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Abstract This paper studies a new kind of generalized beta distribution that is different from the GB1 and 

GB2 of McDonald (1984). This new four-parameter statistical distribution, the extended -generalized 

distribution of the second kind, abbreviated EG2, is derived as one of two kinds of generalizations from the 

-generalized distribution of Clementi et al. (2007). By empirical comparison with the GB2 using the LIS 

income/consumption data, the EG2 is found to be an overall better fit in terms of both frequency-based (FB) 

evaluation criteria, such as the likelihood, and money-amount-based (MAB) evaluation criteria, such as the 

accuracy of the estimated Lorentz curve. The EG2 also overall outperforms the double Pareto-lognormal 

distribution (dPLN) of Reed (2003) in terms of FB criteria. Although not necessarily superior to the dPLN in 

terms of MAB criteria, the EG2 is judged to be an overall better fit to the empirical distributions relative to 

the dPLN by a combined evaluation using both FB and MAB criteria. 

   This paper also discusses similarities and differences in characteristics between the EG2 and GB2, 

including the shapes of the distributions. 

 

 

1 Introduction 

 

Parametric income distribution models (PIDMs) are frequently used to approximately recover the original size 

distributions from grouped data for estimation of income inequality and poverty when the microdata are 

unavailable. Furthermore, PIDMs that can represent income distributions using only a few parameters are also 

indispensable when studying determinants for income level and income inequality. One example of such a 

study is the Mincer-type equation (typically using the lognormal distribution as the error term). Many PIDMs 

have been proposed and studied. In addition to the lognormal distribution (LN), other PIDMs, such as the 

Singh-Maddala distribution [19], the Dagum distribution [5], and the generalized beta distribution of the 

second kind (GB2) [11], are well-known; however, attempts to identify new PIDMs continue. The double 

Pareto-lognormal distribution (dPLN) proposed by Reed [16] was found to be a better fit than the GB2 to 

income distributions for several countries by Reed and Wu [17] and Okamoto [13, 15]. Furthermore, Okamoto 

[13] showed that the Gini index for the overall income distribution can be analytically expressed by parameters 

of dPLNs (as well as LNs) fitted to the distributions in subgroups (e.g., age groups and regions). By the 

analytic expression of the Gini index for the mixture distributions, the LN/dPLN enables us to analyze 

contributions of different subgroup characteristics to the Gini index for the overall income distribution. The 

-generalized distribution (G) proposed by Clementi et al. [3] is a better fit for some countries than the 

existing three-parameter PIDMs ([3, 13]) and tends to yield better estimates of income inequality even when 

the goodness-of-fit is inferior to the existing PIDMs in terms of the likelihood value ([13]). 

   This study, motivated by the G’s tendency to yield a better inequality estimation, extends the G to 
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four-parameter PIDMs to attain a stronger goodness-of-fit relative to that of the existing four-parameter PIDMs 

in terms of both frequency-based (FB) evaluation criteria, such as the likelihood, and money-amount-based 

(MAB) evaluation criteria, such as the accuracy of the estimated Lorentz curve and inequality indices. One’s 

choice in PIDM may vary depending on how one intends to use it. For example, a PIDM that is a best fit to an 

income distribution for a specific country based on a specific evaluation criterion may be an appropriate choice 

in some cases. However, the purpose of this study is to derive PIDMs that would be well fitted to 

income/consumption distributions for many countries in terms of both FB and MAB measures, assuming 

general/multi-purpose use. For this reason, the new and existing four-parameter PIDMs are fitted to the size 

distributions of six variables, i.e., gross income, disposable income, consumption and their equivalized 

variables, in about twenty countries from each of waves 4-6 from the LIS database [10]. The empirical 

comparisons show that, in the overall evaluation, the extended -generalized distribution of the second kind 

(EG2), one of the two kinds of generalizations of the G distribution, is a better fit to those size distributions 

(of non-equivalized variables in particular) than the GB2 in terms of both FB and MAB criteria. The EG2 also 

outperforms the dPLN overall in terms of FB measures (especially in the cases of non-equivalized variables). 

Although not necessarily superior to the dPLN in terms of MAB measures, the EG2 is judged to be a better fit 

to the size distributions (of non-equivalized variables in particular) relative to the dPLN by a combined 

evaluation using both FB and MAB measures. The extended -generalized distribution of the first kind (EG1), 

another kind of generalization of the G, is inferior to other PIDMs in terms of FB measures; that said, in terms 

of MAB measures, the EG1 is a better fit than the GB2 and a slightly better fit than the EG2 to the size 

distributions of equivalized/non-equivalized gross and disposable income. 

   This paper proceeds as follows: The next section introduces four-parameter PIDMs to be considered and 

presents related characteristics, such as the analytic expressions of the distribution function, Lorentz curve and 

inequality indices. The choice of PIDMs includes the new PIDMs, EG1 and EG2, and their inverse 

distributions denoted by IEG1 and IEG2. Section 3 discusses the shape of the probability density functions 

(PDFs) of the new PIDMs. The EG1 and EG2 are shown to have unimodal density functions in typical cases 

in which the density can be regarded as zero at null income/consumption. Several methods for evaluating 

goodness-of-fit are introduced in section 4 and then applied to assess and summarize the empirical results 

obtained by fitting the PIDMs to the LIS datasets from waves 4-6 in section 5. Finally, the last section 

concludes the discussion. The regularity of the EG2 in terms of maximum likelihood estimation is proved, and 

its Fisher information matrix is presented in appendices. 

 

2 Statistical distributions to be compared 

 

Among four-parameter PIDMs, the GB2 proposed by McDonald [11] is probably the most popular model. The 

cumulative distribution function (CDF) of the GB2 is expressed as follows: 

𝐹GB2(𝑥; 𝑎, 𝑏, 𝑝, 𝑞) =
1

𝐵(𝑝, 𝑞)
∫ 𝑤𝑝−1(1 − 𝑤)𝑞−1𝑑𝑤
𝑧

0

= 𝐼𝑧(𝑝, 𝑞), 𝑧 =
(
𝑥
𝑏
)
𝑎

1 + (
𝑥
𝑏
)
𝑎 ,

where 0 < 𝑥 < ∞;  𝑎, 𝑏, 𝑝, 𝑞 > 0. 

 

𝐼𝑧(𝑝, 𝑞) denotes the incomplete beta function. The GB2 is equivalent to the Singh-Maddala distribution [19] 

when 𝑝 = 1 and the Dagum distribution [5] when 𝑞 = 1. McDonald [11] also proposed the generalized beta 

distribution of the first kind (GB1), which has a finite domain.  



𝐹GB1(𝑥; 𝑎, 𝑏, 𝑝, 𝑞) = 𝐼𝑧(𝑝, 𝑞), 𝑧 = (
𝑥

𝑏
)
𝑎

, where 0 < 𝑥 < 𝑏;  𝑎, 𝑏, 𝑝, 𝑞 > 0.  

Reed [16] derived the dPLN by log-transforming the normal Laplace distribution, which is defined as a sum of 

two independent random variables that follow a normal distribution and an asymmetric Laplace distribution, 

respectively. The dPLN attains better goodness-of-fit than the GB2 to income distributions in several countries 

([13, 15, 17]). 

𝐹dPLN(𝑥; 𝜇, 𝜎, 𝛼, 𝛽)

=
𝛼𝛽

𝛼 + 𝛽
[
1

𝛽
𝑥𝛽𝑒−𝛽𝜇+𝛽

2𝜎2 2⁄ Φ𝑐 (
log 𝑥 − 𝜇 + 𝛽𝜎2

𝜎
) +

1

𝛽
Φ(
log 𝑥 − 𝜇

𝜎
)

−
1

𝛼
𝑥−𝛼𝑒𝛼𝜇+𝛼

2𝜎2 2⁄ Φ(
log 𝑥 − 𝜇 − 𝛼𝜎2

𝜎
) +

1

𝛼
Φ(
log 𝑥 − 𝜇

𝜎
)] ,

where 0 < 𝑥 < ∞;  𝜎, 𝛼, 𝛽 > 0. 

 

In the above formula, Φ  denotes the CDF of the standard normal distribution, and Φ𝑐  denotes the 

complementary function of the CDF, defined as 1 − Φ.  

   The G, a three-parameter PIDM proposed by Clementi et al. [3], tends to yield better estimates of the 

Lorentz curves and income inequalities, although the likelihood values are not necessarily higher than those 

from the existing three-parameter PIDMs ([13]). The CDF of the G is expressed as follows: 

𝐹κG(𝑥; 𝛼, 𝛽, 𝜅) = 1 − exp𝜅 (−(
𝑥

𝛽
)
𝛼

) = 1 − [√1 + 𝜅2 (
𝑥

𝛽
)
2𝛼

− 𝜅 (
𝑥

𝛽
)
𝛼

]

1 𝜅⁄

,

where 0 < 𝑥 < ∞;  𝛼, 𝛽, 𝜅 > 0. 

 

Taking note of the tendency, two kinds of generalizations of the G are introduced below to try to produce a 

better fit to empirical income/consumption distributions relative to the existing four-parameter PIDMs in terms 

of both FB measures, such as the likelihood value, and MAB measures, such as the accuracy of the estimated 

Lorentz curve. 

   The G is derived by ‘Weibullizing’ the deformed exponential function exp𝜅 𝑥 ≔ [√1 + (𝜅𝑥)2 + 𝜅𝑥]
1 𝜅⁄

 

of Kanidakis et al. [7]. Because the deformed logarithmic function log𝜅 𝜋 =
𝜋𝜅−𝜋−𝜅

2𝜅
, the inverse of exp𝜅 𝑥, is 

generalized to the two-parameter deformed logarithmic function log𝜅,𝑟 𝜋 = 𝜋
𝑟 𝜋

𝜅−𝜋−𝜅

2𝜅
 by Kaniadakis et al. [8], 

it is natural to create a new PIDM by Weibullizing the two-parameter deformed exponential function, implicitly 

defined as the inverse of log𝜅,𝑟 𝜋. Hereafter, the new PIDM shall be called the extended -generalized 

distribution of the first kind (EG1). The inverse of the CDF of the EG1 is expressed as follows: 

𝐹EκG1
−1 (𝜋; 𝑎, 𝑏, 𝑞, 𝑟) = 𝑏 [−(1 − 𝜋)𝑟

(1 − 𝜋)
1
2𝑞 − (1 − 𝜋)

−
1
2𝑞

1 𝑞⁄
]

1
𝑎

,

where  0 < 𝜋 < 1;  𝑎, 𝑏, 𝑞 > 0, 𝑟 <
1

2𝑞
. 

 

The CDF of the EG1 does not allow an explicit expression. When 𝑟 = 0 (and 𝑎 = 𝛼, 𝑏 = 𝛽, 𝑞 =
1

2𝜅
), the 

EG1 is equivalent to the G, and when 𝑟 = −
1

2𝑞
, the EG1 is equivalent to the Singh-Maddala distribution.  

   Another type of generalization is based on an (implicit) analytic expression of the Lorentz curve of the G 



and GB2.
1
 

𝐿κG(𝜋; 𝛼, 𝜅) = 𝐼𝑧 (1 +
1

𝛼
,
1

2𝜅
−
1

2𝛼
) , 𝑧 = 1 − (1 − 𝜋)2𝜅 = 𝐼𝜋

−1 (1,
1

2𝜅
), (1) 

𝐿GB2(𝜋; 𝑎, 𝑝, 𝑞) = 𝐼𝑧 (𝑝 +
1

𝑎
, 𝑞 −

1

𝑎
) , 𝑧 = 𝐼𝜋

−1(𝑝, 𝑞). (2) 

Let parameters 𝛼 and 𝜅 be replaced by a and 
1

2𝑞
, respectively, in the G’s Lorentz curve (1); then, its 

comparison with the GB2’s Lorentz curve (2) leads to a natural extension of the Lorentz curve (1), as follows: 

𝐿EκG2(𝜋; 𝑎, 𝑝, 𝑞) = 𝐼𝑧 (𝑝 +
1

𝑎
, 𝑞 −

1

2𝑎
) , 𝑧 = 𝐼𝜋

−1(𝑝, 𝑞). (3) 

The new PIDM corresponding to the Lorentz curve (3) shall be called the generalized -generalized 

distribution of the second kind (EG2). The new model has the following CDF: 

𝐹EκG2(𝑥; 𝑎, 𝑏, 𝑝, 𝑞) = 𝐼𝑧(𝑝, 𝑞), 𝑧 = (
𝑥

𝑏
)
𝑎

[√1 +
1

4
(
𝑥

𝑏
)
2𝑎

−
1

2
(
𝑥

𝑏
)
𝑎

] = 2 [√1 + 4 (
𝑥

𝑏
)
−2𝑎

+ 1]⁄ ,

where  0 < 𝑥 < ∞;  𝑎, 𝑏, 𝑝, 𝑞 > 0. 

 

The above formula indicates that the EG2 is a new kind of generalized beta distribution, different from the 

GB1 and GB2. When 𝑝 = 1 (and 𝑎 = 𝛼, 𝑏 = 𝛽, 𝑞 =
1

2𝜅
), the EG2 is equivalent to the G. When a random 

variable 𝑋  follows the GB2 with parameters (1,1, 𝑝, 𝑞) , then, 𝑌 = 𝑋 √1 + 𝑋⁄  follows the EG2 with 

parameters (1,1, 𝑝, 𝑞).2 A reciprocal of a random variable from the GB2 with parameters (𝑎, 𝑏, 𝑝, 𝑞) follows 

the GB2 with parameters (𝑎, 1 𝑏⁄ , 𝑞, 𝑝). In contrast, a reciprocal of a random variable from the EG1/EG2 

does not follow the EG1/EG2. A reciprocal of a variable from the EG1 with parameters (𝑎, 𝑏, 𝑞, 𝑟) follows 

the IEG1, listed in Table 1, with parameters (𝑎, 1 𝑏⁄ , 𝑞, 𝑟). Similarly, the inverse distribution of the EG2 

with (𝑎, 𝑏, 𝑝, 𝑞) is the IEG2, listed in Table 1, with (𝑎, 1 𝑏⁄ , 𝑞, 𝑝). Note that parameters (𝑎, 𝑏, 𝑝, 𝑟) of the 

IEG1 must be in a domain defined as 𝑎, 𝑏, 𝑝 > 0, 𝑟 <
1

2𝑝
, and parameters (𝑎, 𝑏, 𝑝, 𝑞) of the IEG2 must be in 

a domain defined as 𝑎, 𝑏, 𝑝, 𝑞 > 0. 

   The moments, mean log deviation (MLD), Theil index and coefficients of variation (CV) of the new four 

PIDMs can be expressed analytically. Analytic expressions for the Gini indices can also be derived in the same 

way as that of the GB2 devised by McDonald [11]. Those formulas, together with those of the PDFs and 

Lorentz curves, are listed in Table 1. 

   Some formulas in Table 1 are found in other literature. In particular, those formulas are for moments of the 

dPLN ([17]), the Gini index and Lorentz curve of the dPLN ([13, 14]) and the MLD and Theil index of the 

GB2 ([6]). 

   For the EG2, which plays the leading role in this paper, a procedure for the maximum-likelihood 

parameter estimation (when fitted to microdata) is given in Appendix 1 in addition to proof of the regularity in 

terms of the maximum likelihood estimation in Appendix 2 and the Fisher information matrix in Appendix 3. 

The parameter estimation procedure and information matrix are similar to those of the GB2 described by 

Kleiber and Kotz [9]. Because PIDMs are fitted to grouped data in this paper, the estimation procedure in 

Appendix 1 is inapplicable. The procedure actually employed is explained in section 5. 

 

                                                   
1 Clementi et al. [4] give a different expression of the G’s Lorentz curve. Their expression is equivalent to (1). 
2 𝑍 = 𝑋 1 + 𝑋⁄  follows the GB1 with parameters (1,1, 𝑝, 𝑞), which is equivalent to the beta distribution. The above 

EG2 variable can be expressed as 𝑌 = √𝑋𝑍. 



Table 1  Distributions and population characteristics 
 

PIDM Inverse CDF 𝐹−1(𝜋) CDF 𝐹(𝑥) PDF 𝑓(𝑥) 

G 

(𝛼, 𝛽, 𝜅) 
𝛽 [−

(1−𝜋)𝜅−(1−𝜋)−𝜅

2𝜅
]

1

𝛼
  1 − [√1 + 𝜅2 (

𝑥

𝛽
)
2𝛼
− 𝜅 (

𝑥

𝛽
)
𝛼
]

1 𝜅⁄

  
𝛼𝑥𝛼−1

𝛽𝛼

[√1+𝜅2(
𝑥

𝛽
)
2𝛼
−𝜅(

𝑥

𝛽
)
𝛼
]

1 𝜅⁄

√1+𝜅2(
𝑥

𝛽
)
2𝛼

  

EG1 

(𝑎, 𝑏, 𝑞, 𝑟) 
𝑏 [−(1 − 𝜋)𝑟

(1−𝜋)
1
2𝑞−(1−𝜋)

−
1
2𝑞

1 𝑞⁄
]

1

𝑎

   
𝑎[−(1−𝜋)𝑟

(1−𝜋)

1
2𝑞−(1−𝜋)

−
1
2𝑞

1 𝑞⁄
]

−
1
𝑎+1

𝑏[(𝑞𝑟+
1

2
)(1−𝜋)

𝑟+
1
2𝑞−1−(𝑞𝑟−

1

2
)(1−𝜋)

𝑟−
1
2𝑞−1]

, where 𝜋 = 𝐹EκG1
−1 (𝑥; 𝑎, 𝑏, 𝑞, 𝑟) (implicit) 

EG2 

(𝑎, 𝑏, 𝑝, 𝑞) 
𝑏𝑧

1

𝑎(1 − 𝑧)−
1

2𝑎, where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 𝐼𝑧(𝑝, 𝑞), where 𝑧 = (

𝑥

𝑏
)
𝑎
[√1 +

1

4
(
𝑥

𝑏
)
2𝑎
−
1

2
(
𝑥

𝑏
)
𝑎
] 

𝑎

𝑏𝐵(𝑝,𝑞)

𝑧𝑝−
1
𝑎(1−𝑧)𝑞+

1
2𝑎

1−
1

2
𝑧

, where 𝑧 = (
𝑥

𝑏
)
𝑎
[√1 +

1

4
(
𝑥

𝑏
)
2𝑎
−
1

2
(
𝑥

𝑏
)
𝑎
] 

IEG1 

(𝑎, 𝑏, 𝑝, 𝑟) 
𝑏 [−𝜋𝑟

𝜋
1
2𝑝−𝜋

−
1
2𝑝

1 𝑝⁄
]

−
1

𝑎

   
𝑎[−𝜋𝑟

𝜋

1
2𝑝−𝜋

−
1
2𝑝

1 𝑝⁄
]

1
𝑎
+1

𝑏[(𝑝𝑟+
1

2
)𝜋
𝑟+

1
2𝑝
−1
−(𝑝𝑟−

1

2
)𝜋

𝑟−
1
2𝑝
−1
]

, where 𝜋 = 𝐹IEκG1
−1 (𝑥; 𝑎, 𝑏, 𝑝, 𝑟) (implicit) 

IEG2 

(𝑎, 𝑏, 𝑝, 𝑞) 
𝑏𝑧

1

2𝑎(1 − 𝑧)−
1

𝑎, where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 

𝐼𝑧(𝑝, 𝑞) , where 𝑧 = 1 − (
𝑥

𝑏
)
−𝑎
[√1 +

1

4
(
𝑥

𝑏
)
−2𝑎

−

1

2
(
𝑥

𝑏
)
−𝑎
] = [√1 +

1

4
(
𝑥

𝑏
)
−2𝑎

−
1

2
(
𝑥

𝑏
)
−𝑎
]

2

 

𝑎

𝑏𝐵(𝑝,𝑞)

𝑧
𝑝−

1
2𝑎(1−𝑧)

𝑞+
1
𝑎

2(1+𝑧)
, where 𝑧 = 1 − (

𝑥

𝑏
)
−𝑎
[√1 +

1

4
(
𝑥

𝑏
)
−2𝑎

−
1

2
(
𝑥

𝑏
)
−𝑎
] =

[√1 +
1

4
(
𝑥

𝑏
)
−2𝑎

−
1

2
(
𝑥

𝑏
)
−𝑎
]

2

 

dPLN 

(𝜇, 𝜎2, 𝛼, 𝛽) 
 

𝛼𝛽

𝛼+𝛽
[
1

𝛽
𝑥𝛽𝑒−𝛽𝜇+𝛽

2𝜎2 2⁄ Φ𝑐 (
log 𝑥−𝜇+𝛽𝜎2

𝜎
) +

1

𝛽
Φ(

log𝑥−𝜇

𝜎
) −

1

𝛼
𝑥−𝛼𝑒𝛼𝜇+𝛼

2𝜎2 2⁄ Φ(
log 𝑥−𝜇−𝛼𝜎2

𝜎
) +

1

𝛼
Φ(

log𝑥−𝜇

𝜎
)]  

𝛼𝛽

𝛼+𝛽
[𝑥𝛽−1𝑒−𝛽𝜇+𝛽

2𝜎2 2⁄ Φ𝑐 (
log 𝑥−𝜇+𝛽𝜎2

𝜎
) + 𝑥−𝛼−1𝑒𝛼𝜇+𝛼

2𝜎2 2⁄ Φ(
log𝑥−𝜇−𝛼𝜎2

𝜎
)]  

GB1 

(𝑎, 𝑏, 𝑝, 𝑞) 
𝑏𝑧

1

𝑎, where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 𝐼𝑧(𝑝, 𝑞), where 𝑧 = (

𝑥

𝑏
)
𝑎

 𝑎

𝑏𝐵(𝑝,𝑞)
𝑧𝑝−

1

𝑎(1 − 𝑧)𝑞−1 =
𝑎𝑥𝑎𝑝−1[1−(

𝑥

𝑏
)
𝑎
]
𝑞−1

𝑏𝑎𝑝𝐵(𝑝,𝑞)
, where 𝑧 = (

𝑥

𝑏
)
𝑎

  

GB2 

(𝑎, 𝑏, 𝑝, 𝑞) 
𝑏𝑧

1

𝑎(1 − 𝑧)−
1

𝑎, where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 𝐼𝑧(𝑝, 𝑞), where 𝑧 =

(
𝑥

𝑏
)
𝑎

1+(
𝑥

𝑏
)
𝑎 

𝑎

𝑏𝐵(𝑝,𝑞)
𝑧𝑝−

1

𝑎(1 − 𝑧)𝑞+
1

𝑎 =
𝑎𝑥𝑎𝑝−1

𝑏𝑎𝑝𝐵(𝑝,𝑞)[1+(
𝑥

𝑏
)
𝑎
]
𝑝+𝑞, where 𝑧 =

(
𝑥

𝑏
)
𝑎

1+(
𝑥

𝑏
)
𝑎 

 

 

 

 



Table 1  Distributions and population characteristics (continued) 
 

PIDM Lorentz curve Moments Gini index 

G 

(𝛼, 𝛽, 𝜅) 

𝐼𝑧 (1 +
1

𝛼
,
1

2𝜅
−

1

2𝛼
),  

where 𝑧 = 1 − (1 − 𝜋)2𝜅   

𝑏ℎ

(2𝜅)
ℎ
𝛼
+1
𝐵 (1 +

ℎ

𝛼
,
1

2𝜅
−

ℎ

2𝛼
)  1 − 2

𝐵(1+
1

𝛼
,
1

𝜅
−
1

2𝛼
)

𝐵(1+
1

𝛼
,
1

2𝜅
−
1

2𝛼
)
  

EG1 

(𝑎, 𝑏, 𝑞, 𝑟) 

𝐼𝑧 (1 +
1

𝑎
, 𝑞 −

1

2𝑎
+
2𝑞𝑟

𝑎
),  

where 𝑧 = 1 − (1 − 𝜋)1 𝑞⁄  

𝑏ℎ𝑞
ℎ

𝑎
+1 ∙  

𝐵 (1 +
ℎ

𝑎
, 𝑞 −

ℎ

2𝑎
+
ℎ𝑞𝑟

𝑎
)  

1 − 2
𝐵(1+

1

𝑎
,2𝑞−

1

2𝑎
+
𝑞𝑟

𝑎
)

𝐵(1+
1

𝑎
,𝑞−

1

2𝑎
+
𝑞𝑟

𝑎
)

  

EG2 

(𝑎, 𝑏, 𝑝, 𝑞) 

𝐼𝑧 (𝑝 +
1

𝑎
, 𝑞 −

1

2𝑎
),  

where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 

𝑏ℎ
𝐵(𝑝+

ℎ

𝑎
,𝑞−

ℎ

2𝑎
)

𝐵(𝑝,𝑞)
  

𝐵(2𝑝+
1

𝑎
,2𝑞−

1

2𝑎
)

𝐵(𝑝,𝑞)𝐵(𝑝+
1

𝑎
,𝑞−

1

2𝑎
)
[
1

𝑝
𝐹23 (1, 𝑝 + 𝑞, 2𝑝 +

1

𝑎
; 𝑝 + 1,2𝑝 + 2𝑞 +

1

2𝑎
|1) −

1

𝑝+
1

𝑎

𝐹23 (1, 𝑝 + 𝑞 +
1

2𝑎
, 2𝑝 +

1

𝑎
; 𝑝 +

1

𝑎
+ 1,2𝑝 + 2𝑞 +

1

2𝑎
|1)]  

IEG1 

(𝑎, 𝑏, 𝑝, 𝑟) 

𝐼𝑧 (𝑝 +
1

2𝑎
−
2𝑝𝑟

𝑎
, 1 −

1

𝑎
),  

where 𝑧 = 𝜋1 𝑝⁄  

𝑏ℎ𝑝
ℎ

𝑎
−1 ∙  

𝐵 (𝑝 +
ℎ

2𝑎
−
ℎ𝑝𝑟

𝑎
, 1 −

ℎ

𝑎
)  

2
𝐵(2𝑝+

1

2𝑎
−
𝑝𝑟

𝑎
,1−

1

𝑎
)

𝐵(𝑝+
1

2𝑎
−
𝑝𝑟

𝑎
,1−

1

𝑎
)
− 1  

IEG2 

(𝑎, 𝑏, 𝑝, 𝑞) 

𝐼𝑧 (𝑝 +
1

2𝑎
, 𝑞 −

1

𝑎
),  

where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 

𝑏ℎ
𝐵(𝑝+

ℎ

2𝑎
,𝑞−

ℎ

𝑎
)

𝐵(𝑝,𝑞)
  

𝐵(2𝑝+
1

2𝑎
,2𝑞−

1

𝑎
)

𝐵(𝑝,𝑞)𝐵(𝑝+
1

2𝑎
,𝑞−

1

𝑎
)
[
1

𝑝
𝐹23 (1, 𝑝 + 𝑞, 2𝑝 +

1

2𝑎
; 𝑝 + 1,2𝑝 + 2𝑞 −

1

2𝑎
|1) −

1

𝑝+
1

2𝑎

𝐹23 (1, 𝑝 + 𝑞 −
1

2𝑎
, 2𝑝 +

1

2𝑎
; 𝑝 +

1

2𝑎
+ 1,2𝑝 + 2𝑞 −

1

2𝑎
|1)]  

dPLN 

(
𝜇, 𝜎2,
𝛼, 𝛽

) 

Φ(
log 𝑥−𝜎2

𝜎
) −

𝛽+1

𝛼+𝛽
𝑥−𝛼+1𝑒(𝛼

2−1)𝜎2 2⁄ Φ(
log 𝑥−𝛼𝜎2

𝜎
) +

𝛼−1

𝛼+𝛽
𝑥𝛽+1𝑒(𝛽

2−1)𝜎2 2⁄ Φ𝑐 (
log 𝑥+𝛽𝜎2

𝜎
),  

where 𝜋 = 𝐹dPLN(𝑥; 0, 𝜎
2, 𝛼, 𝛽) 

(implicit) 

𝛼𝛽

(𝛼−ℎ)(𝛽+ℎ)
𝑒ℎ𝜇+ℎ

2𝜎2 2⁄   

[2Φ(𝜎 √2⁄ ) − 1] + 𝑅 , where 𝑅 = 2
(𝛼−1)(𝛽+1)

(𝛼+𝛽)(𝛼−𝛽−1)
[
−

𝛽

(𝛼−1)(2𝛼−1)
𝑒𝛼(𝛼−1)𝜎

2
Φ(−

2𝛼−1

√2
𝜎)

+
𝛼

(𝛽+1)(2𝛽+1)
𝑒𝛽(𝛽+1)𝜎

2
Φ(−

2𝛽+1

√2
𝜎)
]  if 𝛼 ≠ 𝛽 + 1 , 

2
𝛼(𝛼−1)

(2𝛼−1)2
𝑒𝛼(𝛼−1)𝜎

2
[
(
1

𝛼
+

1

𝛼−1
+

2

2𝛼−1
− (2𝛼 − 1)𝜎2)Φ(−

2𝛼−1

√2
𝜎)

+√2𝜎𝜙 (−
2𝛼−1

√2
𝜎)

] if 𝛼 = 𝛽 + 1 

GB1 

(𝑎, 𝑏, 𝑝, 𝑞) 
𝐼𝑧 (𝑝 +

1

𝑎
, 𝑞), where 𝑧 = 𝐼𝜋

−1(𝑝, 𝑞) 𝑏ℎ
𝐵(𝑝+

ℎ

𝑎
,𝑞)

𝐵(𝑝,𝑞)
  

𝐵(2𝑝+
1

𝑎
,𝑞)

𝐵(𝑝,𝑞)𝐵(𝑝+
1

𝑎
,𝑞)
[
1

𝑝
𝐹23 (2𝑝 +

1

𝑎
, 𝑝, 1 − 𝑞; 2𝑝 + 𝑞 +

1

𝑎
, 𝑝 + 1|1) −

1

𝑝+
1

𝑎

𝐹23 (2𝑝 +
1

𝑎
, 𝑝 +

1

𝑎
, 1 − 𝑞; 2𝑝 + 𝑞 +

1

𝑎
, 𝑝 +

1

𝑎
+ 1|1)]  

GB2 

(𝑎, 𝑏, 𝑝, 𝑞) 

𝐼𝑧 (𝑝 +
1

𝑎
, 𝑞 −

1

𝑎
),  

where 𝑧 = 𝐼𝜋
−1(𝑝, 𝑞) 

𝑏ℎ
𝐵(𝑝+

ℎ

𝑎
,𝑞−

ℎ

𝑎
)

𝐵(𝑝,𝑞)
  

𝐵(2𝑝+
1

𝑎
,2𝑞−

1

𝑎
)

𝐵(𝑝,𝑞)𝐵(𝑝+
1

𝑎
,𝑞−

1

𝑎
)
[
1

𝑝
𝐹23 (1, 𝑝 + 𝑞, 2𝑝 +

1

𝑎
; 𝑝 + 1,2𝑝 + 2𝑞|1) −

1

𝑝+
1

𝑎

𝐹23 (1, 𝑝 + 𝑞, 2𝑝 +
1

𝑎
; 𝑝 +

1

𝑎
+ 1,2𝑝 + 2𝑞|1)]  

𝐹23 (𝜃1, 𝜃2, 𝜃3; 𝜃4, 𝜃5| ∙) and 𝜙(∙) denote the generalized hypergeometric function and the PDF of the standard normal distribution, respectively.  



Table 1  Distributions and population characteristics (continued) 
 

PIDM CV MLD Theil index 

G 

(𝛼, 𝛽, 𝜅) 
√2𝜅

𝐵(1+
2

𝛼
,
1

2𝜅
−
1

𝛼
)

𝐵(1+
1

𝛼
,
1

2𝜅
−
1

2𝛼
)
2 − 1  

log 𝐵 (1 +
1

𝛼
,
1

2𝜅
−

1

2𝛼
) − log(2𝜅) −

1

𝛼
𝜓(1) +

1

2𝛼
𝜓(

1

2𝜅
) +

1

2𝛼
𝜓(1 +

1

2𝜅
)  

1

𝛼
𝜓 (1 +

1

𝛼
) −

1

2𝛼
𝜓(

1

2𝜅
−

1

2𝛼
) −

1

2𝛼
𝜓(1 +

1

2𝜅
+

1

2𝛼
) − log𝐵 (1 +

1

𝛼
,
1

2𝜅
−

1

2𝛼
) + log(2𝜅)  

EG1 

(𝑎, 𝑏, 𝑞, 𝑟) 
√

𝐵(1+
2

𝑎
,𝑞−

1

𝑎
+
2𝑞𝑟

𝑎
)

𝑞𝐵(1+
1

𝑎
,𝑞−

1

2𝑎
+
𝑞𝑟

𝑎
)
2 − 1  

log 𝐵 (1 +
1

𝑎
, 𝑞 −

1

2𝑎
+
𝑞𝑟

𝑎
) + log 𝑞 −

1

𝑎
𝜓(1) + (

1

2𝑎
−
𝑞𝑟

𝑎
)𝜓(𝑞) +  

(
1

2𝑎
+
𝑞𝑟

𝑎
)𝜓(1 + 𝑞)  

1

𝑎
𝜓(1 +

1

𝑎
) − (

1

2𝑎
−
𝑞𝑟

𝑎
)𝜓 (𝑞 −

1

2𝑎
+
𝑞𝑟

𝑎
) − (

1

2𝑎
+
𝑞𝑟

𝑎
)𝜓 (1 + 𝑞 +

1

2𝑎
+
𝑞𝑟

𝑎
) −

log 𝐵 (1 +
1

𝑎
, 𝑞 −

1

2𝑎
+
𝑞𝑟

𝑎
) − log 𝑞  

EG2 

(𝑎, 𝑏, 𝑝, 𝑞) 
√
𝐵(𝑝,𝑞)𝐵(𝑝+

2

𝑎
,𝑞−

1

𝑎
)

𝐵(𝑝+
1

𝑎
,𝑞−

1

2𝑎
)
2 − 1  log 𝐵 (𝑝 +

1

𝑎
, 𝑞 −

1

2𝑎
) − log𝐵(𝑝, 𝑞) −

1

𝑎
𝜓(𝑝) +

1

2𝑎
𝜓(𝑞) +

1

2𝑎
𝜓(𝑝 + 𝑞)  

1

𝑎
𝜓(𝑝 +

1

𝑎
) −

1

2𝑎
𝜓 (𝑞 −

1

2𝑎
) −

1

2𝑎
𝜓(𝑝 + 𝑞 +

1

2𝑎
) − log 𝐵 (𝑝 +

1

𝑎
, 𝑞 −

1

2𝑎
) +

log 𝐵(𝑝, 𝑞)  

IEG1 

(𝑎, 𝑏, 𝑝, 𝑟) 
√
𝑝𝐵(𝑝+

1

𝑎
+
2𝑝𝑟

𝑎
,1−

2

𝑎
)

𝐵(𝑝+
1

2𝑎
−
𝑝𝑟

𝑎
,1−

1

𝑎
)
2 − 1  

log 𝐵 (𝑝 +
1

2𝑎
−
𝑝𝑟

𝑎
, 1 −

1

𝑎
) − log 𝑝 +

1

𝑎
𝜓(1) − (

1

2𝑎
−
𝑝𝑟

𝑎
)𝜓(𝑝) −  

(
1

2𝑎
+
𝑝𝑟

𝑎
)𝜓(1 + 𝑝)  

−
1

𝑎
𝜓 (1 −

1

𝑎
) + (

1

2𝑎
−
𝑝𝑟

𝑎
)𝜓 (𝑝 +

1

2𝑎
−
𝑝𝑟

𝑎
) + (

1

2𝑎
+
𝑝𝑟

𝑎
)𝜓 (1 + 𝑝 −

1

2𝑎
−

𝑝𝑟

𝑎
) − log𝐵 (𝑝 +

1

2𝑎
−
𝑝𝑟

𝑎
, 1 −

1

𝑎
) + log 𝑝  

IEG2 

(𝑎, 𝑏, 𝑝, 𝑞) 
√
𝐵(𝑝,𝑞)𝐵(𝑝+

1

2𝑎
,𝑞−

2

𝑎
)

𝐵(𝑝+
1

2𝑎
,𝑞−

1

𝑎
)
2 − 1  log 𝐵 (𝑝 +

1

2𝑎
, 𝑞 −

1

𝑎
) − log𝐵(𝑝, 𝑞) −

1

2𝑎
𝜓(𝑝) +

1

𝑎
𝜓(𝑞) −

1

2𝑎
𝜓(𝑝 + 𝑞)  

1

2𝑎
𝜓(𝑝 +

1

2𝑎
) −

1

𝑎
𝜓(𝑞 −

1

𝑎
) +

1

2𝑎
𝜓(𝑝 + 𝑞 −

1

2𝑎
) − log 𝐵 (𝑝 +

1

2𝑎
, 𝑞 −

1

𝑎
) +

log 𝐵(𝑝, 𝑞)  

dPLN 

(𝜇, 𝜎2, 𝛼, 𝛽) 
√
(𝛼−1)2(𝛽+1)2

𝛼𝛽(𝛼−2)(𝛽+2)
𝑒𝜎

2
− 1  

𝜎2

2
+ log [

𝛼𝛽

(𝛼−1)(𝛽+1)
] −

𝛽−𝛼

𝛼𝛽
  

𝜎2

2
− log [

𝛼𝛽

(𝛼−1)(𝛽+1)
] +

𝛽−𝛼+2

(𝛼−1)(𝛽+1)
  

GB1 

(𝑎, 𝑏, 𝑝, 𝑞) 
√
𝐵(𝑝,𝑞)𝐵(𝑝+

2

𝑎
,𝑞)

𝐵(𝑝+
1

𝑎
,𝑞)

2 − 1  log 𝐵 (𝑝 +
1

𝑎
, 𝑞) − log𝐵(𝑝, 𝑞) −

1

𝑎
𝜓(𝑝) +

1

𝑎
𝜓(𝑝 + 𝑞)  

1

𝑎
𝜓(𝑝 +

1

𝑎
) −

1

𝑎
𝜓(𝑝 + 𝑞 +

1

𝑎
) − log 𝐵 (𝑝 +

1

𝑎
, 𝑞) + log 𝐵(𝑝, 𝑞)  

GB2 

(𝑎, 𝑏, 𝑝, 𝑞) 
√
𝐵(𝑝,𝑞)𝐵(𝑝+

2

𝑎
,𝑞−

2

𝑎
)

𝐵(𝑝+
1

𝑎
,𝑞−

1

𝑎
)
2 − 1  log 𝐵 (𝑝 +

1

𝑎
, 𝑞 −

1

𝑎
) − log 𝐵(𝑝, 𝑞) −

1

𝑎
𝜓(𝑝) +

1

𝑎
𝜓(𝑞)  

1

𝑎
𝜓(𝑝 +

1

𝑎
) −

1

𝑎
𝜓(𝑞 −

1

𝑎
) − log 𝐵 (𝑝 +

1

𝑎
, 𝑞 −

1

𝑎
) + log 𝐵(𝑝, 𝑞)  

𝜓(∙) denotes the digamma function [log Γ(∙)]′ = Γ′ Γ⁄ .  

 

 

 



3 Shape of the probability density functions for the extended G and their inverse distributions 

3.1 Shape of the extended G distribution of the second kind 

 

The PDF of the EG2 is expressed as follows: 

𝑓EκG2(𝑥; 𝑎, 𝑏, 𝑝, 𝑞) =
𝑎

𝑏𝐵(𝑝, 𝑞)

𝑧𝑝−
1
𝑎(1 − 𝑧)𝑞+

1
2𝑎

1 −
1
2
𝑧

=
𝑎

𝑏𝑎𝑝𝐵(𝑝, 𝑞)

𝑥𝑎𝑝−1

(
1
2
(
𝑥
𝑏
)
𝑎

+ √1 +
1
4
(
𝑥
𝑏
)
2𝑎

)

𝑝+2𝑞−1

√1 +
1
4
(
𝑥
𝑏
)
2𝑎

,

𝑧 = (
𝑥

𝑏
)
𝑎

[√1 +
1

4
(
𝑥

𝑏
)
2𝑎

−
1

2
(
𝑥

𝑏
)
𝑎

] = 2 [√1 + 4 (
𝑥

𝑏
)
−2𝑎

+ 1]⁄ . 

 

The EG2 has power tails s.t. 𝑓EκG2(𝑥)~𝑐1𝑥
𝑎𝑝−1  when 𝑥 → 0  and 𝑓EκG2(𝑥)~𝑐2𝑥

−2𝑎𝑞−1  when 𝑥 → ∞. 

Because the sign of 
𝑑

𝑑𝑧
log 𝑓EκG2(𝑥), the derivative of the log-density function with respect to 𝑧, corresponds to 

the sign of a quadratic function of 𝑧 shown below and 𝑧(𝑥) is a strictly monotonic increasing function for x 

with a positive derivative, the conditions for existence of the mode or local maximum of the PDF can be 

derived.  

𝐴𝑧2 + 𝐵𝑧 + 𝐶, where 𝐴 = −
1

2
(𝑝 −

1

𝑎
) +

1

2
(𝑞 +

1

2𝑎
) − 1,

𝐵 = −
3

2
(𝑝 −

1

𝑎
) − (𝑞 +

1

2𝑎
) + 1, 𝐶 = 𝑝 −

1

𝑎
. 

 

In the case 𝑝 >
1

𝑎
, 𝑓EκG2(𝑥) → 0 when 𝑥 → 0, and the PDF has a single peak. The peak is located at the 

following point: 

𝑥 = 𝑏 (
𝑧

√1 − 𝑧
)
1 𝑎⁄

, 

𝑧 =
3𝑝 + 2𝑞 −

2
𝑎
− 1 − √(𝑝 + 2𝑞)2 + 2(𝑝 − 2𝑞 −

2
𝑎
) + 1

2 (𝑝 + 𝑞 −
1
2𝑎
− 1)

  if 𝑝 + 𝑞 −
1

2𝑎
− 1 > 0, 

𝑧 =
2𝑝 −

2
𝑎

3𝑝 + 2𝑞 −
2
𝑎
− 1

                                                                        if 𝑝 + 𝑞 −
1

2𝑎
− 1 = 0, 

𝑧 =
3𝑝 + 2𝑞 −

2
𝑎
− 1 + √(𝑝 + 2𝑞)2 + 2(𝑝 − 2𝑞 −

2
𝑎
) + 1

2 (𝑝 + 𝑞 −
1
2𝑎
− 1)

  if 𝑝 + 𝑞 −
1

2𝑎
− 1 < 0. 

 

In the case 𝑝 =
1

𝑎
, the PDF takes a finite positive value at the left limit s.t. 𝑓EκG2(𝑥) →

𝑎

𝑏𝐵(𝑝,𝑞)
 when 𝑥 → 0. In 

addition, if the following inequality is satisfied, the PDF has a single peak; otherwise, the PDF is monotonic 

decreasing.  

 𝑞 +
1

2𝑎
<
1

2
.  

The peak is located at the following point: 



𝑥 = 𝑏 (
𝑧

√1 − 𝑧
)
1 𝑎⁄

, 𝑧 =
2𝑞 +

1
𝑎
− 1

𝑞 +
1
2𝑎
− 1

.  

The PDF is monotonic increasing on the left of the peak and monotonic decreasing on the right. In the case 

𝑝 <
1

𝑎
, the PDF is infinite at the left limit s.t. 𝑓EκG2(𝑥) → ∞ when 𝑥 → 0. In addition, if the following three 

inequalities are satisfied, the PDF has a local maximum and minimum; otherwise, the PDF is monotonic 

decreasing. 

(𝑝 + 2𝑞)2 + 2(𝑝 − 2𝑞 −
2

𝑎
) + 1 > 0;   𝑝 + 𝑞 −

1

2𝑎
− 1 < 0;  3𝑝 + 2𝑞 −

2

𝑎
− 1 < 0.  

The maximum and minimum points are at the following locations: 

𝑥 = 𝑏 (
𝑧

√1 − 𝑧
)
1 𝑎⁄

,  

𝑧 =
3𝑝 + 2𝑞 −

2
𝑎
− 1 − √(𝑝 + 2𝑞)2 + 2(𝑝 − 2𝑞 −

2
𝑎
) + 1

2 (𝑝 + 𝑞 −
1
2𝑎
− 1)

     (Maximum point), 

𝑧 =
3𝑝 + 2𝑞 −

2
𝑎
− 1 + √(𝑝 + 2𝑞)2 + 2(𝑝 − 2𝑞 −

2
𝑎
) + 1

2 (𝑝 + 𝑞 −
1
2𝑎
− 1)

    (Minimum point). 

 

Figure 1 charts the PDFs for various parameter values while Figure 2 compares the PDFs of the EG2 and GB2 

for the same parameter values except the scale parameter b. The scale parameters of the EG2 are adjusted to 

equalize the mean to that of the GB2 with the unity scale parameter. The density of the EG2 is thicker than 

that of the GB2 around the peak and left tail, while the former is thinner than the latter around the right tail.
3
 

The same condition holds for the left limit of both PDFs, i.e., both PDFs approach zero or a finite positive 

value or diverge to infinity when 𝑥 → 0 depending on whether 𝑝 >
1

𝑎
, 𝑝 =

1

𝑎
 or 𝑝 <

1

𝑎
. Unimodality is also 

common for the two PIDMs in the case 𝑝 >
1

𝑎
, whereas the possible existence of the mode or local maximum 

is a different characteristic of the EG2 from the GB2 in the case 𝑝 =
1

𝑎
 and 𝑝 <

1

𝑎
. 

 

3.2 Shape of the extended G distribution of the first kind 

 

   The PDF of the EG1 is implicitly expressed as follows: 

𝑓EκG1(𝑥; 𝑎, 𝑏, 𝑞, 𝑟) =

𝑎 [−(1 − 𝜋)𝑟
(1 − 𝜋)

1
2𝑞 − (1 − 𝜋)

−
1
2𝑞

1 𝑞⁄
]

−
1
𝑎+1

𝑏 [(𝑞𝑟 +
1
2
) (1 − 𝜋)

𝑟+
1
2𝑞
−1
− (𝑞𝑟 −

1
2
) (1 − 𝜋)

𝑟−
1
2𝑞
−1
]

,

𝜋 = 𝐹EκG1(𝑥; 𝑎, 𝑏, 𝑞, 𝑟). 

 

 

                                                   
3 The peak of the PDF of the GB2 is located at 𝑥 = 𝑏[(𝑎𝑝 − 1) (𝑎𝑞 − 1)⁄ ]1 𝑎⁄  in the case 𝑝 >

1

𝑎
. 



 

Fig. 1  PDF of the EG2 

 

 

Fig. 2  PDFs of the EG2 and GB2 with the same mean and parameter values except the scale parameters 
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The PDF has power tails s.t. 𝑓EκG1(𝑥)~𝑐3𝑥
𝑎−1 when 𝑥 → 0 and 𝑓EκG1(𝑥)~𝑐4𝑥

−𝑎 (1 2𝑞⁄ −𝑟)⁄ −1 when 𝑥 → ∞. 

Because the sign of 
𝑑

𝑑𝜋
log 𝑓EκG1(𝑥) corresponds to the sign of the quadratic function below and 𝜋(𝑥) is a 

strictly monotonic increasing function for x with a positive derivative, the conditions for the existence of the 

mode or local maximum of the PDF can be derived. 

𝐴𝑋2 + 𝐵𝑋 + 𝐶,  

where 𝑋 = (1 − 𝜋)
1
𝑞;   𝐴 =

2𝑞(𝑎 − 𝑟) − 1

𝑎
(𝑟 +

1

2𝑞
) , 𝐶 =

2𝑞(𝑎 − 𝑟) + 1

𝑎
(𝑟 −

1

2𝑞
) ,

𝐵 = −𝐴 − 𝐶 +
2

𝑞

(𝑎 − 1)

𝑎
. 

 

In the case 𝑎 > 1, 𝑓EκG1(𝑥) → 0 when 𝑥 → 0, and the PDF has a single peak. The peak is located at the 

following point:  

𝑥 = 𝐹EκG1
−1 (1 − 𝑋𝑞), 

𝑋 =
−𝐵 − √𝐵2 − 4𝐴𝐶

2𝐴
   if 𝑞(𝑎 − 𝑟) >

1

2
, 

𝑋 = −
𝐶

𝐵
                             if 𝑞(𝑎 − 𝑟) =

1

2
, 

𝑋 =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
  if 𝑞(𝑎 − 𝑟) <

1

2
. 

 

In the case 𝑎 = 1, the PDF takes a finite positive value at the left limit s.t. 𝑓EκG1(𝑥) →
𝑎

𝑏
 when 𝑥 → 0. In 

addition, if the following inequality is satisfied, the PDF has a single peak; otherwise, the PDF is monotonic 

decreasing. 

𝑟 >
1

2
.  

The peak is located at the following point: 

𝑥 = 𝐹EκG1
−1 (1 − 𝑋𝑞), 𝑋 =

𝐶

𝐴
.  

The PDF is monotonic increasing on the left of the peak and monotonic decreasing on the right. In the case 

𝑎 < 1, the PDF is infinite at the left limit s.t. 𝑓EκG2(𝑥) → ∞ when 𝑥 → 0. In addition, if the following three 

inequalities are satisfied, the PDF has a local maximum and minimum; otherwise, the PDF is monotonic 

decreasing. 

𝑞(𝑎 − 𝑟) <
1

2
 (⇔ 𝐴 < 0);   0 < 𝐵 < −2𝐴;  𝐵2 > 4𝐴𝐶.  

The maximum and minimum points are at the following locations: 

𝑥 = 𝐹EκG1
−1 (1 − 𝑋𝑞),  

𝑋 =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
     (Maximum point), 

𝑋 =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
    (Minimum point). 

 

Figure 3 charts the PDFs for various parameter values. 

 

3.3 Shape of the inverse distributions of the extended G distributions 

 



   The IEG1 also has power tails s.t. 𝑓IEκG1(𝑥)~𝑐5𝑥
𝑎 (1 2𝑝−𝑟⁄ )⁄ −1  when 𝑥 → 0 and 𝑓IEκG1(𝑥)~𝑐6𝑥

−𝑎−1 

when 𝑥 → ∞. The PDF approaches zero or a finite positive value or diverges to infinity when 𝑥 → 0 

depending on whether 𝑎 >
1

2𝑝
− 𝑟, 𝑎 =

1

2𝑝
− 𝑟 or 𝑎 <

1

2𝑝
− 𝑟. In the case 𝑎 >

1

2𝑝
− 𝑟, the PDF is unimodal; 

otherwise, the PDF is always monotonic decreasing without further restrictions on the parameters, unlike that 

of the EG1. 

   Likewise, the IEG2 has power tails s.t. 𝑓IEκG2(𝑥)~𝑐7𝑥
2𝑎𝑝−1  when 𝑥 → 0 and 𝑓IEκG2(𝑥)~𝑐8𝑥

−𝑎𝑞−1 

when 𝑥 → ∞. The PDF approaches zero or a finite positive value or diverges to infinity when 𝑥 → 0 

according to whether 𝑝 >
1

2𝑎
, 𝑝 =

1

2𝑎
 or 𝑝 <

1

2𝑎
. In the case 𝑝 >

1

2𝑎
, the PDF is unimodal; otherwise, the PDF 

is always monotonic decreasing, unlike that of the EG2. 

 

 

Fig. 3  PDF of the EG1 

 

 

4 Methods for evaluating the goodness-of-fit 

4.1 Criteria for the goodness-of-fit to individual datasets 

 

   As shown by Okamoto [13, 15], a better evaluation based on FB measures such as the likelihood value does 

not necessarily imply more accurate inequality estimates. Thus, in this study, the goodness-of-fit shall be 

evaluated using not only FB measures but also MAB measures such as the accuracy of the estimated Lorentz 

curve which are expected to more closely reflect the accuracy of inequality estimates. 

   Four-parameter PIDMs are fitted to grouped data using the maximum likelihood (ML) method in the next 

section. The grouped data were obtained by tabulating income/consumption data in the LIS database by 22 

classes defined as ventile groups, with equal subdivision of the lowest and highest ventile groups. The 
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log-likelihood shall be computed using the following formula (its constant term is omitted): 

ℓ = 𝑁 {𝜋1 log 𝐹(𝑥1; 𝛉̂) +∑ 𝜋𝑖 log[𝐹(𝑥𝑖; 𝛉̂) − 𝐹(𝑥𝑖−1; 𝛉̂)]
21

𝑖=2
+ 𝜋22 log[1 − 𝐹(𝑥21; 𝛉̂)]}

+∑ log 𝑓(𝑥𝑖; 𝛉̂)
21

𝑖=1
, 

(4) 

where 𝜋1 = 𝜋2 = 𝜋21 = 𝜋22 = 1/40 ; 𝜋𝑖 = 1/20  for 𝑖 = 3,⋯ ,20 ; 𝑥𝑖  denotes the upper bound of the 

income/consumption in group 𝑖 for 𝑖 = 1,⋯ ,21; 𝑁 denotes sample size; 𝛉̂ denotes the ML parameters, i.e., 

𝛉̂ maximizes the log-likelihood in (4). In this study, the log-likelihood shall be mainly employed as a FB 

measure supplemented with three other FB measures: the squared root of the sum of squared errors (RSSE), the 

sum of absolute errors (SAE) and the chi-square (𝜒2) statistic between observed and estimated frequencies. 

RSSE = √∑ [𝜋𝑖 − (𝐹(𝑥𝑖; 𝛉̂) − 𝐹(𝑥𝑖−1; 𝛉̂))]
2𝑛

𝑖=1
, (5) 

SAE = √∑ |𝜋𝑖 − (𝐹(𝑥𝑖; 𝛉̂) − 𝐹(𝑥𝑖−1; 𝛉̂))|
𝑛

𝑖=1
, (6) 

𝜒2 = 𝑁√∑
[𝜋𝑖 − (𝐹(𝑥𝑖; 𝛉̂) − 𝐹(𝑥𝑖−1; 𝛉̂))]

2

𝐹(𝑥𝑖; 𝛉̂) − 𝐹(𝑥𝑖−1; 𝛉̂)

𝑛

𝑖=1
, (7) 

where 𝑛 = 22; 𝑥0 = 0. 

   The RSSE between the observed and estimated Lorentz curves (LRSSE) shall be employed as a MAB 

measure ([13, 15]).  

LRSSE = √∑ (𝐿𝑖 − 𝐿(𝜆𝑖; 𝛉̂))
2𝑛

𝑖=1
, (8) 

where 𝜆𝑖 = ∑ 𝜋𝑗𝑗≤𝑖 ∑ 𝜋𝑗
𝑛
𝑗=1⁄  expresses the cumulative population share up to group i; 𝐿𝑖  expresses the 

cumulative money share up to group i, i.e., a point (𝜆𝑖 , 𝐿𝑖) is on the empirical Lorentz curve. Because popular 

inequality indices including the Gini index are sensitive to distribution tails, the LRSSE in (8) shall be 

supplemented with its modified version which puts more importance on the accuracy near both ends.  

LwRSSE = √∑ 𝑤𝑖 (𝐿𝑖 − 𝐿(𝜆𝑖; 𝛉̂))
2𝑛

𝑖=1
, 𝑤𝑖 =

1

𝜆𝑖(1 − 𝜆𝑖)
∑

1

𝜆𝑖(1 − 𝜆𝑖)

𝑛

𝑖=1
⁄ . 

In addition to the LRSSE, the absolute error between the observed and estimated Gini index (AEG) shall also 

be used as another primary MAB measure supplemented with the absolute error of the mean log deviation 

(MLD) and the Theil index. 

   In this study, the overall evaluation of PIDMs shall be performed by summarizing pairwise comparisons of 

the goodness-of-fit to individual datasets, as explained in the next subsection. The goodness-of-fit of two 

PIDMs to each dataset shall be compared not only by each single measure but also by combinations of those 

measures, such as a combination of the likelihood value and LRSSE. When one of the two models is 

unanimously judged to be superior to another by the selected measures, the former shall be regarded to be a 

better fit than the latter, while the pairwise comparison shall be regarded as invalid in the case of inconsistent 

evaluation among combined measures. Unfortunately, there rarely exists a PIDM among the existing PIDMs 

and new ones introduced in this paper that performs the best in comparison across all PIDMs, by both the 

likelihood value and the LRSSE or other combinations of FB and MAB measures, although it is ideal to choose 

the best model based on such across-the-board comparisons. Thus, the search for the ‘best’ PIDM that 

overwhelmingly outperforms any other in terms of both FB and MAB criteria remains a future research task. 



 

4.2 Methods for the overall evaluation 

 

The overall evaluation shall be performed to choose the most ‘suitable’ PIDM by summarizing pairwise 

comparisons of the goodness-of-fit to individual datasets among four-parameter PIDMs. The PIDMs are fitted 

to the empirical size distributions of six variables, i.e., household gross income, disposable income and 

consumption and their equivalized variables in countries from waves 4-6 of the LIS database. Thus, the datasets 

can be divided into eighteen groups according to wave, variable and equivalization/non-equivalization. The 

eighteen dataset groups shall hereafter be called ‘categories.’ The evaluations of the goodness-of-fit of a pair of 

PIDMs to individual datasets are aggregated using two types of scores. One is the ratio of datasets gained 

(RoDG) defined below. When the RoDG of a PIDM over its counterpart PIDM is higher than 50%, the former 

is identified as more frequently a better fit to the datasets than the latter in terms of a given measure or 

combination of measures introduced in the previous subsection.  

RoDG =
No. of datasets gained

No. of dataset gained + No. of datasets lost 
× 100 (%), (10) 

where ‘datasets gained/lost’ is defined as datasets to which a PIDM is a better or worse fit than its counterpart 

in terms of a given measure or combination of measures. In instances where the two PIDMs happen to tie for 

the goodness-of-fit to a dataset, both PIDMs are regarded gaining a half. Another type of score is the number of 

categories gained (NoCG) defined below. When the NoCG of a PIDM is more than 9 (categories), i.e., greater 

than that of its counterpart, it means that the former is dominant in more categories in terms of number of 

datasets gained.  

NoCG =∑ 𝐼(No. of datasets gained in category 𝑖 > No. of datasets lost in category 𝑖)
𝑖

, (11) 

where 𝐼( ) denotes an indicator function, i.e., the function takes a value of one if the inequality in the 

argument is true, a value of zero if the opposite inequality holds, or a value of 0.5 if equality holds. The reason 

for employing the NoCG as well as the RoDG is that there is a possibility that a PIDM could be dominant over 

its counterpart only in specific categories, such as categories of equivalized variables, even if the RoDG is 

relatively higher. When combined measures (such as a combination of the likelihood value and LRSSE) are 

applied to evaluate the goodness-of-fit to individual datasets, invalid cases will exist. Because a higher ratio of 

valid cases is also desirable for suitable PIDMs, the following validity ratio (VR) shall also be computed.  

VR =
No. of valid relevant pairwise comparisons 

Total no. of relevant pairwise comparisons
× 100

=
No. of datasets gained + No. of datasets lost

Total no. of datasets
× 100 (%) 

(12) 

 

 

5 Empirical comparisons in goodness-of-fit among four-parameter statistical distributions 

5.1 Data and estimation procedure 

 

   Four-parameter PIDMs introduced in section 2 shall be fitted to empirical size distributions of gross income, 

disposable income and consumption in many countries included in the LIS database. The consumption 

distribution is included among the target distributions in this study in consideration of views in the literature 



that the level of household consumption (during sufficiently long period of time) more accurately reflects the 

standard-of-living than household income. To make the number of datasets in each category (classified 

according to wave and variables) as equal as possible, countries for which all three variables are available were 

selected from waves 4-6. As listed in Table 2, data for approximately 20 countries are available in each wave. 

As for the consumption data, one or two countries were excluded in waves 5 and 6 because, for those countries, 

the MLE procedure either does not converge or results in a very poor fit in most PIDMs. Equivalized variables 

are computed by dividing the respective variables by the square root of the number of household members. 

 

 

Table 2  LIS datasets used for the empirical evaluation of PIDMs 
 

Country 
Country 

Code 
Wave 4 Wave 5 Wave 6 

Austrailia AU 1995 2001 2003 

Austria AT 1995 2000 2003 

Belgium BE 1995 2000  

Canada CA 1994 2000  2004* 

Czech Rep. CZ   2004 

Denmark DK 1995 2000 2004 

Estonia EE  2000 2004 

France FR 1994 2000 2005 

Germany DE 1994 2000 2004 

Greece GR 1995 2000 2004 

Hungary HU 1994 1999 2005 

Ireland IE 1995 2000 2004 

Israel IL 1997 2001 2005 

Italy IT 1995 2000 2004 

Luxembourg LU 1997 2000 2004 

Netherlands NL   2004 

Romania RO 1995   

Russia RU  2000  

Slovenia SI 1997 1999 2004 

Spain ES 1995 2000 2004 

Sweden SE  2000 2005 

Switzerland CH  2000 2004 

Taiwan TW 1995 2000 2005 

United Kingdom UK 1995  1999*  2004* 

United States US 1997     

No. of countries 19 21 (20) 21 (19) 

* Consumption data are not used for the evaluation. See explanation in the text. 

The reference years for the data in waves 4-6 are listed in columns of ‘wave 4,’ 

‘wave 5’ and ‘wave 6,’ respectively. 

 

   In a manner similar to that in the studies by Bandourian et al. [1] and Reed and Wu [17], PIDMs are fitted 

to grouped data. Although ventile-grouped data are used in the literature, the LIS data are tabulated into 22 

groups, defined as ventile groups with equal subdivisions of the lowest and highest ventile groups in this study, 

in consideration that popular inequality indices are sensitive to distribution tails. The slightly more detailed 

grouped data are expected to make the fitting results, especially inequality estimates, closer to those obtained 



from the microdata while restraining the increase of computational burden, similar to ventile grouping. The tail 

subdivisions also provide another advantage in that the ML estimation empirically becomes more stable. In 

certain exceptions, some of the 22 groups are collapsed for small sample data. The tabulations are made using 

population weights (the product of household weights and the number of household members) for equivalized 

variables, while household weights are used for tabulating non-equivalized variables. 

   Seven four-parameter PIDMs introduced in section 2, i.e., the dPLN, GB1, GB2, EG1, EG2, IEG1 and 

IEG2, shall be fitted to the grouped data using the MLE procedure, which maximizes the log-likelihood in (4). 

The simplex Nelder-Mead method ([12]), implemented in function ‘optim’ of statistical computer package R, is 

used to solve the maximization problem. When fitting four-parameter PIDMs to grouped data, the 

maximization is sometimes sensitive to the initial values. To address this issue, two or more sets of initial 

values are used for the maximization, and the obtained parameters that attain the largest likelihood values are 

chosen as the final estimates. The sets of initial values are obtained by fitting three-parameter PIDMs that 

correspond to special cases of the respective PIDM. Empirically, the initial value-setting strategy can obtain 

sufficiently accurate estimates. For example, to fit the GB2 by the MLE procedure, the Dagum and 

Singh-Maddala distributions are fitted in advance to obtain the initial values. The G and Singh-Maddala 

distributions are used to obtain the initial values for the MLE fitting of the EG1. Similarly, the G, Dagum 

and Singh-Maddala distributions are employed to fit the EG2. Either the Dagum or Singh-Maddala 

distribution is not a special case of the EG2; that said, because the EG2 is close to the GB2 in form, the ML 

parameters of both models are used as initial values. 

 

5.2 Goodness of fit to individual datasets and categories in wave 6 

 

   Tables 3-1 through 3-6 list the log-likelihood value, LRSSE and AEG (absolute error of the Gini index) for 

each of the seven four-parameter PIDMs fitted to each dataset by 6 categories (equivalized/non-equivalized 

gross income, disposable income and consumption) in wave 6. Two types of scores for PIDMs are listed in the 

bottom two rows. These scores quantify the overall evaluation of the goodness-of-fit to each dataset. The scores 

in the second row from the bottom indicate the number of datasets to which the respective PIDM was the best 

fit among the seven PIDMs. For cases where two/three PIDMs were equally superior, value ‘1’ is equally split 

into the two or three PIDMs. Thus, the scores took on values ranging from 0 to 19 for consumption data and 

from 0 to 21 for gross and disposable income data. Another type of score found in the bottom row indicates the 

number of pairwise comparisons in which the respective PIDM was a better fit to the dataset relative to its 

counterpart PIDM more frequently than the other way around. In cases where a pairwise comparison ended in a 

draw, value ‘1’ was equally split into the respective two PIDMs. Thus, those scores took on values ranging 

from 0 to 6.  

   As for the first type of scores based on across-the-board comparisons, the EG2 marks the highest in the 

categories of non-equivalized disposable income and equivalized/non-equivalized gross income in terms of the 

likelihood value, while the IEG1 marks the highest in the categories of equivalized/non-equivalized gross and 

disposable income in terms of the LRSSE and AEG. No PIDM clearly attains a high score in terms of both the 

likelihood value and LRSSE/AEG. For example, in the categories of non-equivalized disposable income, the 

EG2 marks the highest in terms of the likelihood value; nevertheless the EG2 receives the lowest score 

(zero) in terms of the LRSSE and AEG. In contrast, the IEG1 earns the highest mark in terms of the LRSSE 

and AEG although the IEG1 received no score in terms of the likelihood value. 



   The second type of scores based on pairwise comparisons also indicate that the EG2 is the best among the 

seven PIDMs in the categories of non-equivalized disposable income and equivalized/non-equivalized gross 

income in terms of the likelihood value. Furthermore, the EG2 attains better scores in the categories of 

consumption and in terms of the LRSSE and AEG relative to the first type of scores, whereas the EG1 

replaces the IEG1 as the best PIDM in the categories of equivalized/non-equivalized gross income in terms of 

the LRSSE and AEG. In particular, the IEG1’s score decreases substantially in the category of 

non-equivalized gross income. In summary, the overall evaluation using the two types of scores implies that the 

goodness-of-fit of the IEG1 tends to vary substantially among countries, and the model is unsuitable for 

general use. Thus, the above example provides a justification for the overall evaluation based on pairwise 

comparisons. 

   Figure 4-1 shows the PDFs of the dPLN, GB2, EG1 and EG2 fitted to the empirical size distribution of 

equivalized gross income in Sweden for 1995. Figure 4-2 shows the PDFs of the same four PIDMs fitted to the 

non-equivalized gross income in Canada for 1994. In both charts, the income levels are proportionally adjusted 

to make the scale parameter b of the GB2 to unity, and close-ups of the PDFs around the peaks and parts of the 

right distribution tails are also presented. The EG2 is the best fit to equivalized gross income in Sweden 

among the four PIDMs in terms of all three criteria – the likelihood value, LRSSE and AEG. The 

goodness-of-fit of the EG1 is close to that of the EG2 in terms of all three criteria. As for non-equivalized 

gross income in Canada, the EG2 is the best and the dPLN and EG1 are much inferior to the EG2 in terms 

of the likelihood value, whereas the dPLN is the best and the EG1 is also better than the EG2 in terms of the 

LRSSE and AEG. From Figures 4-1 and 4-2, one can notice that the goodness-of-fit of the PIDMs is related to 

similarities in the shape of the PDFs. The EG2’s density is thinner than the GB2’s density around the right tail, 

which is similar to the comparisons with the same mean and same parameter values except the scale parameters 

charted in Figure 2 (although the difference in density is substantially small relative to that in Figure 2). It 

should also be noted that the EG2’s density around the peak is slightly thinner than the GB2’s density, unlike 

the comparisons in Figure 2. 

 

5.3 The overall evaluation of the goodness-of-fit based on a single criterion 

 

   Tables 4-1 through 4-3 contain the NoCGs defined as (11) and RoDGs defined as (10) that summarize all 

pairwise comparisons regarding goodness-of-fit to datasets from waves 4-6. For example, Table 4-1 

summarizes all pairwise comparisons in terms of the likelihood value. The cells at the intersection of column 

‘EG2’ and row ‘dPLN’ in the panel for non-equivalized variables contain a score of 9 for the NoCG and 85.0 

for the RoDG. The scores indicate that the EG2 was more frequently a better fit to the datasets in each of the 

nine categories (gross income, disposable income and consumption data in three waves) and the former was 

better fitted to 85.0% of all the datasets in the nine categories relative to the dPLN in terms of the likelihood 

value. The overall evaluation of Tables 4-1 through 4-3 reveals that the EG2 outperforms the GB1, GB2 and 

IEG1 in terms of the LRSSE and AEG as well as the likelihood value. The EG2 also outperforms the IEG2 

with the exception of achieving equivalent goodness-of-fit in the categories of equivalized variables evaluated 

in terms of the likelihood value. As for the dPLN and EG1, the EG2 is superior to each in terms of the 

likelihood value in the overall evaluation, whereas the EG2 is inferior to the dPLN in terms of the AEG and 

inferior to the EG1 in terms of the LRSSE and AEG in the categories of non-equivalized variables in the 

overall evaluation. 



 

 

 

Fig. 4-1  Fitted PIDMs to equivalized gross income in Sweden, 2005 

 

 

 

Fig. 4-2  Fitted PIDMs to non-equivalized gross income in Canada, 2004 

 

   Tables 5-1 through 5-4 detail the overall evaluation for the pairwise comparisons among the four selected 
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PIDMs: the dPLN, GB2, EG1 and EG2. To save space, detailed results for the GB1, IEG1 and IEG2 are 

omitted because of their inferior goodness-of-fit in terms of both FB and MAB measures. Because the GB2 

generally produces a better fit than the GB1 in addition to its being popular, its scores are kept for reference in 

Tables 5-1 through 5-4. For example, Table 5-1 details the overall evaluation in terms of the likelihood value. 

The cells at the intersection of column ‘GB2 vs. EG2’ and row ‘All categories’ in Table 5-1 contain a score of 

15 for the NoCG and 63.2 for the RoDG. These scores indicate that the EG2 is more frequently a better fit to 

the datasets in fifteen of the eighteen categories and a better fit to 63.2% of all the datasets in the eighteen 

categories relative to the GB2 in terms of the likelihood value. A breakdown of the overall scores into types of 

categories shows that the EG2 outperforms the GB2 in all nine categories of non-equivalized variables, 

marking a higher RoDG, 70.3%, whereas the overall evaluations indicate its lower superiority in the categories 

of equivalized variables (NoCG 6 and RoDG 56.1%) and, in particular, equivalized consumption. Tables 5-2 

and 5-4 show that, overall, the EG2 outperforms the GB2 in terms of the LRSSE and AEG as well as the 

likelihood value. The former is dominant over the latter in each category for non-equivalized variables. The 

RoDGs are above 55%, although lower relative to the corresponding ratios attained when evaluated by the 

likelihood value.  

   As for the pairwise comparisons between the EG1 and EG2, the latter is dominant over the former in all 

eighteen categories in terms of the likelihood value, marking a high RoDG (78.2%), whereas the NoCG falls to 

7.5 under half of all categories and the RoDG decreases to 47.5% slightly below the neutral rate of 50% when 

evaluated by the LRSSE. The EG2 receives the same NoCG score as the EG1 but the RoDG falls to 47.8% 

when evaluated by the AEG, indicating that the EG2 is slightly inferior to the EG1 in terms of MAB criteria. 

   The pairwise comparisons between the dPLN and EG2 yield results similar to those between the EG1 

and EG2, but accompanied by some indication of possible disagreement among the MAB criteria. In terms of 

the likelihood value, the EG2 clearly outperforms the dPLN such that the former is dominant over the latter in 

sixteen of eighteen categories and especially dominant in all nine categories of non-equivalized variables, 

marking the RoDG at 71.1% overall and 85.0% in the categories of non-equivalized variables. The LRSSE, one 

of the MAB measures, yields an overall evaluation that slightly favors the EG2 in that the EG2 is dominant 

over the dPLN in eleven of eighteen categories and tied with the dPLN in one category, along with a 

slightly-more-than-half rate of the overall RoDG (53.3%). In contrast, the AEG, a different MAB measure, 

tends to favor the dPLN such that the EG2 is dominant over the dPLN in only four categories and ties the 

dPLN in three categories, along with an overall RoDG of 46.9%, slightly lower than the neutral rate of 50%. 

Thus, the LRSSE does not agree with the AEG in the overall evaluation, although it should also be noted that 

both evaluations are subtle. For this reason, Table 5-3 is added to present the overall evaluation based on the 

LwRSSE defined as (9), which places importance on the accuracy of the estimated Lorentz curve near both 

ends; that said, the EG2 is still dominant over the dPLN in ten of eighteen categories and its overall RoDG 

over the dPLN is 51.1%, still above the neutral rate. Thus, the overall evaluation remains favorable to the EG2 

although somewhat closer to that of the AEG, relative to the LRSSE’s. Those results imply that evaluation of 

goodness-of-fit should not rely on a single MAB measure. 

   The EG1 is inferior to the dPLN, GB2 and EG2 in all eighteen categories in terms of the likelihood value, 

but superior to the GB2 and EG2 in terms of the LRSSE and AEG in the overall evaluation. As for the 

pairwise comparisons between the dPLN and EG1 in terms of MAB measures, the former appears to 

outperform the latter in terms of the AEG except for equivalized gross and disposable income. On the whole, a 

definitive judgment is difficult to make. 



   The (omitted) overall evaluations based on other FB measures, i.e., RSSE, ASE and 
2
 in (5) through (7), 

are similar to those based on the likelihood value. The EG2 outperforms other PIDMs in terms of those FB 

measures as well as the likelihood value. Inconsistent evaluations can occur between FB and MAB measures 

(and/or among MAB measures). Thus, in the next subsection, the overall evaluation shall be performed again 

according to combinations of the two types of criteria. 

 

5.4 The overall evaluation of the goodness-of-fit based on combined criteria 

 

   Tables 6-1 through 6-6 summarize all pairwise comparisons among the dPLN, GB2, EG1 and EG2 by 

combined measures. In addition to a combination of the likelihood and LRSSE and that of the likelihood and 

AEG, other combinations are also used for the overall evaluation. These include 1) a combination of the 

likelihood and absolute error of the MLD; 2) the likelihood and absolute error of the Theil index; and 3) all four 

FB measures (the likelihood value, RSSE, ASE and 
2
) with LRSSE/AEG. 

   No matter how the measures are combined, the EG2 outperforms other PIDMs. In particular, the EG2 is 

dominant over its counterparts in almost all nine categories (although tied with the GB2 in some categories) for 

non-equivalized variables, making the RoDGs higher than or about the same as 70% over the GB2 and higher 

than or about the same as 80% over the dPLN and EG1. Overall, the EG2 is also superior to the dPLN, GB2 

and EG1 in the categories of equivalized variables, although inferior to the dPLN in the categories of 

equivalized disposable income. It should be noted, however, that the VRs defined as (12) are generally not so 

high. The VR indicates the rate of valid cases on which all respective measures agree regarding which PIDM is 

a better fit to a given dataset. The rates are below 50% in the pairwise comparisons between the dPLN and 

EG2. Exceptions include instances of applying a combination of the likelihood value and LRSSE, as well 

instances within categories of equivalized variables when applying a combination of the likelihood value and 

the accuracy of the Theil index. In the pairwise comparisons between the GB2 and EG2, the rates are 

generally above 50% when applying combinations of two measures, including one from FB measures and 

another from MAB measures. When combining all FB measures with LRSSE/AEG, rates fall below 50%.  

   The EG1 is judged to be inferior to the dPLN, GB2 and EG2 by any combination of FB and MAB 

measures. 

 

6 Conclusion 

  

   This paper studies two new four-parameter PIDMs derived by generalizing the G distribution, which has 

an empirical tendency to estimate inequality indices more accurately than the existing three-parameter PIDMs. 

Empirical comparisons using the LIS datasets indicate that the EG1, one of the two kinds of generalizations, 

tends to be a good fit to empirical income/consumption distributions in terms of MAB criteria, such as the 

accuracy of the estimated Lorentz curve and the Gini index. Thus, the EG1 appears to inherit the features 

from the G. The EG2, another kind of generalization, can also be viewed as a new variant of a generalized 

beta distribution that is different from the GB1 and GB2 but closer to the GB2 in form. The latter new model 

tends to be a good fit to empirical income/consumption distributions in terms of both MAB criteria and FB 

criteria, such as the likelihood, leading to superiority over the GB1 and GB2 in both terms. Thus, the EG2 

appears to create positive synergetic effect between the G and GB2.  

   The search continues for the ideal PIDM that will be a best fit to empirical income/consumption 



distributions in all aspects. The research most likely requires finding new statistical distributions with at least 

five or more parameters. Hopefully, the new four-parameter PIDMs in this paper may contribute to the future 

research for creating better-fitting models. 



 

Table 3-1  Goodness-of-fit to individual datasets from wave 6 – non-equivalized consumption 
 

Country & Year 
Log-likelihood*   LRSSE   Absolute error of the Gini index 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

AU03 -6.20  0.00  -13.26  -200.71  -11.50  37.45  -1169.83  
 

1.488  1.530  1.471  0.684  1.458  1.505  0.162  
 

0.437  0.451  0.433  0.191  0.391  0.437  0.039  

AT04 -1.19  0.00  2.12  -1.06  -1.61  1.63  -15.18  
 

0.017  0.018  0.013  0.026  0.019  0.016  0.011  
 

0.005  0.006  0.004  0.008  0.006  0.005  0.000  

CZ04 -0.73  0.00  0.09  -0.09  0.09  -0.14  -42.09  
 

0.008  0.007  0.009  0.005  0.009  0.004  0.021  
 

0.002  0.002  0.003  0.001  0.003  0.001  0.004  

DK04 -572.40  0.00  -630.90  -910.20  0.00  0.00  200.80  
 

0.060  0.029  0.033  0.032  0.029  0.029  0.033  
 

0.012  0.005  0.008  0.001  0.005  0.005  0.010  

EE04 -0.67  0.00  -0.16  0.37  -0.04  0.37  -44.42  
 

0.289  0.290  0.288  0.293  0.286  0.293  0.336  
 

0.092  0.092  0.092  0.094  0.091  0.094  0.102  

FR05 -7.86  0.00  -31.33  -39.19  0.01  -0.01  0.47  
 

0.006  0.007  0.012  0.034  0.008  0.008  0.011  
 

0.000  0.003  0.002  0.009  0.003  0.003  0.004  

DE04 4.37  0.00  -4.44  0.81  -5.29  2.19  -116.97  
 

0.033  0.033  0.032  0.031  0.030  0.035  0.058  
 

0.011  0.011  0.010  0.010  0.010  0.011  0.016  

GR04 3.52  0.00  -4.66  0.58  -4.80  2.75  -39.95  
 

0.016  0.022  0.022  0.026  0.028  0.019  0.016  
 

0.005  0.007  0.007  0.009  0.009  0.006  0.002  

HU05 -0.08  0.00  -3.73  -3.36  0.03  -0.02  -0.17  
 

0.006  0.005  0.021  0.036  0.006  0.005  0.004  
 

0.001  0.001  0.006  0.011  0.001  0.001  0.000  

IE04 0.60  0.00  -0.07  8.70  0.00  0.71  -209.06  
 

0.036  0.036  0.035  0.169  0.035  0.043  0.136  
 

0.009  0.010  0.009  0.058  0.009  0.013  0.028  

IL05 -2.66  0.00  -10.72  -15.56  0.00  0.00  -0.22  
 

0.003  0.007  0.010  0.032  0.007  0.007  0.009  
 

0.000  0.002  0.003  0.009  0.002  0.002  0.002  

IT04 -1.31  0.00  -4.79  -4.08  -0.01  0.02  -32.61  
 

0.007  0.004  0.015  0.029  0.005  0.003  0.047  
 

0.002  0.001  0.005  0.009  0.001  0.000  0.013  

LU04 0.00  0.00  3.91  -1.07  0.69  -0.73  -33.30  
 

0.066  0.065  0.055  0.046  0.059  0.049  0.043  
 

0.023  0.023  0.020  0.016  0.021  0.018  0.005  

NL04 -3.14  0.00  3.35  -0.28  3.27  0.29  -129.89  
 

0.048  0.037  0.030  0.031  0.031  0.035  0.051  
 

0.016  0.012  0.010  0.011  0.011  0.012  0.012  

SI04 -5.94  0.00  -10.57  -12.77  0.00  0.00  0.46  
 

0.009  0.009  0.007  0.030  0.009  0.008  0.011  
 

0.002  0.002  0.001  0.008  0.002  0.002  0.003  

ES04 -22.32  0.00  -32.21  -34.26  0.00  0.00  -84.37  
 

0.053  0.033  0.098  0.116  0.033  0.033  0.044  
 

0.014  0.008  0.029  0.035  0.008  0.008  0.012  

SE05 -3.41  0.00  -0.11  1.12  0.85  -0.53  -39.42  
 

0.006  0.005  0.006  0.007  0.007  0.004  0.010  
 

0.001  0.001  0.001  0.001  0.002  0.000  0.002  

CH04 0.20  0.00  -4.04  -3.25  0.09  -0.12  -3.42  
 

0.005  0.009  0.006  0.018  0.008  0.011  0.029  
 

0.002  0.003  0.001  0.005  0.003  0.003  0.009  

TW05 -17.56  0.00  4.32  11.70  5.96  -1.37  -11.04    0.007  0.006  0.005  0.006  0.005  0.007  0.011    0.001  0.001  0.000  0.001  0.000  0.001  0.002  

Score based on 
across-the-boar
d comparisons 

3  0.7  3.5  3.5  2.2  3.2  3    4  1  4  0  2  4  4    2  1  3  1  4  3  5  

Score based on 
pairwise 
comparisons 

3 4  2 1  6 5  0   2 3  5 0  4 6  1   2 3 5  0 5  1 1  

* Differences from the corresponding value of the GB2 are listed. (The same is true of the subsequent tables.) 

 

 



Table 3-2  Goodness-of-fit to individual datasets from wave 6 – non-equivalized disposable income 
 

Country & Year 
Log-likelihood*   LRSSE   Absolute error of the Gini index 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

AU03 -54.51  0.00  -61.05  -78.89  0.00  0.00  12.93   0.032  0.019  0.020  0.025  0.019  0.019  0.026   0.004  0.007  0.007  0.002  0.007  0.007  0.010  

AT04 -2.97  0.00  -2.84  0.38  1.49  -0.68  -6.27   0.011  0.011  0.007  0.008  0.008  0.014  0.022   0.003  0.004  0.002  0.001  0.003  0.004  0.006  

CA04 -22.21  0.00  -7.65  -9.82  4.93  -1.07  -31.59   0.027  0.030  0.027  0.011  0.027  0.032  0.038   0.009  0.010  0.009  0.004  0.009  0.010  0.011  

CZ04 -2.65  0.00  -22.83  -21.57  0.01  0.01  0.20   0.012  0.020  0.008  0.021  0.020  0.020  0.021   0.004  0.007  0.002  0.005  0.007  0.007  0.007  

DK04 -205.60  0.00  -1055.00  -1314.80  0.20  0.20  71.80   0.039  0.030  0.029  0.049  0.030  0.030  0.032   0.003  0.006  0.004  0.010  0.006  0.006  0.009  

EE04 0.01  0.00  -32.36  -32.08  0.15  0.14  -1.35   0.030  0.030  0.074  0.127  0.024  0.026  0.014   0.007  0.007  0.021  0.037  0.005  0.005  0.004  

FR05 -3.57  0.00  -14.78  -16.99  0.53  -0.13  -1.89   0.016  0.021  0.012  0.010  0.019  0.021  0.025   0.006  0.007  0.004  0.001  0.007  0.007  0.008  

DE04 -3.91  0.00  -21.56  -23.88  0.27  -0.04  -0.87   0.020  0.024  0.011  0.012  0.024  0.025  0.028   0.007  0.008  0.004  0.002  0.008  0.008  0.009  

GR04 0.17  0.00  -1.99  -3.96  0.09  -0.13  -8.42   0.005  0.004  0.009  0.030  0.005  0.004  0.017   0.001  0.001  0.002  0.009  0.002  0.000  0.003  

HU05 0.07  0.00  -2.99  -2.36  0.07  -0.07  -0.81   0.004  0.006  0.015  0.034  0.005  0.008  0.020   0.000  0.001  0.004  0.010  0.001  0.002  0.005  

IE04 0.26  0.00  -0.71  -4.84  -0.66  0.14  -150.69   0.349  0.368  0.341  0.151  0.350  0.441  0.160   0.113  0.120  0.112  0.045  0.101  0.146  0.049  

IL05 -20.92  0.00  -19.11  -25.27  0.00  0.00  2.92   0.018  0.036  0.030  0.011  0.036  0.036  0.041   0.006  0.012  0.011  0.002  0.012  0.012  0.014  

IT04 -0.14  0.00  -14.95  -17.64  -0.01  0.00  -0.94   0.061  0.060  0.034  0.013  0.060  0.061  0.069   0.020  0.020  0.012  0.004  0.020  0.020  0.023  

LU04 67.86  0.00  -4.96  -4.10  0.41  2.04  -2.29   0.013  0.005  0.041  0.066  0.007  0.013  0.023   0.004  0.001  0.012  0.020  0.001  0.005  0.007  

NL04 -3.26  0.00  -27.52  -33.77  0.28  0.27  0.28   0.036  0.042  0.031  0.016  0.044  0.043  0.044   0.013  0.015  0.010  0.005  0.015  0.015  0.015  

SI04 -12.48  0.00  -2.30  -1.98  0.00  0.00  1.40   0.010  0.010  0.009  0.009  0.010  0.010  0.013   0.003  0.003  0.003  0.000  0.003  0.003  0.003  

ES04 -37.67  0.00  -42.95  -51.04  0.00  0.00  5.68   0.016  0.011  0.009  0.023  0.011  0.011  0.015   0.002  0.004  0.002  0.005  0.004  0.004  0.005  

SE05 -28.77  0.00  -111.13  -135.45  0.03  0.03  7.33   0.029  0.022  0.022  0.037  0.022  0.022  0.024   0.002  0.005  0.002  0.007  0.005  0.005  0.007  

CH04 -0.51  0.00  -0.07  -0.53  0.11  -0.10  -6.93   0.011  0.009  0.009  0.003  0.007  0.010  0.019   0.004  0.003  0.003  0.000  0.002  0.004  0.004  

TW05 -4.06  0.00  0.05  -0.67  0.23  -0.10  -20.93   0.015  0.011  0.010  0.003  0.007  0.013  0.027   0.005  0.003  0.003  0.001  0.002  0.004  0.006  

UK04 0.27  0.00  -147.79  -142.77  2.42  2.33  1.98    0.044  0.043  0.019  0.025  0.051  0.050  0.055    0.015  0.015  0.006  0.005  0.017  0.017  0.019  

Score based on 
across-the-boar
d comparisons 

3  0.5  0  0  9.5  0.5  7.5    1  1  7  9  0  2  1    4  1  1  13  0  1  1  

Score based on 
pairwise 
comparisons 

2  4.5  1  0  6  4.5  3    4  2  6  5  3  1  0    5  2  4  6  3  1  0  

 

 



Table 3-3  Goodness-of-fit to individual datasets from wave 6 – non-equivalized gross income 
 

Country & Year 
Log-likelihood*   LRSSE   Absolute error of the Gini index 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

AU03 -51.83  0.00  -73.45  -87.40  0.11  0.11  12.49   0.052  0.022  0.025  0.033  0.022  0.022  0.029   0.010  0.005  0.008  0.003  0.006  0.006  0.011  

AT04 -4.96  0.00  0.18  3.80  2.37  -1.04  -9.22   0.009  0.010  0.004  0.005  0.005  0.014  0.028   0.002  0.003  0.001  0.001  0.001  0.004  0.006  

CA04 -49.58  0.00  -21.20  -19.65  4.22  -0.22  -9.80   0.032  0.044  0.038  0.018  0.040  0.045  0.049   0.010  0.014  0.013  0.006  0.013  0.014  0.015  

CZ04 -3.14  0.00  -37.19  -37.11  0.03  0.03  0.45   0.014  0.024  0.015  0.034  0.025  0.025  0.028   0.003  0.009  0.003  0.007  0.009  0.009  0.010  

DK04 -79.30  0.00  -1114.00  -1243.30  0.00  0.00  22.80   0.039  0.029  0.031  0.071  0.029  0.029  0.029   0.003  0.004  0.001  0.017  0.004  0.004  0.007  

EE04 0.00  0.00  -42.22  -41.78  0.06  0.10  -0.38   0.046  0.047  0.094  0.168  0.043  0.041  0.026   0.010  0.010  0.025  0.049  0.009  0.008  0.002  

FR05 -2.08  0.00  -11.76  -11.14  0.89  -0.38  -5.38   0.024  0.022  0.014  0.009  0.020  0.024  0.030   0.008  0.008  0.005  0.001  0.007  0.008  0.009  

DE04 -20.24  0.00  -63.08  -69.80  0.03  0.03  2.66   0.016  0.016  0.013  0.039  0.017  0.017  0.020   0.001  0.005  0.001  0.010  0.006  0.006  0.007  

GR04 0.21  0.00  -2.68  -5.12  0.01  -0.06  -6.66   0.008  0.007  0.006  0.027  0.004  0.008  0.022   0.002  0.002  0.001  0.008  0.001  0.002  0.005  

HU05 0.07  0.00  -2.98  -2.36  0.07  -0.07  -0.84   0.004  0.006  0.015  0.034  0.005  0.008  0.020   0.000  0.002  0.004  0.010  0.001  0.002  0.006  

IE04 1.63  0.00  0.26  -2.69  0.63  -3.72  -234.62   0.510  0.498  0.466  0.585  0.604  0.437  0.200   0.162  0.158  0.158  0.187  0.161  0.137  0.058  

IL05 -8.01  0.00  -35.42  -37.83  0.01  0.01  0.85   0.012  0.017  0.018  0.066  0.018  0.018  0.022   0.001  0.006  0.002  0.018  0.006  0.006  0.008  

IT04 -0.45  0.00  -19.81  -19.82  0.10  -0.01  -0.16   0.090  0.090  0.054  0.021  0.090  0.092  0.096   0.029  0.028  0.018  0.007  0.029  0.029  0.030  

LU04 -0.20  0.00  -6.74  -4.48  0.08  0.08  -3.40   0.044  0.035  0.068  0.099  0.033  0.032  0.017   0.014  0.011  0.022  0.032  0.010  0.010  0.005  

NL04 80.15  0.00  -54.27  -55.48  0.83  0.83  2.11   3.350  0.039  0.028  0.017  0.040  0.040  0.042   n.a. 0.013  0.009  0.001  0.013  0.013  0.014  

SI04 -12.48  0.00  -2.30  -1.98  0.00  0.00  1.40   0.010  0.010  0.009  0.009  0.010  0.010  0.013   0.003  0.003  0.003  0.000  0.003  0.003  0.003  

ES04 -33.30  0.00  -43.75  -49.87  0.03  0.03  4.51   0.017  0.011  0.009  0.025  0.011  0.011  0.014   0.002  0.004  0.002  0.005  0.004  0.004  0.005  

SE05 -23.57  0.00  -75.43  -90.87  0.00  0.00  4.16   0.018  0.025  0.019  0.026  0.025  0.025  0.028   0.003  0.009  0.005  0.004  0.009  0.009  0.010  

CH04 -1.91  0.00  -1.70  -1.80  0.43  -0.13  -2.19   0.017  0.017  0.013  0.004  0.015  0.018  0.023   0.006  0.006  0.004  0.000  0.005  0.006  0.006  

TW05 -4.57  0.00  0.13  0.10  0.55  -0.22  -22.03   0.013  0.009  0.007  0.005  0.005  0.011  0.027   0.004  0.002  0.002  0.002  0.001  0.003  0.006  

UK04 0.01  0.00  -269.92  -261.20  0.14  0.17  -3.78    0.026  0.026  0.027  0.076  0.027  0.028  0.038    0.009  0.009  0.004  0.021  0.009  0.010  0.014  

Score based on 
across-the-boar
d comparisons 

3  0  0  1  6.5  2.5  8    5  1  3  6  3  0  3    4  0  6  7  1  0  3  

Score based on 
pairwise 
comparisons 

3  4.5  1  0  6  4.5  2    3  4  6  0  5  2  1    5  2  6  3  4  1  0  

 

 



Table 3-4  Goodness-of-fit to individual datasets from wave 6 –equivalized consumption 
 

Country & Year 
Log-likelihood*   LRSSE   Absolute error of the Gini index 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

AU03 18.48  0.00  9.99  46.46  1.50  -11.72  -1502.47   1.274  1.387  0.902  n.a. 1.109  0.816  0.193   0.372  0.409  0.373  n.a. 0.268  0.225  0.050  

AT04 -13.23  0.00  -13.77  -15.07  0.02  0.02  -53.21   0.031  0.017  0.056  0.061  0.018  0.018  0.036   0.008  0.004  0.017  0.019  0.004  0.004  0.009  

CZ04 -0.11  0.00  0.03  0.12  -0.44  0.17  -36.49   0.008  0.006  0.006  0.006  0.008  0.004  0.028   0.002  0.001  0.001  0.001  0.002  0.001  0.007  

DK04 -19.90  0.00  -1403.50  -1505.90  0.10  -0.10  8.70   0.084  0.067  0.103  0.219  0.068  0.068  0.061   0.017  0.011  0.025  0.063  0.011  0.011  0.008  

EE04 -0.01  0.00  1.63  -1.09  1.41  -1.29  -67.17   0.262  0.265  0.265  0.268  0.264  0.267  0.288   0.086  0.087  0.087  0.088  0.087  0.088  0.090  

FR05 0.25  0.00  -11.58  -14.41  -0.13  0.05  -4.84   0.003  0.003  0.009  0.022  0.002  0.003  0.010   0.001  0.001  0.002  0.007  0.001  0.001  0.003  

DE04 -1.63  0.00  2.31  1.06  2.98  -2.92  -78.01   0.039  0.041  0.039  0.043  0.040  0.044  0.056   0.014  0.014  0.014  0.015  0.014  0.015  0.017  

GR04 -1.64  0.00  82.59  -21.58  15.43  -4.53  -361.96   0.068  0.070  0.085  0.078  0.080  0.078  0.042   0.023  0.024  0.029  0.026  0.025  0.026  0.005  

HU05 -0.22  0.00  -0.18  0.06  0.06  -0.10  -5.94   0.002  0.002  0.003  0.003  0.002  0.004  0.025   0.000  0.000  0.001  0.001  0.000  0.001  0.007  

IE04 0.60  0.00  -0.07  8.70  0.00  0.71  -209.06   0.036  0.036  0.035  0.169  0.035  0.043  0.136   0.009  0.010  0.009  0.058  0.009  0.013  0.028  

IL05 0.00  0.00  -32.76  -31.63  0.10  2.59  -1.21   0.009  0.010  0.022  0.041  0.008  0.010  0.015   0.004  0.004  0.006  0.012  0.003  0.004  0.006  

IT04 -1.55  0.00  0.53  -0.93  -0.79  1.08  -77.15   0.021  0.014  0.014  0.022  0.014  0.010  0.058   0.007  0.005  0.005  0.007  0.005  0.004  0.016  

LU04 1.89  0.00  -1.14  0.65  -2.00  0.87  -13.77   0.023  0.031  0.105  0.034  0.038  0.028  0.032   0.009  0.012  0.036  0.012  0.014  0.010  0.003  

NL04 -1.78  0.00  -0.85  0.86  1.77  -1.90  -55.83   0.009  0.006  0.008  0.003  0.008  0.003  0.039   0.004  0.002  0.003  0.001  0.003  0.001  0.010  

SI04 -0.09  0.00  -5.59  -6.04  -0.05  0.04  -2.09   0.004  0.005  0.013  0.026  0.004  0.005  0.021   0.001  0.001  0.004  0.008  0.001  0.001  0.007  

ES04 -24.38  0.00  -15.58  -14.77  0.02  0.08  -176.08   0.100  0.047  0.108  0.114  0.047  0.049  0.065   0.031  0.014  0.034  0.036  0.014  0.015  0.019  

SE05 0.41  0.00  -2.38  -4.33  -0.37  0.06  -20.14   0.003  0.003  0.003  0.004  0.003  0.004  0.010   0.001  0.001  0.001  0.001  0.001  0.002  0.003  

CH04 0.47  0.00  -2.39  -0.47  0.18  -0.35  -18.06   0.004  0.006  0.005  0.009  0.005  0.009  0.047   0.001  0.001  0.001  0.003  0.001  0.002  0.013  

TW05 -1.23  0.00  -0.02  0.05  0.14  -0.55  -74.89    0.010  0.008  0.009  0.008  0.010  0.006  0.014    0.004  0.003  0.003  0.003  0.003  0.002  0.002  

Score based on 
across-the-boar
d comparisons 

4  0  2  2  4.5  5.5  1    5  1  2  0  4  4  3    3  2  0  2  5  2  5  

Score based on 
pairwise 
comparisons 

3  4  1  2  5.5  5.5  0    5  4  2  0  6  3  1    5  4  2  0  6  3  1  

 

 

 



Table 3-5  Goodness-of-fit to individual datasets from wave 6 – equivalized disposable income 
 

Country & Year 
Log-likelihood*   LRSSE   Absolute error of the Gini index 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

AU03 -15.03  0.00  -57.27  -71.34  0.00  0.00  1.48   0.019  0.029  0.020  0.017  0.029  0.029  0.031   0.007  0.011  0.007  0.000  0.011  0.011  0.012  

AT04 0.15  0.00  -0.30  0.18  -0.90  0.44  -39.90   0.003  0.003  0.003  0.003  0.004  0.005  0.032   0.000  0.001  0.001  0.001  0.000  0.002  0.009  

CA04 -6.36  0.00  -0.98  3.40  3.46  -2.47  -80.88   0.025  0.025  0.024  0.017  0.023  0.028  0.040   0.008  0.009  0.008  0.006  0.008  0.009  0.012  

CZ04 0.31  0.00  1.12  0.35  -1.95  1.70  -26.47   0.005  0.006  0.014  0.004  0.005  0.008  0.041   0.001  0.001  0.004  0.001  0.001  0.002  0.011  

DK04 -87.80  0.00  -191.60  -156.30  3.20  0.60  -0.90   0.025  0.030  0.026  0.020  0.029  0.030  0.030   0.009  0.011  0.009  0.007  0.011  0.011  0.011  

EE04 1.57  0.00  1.34  -1.64  -1.64  1.06  -15.92   0.017  0.017  0.010  0.034  0.019  0.014  0.023   0.005  0.005  0.003  0.011  0.006  0.004  0.005  

FR05 -1.36  0.00  0.06  0.50  0.90  -1.10  -51.81   0.002  0.005  0.003  0.005  0.002  0.008  0.030   0.001  0.002  0.001  0.002  0.001  0.003  0.008  

DE04 -1.86  0.00  0.43  0.05  1.15  -1.27  -69.61   0.005  0.008  0.006  0.010  0.006  0.012  0.038   0.002  0.003  0.002  0.004  0.002  0.004  0.011  

GR04 0.65  0.00  -0.93  -0.45  0.22  -0.45  -16.23   0.005  0.004  0.004  0.011  0.004  0.005  0.023   0.001  0.000  0.000  0.003  0.000  0.001  0.006  

HU05 0.16  0.00  0.07  -0.20  0.08  -0.20  -25.30   0.017  0.014  0.015  0.009  0.015  0.010  0.054   0.006  0.004  0.005  0.003  0.005  0.003  0.014  

IE04 0.26  0.00  -0.71  -4.84  -0.66  0.14  -150.69   0.349  0.368  0.341  0.151  0.350  0.441  0.160   0.113  0.120  0.112  0.045  0.101  0.146  0.049  

IL05 -10.59  0.00  -34.65  -37.29  0.14  0.14  1.45   0.016  0.028  0.019  0.020  0.031  0.031  0.035   0.005  0.010  0.007  0.002  0.011  0.011  0.012  

IT04 1.56  0.00  -0.60  1.14  1.02  -1.48  -36.07   0.038  0.042  0.040  0.039  0.040  0.047  0.069   0.013  0.014  0.013  0.013  0.013  0.016  0.021  

LU04 0.99  0.00  -3.07  -0.58  0.25  -0.31  -3.99   0.021  0.015  0.022  0.029  0.015  0.014  0.030   0.005  0.002  0.006  0.008  0.002  0.001  0.009  

NL04 4.46  0.00  -1.01  0.33  -4.20  1.85  -80.67   0.028  0.029  0.031  0.027  0.027  0.031  0.053   0.010  0.010  0.011  0.010  0.010  0.011  0.016  

SI04 0.79  0.00  0.54  -1.70  -1.04  0.54  -10.24   0.008  0.006  0.008  0.003  0.005  0.007  0.017   0.003  0.002  0.003  0.000  0.002  0.003  0.005  

ES04 -4.53  0.00  -20.91  -25.67  0.14  0.02  -0.47   0.008  0.013  0.005  0.017  0.013  0.014  0.015   0.003  0.005  0.001  0.004  0.004  0.005  0.005  

SE05 -1.02  0.00  -1.12  1.55  1.35  -1.37  -35.71   0.014  0.016  0.015  0.013  0.014  0.017  0.025   0.005  0.006  0.006  0.005  0.006  0.006  0.008  

CH04 0.21  0.00  -0.33  -1.55  -0.20  0.06  -6.39   0.019  0.019  0.018  0.010  0.018  0.021  0.030   0.007  0.007  0.007  0.004  0.007  0.008  0.010  

TW05 0.42  0.00  4.37  -4.53  -3.78  3.24  -41.59   0.004  0.004  0.004  0.014  0.005  0.003  0.028   0.001  0.000  0.001  0.004  0.001  0.000  0.008  

UK04 2.39  0.00  -33.97  -29.69  -0.79  0.76  -59.00    0.044  0.051  0.031  0.018  0.050  0.052  0.090    0.015  0.017  0.011  0.006  0.017  0.018  0.029  

Score based on 
across-the-boar
d comparisons 

10  0  1  1  5  2  2    3  1  2  12  1  2  0    1  2  4  10  2  1  1  

Score based on 
pairwise 
comparisons 

6  3  2  1  5  4  0    5  2  4  6  3  1  0    4  2  5  6  3  1  0  

 

 



Table 3-6  Goodness-of-fit to individual datasets from wave 6 – equivalized gross income 
 

Country & Year 
Log-likelihood*   LRSSE   Absolute error of the Gini index 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

AU03 -17.93  0.00  -69.42  -77.70  0.16  0.16  3.07   0.018  0.028  0.021  0.023  0.030  0.030  0.034   0.005  0.010  0.007  0.003  0.011  0.011  0.013  

AT04 0.37  0.00  -0.27  0.03  -0.51  -0.05  -45.32   0.009  0.007  0.009  0.006  0.011  0.003  0.032   0.003  0.002  0.003  0.002  0.003  0.001  0.007  

CA04 -20.16  0.00  -7.98  3.88  7.80  -2.71  -25.82   0.047  0.045  0.040  0.028  0.041  0.047  0.055   0.015  0.015  0.013  0.010  0.014  0.015  0.017  

CZ04 1.15  0.00  0.10  -2.35  -0.86  0.64  -19.77   0.015  0.018  0.015  0.006  0.017  0.020  0.065   0.005  0.006  0.005  0.001  0.005  0.006  0.021  

DK04 -66.80  0.00  -266.30  -202.60  11.00  10.90  13.10   0.026  0.031  0.026  0.018  0.032  0.032  0.032   0.009  0.011  0.009  0.006  0.011  0.011  0.011  

EE04 1.57  0.00  -1.92  -5.23  -0.67  0.39  -5.01   0.005  0.007  0.021  0.044  0.007  0.006  0.023   0.000  0.001  0.005  0.013  0.001  0.001  0.007  

FR05 -0.94  0.00  -0.29  0.28  0.56  -0.89  -55.06   0.002  0.005  0.004  0.005  0.002  0.009  0.045   0.001  0.002  0.002  0.002  0.001  0.003  0.013  

DE04 -1.85  0.00  -14.68  -11.79  0.77  -0.45  -4.11   0.018  0.017  0.006  0.014  0.015  0.019  0.026   0.006  0.006  0.002  0.003  0.005  0.006  0.008  

GR04 0.66  0.00  -1.24  -0.89  0.16  -0.37  -13.94   0.007  0.004  0.005  0.016  0.005  0.004  0.024   0.002  0.000  0.001  0.005  0.001  0.001  0.006  

HU05 0.15  0.00  0.07  -0.20  0.08  -0.20  -24.77   0.017  0.014  0.015  0.009  0.015  0.010  0.051   0.006  0.004  0.005  0.003  0.005  0.003  0.013  

IE04 1.63  0.00  0.26  -2.69  0.63  -3.72  -234.62   0.510  0.498  0.466  0.585  0.604  0.437  0.200   0.162  0.158  0.158  0.187  0.161  0.137  0.058  

IL05 0.00  0.00  -47.95  -46.52  0.37  0.30  0.12   0.011  0.011  0.033  0.081  0.015  0.014  0.022   0.004  0.003  0.007  0.023  0.006  0.005  0.008  

IT04 0.99  0.00  -4.50  1.25  1.74  -1.83  -42.06   0.050  0.060  0.054  0.042  0.055  0.067  0.126   0.016  0.019  0.017  0.014  0.018  0.021  0.039  

LU04 0.02  0.00  -4.82  -3.23  0.01  0.01  -4.04   0.013  0.011  0.036  0.054  0.012  0.012  0.044   0.003  0.000  0.011  0.017  0.001  0.001  0.013  

NL04 0.02  0.00  -3.07  0.09  1.05  -1.07  -21.40   0.034  0.037  0.036  0.027  0.035  0.040  0.053   0.012  0.013  0.013  0.010  0.012  0.014  0.017  

SI04 0.79  0.00  0.54  -1.70  -1.04  0.54  -10.24   0.008  0.006  0.008  0.003  0.005  0.007  0.017   0.003  0.002  0.003  0.000  0.002  0.003  0.005  

ES04 -4.59  0.00  -24.18  -28.42  0.14  0.08  -0.07   0.010  0.014  0.007  0.017  0.015  0.015  0.017   0.003  0.005  0.001  0.004  0.005  0.005  0.006  

SE05 -1.34  0.00  1.15  0.14  1.60  -1.95  -81.12   0.013  0.015  0.013  0.016  0.013  0.017  0.035   0.005  0.005  0.005  0.006  0.005  0.006  0.010  

CH04 -0.02  0.00  -8.14  -7.03  0.05  -0.04  -0.60   0.021  0.022  0.009  0.006  0.021  0.022  0.027   0.007  0.008  0.003  0.000  0.007  0.008  0.009  

TW05 0.01  0.00  4.58  -3.27  -3.92  3.46  -47.76   0.008  0.007  0.003  0.018  0.009  0.005  0.030   0.002  0.002  0.000  0.006  0.003  0.001  0.008  

UK04 -8.85  0.00  -187.69  -162.46  -0.01  -0.01  -91.30    0.044  0.042  0.013  0.033  0.042  0.042  0.083    0.016  0.014  0.001  0.008  0.015  0.015  0.028  

Score based on 
across-the-boar
d comparisons 

8  1  1  0  9  0  2    3  3  4  8  1  1  1    2  3  4  9  1  1  1  

Score based on 
pairwise 
comparisons 

5  4  1  2  6  3  0    3  4  6  5  2  1  0    4  3  6  5  2  1  0  

 



Table 4-1  Summary of pairwise comparisons on the goodness-of-fit to datasets from waves 4-6 – log-likelihood 
 

Cate-gorie

s 
PIDM 

No. of categories gained (NoCG)   Ratio of datasets gained (RoDG) 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

N
o

n
-e

q
u

iv
al

iz
ed

 dPLN   9 0 0 9 9 5     75.0  31.1  26.7  85.0  83.3  47.8  

GB2 0 
 

0 0 9 6 1 
 

25.0  
 

18.3  16.1  70.3  54.4  34.4  

EG1 9 9 
 

0 9 9 7 
 

68.9  81.7  
 

37.8  86.9  82.5  62.2  

IEG1 9 9 9 
 

9 9 6 
 

73.3  83.9  62.2  
 

81.7  86.4  61.1  

EG2 0 0 0 0 
 

1.5 1 
 

15.0  29.7  13.1  18.3  
 

41.4  31.9  

IEG2 0 3 0 0 7.5 
 

1 
 

16.7  45.6  17.5  13.6  58.6  
 

33.1  

GB1 4 8 2 3 8 8     52.2  65.6  37.8  38.9  68.1  66.9    

E
q

u
iv

al
iz

ed
 

dPLN 
 

5.5 0 0 7 5 0 
  

56.7  25.6  30.6  57.2  54.4  13.9  

GB2 3.5 
 

0 0 6 7.5 0 
 

43.3  
 

27.2  30.3  56.1  57.2  8.3  

EG1 9 9 
 

5 9 9 0 
 

74.4  72.8  
 

50.6  69.4  75.0  31.1  

IEG1 9 9 4 
 

9 9 0 
 

69.4  69.7  49.4  
 

74.7  71.9  30.0  

EG2 2 3 0 0 
 

4.5 0 
 

42.8  43.9  30.6  25.3  
 

50.0  7.8  

IEG2 4 1.5 0 0 4.5 
 

0 
 

45.6  42.8  25.0  28.1  50.0  
 

7.8  

GB1 9 9 9 9 9 9     86.1  91.7  68.9  70.0  92.2  92.2    

 

Table 4-2  Summary of pairwise comparisons on the goodness-of-fit to datasets from waves 4-6 – LRSSE 
 

Cate-gorie

s 
PIDM 

No. of categories gained (NoCG)   Ratio of datasets gained (RoDG) 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

N
o

n
-e

q
u

iv
al

iz
ed

 dPLN   3 3.5 1 7 2 0     45.0  51.7  40.0  55.6  41.7  25.6  

GB2 6  5.5 3 9 2 0  55.0   56.1  41.1  58.9  36.1  14.4  

EG1 5.5 3.5  0 3 4.5 0  48.3  43.9   36.7  47.2  44.4  31.1  

IEG1 8 6 9  6 7 5.5  60.0  58.9  63.3   60.6  59.4  50.6  

EG2 2 0 6 3  1 0  44.4  41.1  52.8  39.4   37.2  15.0  

IEG2 7 7 4.5 2 8  0  58.3  63.9  55.6  40.6  62.8   13.9  

GB1 9 9 9 3.5 9 9     74.4  85.6  68.9  49.4  85.0  86.1    

E
q

u
iv

al
iz

ed
 

dPLN  2 5.5 2 4.5 4 0   46.1  50.6  40.6  51.1  46.1  12.8  

GB2 7  7 3 7 0.5 0  53.9   55.0  43.9  55.6  33.9  9.4  

EG1 3.5 2  1 4.5 2.5 0  49.4  45.0   38.3  47.8  42.8  18.3  

IEG1 7 6 8  5.5 5 2  59.4  56.1  61.7   55.6  53.3  29.4  

EG2 4.5 2 4.5 3.5  1.5 0  48.9  44.4  52.2  44.4   40.6  10.6  

IEG2 5 8.5 6.5 4 7.5  0  53.9  66.1  57.2  46.7  59.4   9.4  

GB1 9 9 9 7 9 9     87.2  90.6  81.7  70.6  89.4  90.6    

 

Table 4-3  Summary of pairwise comparisons on the goodness-of-fit to datasets from waves 4-6 – absolute error of the Gini index 
 

Cate-gorie

s 
PIDM 

No. of categories gained (NCaG)   Percentage of countries gained (PCoG) 

dPLN GB2 EG1 IEG1 EG2 IEG2 GB1   dPLN GB2 EG1 IEG1 EG2 IEG2 GB1 

N
o

n
-e

q
u

iv
al

iz
ed

 dPLN   1 2 2 1.5 1 0     35.0  42.2  43.3  42.2  31.1  22.8  

GB2 8  8 4 9 2 0  65.0   60.6  48.3  59.4  37.2  21.7  

EG1 7 1  3 4 2.5 1  57.8  39.4   43.3  45.0  41.7  33.3  

IEG1 7 5 6  6 5 4  56.7  51.7  56.7   52.2  52.2  47.8  

EG2 7.5 0 5 3  3 0  57.8  40.6  55.0  47.8   40.6  18.9  

IEG2 8 7 6.5 4 6  0  68.9  62.8  58.3  47.8  59.4   20.6  

GB1 9 9 8 5 9 9     77.2  78.3  66.7  52.2  81.1  79.4    

E
q

u
iv

al
iz

ed
 

dPLN  1 4 4.5 3.5 3 0   43.9  50.0  45.6  51.7  43.9  16.7  

GB2 8  8 5 8 0 0  56.1   57.2  48.3  57.8  31.7  13.9  

EG1 5 1  1 5 1.5 0  50.0  42.8   45.0  50.6  40.0  19.4  

IEG1 4.5 4 8  4.5 3 2  54.4  51.7  55.0   51.1  45.0  28.9  

EG2 5.5 1 4 4.5  0 0  48.3  42.2  49.4  48.9   36.1  14.4  

IEG2 6 9 7.5 6 9  0  56.1  68.3  60.0  55.0  63.9   12.8  

GB1 9 9 9 7 9       83.3  86.1  80.6  71.1  85.6  87.2    

 



Table 5-1  Detailed summary of the pairwise goodness-of-fit comparisons – log-likelihood 
 

Categories 

No. of 
cate-gorie

s 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG 

All categories 18 14.5 65.8  
 

0 28.3  
 

16 71.1  
 

0 22.8  
 

15 63.2  
 

18 78.2  

Non-equiv. 9 9 75.0  
 

0 31.1  
 

9 85.0  
 

0 18.3  
 

9 70.3  
 

9 86.9  

  Consumption 3 3 74.1  
 

0 34.5  
 

3 77.6  
 

0 25.9  
 

3 62.9  
 

3 80.2  

  Disp. income 3 3 74.6  
 

0 31.1  
 

3 88.5  
 

0 13.1  
 

3 70.5  
 

3 90.2  

  Gross 

income 
3 3 76.2  

 
0 27.9  

 
3 88.5  

 
0 16.4  

 
3 77.0  

 
3 90.2  

Equivalized 9 5.5 56.7  
 

0 25.6  
 

7 57.2  
 

0 27.2  
 

6 56.1  
 

9 69.4  

  Consumption 3 3 66.4  
 

0 39.7  
 

3 62.1  
 

0 32.8  
 

1 50.9  
 

3 62.1  

  Disp. income 3 0.5 45.1  
 

0 18.0  
 

1 44.3  
 

0 27.9  
 

2 51.6  
 

3 67.2  

  Gross 

income 
3 2 59.0    0 19.7    3 65.6    0 21.3    3 65.6    3 78.7  

 

Table 5-2  Detailed summary of the pairwise goodness-of-fit comparisons – LRSSE 
 

Categories 

No. of 
cate-gorie

s 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG 

All categories 18 5 45.6   9 51.1   11.5 53.3   12.5 55.6   16 57.2   7.5 47.5  

Non-equiv. 9 3 45.0   3.5 51.7   7 55.6   5.5 56.1   9 58.9   3 47.2  

  Consumption 3 2 48.3   1.5 51.7   3 63.8   1.5 50.0   3 56.9   2 55.2  

  Disp. income 3 0 42.6   1 55.7   1 49.2   3 65.6   3 57.4   0 41.0  

  Gross 

income 
3 1 44.3   1 47.5   3 54.1   1 52.5   3 62.3   1 45.9  

Equivalized 9 2 46.1   5.5 50.6   4.5 51.1   7 55.0   7 55.6   4.5 47.8  

  Consumption 3 1 48.3   1.5 46.6   2.5 55.2   2 48.3   3 55.2   2.5 53.4  

  Disp. income 3 0 42.6   2 52.5   1 45.9   3 59.0   2 55.7   1 45.9  

  Gross 

income 
3 1 47.5    2 52.5    1 52.5    2 57.4    2 55.7    1 44.3  

 

Table 5-3  Detailed summary of the pairwise goodness-of-fit comparisons – LwRSSE 
 

Categories 

No. of 
cate-gorie

s 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG 

All categories 18 6.5 42.5   8.5 51.9   10 51.1   14 57.5   14 55.6   8 46.1  

Non-equiv. 9 3.5 41.1   3.5 51.1   6 50.6   7 58.9   8 57.2   4 44.4  

  Consumption 3 1.5 50.0   1.5 50.0   3 58.6   2 53.4   3 58.6   3 55.2  

  Disp. income 3 1 36.1   1 55.7   2 47.5   3 65.6   2 55.7   0 37.7  

  Gross 

income 
3 1 37.7   1 47.5   1 45.9   2 57.4   3 57.4   1 41.0  

Equivalized 9 3 43.9   5 52.8   4 51.7   7 56.1   6 53.9   4 47.8  

  Consumption 3 1 46.6   1 48.3   2 53.4   2 48.3   2 51.7   2 51.7  

  Disp. income 3 1 42.6   2 57.4   1 50.8   2 60.7   2 55.7   1 47.5  

  Gross 

income 
3 1 42.6    2 52.5    1 50.8    3 59.0    2 54.1    1 44.3  

 

  



 

Table 5-4  Detailed summary of the pairwise goodness-of-fit comparisons – absolute error of the Gini index 
 

Categories 

No. of 
cate-gorie

s 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG   NoCG RoDG 

All categories 18 2 39.4   6 46.1   5 46.9   16 58.9   17 58.6   9 47.8  

Non-equiv. 9 1 35.0   2 42.2   1.5 42.2   8 60.6   9 59.4   4 45.0  

  Consumption 3 1 44.8   1 44.8   1.5 48.3   3 58.6   3 56.9   3 53.4  

  Disp. income 3 0 27.9   0 42.6   0 37.7   3 67.2   3 62.3   0 41.0  

  Gross 

income 
3 0 32.8   1 39.3   0 41.0   2 55.7   3 59.0   1 41.0  

Equivalized 9 1 43.9   4 50.0   3.5 51.7   8 57.2   8 57.8   5 50.6  

  Consumption 3 1 48.3   0 41.4   1.5 55.2   2 50.0   3 55.2   3 60.3  

  Disp. income 3 0 39.3   2 54.1   1 47.5   3 62.3   3 60.7   1 50.8  

  Gross 

income 
3 0 44.3    2 54.1    1 52.5    3 59.0    2 57.4    1 41.0  

 



Table 6-1  Detailed summary of the pairwise goodness-of-fit comparisons using combined measures – log-likelihood & LRSSE 
 

Categories 
No. of 

cate-gories 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG 

All categories 18 13.5 51.1  61.4   0.5 56.7  31.9   14.5 54.4  72.4   0 47.8  27.3   16 61.1  67.3   17 48.9  73.3  

Non-equivalized 9 9 50.6  70.3   0.5 58.3  35.2   9 55.0  86.9   0 47.8  23.3   8.5 63.9  73.0   9 49.4  77.5  

  Consumption 3 3 53.4  71.0   0 58.6  38.2   3 55.2  87.5   0 58.6  29.4   3 63.8  64.9   3 58.6  73.5  

  Disp. income 3 3 47.5  69.0   0.5 55.7  38.2   3 54.1  84.8   0 37.7  21.7   2.5 62.3  71.1   3 41.0  76.0  

  Gross income 3 3 50.8  71.0   0 60.7  29.7   3 55.7  88.2   0 47.5  17.2   3 65.6  82.5   3 49.2  83.3  

Equivalized 9 4.5 51.7  52.7   0 55.0  28.3   5.5 53.9  57.7   0 47.8  31.4   7.5 58.3  61.0   8 48.3  69.0  

  Consumption 3 2.5 65.5  60.5   0 55.2  37.5   3 62.1  63.9   0 60.3  34.3   2 62.1  55.6   3 51.7  76.7  

  Disp. income 3 0.5 41.0  36.0   0 52.5  21.9   1 45.9  39.3   0 36.1  31.8   2.5 52.5  59.4   2 47.5  55.2  

  Gross income 3 1.5 49.2  56.7    0 57.4  25.7    1.5 54.1  66.7    0 47.5  27.6    3 60.7  67.6    3 45.9  75.0  
 

Table 6-2  Detailed summary of the pairwise goodness-of-fit comparisons using combined measures – log-likelihood & absolute error of the Gini index 
 

Categories 
No. of 

cate-gories 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG 

All categories 18 11.5 45.6  56.1   0.5 55.0  26.8   15 43.1  71.0   1 43.9  29.1   17.5 60.8  68.5   18 44.7  78.9  

Non-equivalized 9 7 39.4  63.4   0.5 55.6  26.0   9 39.4  84.5   0 42.2  25.0   9 64.4  73.3   9 42.8  87.0  

  Consumption 3 3 46.6  70.4   0.5 51.7  30.0   3 39.7  82.6   0 50.0  34.5   3 62.1  66.7   3 56.9  78.8  

  Disp. income 3 2 32.8  55.0   0 59.0  27.8   3 39.3  83.3   0 36.1  22.7   3 65.6  75.0   3 37.7  91.3  

  Gross income 3 2 39.3  62.5   0 55.7  20.6   3 39.3  87.5   0 41.0  16.0   3 65.6  77.5   3 34.4  95.2  

Equivalized 9 4.5 51.7  50.5   0 54.4  27.6   6 46.7  59.5   1 45.6  32.9   8.5 57.2  63.1   9 46.7  71.4  

  Consumption 3 3 65.5  60.5   0 60.3  34.3   3 55.2  65.6   0.5 62.1  36.1   2.5 65.5  55.3   3 56.9  69.7  

  Disp. income 3 0.5 44.3  33.3   0 47.5  20.7   1 37.7  39.1   0.5 32.8  35.0   3 50.8  64.5   3 41.0  72.0  

  Gross income 3 1 45.9  53.6    0 55.7  26.5    2 47.5  69.0    0 42.6  26.9    3 55.7  70.6    3 42.6  73.1  
 

Table 6-3  Detailed summary of the pairwise goodness-of-fit comparisons using combined measures – log-likelihood & absolute error of the MLD 
 

Categories 
No. of 

cate-gories 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG 

All categories 18 8.5 45.3  46.6   1 53.1  28.8   12 44.7  62.1   2.5 39.4  32.4   16.5 55.8  70.1   17 34.4  76.6  

Non-equivalized 9 5 40.6  53.4   1 52.8  32.6   9 40.6  80.8   1 37.2  28.4   9 60.6  69.7   9 35.6  82.8  

  Consumption 3 2.5 51.7  63.3   0 62.1  27.8   3 46.6  85.2   0 55.2  28.1   3 62.1  61.1   3 58.6  82.4  

  Disp. income 3 1.5 32.8  45.0   1 44.3  48.1   3 36.1  77.3   1 27.9  35.3   3 60.7  75.7   3 24.6  80.0  

  Gross income 3 1 37.7  47.8   0 52.5  25.0   3 39.3  79.2   0 29.5  22.2   3 59.0  72.2   3 24.6  86.7  

Equivalized 9 3.5 50.0  41.1   0 53.3  25.0   3 48.9  46.6   1.5 41.7  36.0   7.5 51.1  70.7   8 33.3  70.0  

  Consumption 3 2.5 62.1  61.1   0 67.2  33.3   2 58.6  58.8   0 60.3  31.4   1.5 56.9  48.5   2.5 50.0  69.0  

  Disp. income 3 0 47.5  13.8   0 47.5  17.2   0 47.5  24.1   0.5 31.1  42.1   3 44.3  85.2   3 23.0  71.4  

  Gross income 3 1 41.0  44.0    0 45.9  21.4    1 41.0  56.0    1 34.4  38.1    3 52.5  81.3    2.5 27.9  70.6  



Table 6-4  Detailed summary of the pairwise goodness-of-fit comparisons using combined measures – log-likelihood & absolute error of the Theil index 
 

Categories 
No. of 

cate-gories 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG 

All categories 18 11.5 46.7  54.8   0 53.3  29.7   14 47.2  67.6   0 43.1  30.3   16 59.7  66.5   17.5 42.8  74.0  

Non-equivalized 9 6 42.2  57.9   0 53.3  28.1   9 40.0  81.9   0 38.9  25.7   9 63.9  72.2   9 37.8  85.3  

  Consumption 3 3 53.4  67.7   0 51.7  26.7   3 41.4  83.3   0 50.0  31.0   3 63.8  64.9   3 53.4  77.4  

  Disp. income 3 0.5 36.1  45.5   0 54.1  33.3   3 41.0  80.0   0 31.1  26.3   3 63.9  74.4   3 29.5  88.9  

  Gross income 3 2.5 37.7  56.5   0 54.1  24.2   3 37.7  82.6   0 36.1  18.2   3 63.9  76.9   3 31.1  94.7  

Equivalized 9 5.5 51.1  52.2   0 53.3  31.3   5 54.4  57.1   0 47.2  34.1   7 55.6  60.0   8.5 47.8  65.1  

  Consumption 3 3 62.1  61.1   0 67.2  35.9   2 62.1  61.1   0 62.1  36.1   1.5 58.6  52.9   3 53.4  64.5  

  Disp. income 3 1 44.3  37.0   0 42.6  26.9   1 49.2  40.0   0 36.1  36.4   2.5 52.5  59.4   2.5 47.5  62.1  

  Gross income 3 1.5 47.5  55.2    0 50.8  29.0    2 52.5  68.8    0 44.3  29.6    3 55.7  67.6    3 42.6  69.2  
 

Table 6-5  Detailed summary of the pairwise goodness-of-fit comparisons using combined measures –four FB measures & LRSSE 
 

Categories 
No. of 

cate-gories 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG 

All categories 18 14 36.7  64.4   1 49.2  33.9   14 42.8  71.4   1 37.8  23.5   14.5 38.6  68.3   18 36.7  81.1  

Non-equivalized 9 9 37.8  79.4   0 51.7  34.4   9 44.4  88.8   0 43.9  20.3   8 33.9  78.7   9 36.1  93.8  

  Consumption 3 3 48.3  67.9   0 44.8  34.6   3 43.1  92.0   0 51.7  26.7   2.5 32.8  78.9   3 41.4  87.5  

  Disp. income 3 3 32.8  90.0   0 52.5  37.5   3 44.3  85.2   0 36.1  18.2   2.5 36.1  77.3   3 34.4  95.2  

  Gross income 3 3 32.8  85.0   0 57.4  31.4   3 45.9  89.3   0 44.3  14.8   3 32.8  80.0   3 32.8  100.0  

Equivalized 9 5 35.6  48.4   1 46.7  33.3   5 41.1  52.7   1 31.7  28.1   6.5 43.3  60.3   9 37.2  68.7  

  Consumption 3 3 43.1  64.0   1 43.1  48.0   2.5 44.8  57.7   1 32.8  36.8   1.5 43.1  52.0   3 39.7  65.2  

  Disp. income 3 0 29.5  22.2   0 44.3  25.9   1 37.7  39.1   0 24.6  26.7   2 42.6  57.7   3 34.4  61.9  

  Gross income 3 2 34.4  52.4    0 52.5  28.1    1.5 41.0  60.0    0 37.7  21.7    3 44.3  70.4    3 37.7  78.3  
 

Table 6-6  Detailed summary of the pairwise goodness-of-fit comparisons using combined measures – four FB measures & absoluter error of the Gini index (AEG) 
 

Categories 
No. of 

cate-gories 

dPLN vs. GB2   dPLN vs. EG1   dPLN vs. EG2   GB2 vs. EG1   GB2 vs. EG2   EG1 vs. EG2 

NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG   NoCG VR RoDG 

All categories 18 12.5 30.8  57.7   1 46.9  29.6   12.5 31.7  64.0   1.5 32.5  25.6   15 37.2  68.7   17 32.5  82.1  

Non-equivalized 9 8 26.7  72.9   0.5 47.2  27.1   9 29.4  83.0   0 36.7  22.7   8 32.8  78.0   9 31.1  92.9  

  Consumption 3 3 41.4  66.7   0.5 41.4  29.2   3 29.3  88.2   0 43.1  32.0   2.5 31.0  77.8   3 37.9  86.4  

  Disp. income 3 3 18.0  81.8   0 50.8  29.0   3 29.5  77.8   0 31.1  21.1   2.5 36.1  77.3   3 29.5  94.4  

  Gross income 3 2 21.3  76.9   0 49.2  23.3   3 29.5  83.3   0 36.1  13.6   3 31.1  78.9   3 26.2  100.0  

Equivalized 9 4.5 35.0  46.0   0.5 46.7  32.1   3.5 33.9  47.5   1.5 28.3  29.4   7 41.7  61.3   8 33.9  72.1  

  Consumption 3 3 43.1  64.0   0.5 46.6  44.4   1 36.2  52.4   1 31.0  38.9   1.5 44.8  50.0   2.5 39.7  69.6  

  Disp. income 3 0 31.1  21.1   0 41.0  24.0   1 31.1  31.6   0.5 21.3  30.8   2.5 39.3  62.5   2.5 27.9  70.6  

  Gross income 3 1.5 31.1  47.4    0 52.5  28.1    1.5 34.4  57.1    0 32.8  20.0    3 41.0  72.0    3 34.4  76.2  



 

Appendix 1. An estimation procedure for the maximum likelihood parameters of the EG2 

 

The logarithm of the density function 𝑓EκG2(𝑥; 𝑎, 𝑏, 𝑝, 𝑞) equals 
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I.I.D. sample of size n from an EG2 distribution equals 
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where 𝑧𝑖 = 𝑧(𝑥𝑖; 𝑎, 𝑏). Because the partial derivatives of the log-likelihood with respect to parameters should 

be zero at the maximum likelihood parameters, the following four simultaneous equations are obtained: 
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Similarly to the MLE procedure for the GB2 provided by Venter [20], because the first and second equations 

are linear in p and q, the two simultaneous equations can be easily solved to represent p and q as functions of a 

and b. Thus, the four-parameter MLE procedure reduces to two simultaneous nonlinear equations with two 

unknowns.  

 

Appendix 2. Proof of the regularity of the EG2 in terms of maximum likelihood estimation 

 

The EG2 satisfies the following regularity conditions in terms of MLE: 

 

Regularity Conditions (cf. Serfling [18]): Assume that a family of distributions has a density function 𝑓(𝑥; 𝛉) 

with parameters 𝛉 = (𝜃1, 𝜃2, ⋯ , 𝜃𝑚). Consider 𝛉 to be in an open set (not necessarily finite) 𝚯 of 𝑅𝑚. 



(R1)  For each 𝛉 ∈ 𝚯, the derivatives  

𝜕 log 𝑓

𝜕𝜃𝑖
,

𝜕2 log 𝑓

𝜕𝜃𝑖𝜕𝜃𝑗
,

𝜕3 log 𝑓

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
      (𝑖, 𝑗, 𝑘 = 1,2,⋯ ,𝑚) 

exist, all x; 

(R2)  For each 𝛉𝟎 ∈ 𝚯, there exist functions 𝑔(𝑥), ℎ(𝑥), 𝐻(𝑥) (possibly depending on 𝛉𝟎) such that, for 

𝛉 in a neighborhood N(𝛉𝟎), the relations 

|
𝜕𝑓

𝜕𝜃𝑖
| ≤ 𝑔(𝑥), |

𝜕2𝑓

𝜕𝜃𝑖𝜕𝜃𝑗
| ≤ ℎ(𝑥), |

𝜕3 log 𝑓

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
| ≤ 𝐻(𝑥)       (𝑖, 𝑗, 𝑘 = 1,2,⋯ ,𝑚) 

hold, all x, and  

∫𝑔(𝑥)𝑑𝑥 < ∞, ∫ℎ(𝑥)𝑑𝑥 < ∞, 𝐸𝛉[𝐻(𝑥)] < ∞; 

(R3)  For each 𝛉 ∈ 𝚯, the following Fisher information matrix is finite and positive definite: 

[E𝛉 (
𝜕 log 𝑓

𝜕𝜃𝑖

𝜕 log 𝑓

𝜕𝜃𝑗
)]. 

 

The parameters (𝑎, 𝑏, 𝑝, 𝑞) of the EG2 can hereafter be regarded in the same light as 𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4). 

The parameter space 𝚯 for the EG2 is defined as the Cartesian product of four positive half intervals, i.e., 

𝚯 ≔ (0,∞) × (0,∞) × (0,∞) × (0,∞).  

(R1) is obviously satisfied. 

Proof of (R2): 

𝜕𝑓EκG2

𝜕𝜃𝑖
 and 

𝜕2𝑓EκG2

𝜕𝜃𝑖𝜕𝜃𝑗
 can be expressed as sums of terms in the following form: 

𝑐(𝛉)[log 𝑧(𝑥; 𝑎, 𝑏)]𝑘{log[1 − 𝑧(𝑥; 𝑎, 𝑏)]}𝑙
[𝑧(𝑥; 𝑎, 𝑏)]𝑝+𝜈−

1
𝑎[1 − 𝑧(𝑥; 𝑎, 𝑏)]𝑞+𝜉+

1
2𝑎

[2 − 𝑧(𝑥; 𝑎, 𝑏)]𝑚
, (A2) 

where 𝑐(𝛉) is continuous on 𝚯, and 𝑘, 𝑙, 𝑚, 𝜈, 𝜉 = 0, 1, 2,⋯. Take a bonded neighborhood N(𝛉0) such that 

inf𝛉∈N(𝛉𝟎) 𝜃𝑖 > 0 and sup𝛉∈N(𝛉𝟎) 𝜃𝑖 < ∞ for 𝑖 = 1,2,⋯ ,4. Let 𝑎, 𝑏, 𝑝, 𝑞 denote the infimums and 𝑎, 𝑏, 

𝑝, 𝑞 denote the supremums of the parameters in N(𝛉0). Because a positive value 𝐾(> 1) exist such that 
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for 0 < ∀𝑥 < ∞  and ∀𝛉 ∈ N(𝚯0) , where 𝑀 = sup𝛉∈N(𝚯0) 𝑐(𝛉) . The function 𝜑(𝑥)  is integrable, as 

follows: 
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Note that 
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. 𝑔(𝑥) and ℎ(𝑥) are obtained by summing up the functions (x)s 



corresponding to the terms that constitute 
𝜕𝑓EκG2

𝜕𝜃𝑖
 and 

𝜕2𝑓EκG2

𝜕𝜃𝑖𝜕𝜃𝑗
, respectively. 

𝜕3 log 𝑓EκG2

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
 can be expressed as a sum of terms in the following form: 

𝑐(𝛉)[log 𝑧(𝑥; 𝑎, 𝑏)]𝑘{log[1 − 𝑧(𝑥; 𝑎, 𝑏)]}𝑙
[𝑧(𝑥; 𝑎, 𝑏)]𝜈[1 − 𝑧(𝑥; 𝑎, 𝑏)]𝜉

[2 − 𝑧(𝑥; 𝑎, 𝑏)]𝑚
, (A3) 

where 𝑐(𝛉) is continuous on 𝚯, and 𝑘, 𝑙, 𝑚, 𝜈, 𝜉 = 0, 1, 2,⋯. In a manner similar to that applied above, it can 

be shown that the absolute value of the term in (A3) is bounded by  

𝜙(𝑥) ≔ 

𝑀𝐾𝑎(𝜈+𝜉)|log 𝑧(𝑥; 𝑎, 𝑏)|
𝑘
|
𝑎

𝑎
log[1 − 𝑧(𝑥; 𝑎, 𝑏)] − 𝑎 log𝐾|

𝑙

[𝑧(𝑥; 𝑎, 𝑏)]
𝜈
[1 − 𝑧(𝑥; 𝑎, 𝑏)]

𝜉
 

for 0 < ∀𝑥 < ∞ and ∀𝛉 ∈ N(𝚯0), where 𝑀 = sup𝛉∈N(𝚯0) 𝑐(𝛉). The function 𝜙(𝑥) has a finite expectation 

as follows: 

𝐸𝛉[𝜙(𝑥)] = ∫ 𝜙(𝑥)𝑓EκG2(𝑥; 𝑎, 𝑏, 𝑝, 𝑞)𝑑𝑥
∞

0

≤
1

𝐵(𝑝, 𝑞)
𝑀𝐾(𝑎+𝑎)(𝜈+𝜉)∫ |

𝑎

𝑎
log 𝑧 − 𝑎 log𝐾|

𝑘

|
𝑎

𝑎
log(1 − 𝑧) − 2𝑎 log𝐾|

𝑙

𝑧𝑝+
𝑎
𝑎
𝜈−1(1

1

0

− 𝑧)𝑞+
𝑎
𝑎
𝜉−1𝑑𝑧 < ∞. 

𝐻(𝑥) is obtained by summing up the functions (x)s corresponding to the terms that constitute 
𝜕3 log 𝑓EκG2

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
. 

Proof of (R3): 

Positive definiteness is equivalent to non-existence of some real vector 𝛂 = (𝛼𝑎 , 𝛼𝑏, 𝛼𝑝, 𝛼𝑞) ≠ 𝟎 such that  

𝛂 ∙
𝜕 log 𝑓EκG2

𝜕𝛉′
= 𝛼𝑎

𝜕 log 𝑓EκG2

𝜕𝑎
+ 𝛼𝑏

𝜕 log 𝑓EκG2

𝜕𝑏
+ 𝛼𝑝

𝜕 log𝑓EκG2

𝜕𝑝
+ 𝛼𝑞

𝜕 log𝑓EκG2

𝜕𝑞
= 0 for ∀𝑥 > 0. (A4) 

From (A1), it can be seen that 
𝜕 log 𝑓EκG2

𝜕𝜃𝑖
 constitutes terms in the form (A3); suppose there exists 𝛂 ≠ 𝟎 that 

satisfies (A4), then, the sum of the terms correspond to the form (A3) with 𝑘 = 1 and 𝜈 = 0 must converge 

to zero when 𝑧 → 0 (𝑥 → 0) to make 𝛂 ∙
𝜕 log 𝑓EκG2

𝜕𝛉′
 finite. Thus, the following equation must hold: 

𝛼𝑎
𝑝

𝑎
+ 𝛼𝑝 = 0. (A5) 

Similarly, the sum of the terms that correspond to the form (A3) with 𝑙 = 1 and 𝜉 = 0 must converge to zero 

when 𝑧 → 1 (𝑥 → ∞) to make 𝛂 ∙
𝜕 log 𝑓EκG2

𝜕𝛉′
 finite. Thus, the following equation must hold: 

𝛼𝑎
𝑞

𝑎
+ 𝛼𝑞 = 0. (A6) 

Furthermore, the sum of the terms that correspond to the form (A3) with 𝑘 = 𝑙 = 𝜈 = 0 must converge to zero 

when 𝑧 → 0 to make 𝛂 ∙
𝜕 log 𝑓EκG2

𝜕𝛉′
 stay at zero when 𝑧 → 0. Thus, the following equation must also hold: 

𝛼𝑎
1

𝑎
− 𝛼𝑏

𝑎𝑝

𝑏
+ 𝛼𝑝[𝜓(𝑝 + 𝑞) − 𝜓(𝑝)] + 𝛼𝑞[𝜓(𝑝 + 𝑞) − 𝜓(𝑞)] = 0. (A7) 

Similarly, the sum of the terms that correspond to the form (A3) with 𝑘 = 𝑙 = 𝜉 = 0 must converge to zero 

when 𝑧 → 1 to make 𝛂 ∙
𝜕 log 𝑓EκG2

𝜕𝛉′
 stay at zero when 𝑧 → 1. Thus, the following equation must hold: 

𝛼𝑎
1

𝑎
+ 𝛼𝑏

2𝑎𝑞

𝑏
+ 𝛼𝑝[𝜓(𝑝 + 𝑞) − 𝜓(𝑝)] + 𝛼𝑞[𝜓(𝑝 + 𝑞) − 𝜓(𝑞)] = 0. (A8) 

By deducting each side in (A7) from the respective side in (A8), an equation 



𝛼𝑏
𝑎

𝑏
(𝑝 + 2𝑞) = 0 (A9) 

is derived. To satisfy the equation in (A9), 𝛼𝑏 must be zero. Because of the equations in (A5) and (A6), 𝛼𝑎 

must be non-zero, otherwise 𝛂 = 𝟎. However, if 𝛼𝑎 ≠ 0, to make 𝛂 ∙
𝜕2 log 𝑓EκG2

𝜕𝑧𝜕𝛉′
 finite when 𝑧 → 1, the sum 

of the terms including log(1 − 𝑧) among the terms consisting of 𝛂 ∙
𝜕2 log 𝑓EκG2

𝜕𝑧𝜕𝛉′
 must converge to zero (the 

sum of the terms including 1 (1 − 𝑧)⁄  converges to zero because of equation (A6)). Thus, the following 

equation must hold: 

𝑝 + 2𝑞 + 1 = 0. (A10) 

It contradicts the fact that the left-hand side in (A10) is actually greater than unity.      Q.E.D. 

 

Appendix 3. The Fisher information matrix of the EG2 

 

Let 𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) be regarded in the same light as parameters (𝑎, 𝑏, 𝑝, 𝑞). Because the EG2 satisfies 

the regularity conditions in terms of MLE, the Fisher information matrix can be expressed as follows: 

𝐼EκG2(𝛉) = [𝐸 (
𝜕 log 𝑓EκG2

𝜕𝜃𝑖

𝜕 log 𝑓EκG2

𝜕𝜃𝑗
)] = − [𝐸 (

𝜕2 log 𝑓EκG2

𝜕𝜃𝑖𝜕𝜃𝑗
)] ≔

(

 
 
𝐼𝑎𝑎
𝐼𝑏𝑎
𝐼𝑝𝑎
𝐼𝑞𝑎

   𝐼𝑎𝑏
  𝐼𝑏𝑏
   𝐼𝑝𝑏
   𝐼𝑞𝑏

   𝐼𝑎𝑝
   𝐼𝑏𝑝
  𝐼𝑝𝑝
   𝐼𝑞𝑝

   𝐼𝑎𝑞
   𝐼𝑏𝑞
   𝐼𝑝𝑞
   𝐼𝑞𝑞)

 
 
. 

Let 𝛉̂𝒏 denote the ML parameters for an I.I.D. sample of size n on 𝐹EκG2(𝑥; 𝛉). Then, 𝛉̂𝒏 converges to 

population parameters 𝛉  with probability 1, and √𝑛(𝛉̂𝒏 − 𝛉)  converges in distribution to the normal 

distribution 𝑁(𝟎, 𝐼EκG2(𝛉)
−1) when 𝑛 → ∞. When fitting the EG2 to grouped data by the 22 categories 

described in the main text, according to simulation results, sample variances and co-variances of the parameters 

are larger than 𝐼EκG2(𝛉)
−1 𝑛⁄  in absolute value but less than or equal to four times of |𝐼EκG2(𝛉)

−1| 𝑛⁄  if the 

data are tabulated from a sufficiently large sample, although it should be noted that estimates of b and q may 

deteriorate when q is relatively large. The elements of 𝐼EκG2(𝛉) are expressed as follows: 

𝐼𝑎𝑎 =
1

𝑎2
+

1

𝐵(𝑝, 𝑞)

1

𝑎2
[(𝑝 + 2𝑞)Λ̈(𝑝 + 1, 𝑞 + 1,3) − 2Λ̈(𝑝 + 1, 𝑞 + 2,4) + Λ̈(𝑝 + 2, 𝑞 + 1,4)], 

𝐼𝑎𝑏 = 𝐼𝑏𝑎 =
2

𝐵(𝑝, 𝑞)

1

𝑏
[𝑝Λ(𝑝, 𝑞 + 1,1) − 𝑞Λ(𝑝 + 1, 𝑞, 1) + Λ(𝑝 + 1, 𝑞 + 1,2)]

+
2

𝐵(𝑝, 𝑞)

1

𝑏
[(𝑝 + 2𝑞)Λ̇(𝑝 + 1, 𝑞 + 1,3) − 2Λ̇(𝑝 + 1, 𝑞 + 2,4)

+ Λ̇(𝑝 + 2, 𝑞 + 1,4)], 

𝐼𝑏𝑏 = −
2

𝐵(𝑝, 𝑞)

𝑎

𝑏2
[𝑝Λ(𝑝, 𝑞 + 1,1) − 𝑞Λ(𝑝 + 1, 𝑞, 1) + Λ(𝑝 + 1, 𝑞 + 1,2)]

+
4

𝐵(𝑝, 𝑞)

𝑎2

𝑏2
[(𝑝 + 2𝑞)Λ(𝑝 + 1, 𝑞 + 1,3) − 2Λ(𝑝 + 1, 𝑞 + 2,4)

+ Λ(𝑝 + 2, 𝑞 + 1,4)], 

𝐼𝑏𝑝 = 𝐼𝑝𝑏 =
2

𝐵(𝑝, 𝑞)

𝑎

𝑏
Λ(𝑝, 𝑞 + 1,1), 

𝐼𝑏𝑞 = 𝐼𝑞𝑏 = −
2

𝐵(𝑝, 𝑞)

𝑎

𝑏
Λ(𝑝 + 1, 𝑞, 1), 



𝐼𝑎𝑝 = 𝐼𝑝𝑎 =
1

𝐵(𝑝, 𝑞)

1

𝑎
Λ̇(𝑝, 𝑞 + 1,1), 

𝐼𝑎𝑞 = 𝐼𝑞𝑎 = −
1

𝐵(𝑝, 𝑞)

1

𝑎
Λ̇(𝑝 + 1, 𝑞, 1), 

𝐼𝑝𝑝 = 𝜓
′(𝑝) − 𝜓′(𝑝 + 𝑞), 

𝐼𝑝𝑞 = 𝐼𝑞𝑝 = −𝜓
′(𝑝 + 𝑞), 

𝐼𝑞𝑞 = 𝜓
′(𝑞) − 𝜓′(𝑝 + 𝑞), 

where Λ(𝑝, 𝑞, 𝑘) ≔ ∫
𝑧𝑝−1(1−𝑧)𝑞−1

(2−𝑧)𝑘
𝑑𝑧

1

0
=

1

2𝑘
𝐵(𝑝, 𝑞) 𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
),  

Λ̇(𝑝, 𝑞, 𝑘) ≔ ∫
𝑧𝑝−1(1−𝑧)𝑞−1

(2−𝑧)𝑘
log

1−𝑧

𝑧2
𝑑𝑧

1

0
= −2

𝜕Λ(𝑝,𝑞,𝑘)

𝜕𝑝
+
𝜕Λ(𝑝,𝑞,𝑘)

𝜕𝑞
  

=
1

2𝑘
(−2𝜓(𝑝) + 𝜓(𝑞) + 𝜓(𝑝 + 𝑞))𝐵(𝑝, 𝑞) 𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
)  

−
1

2𝑘
𝐵(𝑝, 𝑞) [2

𝜕

𝜕𝜃2
𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
) +

𝜕

𝜕𝜃3
𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
)] and  

Λ̈(𝑝, 𝑞, 𝑘) ≔ ∫
𝑧𝑝−1(1−𝑧)𝑞−1

(2−𝑧)𝑘
(log

1−𝑧

𝑧2
)
2

𝑑𝑧
1

0
= 4

𝜕2Λ(𝑝,𝑞,𝑘)

𝜕𝑝2
− 4

𝜕2Λ(𝑝,𝑞,𝑘)

𝜕𝑝𝜕𝑞
+
𝜕2Λ(𝑝,𝑞,𝑘)

𝜕𝑞2
  

= (4𝜓′(𝑝) + 𝜓′(𝑞) − 𝜓′(𝑝 + 𝑞))Λ(𝑝, 𝑞, 𝑘)  

+(−2𝜓(𝑝) + 𝜓(𝑞) + 𝜓(𝑝 + 𝑞))Λ̇(𝑝, 𝑞, 𝑘)  

−
1

2𝑘
(−2𝜓(𝑝) + 𝜓(𝑞) + 𝜓(𝑝 + 𝑞))𝐵(𝑝, 𝑞) [2

𝜕

𝜕𝜗2
𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
) +

𝜕

𝜕𝜗3
𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
)]  

+
1

2𝑘
𝐵(𝑝, 𝑞) [4

𝜕2

𝜕𝜗2
2 𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
) + 4

𝜕2

𝜕𝜗2𝜕𝜗3
𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
) +

𝜕2

𝜕𝜗3
2 𝐹2 1 (𝑘, 𝑝; 𝑝 + 𝑞;

1

2
)]. 

In the above formula, 𝐹2 1(𝜗1, 𝜗2; 𝜗3; 𝑧) denotes the hypergeometric function; 
𝜕

𝜕𝜗𝑖
𝐹2 1 (1, 𝑝; 𝑝 + 𝑞;

1

2
) stands 

for 
𝜕

𝜕𝜗𝑖
𝐹2 1(𝜗1, 𝜗2; 𝜗3; 𝑧)|

(𝜗1,𝜗2,𝜗3,𝑧)=(1,𝑝,𝑝+𝑞,
1

2
)

; 
𝜕2

𝜕𝜗𝑖𝜕𝜗𝑗
𝐹2 1 (1, 𝑝; 𝑝 + 𝑞;

1

2
)  stands for 

𝜕2

𝜕𝜗𝑖𝜕𝜗𝑗
𝐹2 1(𝜗1, 𝜗2; 𝜗3; 𝑧)|

(𝜗1,𝜗2,𝜗3,𝑧)=(1,𝑝,𝑝+𝑞,
1

2
)

. Those partial derivatives of the hypergeometric function must be 

calculated numerically because routines for those derivatives is not provided by statistical computer packages. 

Similarly to the Fisher information matrix of the GB2 derived by Brazauskas [2], the second derivatives of the 

log-likelihood with respect to p and q are independent of a and b. 
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