 0.003 0.003 0.001 0.002 0.004 0.006
UKO04 0.27 0.00 -147.79 -142.77 2.42 2.33 198 0.044 0.043 0.019 0.025 0.051 0.050 0.055 0.015 0.015 0.006 0.005 0.017 0.017 0.019

Score based on

across-the-boar 3 0.5 0 0 9.5 0.5 7.5 1 1 7 9 0 2 1 4 1 1 13 0 1 1

d comparisons

Score based on

pairwise 2 45 1 0 6 45 3 4 2 6 5 3 1 0 5 2 4 6 3 1 0

comparisons




Table 3-3  Goodness-of-fit to individual datasets from wave 6 — non-equivalized gross income

Log-likelihood™® LRSSE Absolute error of the Gini index
Country & Year
dPLN GB2 ExGl IEkGl ExG2 IExG2 GB1 dPLN GB2 ExG1l IEkGl ExG2 IExG2 GBl1 dPLN GB2 ExGl IEkGl ExG2 IExG2 GB1

AU03 -51.83 0.00 -73.45 -87.40 0.11 0.11 12.49 0.052 0.022 0.025 0.033 0.022 0.022 0.029 0.010 0.005 0.008 0.003 0.006 0.006 0.011
ATO04 -4.96 0.00 0.18 3.80 237 -1.04 -9.22 0.009 0.010 0.004 0.005 0.005 0.014 0.028 0.002 0.003 0.001 0.001 0.001 0.004 0.006
CA04 -4958 0.00 -21.20 -1965 422 -0.22 -9.80 0.032 0.044 0.038 0.018 0.040 0.045 0.049 0.010 0.014 0.013 0.006 0.013 0.014 0.015
Cz04 -3.14 000 -3719 -37.11 0.03 0.03 045 0.014 0.024 0.015 0.034 0.025 0.025 0.028 0.003 0.009 0.003 0.007 0.009 0.009 0.010
DKO04 -79.30 0.00 -1114.00 -1243.30  0.00 0.00 2280 0.039 0.029 0.031 0.071 0.029 0.029 0.029 0.003 0.004 0.001 0.017 0.004 0.004 0.007
EE04 0.00 0.00 -42.22 -41.78 0.06 0.10 -0.38 0.046 0.047 0.094 0.168 0.043 0.041 0.026 0.010 0.010 0.025 0.049 0.009 0.008 0.002
FRO5 -2.08 000 -11.76 -11.14 0.89 -0.38 -5.38 0.024 0.022 0.014 0.009 0.020 0.024 0.030 0.008 0.008 0.005 0.001 0.007 0.008 0.009
DEO4 -20.24 0.00 -63.08 -69.80  0.03 0.03 266 0.016 0.016 0.013 0.039 0.017 0.017 0.020 0.001 0.005 0.001 0.010 0.006 0.006 0.007
GR04 0.21 0.00 -2.68 -5.12 0.01 -0.06 -6.66 0.008 0.007 0.006 0.027 0.004 0.008 0.022 0.002 0.002 0.001 0.008 0.001 0.002 0.005
HUO05 0.07 0.00 -2.98 -2.36 0.07 -0.07 -0.84 0.004 0.006 0.015 0.034 0.005 0.008 0.020 0.000 0.002 0.004 0.010 0.001 0.002 0.006
IE04 1.63 0.00 0.26 -269 063 -3.72 -23462 0510 0.498 0.466 0.585 0.604 0.437 0.200 0.162 0.158 0.158 0.187 0.161 0.137 0.058
ILOS -8.01 000 -3542 -37.83 0.01 0.01 0.85 0.012 0.017 0.018 0.066 0.018 0.018 0.022 0.001 0.006 0.002 0.018 0.006 0.006 0.008
ITO4 -0.45 000 -1981 -1982 010 -0.01 -0.16 0.090 0.090 0.054 0.021 0.090 0.092 0.096 0.029 0.028 0.018 0.007 0.029 0.029 0.030
LUO4 -0.20 0.00 -6.74 -4.48  0.08 0.08 -3.40 0.044 0.035 0.068 0.099 0.033 0.032 0.017 0.014 0.011 0.022 0.032 0.010 0.010 0.005
NLO4 80.15 0.00 -54.27 -5548 0.83 0.83 211 3350 0.039 0.028 0.017 0.040 0.040 0.042 na  0.013 0.009 0.001 0.013 0.013 0.014
S104 -12.48 0.00 -2.30 -1.98  0.00 0.00 1.40 0.010 0.010 0.009 0.009 0.010 0.010 0.013 0.003 0.003 0.003 0.000 0.003 0.003 0.003
ES04 -33.30 0.00 -43.75 -49.87 0.03 0.03 451 0.017 0.011 0.009 0.025 0.011 0.011 0.014 0.002 0.004 0.002 0.005 0.004 0.004 0.005
SEO05 -23.57 0.00 -7543 -90.87 0.00 0.00 416 0.018 0.025 0.019 0.026 0.025 0.025 0.028 0.003 0.009 0.005 0.004 0.009 0.009 0.010
CHO04 -1.91 0.00 -1.70 -1.80 043 -0.13 -2.19 0.017 0.017 0.013 0.004 0.015 0.018 0.023 0.006 0.006 0.004 0.000 0.005 0.006 0.006
TWO05 -4.57 0.00 0.13 0.10 055 -0.22 -22.03 0.013 0.009 0.007 0.005 0.005 0.011 0.027 0.004 0.002 0.002 0.002 0.001 0.003 0.006
UKO04 0.01 0.00 -269.92 -261.20 0.14 0.17 -3.78 0.026 0.026 0.027 0.076 0.027 0.028 0.038 0.009 0.009 0.004 0.021 0.009 0.010 0.014

Score based on

across-the-boar 3 0 0 1 6.5 2.5 8 5 1 3 6 3 0 3 4 0 6 7 1 0 3

d comparisons

Score based on

pairwise 3 45 1 0 6 45 2 3 4 6 0 5 2 1 5 2 6 3 4 1 0

comparisons




Table 3-4 Goodness-of-fit to individual datasets from wave 6 —equivalized consumption

Log-likelihood™® LRSSE Absolute error of the Gini index
Country & Year
dPLN GB2 ExGl IExkG1 ExG2 IExG2 GB1 dPLN GB2 ExG1 IExGl ExG2 IEkG2 GB1 dPLN GB2 ExkGl IExG1 ExG2 IExG2 GB1
AU03 18.48 0.00 9.99 46.46 150 -11.72 -1502.47 1.274 1.387 0.902 n.a. 1.109 0.816 0.193 0.372 0.409 0.373 n.a. 0.268 0.225 0.050
ATO04 -13.23 0.00 -13.77 -15.07 0.02 0.02 -53.21  0.031 0.017 0.056 0.061 0.018 0.018 0.036 0.008 0.004 0.017 0.019 0.004 0.004 0.009
Cz04 -0.11 0.00 0.03 0.12 -0.44 0.17 -36.49 0.008 0.006 0.006 0.006 0.008 0.004 0.028 0.002 0.001 0.001 0.001 0.002 0.001 0.007
DKO04 -19.90 0.00 -1403.50 -1505.90 0.10 -0.10 8.70 0.084 0.067 0.103 0.219 0.068 0.068 0.061 0.017 0.011 0.025 0.063 0.011 0.011 0.008
EE04 -0.01 0.00 1.63 -1.09 141 -1.29 -67.17 0.262 0.265 0.265 0.268 0.264 0.267 0.288 0.086 0.087 0.087 0.088 0.087 0.088 0.090
FRO5 025 0.00 -11.58 -1441 -0.13 0.05 -4.84 0.003 0.003 0.009 0.022 0.002 0.003 0.010 0.001 0.001 0.002 0.007 0.001 0.001 0.003
DE04 -1.63 0.00 231 1.06 298 -2.92 -78.01 0.039 0.041 0.039 0.043 0.040 0.044 0.056 0.014 0.014 0.014 0.015 0.014 0.015 0.017
GR04 -1.64 0.00 8259 -2158 1543 -453 -361.96 0.068 0.070 0.085 0.078 0.080 0.078 0.042 0.023 0.024 0.029 0.026 0.025 0.026 0.005
HU05 -0.22 0.00 -0.18 0.06 0.06 -0.10 -5.94  0.002 0.002 0.003 0.003 0.002 0.004 0.025 0.000 0.000 0.001 0.001 0.000 0.001 0.007
IEO4 0.60 0.00 -0.07 8.70  0.00 0.71  -209.06 0.036 0.036 0.035 0.169 0.035 0.043 0.136 0.009 0.010 0.009 0.058 0.009 0.013 0.028
ILO5 0.00 0.00 -32.76 -31.63 0.10 2.59 -1.21  0.009 0.010 0.022 0.041 0.008 0.010 0.015 0.004 0.004 0.006 0.012 0.003 0.004 0.006
ITO4 -1.55 0.00 0.53 -0.93 -0.79 1.08 -77.15 0.021 0.014 0.014 0.022 0.014 0.010 0.058 0.007 0.005 0.005 0.007 0.005 0.004 0.016
LUO4 1.89 0.00 -1.14 0.65 -2.00 0.87 -13.77  0.023 0.031 0.105 0.034 0.038 0.028 0.032 0.009 0.012 0.036 0.012 0.014 0.010 0.003
NLO4 -1.78 0.00 -0.85 0.86 1.77  -1.90 -55.83  0.009 0.006 0.008 0.003 0.008 0.003 0.039 0.004 0.002 0.003 0.001 0.003 0.001 0.010
Sl04 -0.09 0.00 -5.59 -6.04  -0.05 0.04 -2.09 0.004 0.005 0.013 0.026 0.004 0.005 0.021 0.001 0.001 0.004 0.008 0.001 0.001 0.007
ES04 -24.38 0.00 -1558 -14.77  0.02 0.08 -176.08 0.100 0.047 0.108 0.114 0.047 0.049 0.065 0.031 0.014 0.034 0.036 0.014 0.015 0.019
SEO05 0.41 0.00 -2.38 -4.33  -0.37 0.06 -20.14  0.003 0.003 0.003 0.004 0.003 0.004 0.010 0.001 0.001 0.001 0.001 0.001 0.002 0.003
CHO04 0.47 0.00 -2.39 -047 018 -0.35 -18.06 0.004 0.006 0.005 0.009 0.005 0.009 0.047 0.001 0.001 0.001 0.003 0.001 0.002 0.013
TWO05 -1.23 0.00 -0.02 0.05 014 -0.55 -74.89  0.010 0.008 0.009 0.008 0.010 0.006 0.014 0.004 0.003 0.003 0.003 0.003 0.002 0.002
Score based on
across-the-boar 4 0 2 2 4.5 5.5 1 5 1 2 0 4 4 3 3 2 0 2 5 2 5
d comparisons
Score based on
pairwise 3 4 1 2 5.5 5.5 0 5 4 2 0 6 3 1 5 4 2 0 6 3 1

comparisons




Table 3-5 Goodness-of-fit to individual datasets from wave 6 — equivalized disposable income

Log-likelihood™® LRSSE Absolute error of the Gini index
Country & Year
dPLN GB2 ExGl IExkG1 ExG2 IExG2 GB1 dPLN GB2 ExG1 IExGl ExG2 IEkG2 GB1 dPLN GB2 ExkGl IExG1 ExG2 IExG2 GB1

AU03 -15.03 0.00 -57.27 -71.34 0.00 0.00 1.48 0.019 0.029 0.020 0.017 0.029 0.029 0.031 0.007 0.011 0.007 0.000 0.011 0.011 0.012
ATO04 0.15 0.00 -0.30 0.18 -0.90 0.44 -39.90 0.003 0.003 0.003 0.003 0.004 0.005 0.032 0.000 0.001 0.001 0.001 0.000 0.002 0.009
CA04 -6.36 0.00 -0.98 3.40 346  -2.47 -80.88 0.025 0.025 0.024 0.017 0.023 0.028 0.040 0.008 0.009 0.008 0.006 0.008 0.009 0.012
Cz04 0.31 0.00 1.12 0.35 -1.95 1.70 -26.47 0.005 0.006 0.014 0.004 0.005 0.008 0.041 0.001 0.001 0.004 0.001 0.001 0.002 0.011
DKO04 -87.80 0.00 -191.60 -156.30 3.20 0.60 -090 0.025 0.030 0.026 0.020 0.029 0.030 0.030 0.009 0.011 0.009 0.007 0.011 0.011 0.011
EE04 1.57 0.00 1.34 -1.64 -1.64 1.06 -1592 0.017 0.017 0.010 0.034 0.019 0.014 0.023 0.005 0.005 0.003 0.011 0.006 0.004 0.005
FRO5 -1.36 0.00 0.06 050 0.90 -1.10 -51.81 0.002 0.005 0.003 0.005 0.002 0.008 0.030 0.001 0.002 0.001 0.002 0.001 0.003 0.008
DEO4 -1.86 0.00 0.43 0.05 115  -1.27 -69.61 0.005 0.008 0.006 0.010 0.006 0.012 0.038 0.002 0.003 0.002 0.004 0.002 0.004 0.011
GR04 0.65 0.00 -0.93 -045 022 -045 -16.23 0.005 0.004 0.004 0.011 0.004 0.005 0.023 0.001 0.000 0.000 0.003 0.000 0.001 0.006
HUO05 0.16 0.00 0.07 -020 0.08 -0.20 -25.30 0.017 0.014 0.015 0.009 0.015 0.010 0.054 0.006 0.004 0.005 0.003 0.005 0.003 0.014
IE04 0.26 0.00 -0.71 -4.84 -0.66 0.14 -150.69 0.349 0.368 0.341 0.151 0.350 0.441 0.160 0.113 0.120 0.112 0.045 0.101 0.146 0.049
ILOS -10.59 0.00 -3465 -37.29 0.14 0.14 145 0.016 0.028 0.019 0.020 0.031 0.031 0.035 0.005 0.010 0.007 0.002 0.011 0.011 0.012
ITO4 1.56 0.00 -0.60 1.14 1.02 -1.48 -36.07 0.038 0.042 0.040 0.039 0.040 0.047 0.069 0.013 0.014 0.013 0.013 0.013 0.016 0.021
LUO4 0.99 0.00 -3.07 -058 025 -0.31 -3.99 0.021 0.015 0.022 0.029 0.015 0.014 0.030 0.005 0.002 0.006 0.008 0.002 0.001 0.009
NLO4 4.46 0.00 -1.01 0.33 -4.20 1.85 -80.67 0.028 0.029 0.031 0.027 0.027 0.031 0.053 0.010 0.010 0.011 0.010 0.010 0.011 0.016
Sl04 0.79 0.00 0.54 -1.70  -1.04 0.54 -10.24 0.008 0.006 0.008 0.003 0.005 0.007 0.017 0.003 0.002 0.003 0.000 0.002 0.003 0.005
ES04 -453 000 -2091 -25.67 0.14 0.02 -0.47 0.008 0.013 0.005 0.017 0.013 0.014 0.015 0.003 0.005 0.001 0.004 0.004 0.005 0.005
SEO05 -1.02 0.00 -1.12 1.55 135 -1.37 -35.71 0.014 0.016 0.015 0.013 0.014 0.017 0.025 0.005 0.006 0.006 0.005 0.006 0.006 0.008
CHO04 0.21 0.00 -0.33 -1.55  -0.20 0.06 -6.39 0.019 0.019 0.018 0.010 0.018 0.021 0.030 0.007 0.007 0.007 0.004 0.007 0.008 0.010
TWO05 0.42 0.00 4.37 -453 -3.78 3.24 -4159 0.004 0.004 0.004 0.014 0.005 0.003 0.028 0.001 0.000 0.001 0.004 0.001 0.000 0.008
UKO04 239 0.00 -3397 -29.69 -0.79 0.76 -59.00 0.044 0.051 0.031 0.018 0.050 0.052 0.090 0.015 0.017 0.011 0.006 0.017 0.018 0.029

Score based on

across-the-boar 10 0 1 1 5 2 2 3 1 2 12 1 2 0 1 2 4 10 2 1 1

d comparisons

Score based on

pairwise 6 3 2 1 5 4 0 5 2 4 6 3 1 0 4 2 5 6 3 1 0

comparisons




Table 3-6  Goodness-of-fit to individual datasets from wave 6 — equivalized gross income

Log-likelihood™® LRSSE Absolute error of the Gini index
Country & Year
dPLN GB2 ExGl IExkG1 ExG2 IExG2 GB1 dPLN GB2 ExG1 IExGl ExG2 IEkG2 GB1 dPLN GB2 ExkGl IExG1 ExG2 IExG2 GB1

AU03 -1793 0.00 -69.42 -77.70 0.16 0.16 3.07 0.018 0.028 0.021 0.023 0.030 0.030 0.034 0.005 0.010 0.007 0.003 0.011 0.011 0.013
ATO04 0.37 0.00 -0.27 0.03 -0.51 -0.05 -4532 0.009 0.007 0.009 0.006 0.011 0.003 0.032 0.003 0.002 0.003 0.002 0.003 0.001 0.007
CA04 -20.16 0.00 -7.98 3.88 780 -2.71 -25.82 0.047 0.045 0.040 0.028 0.041 0.047 0.055 0.015 0.015 0.013 0.010 0.014 0.015 0.017
Cz04 1.15 0.00 0.10 -235 -0.86 0.64 -19.77 0.015 0.018 0.015 0.006 0.017 0.020 0.065 0.005 0.006 0.005 0.001 0.005 0.006 0.021
DKO04 -66.80 0.00 -266.30 -202.60 11.00 10.90 13.10 0.026 0.031 0.026 0.018 0.032 0.032 0.032 0.009 0.011 0.009 0.006 0.011 0.011 0.011
EE04 1.57 0.00 -1.92 -5.23  -0.67 0.39 -5.01 0.005 0.007 0.021 0.044 0.007 0.006 0.023 0.000 0.001 0.005 0.013 0.001 0.001 0.007
FRO5 -0.94 0.00 -0.29 0.28 056 -0.89 -55.06  0.002 0.005 0.004 0.005 0.002 0.009 0.045 0.001 0.002 0.002 0.002 0.001 0.003 0.013
DE04 -1.85 0.00 -1468 -11.79 0.77 -0.45 -411 0.018 0.017 0.006 0.014 0.015 0.019 0.026 0.006 0.006 0.002 0.003 0.005 0.006 0.008
GR04 0.66 0.00 -1.24 -0.89 016 -0.37 -13.94 0.007 0.004 0.005 0.016 0.005 0.004 0.024 0.002 0.000 0.001 0.005 0.001 0.001 0.006
HUO05 0.15 0.00 0.07 -020 0.08 -0.20 -24.77 0.017 0.014 0.015 0.009 0.015 0.010 0.051 0.006 0.004 0.005 0.003 0.005 0.003 0.013
IE04 1.63 0.00 0.26 -269 063 -3.72 -23462 0510 0.498 0.466 0.585 0.604 0.437 0.200 0.162 0.158 0.158 0.187 0.161 0.137 0.058
ILOS 0.00 0.00 -47.95 -46.52 0.37 0.30 0.12 0.011 0.011 0.033 0.081 0.015 0.014 0.022 0.004 0.003 0.007 0.023 0.006 0.005 0.008
ITO4 0.99 0.00 -4.50 1.25 1.74 -1.83 -42.06 0.050 0.060 0.054 0.042 0.055 0.067 0.126 0.016 0.019 0.017 0.014 0.018 0.021 0.039
LUO4 0.02 0.00 -4.82 -323  0.01 0.01 -4.04 0.013 0.011 0.036 0.054 0.012 0.012 0.044 0.003 0.000 0.011 0.017 0.001 0.001 0.013
NLO4 0.02 0.00 -3.07 0.09 1.05 -1.07 -21.40 0.034 0.037 0.036 0.027 0.035 0.040 0.053 0.012 0.013 0.013 0.010 0.012 0.014 0.017
Sl04 0.79 0.00 0.54 -1.70  -1.04 0.54 -10.24 0.008 0.006 0.008 0.003 0.005 0.007 0.017 0.003 0.002 0.003 0.000 0.002 0.003 0.005
ES04 -459 0.00 -2418 -2842 0.14 0.08 -0.07 0.010 0.014 0.007 0.017 0.015 0.015 0.017 0.003 0.005 0.001 0.004 0.005 0.005 0.006
SEO05 -1.34 0.00 1.15 0.14 160 -1.95 -81.12  0.013 0.015 0.013 0.016 0.013 0.017 0.035 0.005 0.005 0.005 0.006 0.005 0.006 0.010
CHO04 -0.02 0.00 -8.14 -7.03 0.05 -0.04 -0.60 0.021 0.022 0.009 0.006 0.021 0.022 0.027 0.007 0.008 0.003 0.000 0.007 0.008 0.009
TWO05 0.01 0.00 4,58 -3.27  -3.92 3.46 -47.76  0.008 0.007 0.003 0.018 0.009 0.005 0.030 0.002 0.002 0.000 0.006 0.003 0.001 0.008
UKO04 -8.85 0.00 -187.69 -162.46 -0.01 -0.01 -91.30 0.044 0.042 0.013 0.033 0.042 0.042 0.083 0.016 0.014 0.001 0.008 0.015 0.015 0.028

Score based on

across-the-boar 8 1 1 0 9 0 2 3 3 4 8 1 1 1 2 3 4 9 1 1 1

d comparisons

Score based on

pairwise 5 4 1 2 6 3 0 3 4 6 5 2 1 0 4 3 6 5 2 1 0

comparisons




Table 4-1 Summary of pairwise comparisons on the goodness-of-fit to datasets from waves 4-6 — log-likelihood

Cate-gorie PIDM No. of categories gained (NoCG) Ratio of datasets gained (RoDG)
S dPLN GB2 ExkGl IExG1 ExG2 IExkG2 GB1 dPLN GB2 ExGl IExGl ExkG2 IExG2 GB1
dPLN 9 0 0 9 9 5 750 311 26.7 850 833 4738
-§ GB2 0 0 0 9 6 1 25.0 18.3 16.1 70.3 544 344
c—; ExG1 9 9 0 9 9 7 689 81.7 37.8 86.9 825 62.2
g_ IExG1 9 9 9 9 9 6 73.3 839 62.2 81.7 86.4 61.1
E ExG2 0 0 0 0 15 1 15.0 29.7 131 18.3 414 319
z IExG2 0 3 0 0 7.5 1 16.7 45.6 175 13.6 58.6 33.1
GB1 4 8 2 3 8 8 52.2 65.6 37.8 38.9 68.1 66.9
dPLN 55 0 0 7 5 0 56.7 25.6 30.6 57.2 544 139
= GB2 35 0 0 6 75 0 43.3 27.2 303 561 572 83
N ExG1 9 9 5 9 9 0 744 728 50.6  69.4 750 311
§ IExG1 9 9 4 9 9 0 69.4 69.7 494 74.7 719 300
L% ExG2 2 3 0 0 45 0 428 439 306 253 50.0 7.8
IExG2 4 15 0 0 45 0 456 428 250 281 500 7.8
GB1 9 9 9 9 9 9 86.1 917 68.9 700 922 92.2
Table 4-2 Summary of pairwise comparisons on the goodness-of-fit to datasets from waves 4-6 — LRSSE
Cate-gorie BIDM No. of categories gained (NoCG) Ratio of datasets gained (RoDG)
S dPLN GB2 ExkGl IExGl ExG2 IExkG2 GB1 dPLN GB2 ExGl IExGl ExkG2 IExG2 GB1
dPLN 3 3.5 1 7 2 0 45.0 51.7 40.0 55.6 417 25.6
§ GB2 6 55 3 9 2 0 55.0 56.1 411 589 36.1 144
T>u ExG1 55 35 0 3 45 0 48.3 439 36.7 47.2 444 311
El IExG1 8 6 9 6 7 55 60.0 589 633 60.6 594 50.6
E ExG2 2 0 6 3 1 0 444 411 52.8 394 372 15.0
2 IExG2 7 7 45 2 8 0 583 639 556 406 628 13.9
GB1 9 9 9 35 9 9 744 856 689 494  85.0 86.1
dPLN 2 55 2 45 4 0 46.1 50.6 40.6 51.1 46.1 128
= GB2 7 7 3 7 05 0 53.9 55.0 43.9 55.6 339 9.4
s ExG1 35 2 1 45 25 0 494 45.0 38.3 47.8 428 183
§ IExG1 7 6 8 5.5 5 2 59.4 56.1 61.7 55.6 533 294
ugf ExG2 45 2 4.5 3.5 15 0 489 444 52.2 44.4 40.6 10.6
IExG2 5 8.5 6.5 4 7.5 0 539 661 57.2 46.7 594 9.4
GB1 9 9 9 7 9 9 872 906 817 706 894 90.6
Table 4-3 Summary of pairwise comparisons on the goodness-of-fit to datasets from waves 4-6 — absolute error of the Gini index
Cate-gorie PIDM No. of categories gained (NCaG) Percentage of countries gained (PCoG)
S dPLN GB2 ExkGl IExGl1 ExG2 IExkG2 GB1 dPLN GB2 ExGl IExGl ExkG2 IEkG2 GB1
dPLN 1 2 2 15 1 0 35.0 42.2 433 42.2 311 228
§ GB2 8 8 4 9 2 0 65.0 60.6 483 594 372 217
Tg ExG1l 7 1 3 4 25 1 57.8 394 43.3 450 417 333
g_ IExG1 7 5 6 6 5 4 56.7 51.7 56.7 52.2 522 478
E ExG2 75 0 5 3 3 0 57.8 40.6 55.0 47.8 40.6 18.9
§ IExG2 8 7 6.5 4 6 0 689 62.8 58.3 47.8 59.4 20.6
GB1 9 9 8 5 9 9 772 783 66.7 52.2 81.1 79.4
dPLN 1 4 4.5 35 3 0 43.9 50.0 45.6 51.7 439 16.7
= GB2 8 8 5 8 0 0 56.1 57.2 48.3 57.8 317 139
N ExG1l 5 1 1 5 1.5 0 50.0 42.8 450 50.6 40.0 19.4
g IExG1 45 4 8 4.5 3 2 544 517 55.0 51.1 450 28.9
LIgJ- ExG2 55 1 4 4.5 0 0 483 422 49.4 48.9 36.1 144
IExG2 6 9 7.5 6 9 0 56.1 683 600 550 63.9 12.8
GB1 9 9 9 7 9 833 861 80.6 711 856 87.2




Table 5-1 Detailed summary of the pairwise goodness-of-fit comparisons — log-likelihood

No.of  dPLNvs.GB2 dPLNvs.ExGl dPLNvs.ExkG2 GB2vs.ExkGl  GB2vs.ExG2 EkG1 vs. EkG2

Categories  cate-gorie
S NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG

All categories 18 145 658 0 283 16 711 0 228 15 632 18 782
Non-equiv. 9 9 750 0 311 9 850 0 183 9 703 9 869
Consumption 3 3 741 0 345 3 776 0 259 3 629 3 802
Disp. income 3 3 746 0 311 3 885 0 131 3 705 3 902
_ Gross 3 3 762 0 279 3 885 0 164 3 770 3 902
Income
Equivalized 9 55 567 0 256 7 572 0 272 6 561 9 694
Consumption 3 3 664 0 397 3 621 0 328 1 509 3 621
Disp. income 3 05 451 0 180 1 443 0 279 2 516 3 672
_ Gross 3 2 590 0 197 3 656 0 213 3 656 3 787
Income

Table 5-2 Detailed summary of the pairwise goodness-of-fit comparisons — LRSSE

No.of  dPLNvs.GB2 dPLNvs. ExGl dPLNvs.ExG2 GB2 vs. ExG1 GB2vs. ExkG2  ExG1 vs. ExG2

Categories  cate-gorie
S NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG

All categories 18 5 45.6 9 51.1 115 533 125  55.6 16 57.2 75 475
Non-equiv. 9 3 450 35 517 7 556 55 56.1 9 589 3 472
Consumption 3 2 483 15 517 3 638 15 500 3 569 2 552
Disp. income 3 0 426 1 557 1 492 3 656 3 574 0 410
_ Gross 3 1 443 1 475 3 541 1 525 3 623 1 459
Income
Equivalized 9 2 461 55 506 45 511 7 550 7 556 45 478
Consumption 3 1 483 15 466 25 552 2 483 3 552 25 534
Disp. income 3 0 426 2 525 1 459 3 590 2 557 1 459
_ Gross 3 1 475 2 525 1 525 2 574 2 557 1 443
Income

Table 5-3 Detailed summary of the pairwise goodness-of-fit comparisons — LWRSSE

No.of  dPLNvs.GB2 dPLNvs.ExGl dPLNvs.ExkG2 GB2vs.ExkGl  GB2vs.ExG2 EkG1 vs. EkG2

Categories  cate-gorie
s NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG

All categories 18 65 425 85 519 10 511 14 575 14 556 8 461

Non-equiv. 9 35 411 35 511 6 506 7 589 8 572 4 444
Consumption 3 15 500 15 500 3 586 2 534 3 586 3 552
Disp. income 3 1 361 1 557 2 475 3 656 2 557 0 377

_ Gross 3 1 377 1 475 1 459 2 574 3 574 1 410

Income

Equivalized 9 3 439 5 528 4 517 7 561 6 539 4 478
Consumption 3 1 466 1 483 2 534 2 483 2 517 2 517
Disp. income 3 1 426 2 574 1 508 2 607 2 557 1 475
Gross 3 1 426 2 525 1 508 3 590 2 541 1 443

income




Table 5-4 Detailed summary of the pairwise goodness-of-fit comparisons — absolute error of the Gini index

No.of  dPLNvs.GB2 dPLNvs.ExGl dPLNvs.ExkG2 GB2vs.ExkGl  GB2vs. ExG2

ExG1 vs. ExG2

Categories  cate-gorie

S NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG NoCG RoDG
All categories 18 2 394 6 461 5 469 16 589 17 586 9 478
Non-equiv. 9 1 350 2 422 15 422 8 606 9 594 4 450
Consumption 3 1 448 1 448 15 483 3 586 3 569 3 534
Disp. income 30 279 0 426 0 377 3 672 3 623 0 410
_ Gross 3 0 328 1 393 0 410 2 557 3 590 1 410
Income
Equivalized 9 1 439 4 500 35 517 8 572 8 578 5 506
Consumption 3 1 483 0 414 15 552 2 500 3 552 3 603
Disp. income 3 0 393 2 541 1 475 3 623 3 607 1 508
Gross 3 0 443 2 541 1 525 3 590 2 574 1 410

income




Table 6-1 Detailed summary of the pairwise goodness-of-fit comparisons using combined measures — log-likelihood & LRSSE

No. of dPLN vs. GB2 dPLN vs. ExG1 dPLN vs. ExG2 GB2 vs. ExG1 GB2 vs. ExG2 ExG1 vs. ExG2
Categories L
cate-gories nNocG VR RoDG NoCG VR RoDG  NoCG VR RoDG  NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG
All categories 18 135 511 61.4 0.5 56.7 31.9 145 544 72.4 0 47.8 27.3 16 61.1 67.3 17 48.9 73.3
Non-equivalized 9 9 50.6 70.3 0.5 58.3 35.2 9 55.0 86.9 0 47.8 23.3 8.5 639 73.0 9 49.4 775
Consumption 3 3 53.4 71.0 0 58.6 38.2 3 55.2 87.5 0 58.6 29.4 3 63.8 64.9 3 58.6 735
Disp. income 3 3 475 69.0 0.5 557 38.2 3 54.1 84.8 0 37.7 21.7 25 623 711 3 41.0 76.0
Gross income 3 3 50.8 71.0 0 60.7 29.7 3 55.7 88.2 0 475 17.2 3 65.6 82.5 3 49.2 83.3
Equivalized 9 45 517 52.7 0 55.0 28.3 55 53.9 57.7 0 47.8 314 75 583 61.0 8 48.3 69.0
Consumption 3 25 655 60.5 0 55.2 375 3 62.1 63.9 0 60.3 34.3 2 62.1 55.6 3 51.7 76.7
Disp. income 3 05 41.0 36.0 0 52.5 21.9 1 45.9 39.3 0 36.1 31.8 25 525 59.4 2 47.5 55.2
Gross income 3 15 49.2 56.7 0 57.4 25.7 15 541 66.7 0 475 27.6 3 60.7 67.6 3 45.9 75.0
Table 6-2 Detailed summary of the pairwise goodness-of-fit comparisons using combined measures — log-likelihood & absolute error of the Gini index
No. of dPLN vs. GB2 dPLN vs. ExG1 dPLN vs. EkG2 GB2 vs. ExG1 GB2 vs. ExG2 ExG1 vs. EkG2
Categories -
cate-gories NocG VR RoDG NoCG VR RoDG  NoCG VR RoDG  NoCG VR RoDG NoCG VR RoDG  NoCG VR RoDG
All categories 18 115 456 56.1 0.5 55.0 26.8 15 43.1 71.0 1 43.9 29.1 175 60.8 68.5 18 447 78.9
Non-equivalized 9 7 39.4 63.4 0.5 55.6 26.0 9 394 84.5 0 42.2 25.0 9 64.4 73.3 9 42.8 87.0
Consumption 3 3 46.6 70.4 0.5 517 30.0 3 39.7 82.6 0 50.0 345 3 62.1 66.7 3 56.9 78.8
Disp. income 3 2 32.8 55.0 0 59.0 27.8 3 39.3 83.3 0 36.1 22.7 3 65.6 75.0 3 37.7 91.3
Gross income 3 2 39.3 62.5 0 55.7 20.6 3 39.3 87.5 0 41.0 16.0 3 65.6 775 3 34.4 95.2
Equivalized 9 45 517 50.5 0 54.4 27.6 6 46.7 59.5 1 45.6 32.9 85 57.2 63.1 9 46.7 714
Consumption 3 3 65.5 60.5 0 60.3 34.3 3 55.2 65.6 05 621 36.1 25 655 55.3 3 56.9 69.7
Disp. income 3 05 443 33.3 0 47.5 20.7 1 37.7 39.1 05 328 35.0 3 50.8 64.5 3 41.0 72.0
Gross income 3 1 45.9 53.6 0 55.7 26.5 2 47.5 69.0 0 42.6 26.9 3 55.7 70.6 3 42.6 73.1
Table 6-3 Detailed summary of the pairwise goodness-of-fit comparisons using combined measures — log-likelihood & absolute error of the MLD
No. of dPLN vs. GB2 dPLN vs. ExG1 dPLN vs. ExG2 GB2 vs. ExG1 GB2 vs. ExG2 ExG1 vs. ExG2
Categories .
cate-gories nNocg VR RoDG NoCG VR RoDG  NoCG VR RoDG  NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG
All categories 18 8.5 453 46.6 1 53.1 28.8 12 447 62.1 25 394 324 165 55.8 70.1 17 34.4 76.6
Non-equivalized 9 5 40.6 53.4 1 52.8 32.6 9 40.6 80.8 1 37.2 28.4 9 60.6 69.7 9 35.6 82.8
Consumption 3 25 517 63.3 0 62.1 27.8 3 46.6 85.2 0 55.2 28.1 3 62.1 61.1 3 58.6 82.4
Disp. income 3 15 328 45.0 1 443 48.1 3 36.1 77.3 1 27.9 35.3 3 60.7 75.7 3 24.6 80.0
Gross income 3 1 37.7 47.8 0 52.5 25.0 3 39.3 79.2 0 295 22.2 3 59.0 72.2 3 24.6 86.7
Equivalized 9 3.5 500 41.1 0 53.3 25.0 3 48.9 46.6 15 417 36.0 75 511 70.7 8 33.3 70.0
Consumption 3 25 621 61.1 0 67.2 33.3 2 58.6 58.8 0 60.3 314 15 56.9 48.5 25 500 69.0
Disp. income 3 0 475 13.8 0 475 17.2 0 475 24.1 05 311 42.1 3 443 85.2 3 23.0 71.4
Gross income 3 1 41.0 44.0 0 45.9 214 1 41.0 56.0 1 34.4 38.1 3 52.5 81.3 25 279 70.6




Table 6-4 Detailed summary of the pairwise goodness-of-fit comparisons using combined measures — log-likelihood & absolute error of the Theil index

No. of dPLN vs. GB2 dPLN vs. ExG1 dPLN vs. ExG2 GB2 vs. ExG1 GB2 vs. ExG2 ExG1 vs. ExG2
Categories L

cate-gories NocG VR RoDG NoCG VR RoDG  NoCG VR RoDG  NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG
All categories 18 115 46.7 54.8 0 53.3 29.7 14 47.2 67.6 0 43.1 30.3 16 59.7 66.5 175 428 74.0
Non-equivalized 9 6 42.2 57.9 0 53.3 28.1 9 40.0 81.9 0 38.9 25.7 9 63.9 72.2 9 37.8 85.3
Consumption 3 3 53.4 67.7 0 51.7 26.7 3 414 83.3 0 50.0 31.0 3 63.8 64.9 3 53.4 77.4
Disp. income 3 05 36.1 455 0 54.1 333 3 41.0 80.0 0 31.1 26.3 3 63.9 74.4 3 29.5 88.9
Gross income 3 25 377 56.5 0 54.1 24.2 3 37.7 82.6 0 36.1 18.2 3 63.9 76.9 3 31.1 94.7
Equivalized 9 55 511 52.2 0 53.3 31.3 5 54.4 57.1 0 47.2 34.1 7 55.6 60.0 85 478 65.1
Consumption 3 3 62.1 61.1 0 67.2 35.9 2 62.1 61.1 0 62.1 36.1 15 58.6 52.9 3 53.4 64.5
Disp. income 3 1 44.3 37.0 0 42.6 26.9 1 49.2 40.0 0 36.1 36.4 25 525 59.4 25 475 62.1
Gross income 3 15 475 55.2 0 50.8 29.0 2 52.5 68.8 0 44.3 29.6 3 55.7 67.6 3 42.6 69.2

Table 6-5 Detailed summary of the pairwise goodness-of-fit comparisons using combined measures —four FB measures & LRSSE

No. of dPLN vs. GB2 dPLN vs. ExG1 dPLN vs. ExG2 GB2 vs. ExG1 GB2 vs. ExG2 ExG1 vs. EkG2
Categories -

cate-gories NocG VR RoDG NoCG VR RoDG  NoCG VR RoDG  NoCG VR RoDG NoCG VR RoDG  NoCG VR RoDG
All categories 18 14 36.7 64.4 1 49.2 33.9 14 42.8 714 1 37.8 235 145 38.6 68.3 18 36.7 81.1
Non-equivalized 9 9 37.8 79.4 0 51.7 34.4 9 44.4 88.8 0 43.9 20.3 8 33.9 78.7 9 36.1 93.8
Consumption 3 3 48.3 67.9 0 44.8 34.6 3 43.1 92.0 0 51.7 26.7 25 328 78.9 3 414 87.5
Disp. income 3 3 32.8 90.0 0 52.5 375 3 44.3 85.2 0 36.1 18.2 25 36.1 77.3 3 34.4 95.2
Gross income 3 3 32.8 85.0 0 57.4 314 3 459 89.3 0 44.3 14.8 3 32.8 80.0 3 32.8 100.0
Equivalized 9 5 35.6 48.4 1 46.7 33.3 5 411 52.7 1 317 28.1 6.5 433 60.3 9 37.2 68.7
Consumption 3 3 43.1 64.0 1 43.1 48.0 25 448 57.7 1 32.8 36.8 15 431 52.0 3 39.7 65.2
Disp. income 3 0 29.5 22.2 0 44.3 25.9 1 37.7 39.1 0 24.6 26.7 2 42.6 57.7 3 34.4 61.9
Gross income 3 2 34.4 52.4 0 52.5 28.1 15 410 60.0 0 37.7 21.7 3 44.3 70.4 3 37.7 78.3

Table 6-6 Detailed summary of the pairwise goodness-of-fit comparisons using combined measures — four FB measures & absoluter error of the Gini index (AEG)

_ No. of dPLN vs. GB2 dPLN vs. ExG1 dPLN vs. ExG2 GB2 vs. ExG1 GB2 vs. ExG2 ExG1 vs. ExG2

Categories  cate-gories NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG NoCG VR RoDG
All categories 18 125 308 57.7 1 469 296 125 317 640 15 325 256 15 372 68.7 17 325 821
Non-equivalized 9 8 267 72.9 05 472 271 9 294 830 0 367 227 8 328 780 9 311 929
Consumption 3 3 414 667 05 414 292 3 293 882 0 431 320 25 310 778 3 379 864
Disp. income 3 3 180 818 0 508 290 3 295 778 0 311 211 25 361 773 3 295 944
Gross income 3 2 213 76.9 0 492 233 3 295 833 0 361 13.6 3 311 78.9 3 262 1000
Equivalized 9 45 350 460 05 467 321 35 339 475 15 283 294 7 417 61.3 8 339 721
Consumption 3 3 431 64.0 05 466 444 1 362 524 1 310 389 15 448 500 25 39.7 69.6
Disp. income 3 0 311 21.1 0 410 240 1 311 316 05 213 308 25 393 625 25 279 706
Gross income 3 15 311 474 0 525 281 15 344 571 0 328 200 3 410 720 3 344 762




Appendix 1. An estimation procedure for the maximum likelihood parameters of the ExG2

The logarithm of the density function fg.c.(x; a, b, p,q) equals
1
log fewg2 = log (b) log B(p,q) + (p - —) logz + (q + )log(l —z) —log <1 - EZ)

a 2a a
where z = z(x; a,b) = ————= (% [ 14+2(5)7 =32 ] Its partial derivatives with respect to
1+4(%) 2a+1 ( ) 4—(b) Z(D)

parameters equal

0log fexga 1 [ 1)1 1 1 1 ]az 1
=t (0 -2) 7 (g0 T+ sl atorz — ggoni =2,
ologfexga 1 [( 1)1 ( 1) 1 1 ]62
b bp \PTYz Ui
(A1)
dlog f;
T;KGZ =logz —(p) +Y(p + q),
dlog f;
g = 1081-D Y@ + 0+ )
9z _ _lz(l—z) 1-z, 6_2_ _ az(1- z)
where wT oo — oy Zb - ; W(-) denotes the digamma function. The log-likelihood of an

I.1.D. sample of size n from an ExG2 distribution equals

logL=nlog(b)—nlogB(p,q)+(p——)Zlogzl <q+ )Zlog(l—zl) Zlog(l——zl>,

where z; = z(x;; a, b). Because the partial derivatives of the log-likelihood with respect to parameters should

be zero at the maximum likelihood parameters, the following four simultaneous equations are obtained:

n

Z Zi z | 7zt nzi(l—zi)l z;
PLi2= Ogl—zl 17,2 - °g1—z,_ " L 2=7) BT
i=

i=1
Zl—z z; - z;,(1—2z)
—qz —z — 22

i=12 Z i=1 2-2)

np(p) —np(p +q) = z log z;,

i=1

mp(@) ~mp(p+ @) = ) log(1 = 7).

i=1
Similarly to the MLE procedure for the GB2 provided by Venter [20], because the first and second equations
are linear in p and g, the two simultaneous equations can be easily solved to represent p and q as functions of a
and b. Thus, the four-parameter MLE procedure reduces to two simultaneous nonlinear equations with two

unknowns.
Appendix 2. Proof of the regularity of the ExG2 in terms of maximum likelihood estimation
The ExG2 satisfies the following regularity conditions in terms of MLE:

Regularity Conditions (cf. Serfling [18]): Assume that a family of distributions has a density function f(x; @)

with parameters 0 = (6,,0,,+,6,,). Consider © to be in an open set (not necessarily finite) ® of R™.



(R1) Foreach 0 € 0, the derivatives

dlog f do%logf d%logf
06, ' 06,06,"  06,00,00,

(i), k=12,-,m)

exist, all x;
(R2) For each 0, € O, there exist functions g(x), h(x), H(x) (possibly depending on @,) such that, for
0 in a neighborhood N(8,), the relations

9%f
96,06,

d2%logf
36,00,00,

<H(X) (jk=12,--,m)

|§—£i| <g),

< h(x), |

hold, all x, and
fg(x)dx < o, fh(x)dx < o0, Eg[H(x)] < oo;

(R3) Foreach 6 € 0, the following Fisher information matrix is finite and positive definite:
E dlogfadlogf
°\ a6, a6 )|

The parameters (a, b,p,q) of the ExkG2 can hereafter be regarded in the same light as 6 = (6,,6,,65,6,).

The parameter space @ for the ExG2 is defined as the Cartesian product of four positive half intervals, i.e.,
0 := (0,0) X (0,0) x (0,00) x (0,0).

(R1) is obviously satisfied.

Proof of (R2):

OfExG2 and 8% fExG2

can be expressed as sums of terms in the following form:
69i 66i60j

[2x; @, BV a[1 — 2(x; 0, b))+ 7a A2)
[2—z(x;a,b)]™ ’

c(0)[log z(x; a, b)1*{log[1 — z(x; a, b) ]}

where ¢(@) is continuous on @, and k,l,m,v,& =0,1,2,---. Take a bonded neighborhood N(0,) such that

infgencay) 0: > 0 and supgene,) 0; < o for i =1,2,--,4. Let a, b, p, q denote the infimums and a, b,
p, q denote the supremums of the parameters in N(0,). Because a positive value K(> 1) exist such that

1/a’ 1/a’
) ]

z(x;a’,b _1 _ [1-2(x;a’p") ;=
< <l T A < < < <
oty Rl K and K™'< TR Ty K for 0<Vx<ow, a<Vaga <a and b <

K1<

Vb, b' < b, the absolute value of the term in (A2) is bounded by

— l
o (x) = MKE(5+E+V+€)_%|log z(x; a, E)lk glog[l - z(x; a, E)] —alogK

1 _ 1
SETCTD) R FEPTCT | e

for 0 <Vx <o and VO € N(@,), where M = supgence,) c(8). The function ¢(x) is integrable, as

follows:

fo p(x)dx = f Pl ()5 dz =
l

b 1 a
%MI(‘I(”Jf‘”"Jff)‘l/2 f llog z|* Elog(l —2z) —alogK| zP*71(1 — 2)4% (2 — 2)dz < o.
= 0 =

1 1
az'"a(1-z)'*za

5 — . g(x) and h(x) are obtained by summing up the functions ¢(x)s

Note that ;—xz(x; a,b)=2



9fExG2 and 0% fExG2

corresponding to the terms that constitute 26, 26,06,

, respectively.

83 log fExG2

can be expressed as a sum of terms in the following form:
80;00;06)

[z(x; a, )]V [1 — z(x; a, b)]*

[2 — z(x; a, b)]™ ’ (A3)

c(0)[log z(x; a, b)]*{log[1 — z(x; a, b) ]}

where ¢(@) is continuous on @, and k,I,m,v,é =0,1,2,---. In a manner similar to that applied above, it can

be shown that the absolute value of the term in (A3) is bounded by

P(x) =
— l
MK |log z(x; a,b)|" glog[l —2(x;0,b)] - alogK| [2(x;a, )] [1 - z(x;g,g)]f

for 0 <Vx < oo and V@ € N(®,), where M = supgene,) c(8). The function ¢(x) has a finite expectation

as follows:

Eol$ (0] = f 30O fixca(x: 4, b, p, q)dx

<
"B, @)

a
—2)1a 4z < oo.

_ 1.a kg l a
MK(a+2)(V+f)f |Zlogz - glogK| Elog(l —z) —2alogK| z’*a" (1
0

8% log fExGz

H(x) is obtained by summing up the functions ¢(x)s corresponding to the terms that constitute 562090,
0000

Proof of (R3):

Positive definiteness is equivalent to non-existence of some real vector a = (a,, ay, @, @) # 0 such that

dlog fExGz dlog fExGz dlog fExGz 91og fExGz 0log fEkG2
. =« a a a =0 for vx > 0.
20’ a 9q tap ab T ap +aq aq (A4)

From (Al), it can be seen that moi% constitutes terms in the form (A3); suppose there exists a # 0 that

i

satisfies (A4), then, the sum of the terms correspond to the form (A3) with k =1 and v = 0 must converge

to zerowhen z - 0 (x - 0) to make o - % finite. Thus, the following equation must hold:
p
Ta +a, =0. (A5)

Similarly, the sum of the terms that correspond to the form (A3) with [ =1 and & = 0 must converge to zero

when z > 1 (x » o) to make a- aloi% finite. Thus, the following equation must hold:
q
T +a, =0. (A6)

Furthermore, the sum of the terms that correspond to the form (A3) with k = [ = v = 0 must converge to zero

when z - 0 to make «- % stay at zero when z — 0. Thus, the following equation must also hold:
1 ap
te =yt @ +a) — @]+ ag[Yp + @) — (@] =0. (A7)

Similarly, the sum of the terms that correspond to the form (A3) with k =1 = & = 0 must converge to zero

when z —» 1 to make a- % stay at zero when z — 1. Thus, the following equation must hold:
1 2aq
tetay— =+t e+ - @]+ a e+ - @] =0 (A8)

By deducting each side in (A7) from the respective side in (A8), an equation



ab%(p +2¢)=0 (A9)

is derived. To satisfy the equation in (A9), a;, must be zero. Because of the equations in (A5) and (A6), @,

. . 921 .
must be non-zero, otherwise a = 0. However, if a, # 0, to make o - % finite when z — 1, the sum

8% log fExG2
0200’

sum of the terms including 1/(1 —z) converges to zero because of equation (A6)). Thus, the following

of the terms including log(1 — z) among the terms consisting of « - must converge to zero (the

equation must hold:
p+2q+1=0. (A10)
It contradicts the fact that the left-hand side in (A10) is actually greater than unity. Q.E.D.

Appendix 3. The Fisher information matrix of the ExG2

Let @ = (6,,6,,05,0,) be regarded in the same light as parameters (a, b, p, q). Because the ExG2 satisfies

the regularity conditions in terms of MLE, the Fisher information matrix can be expressed as follows:

Iaa Iab Iap Iaq
010g frrg2 0108 fexg2 02108 fexa2 lpa Ipp Ipp Ipq

Igy2(8) = |E =—\E\—=20 N=!t1, 1,1 1. 1|
aﬂi 60] 691691 pa ‘pb lpp pq

\1‘1‘1 Loy Iop Iqq/

Let @, denote the ML parameters for an I.1.D. sample of size n on Fgg,(x;0). Then, @, converges to
population parameters @ with probability 1, and \/ﬁ(ﬁn—e) converges in distribution to the normal
distribution N (0, I5,,(0)™1) when n — co. When fitting the ExG2 to grouped data by the 22 categories
described in the main text, according to simulation results, sample variances and co-variances of the parameters
are larger than Ig,,(0)1/n in absolute value but less than or equal to four times of |Ig.g,(0)71|/n if the
data are tabulated from a sufficiently large sample, although it should be noted that estimates of b and q may
deteriorate when q is relatively large. The elements of I, (0) are expressed as follows:

1 1 " . .
log ==+ BG.a) @ [((p+29)A( + 1, +1,3) =2A(p + 1, + 24) + Alp + 2,9 + 1,4)],

2 1
lop = Ipg = B0 b [pPA(p,q+11) —gA(p+1,q,1) + A(p + 1,9 + 1,2)]

2 1
B(p,q)b

+A(p+2,9+14)

+

[(p+29)Al0 +1,q+13) - 2A(p + 1,9 + 2,4)

a

2
Ly =————I[pA(p,g+1,1) —qA(p+1,¢, 1) +A(p + 1,q + 1,2
bb B(p,q)bz[p Pa+ 1D -ahpr1e)+A@+1Le+12)]

2

B(p,q) b2

+A(p+2,q+14)],

+

[p+29)A(p+1,q+13)—2A(p+ 1,9+ 2,4)

a
L, = ZA(, g +1,1),
"= Bpqb 1

2 a
Ibq = Iqb = _B(p q)EA(p +1, q, 1)'



1 1.
Iap =1 —_A(p'q + 1!1)'

" Bp.qa
1 1.
Iaq = Iqa = _B(p q)EA(p +1, q;l);

Ipp = l/l’(p) - l,b'(p + Q)'
Ipq = qu = —l/)’(p + Q),
Iqq = lp’(q) - l,b'(p + Q),

1zP~1(1-2)471 1 1
where A(p,q,k) = [} = 0—dz = B, 0) oF (kopip + a3),

1zP~1(1-2)471

. 1- dA(p,q.k) , 0A(p,qk)
Alp,q, k) = fo o 2dz = —2 524 p.q

log Z_Z —ap + g

= 2 (“29®) +¥(@ + Y@ + D)B@.0) oF: (kpip + 4;3)

_Z%B(p'q) [26% 2f (k,p;p + q:%) +aaT3 2F (k'P:P + qii)] and

% L (1zPra-2)9t 1-2\2 9%k, 9PAmak) | 32A(.ak)
Alp,q, k) = fo - (log ZZ) dz =4 o 4 P + pye

=(4Y'® +¥' (@ -y (P +q9)APp q.k)
+(=29®) + ¥(q@) + Y@ + O)A®, . k)

— (2@ + (@ + v + 9))B®.9) [26%2 2F1 (k,p:p + q:%) + % 2F1 (k,p;p + q:i)]
+2B@ @) 4557 oF (lopip +4:3) + 45555 o (kopip + @53) + 557 oFs (lopip +4:3)]

In the above formula, ,F,(9,,9,;93;2) denotes the hypergeometric function; % 2 (1,p; p+ q;%) stands

a 92 1
for — LF(9,,9,;93;2) ; —— P |\ Lpp+q;- stands for
a9, 21V T2 s |(191.192.193.Z)=(1.p.p+q%) 09;09; 2 1( 2)
2
#‘31’7 oF (91,955 95; 2) . Those partial derivatives of the hypergeometric function must be

(91,92,932)=(1pp+a3)
calculated numerically because routines for those derivatives is not provided by statistical computer packages.
Similarly to the Fisher information matrix of the GB2 derived by Brazauskas [2], the second derivatives of the

log-likelihood with respect to p and q are independent of a and b.
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