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Abstract. This paper studies the applicability of Hilbert’s ε-calculus in auto-
mated reasoning, in particular its incorporation in free-variable tableaux is in-
vestigated. Based on this study a careful comparison between δε-tableaux [1] and
δ
���

-tableaux [8] becomes possible. Finally, in the spirit of [8], a new liberalization
of the δ

�

-rule [3] is defined. This liberalization allows a non-elementary speed-up
over δ

���

-tableaux.

1 Introduction

In proof theory and automated reasoning Skolemization techniques play a vital rôle. I.e.
in the context of refutational theorem proving the elimination of weak quantifiers in a
formula that is to be refuted, is of utmost importance. Here we are mainly concerned
with tableaux based proof procedures. In recent years major improvements upon the
basic calculus of Beth and Hintikka have been described, which focus on different ver-
sions of δ-expansion, i.e. on different Skolemization techniques, cf. [10, 6, 3, 1, 8].

A very interesting stance has been taken by W. Ahrendt, and M. Giese in [1]. They
use the computational power of Hilbert’s ε-calculus (see Section 3 for a formal defini-
tion) and employ ε-terms in the rôle of Skolem functions. The authors (at least partly)
motivate their interest in the ε-formalism, by the fact that the established δε-tableaux
system allows exponential speed-up over previously known versions. This work moti-
vates our interest in studying the possibility to employ Hilbert’s ε-calculus successfully
in automated reasoning.

Hilbert’s ε-formalism [11], is a formalism that (employed on first order logic) pro-
vides an effective formalization of first-order logic. This formalism arose from the
foundational works of David Hilbert and his colleagues. However our interest in the
ε-calculus has nothing to do with foundational debates, but is based on the observation
that via the ε-calculus the logical complexity of formulas can be (almost) completely
coded into the term-structure.

Before we can asses the applicability of the ε-calculus to automated reasoning, we
have to provide suitable information on the ε-calculus. In Section 3 we will establish
some basic and some less basic facts upon this formalism. To interpret these facts cor-
rectly, we have to be more precise on the sort of application of Hilbert’s ε-calculus we
are interested in.
�
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We take the point of view that we want to employ the ε-calculus as a sort of black
box in first-order automated theorem proving: Firstly we want to know whether it is pos-
sible to render a formalization of Hilbert’s ε-calculus that is suitable and effective for
proof search. The best solution would be to come up with a (suitable) tableaux or reso-
lution based proof procedure. Second we want to make sure that an arbitrary first-order
problem e.g. in the TPTP-library can be translated effectively in the language of the for-
malization obtained. Clearly we cannot assume that a given proof attempt will always
succeed. Hence it is necessary to understand the output of the broken proof attempt.
Therefore we demand (a weak form of) the reverse translation as well. (The qualifier ‘a
weak form of’ will be discussed later, when more details have been presented.)

Note that we are not particularly interested in obtaining a formalization of Hilbert’s
ε-calculus for its own sake. More precisely we do not want to extend the basic language
by the ε-symbol to express new things, but only to express old and reliable things as
quantifiers in a (hopefully) more efficient way. Based on the machinery established
in Section 3 we take a careful look at the result in [1]. This study will take place in
Section 4.

The aim of the remaining part of the paper is mainly to relate the results obtained
in [1] to those obtained in [8]. Such a comparison is hindered as the results of the former
paper are expressed in a tableaux calculus that is based on the ε-formalism, while the
latter results are completely based on ‘usual’ first-order tableaux. To overcome this
problem, we will define in Section 6 a tableaux calculus, based on a liberalization of
the δ-rule, called δ

�
-rule, that allows the same speed-up results as δε-tableaux. The

δ
�
-tableaux rules are simply rendered from the δε-rules by consequently interpreting

ε-terms as Skolem functions.
The relation of δ

�
-tableaux (and hence δε-tableaux) with the further improved

tableaux variant δ
���

-rule introduced in [8] is presented (together with further results)
in Section 8.

Finally, in the spirit of [8], a further liberalization of the δ
�
-rule [3] is defined. This

liberalization allows a non-elementary speed-up over δ
� �

-tableaux, cf. Section 9

2 Preliminaries

We assume familiarity with the basic concepts of tableau and resolution based theorem
proving. However, we fix some notations. Recall that Smullyan introduced a classifica-
tion scheme for logical operators (and thus for tableaux rules). Within this scheme there
are four different types, α (conjunctive propositional), β (disjunctive propositional), γ
(universal), and finally δ (existential). Given a δ-formula δ, the notation δ0

�
x � will be

used to denote the (semi-)formula φ
�
x � , if δ ��� xφ

�
x � or 	 φ

�
x � , if δ ��
 x 	 φ

�
x � . (We

refer to [9] for a nice introduction into tableaux and [13] for definitions of clauses,
substitutions, ground instances, factors etc.)

Below we present a number of different free tableaux calculi which all differ only
in the definition of the δ-expansion rule. To be concise, let us call the proof procedures
that are based on the usual tableaux rules and the different versions δ

�
of the δ-rule as δ

�
-

tableaux. (We refer to [9] for a nice introduction into tableaux and to[13] for definitions



of clauses, substitutions, ground instances, factors etc.) The size, � � τ � � , of a resolution
proof τ (or tableaux τ), is the number of clauses or formulas occurring in it.

It is notationally convenient to distinguish between bound and free variables. Bound
variables will be denoted by lower-case letters from the end of the alphabet, while
free variables will be denoted by upper-case letters from the beginning of the alpha-
bet. Terms are constructed as usual from constants, variables, and function symbols;
semi-terms are like terms but may also contain bound variables. Formulas are defined
as usual with the proviso that only bound variables are allowed to be quantified and
only free variables may occur free. Semi-formulas are defined as formulas but may also
contain free occurrences of bound variables. W.l.o.g. we assume throughout this paper
that each quantifier occurrence in a formula is unequivocally associated with a unique
variable name. As usual, the set of free variables of a term or formula E is denoted as
Var
�
E � .

The polarity of sub-formulae be defined as usual. An occurrence of � in a formula φ
is called weak (strong) if it is the leading symbol of a positive (negative) sub-formula
of φ. Dually for 
 .

We want to compare different versions of tableaux calculi on the minimal size of
proofs. A natural way to compare the proof complexity of different proof systems is to
relate them to the calculus-independent measure of Herbrand complexity. Note that in
refutational proof systems, as e.g. tableaux, Skolemization eliminates weak quantifier
occurrences.

Definition 1. Let φ be an unsatisfiable first-order formula that only contains strong
quantifier occurrences.Then HC

�
φ � denotes the minimal cardinality over all unsatis-

fiable sets of ground instances of φ. (Herbrand’s Theorem assures the existence and
finiteness of such a set.)

For every clause C we assign a closed formula Plf
�
C � by

Plf
�
C � � 
 x1 ����� 
 xnC � A1 �� x1 �������	� An �� xn 
 for Var

�
C � ��� A1 �������	� An 


For sets of clauses C , we define HC
�
C � as the minimal cardinality over all unsatisfiable

sets of ground instances of clauses in C .
Finally we define the non-elementary function 2x as 20 � 2 and 2x � 1 � 22x .

3 Hilbert’s ε-calculus

We extend the definition of terms to include ε-terms.

Definition 2. If φ
�
A � is a formula, not containing the bound variable x, then εxφ

�
x � is

a term; this term is called ε-term.
If on the other hand x does occur at positions p1 �������	� pk in φ

�
a � , we obtain a variant

φ
�

by replacing x at pi for all 1  i  k by some other bound variable y not already
occurring in φ. The variant φ

�
is then used to form the ε-term εxφ

� �
x � .



Although the ε-symbol ε makes use of the quantified variable x, it should not be
considered as a quantifier: Quantifiers are logical operators on formulas, while the ε-
symbol acts on terms. Note that ε-terms εxφ

�
x � � εzφ

�
z � which are equal upto renaming

of bound variables are considered as equal.
We consider instances of the following axiom schema

� xφ
�
x ��� φ

�
εxφ
�
x � � (1)

The instances of this schema are sometimes called critical axioms. In [11], p. 12, an
informal explanation of the ε-symbol is given. Roughly, the value of εxφ

�
x � is supposed

to be a witness of � xφ
�
x � , if there exists such a witness at all.1

Let PL denote some arbitrary Hilbert-type proof system for first-order logic with
language L . We extend PL with the axiom schema (1); the obtained proof system is
called T

�
. The presence of ε-terms in the language clearly extends the expressibility of

the given language L ; conclusively the language of T
�

is denoted as L
�
.

We write A � B to abbreviate the conjunction A � B � B � A. For an arbitrary proof
system T, we write T � φ to denote the derivability of φ in T. The length, � Π � , of a
proof in T counts the number of steps used.

Lemma 1. – T
�
� � xφ

�
x ��� φ

�
εxφ
�
x � � , and

– T
�
� 
 xφ

�
x ��� φ

�
εx 	 φ

�
x � �

Proof. We show only the latter equivalence, as the proof of the former is similar. The
direction � follows from the substitution axiom 
 xφ

�
x ��� φ

�
t � . While the other follows

by an application of the axiom

� x 	 φ
�
x ��� 	 φ

�
εx 	 φ

�
x � �

together with contraposition. �	

Hence in T
�

quantifiers become definable; this suggest a (Hilbert-type) proof sys-
tem, obtained from T

�
by deleting all quantifier rules. In addition we have to change the

shape of the axiom schema to the logical equivalent

φ
�
t ��� φ

�
εxφ
�
x � � (2)

where t denotes an arbitrary term. The new proof system is called T; its language
is denoted as L

�
. Following the convention in [11], we sometimes call the system T

(Hilbert’s) ε-calculus.

Definition 3. For any formula φ in L
�
, we define a formula φ

�
in L

�
:

– φ
� � φ, if φ is an atomic formula.

–
�
φ 
 ψ � � � φ

�

 ψ
�
. (Similar for

�
φ � ψ � � and

�
φ � ψ � � .

–
� � x φ

�
x � � � � φ

� �
εxφ
� �

x � � .
–
� 
 x φ

�
x � � � � φ

� �
εx 	 φ

� �
x � � .

1 It is quite interesting to note that the explanation given by Hilbert and his colleagues is different
form the one given later in the literature, compare [2, 12].



Remark 1. In particular for any formula φ in L , we can transform the formula φ
�

in L
�

back to φ. Simply employ the given transformation from right to left.

Based on this definition it is easy to prove an embedding of T
�
into T.

Proposition 1. – If T
�
� φ, then T � φ

�
-

– If T
�
� φ for closed φ, then there exists a derivation Π of φ

�
in T such that all

formulas in Π are closed.

Note that the proposition remains valid if ‘T
�
’ is replaced by ‘PL’. Hence, as im-

mediate corollary we see that for any formula φ valid in first-order logic, there exists a
number l, a sequence of formulas ψ1

�
t1 � ������� � ψl

�
tl � , and a sequence of terms t1 ��������� tl

s.t.
l�

i � 1

�
ψi
�
ti ��� ψi

�
εxψi

�
x � � ��� φ

�

is a tautology.

3.1 Semantics

We have not yet given any semantical interpretation of the Hilbert-type proof system T.
It may appear that the above equivalences, together with the informal explanation stated,
naturally induce a reasonable semantical interpretation. However, to our best knowledge
no commonly accepted semantics for Hilbert’s ε-calculus exist. See e.g. [12, 1, 7, 15] for
some attempts in this direction. In the following, we will present an example, which (at
least partly) explains the difficulty of this task.

Example 1. Consider

φ
�
εx 	 φ

�
x � x � � εx 	 φ

�
x � x � � (3)

φ
�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � � (4)

where φ is atomic. Note that the implication
�
3 � � � 4 � is an instance of the critical

axiom
φ
�
εx 	 φ

�
x � x � � A ��� φ

�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �

Hence there exists a derivation in T of (4) from (3). Observe that (3) equals
� 
 x φ

�
x � x � � � .

�	

We assume a ‘suitable’ semantic interpretation of the ε-symbol, s.t. T is actually
sound (wrt. this semantics). Let M be a structure over the signature L

�
, which is in

accordance with the assumed semantics; As usual we define an evaluation function
v � M � on M. Furthermore we assume that vM

� � 
 x
�
φ
�
x � x � � � � � true.

Hence
φ
�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �

has to be true in M . This induces the question: Is it possible to define a formula ψ in L
such that either ψ

� � � 4 � or at least T � ψ
�
�
�
4 � .



We consider the question wrt. a seemingly good candidate: Let ψ be equal to

 x � y φ

�
x � y � . We apply the transformation

� � � from inside to outside. The formula
� y φ

�
A � y � becomes φ

�
A � εyφ

�
A � y � � ; while 
 x φ

�
x � εyφ

�
x � y � � becomes

φ
�
εx 	 φ

�
x � εyφ

�
x � y � � � εyφ

�
εx 	 φ

�
x � εzφ

�
x � z � � � y � � (5)

Unfortunately this formula is different from (4): Every occurrence of the semi-term
εyφ
�
x � y � in (5) is replaced in (4) by the (bound) variable x. Furthermore, the following

lemma shows that we cannot even prove the equivalence of
�
5 � and

�
3 � in T.

Lemma 2. – T �
�
5 � � � 4 � , but

– T �� � 4 ��� � 5 �
Proof. The first part of the lemma is easy. The implication follows by a single applica-
tion of the schema (2) together with contraposition.

The second part is less trivial. To show the unprovability we make use of the as-
sumed semantics. We only assert the (rather natural) requirement, that the given seman-
tics interprets an ε-term εxφ

�
x � as a witness of � xφ

�
x � , if there exists such a witness

at all. Now, we argue indirectly. Assume
�
4 ��� � 5 � is derivable in T; let a structure N

(according to the assumed semantics) is given. Assume further the interpretation φN

of φ is chosen, s.t. φN � cN � cN � is true, for some element cN of the domain, and false
everywhere else. (The cardinality of the domain of N is � 1.)

By assumption and elimination of constants

φ
�
c � εyφ

�
c � y � � � φ

�
εx 	 φ

�
x � εyφ

�
x � y � � � εyφ

�
εx
� 	 φ
�
x � εzφ

�
x � z � � � � y � �

becomes derivable. Set vN
�
c � � cN , set vN

�
εxφ
�
c � y � � � cN , and assigned an arbitrary

element in the domain of N , different from cN , otherwise. With this assignment we
obtain

vN
�
εx 	 φ

�
x � εyφ

�
x � y � � � � dN (6)

vN
�
εyφ
�
εx 	 φ

�
x � εzφ

�
x � z � � � y � � � dN (7)

for an arbitrary element dN in the domain. Note that 	 φ
�
d � εyφ

�
d � y � � is true if the

constant d is interpreted as dN . Hence we conclude vN
�
φ
�
c � εyφ

�
c � y � � � � true, and

vN
�
φ
�
εx 	 φ

�
x � εyφ

�
x � y � � � εyφ

�
εx 	 φ

�
x � εzφ

�
x � z � � � y � � � � false

�	

We have shown that the setting ψ � 
 x � y φ
�
x � y � is not suitable to answer our ques-

tion. In a similar, but simpler way, the other possibilities for the formula ψ are excluded.
We conclude that the ε-calculus is more expressible than standard Hilbert-type proof
systems for first-order logic. In summary we have the following proposition.

Proposition 2. Let M be defined as above. Set θ equal to

φ
�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �

Then no formula ψ in L exists such that either ψ
� � θ or at least T � ψ

�
� θ.



The reason for this seems to be that the axiom schema (2) allows the replacement of
semi-terms by bound variables. (In our example the εyφ

�
x � y � is replaced by the bound

variable x.) In standard first-order logic, such behavior is prohibited.
This shows that the reversed implication of Proposition 1 fails. However, we have

the following fact, expressing that no problem arises as long as we are only employing
T
�
wrt. formulas free of ε-terms.

Proposition 3 ([11]). Let the proof systems T
�

and PL be defined as before. If T
�
� φ

with a deduction Π such that φ is in L , then we can transform the proof Π into a PL-
derivation of φ.

3.2 The Epsilon Calculus with Equality

In this section we want to comment on the computational effects of axiomatizing equal-
ity in the presence of the ε-rule. It is clear that we will need the following principle,
which is usually called ε-equality axiom.

s � t � εxφ
�
x � s � � εxφ

�
x � t �

We extend the system T by this axiom schema. The obtained proof system is denoted
as T

�
. (Note that the ε-equality axiom is restricted form of the ε-extensionality axiom,

see e.g. [1, 12].) We employ Yukami’s trick [16]; set 0k def� 0 �
�
0 � ����� � 0 � 0 � �� ��� �

k times 0

.

Proposition 4. Using two instances of the following restricted scheme of identity

s � 0 � g
�
s � � g

�
0 � (8)

we can derive 0k � 0 from (i) 0 � 0 � 0, (ii) 
 x � y � z x � y � y � z � x � z, and (iii)

 x � y x � y � y � x � 0 in constant length for any k.

Proof. The following equalities can be derived if we employ suitable instances of (8)
together with additional instances of the transitivity axiom (ii) and axiom (i).

0n �
�
0n � 1 � ����� � � 02 � 0 � � �

0n � 1 �
�
0n � 2 � ����� � � 0 � 0 � � �

0n � 1 �
�
0n � 2 � ����� � � 02 � 0 � �

Hence we have derived 0n � A � A, where A � 0n � 1 �
�
0n � 2 � ����� � � 02 � 0 � � ; we employ

axiom (iii) to obtain the desired result. �	

Proposition 5. There exists an existential formula φ, derivable in T
�
, such that no func-

tion can exist which limits HC
� 	 φ � in the length of the proof.

Proof. First we derive the restricted scheme of identity (8), by the use of ε-equality
axiom. We start by deriving εx

�
x � g

�
A � � � g

�
A � from g

�
A � � g

�
A � and g

�
A � � g

�
A ���



εx
�
x � g

�
A � � � g

�
A � . Now using ε-equality, s � t � εx

�
x � g

�
s � � � εx

�
x � g

�
t � � to-

gether with reflexivity and transitivity, we obtain s � t � g
�
s � � g

�
t � and hence (setting

t � 0) s � 0 � g
�
s � � g

�
0 � becomes derivable.

Now we prove the proposition. We use the same notation as in Proposition 4. Due
to this proposition and the fact that the restricted identity schema is derivable in T

�
, we

conclude the existence of uniform proofs, i.e. proofs with fixed length N of

� 
 x
�
x � x � � � � � i � � � � ii � � � � iii � � � 0k � 0

for any k.
Now assume the existence of a bound on HC

� 	 φ � in the length of these proofs N.
Hence, by completeness of PL, the formula


 x
�
x � x � � � i � � � ii � � � iii ��� 0 �

�
0 � ����� A ����� � � 0

for some free variable has to be PL-provable, too. This is absurd. �	

Remark 2. Let φ be defined as in the proposition. Then the proposition actually shows
that the proof system T

�
allows unbounded speed-up over the minimal size of proofs of

φ either in tableaux or resolution proof procedures, compare Section 7.
Note that ‘full first-order calculi, like Gentzen’s sequent calculus with cuts, only

allow non-elementary speed-up over tableaux or resolution proof procedures.

The unbounded speed-up is gained as the restricted scheme of identity (8) is deriv-
able in T

�
. Which on the other hand implies an explosion of the search space, if we

attempt to use the proof system T
�

for proof search. Note that this effect has nothing
to do with the fact that we have formalized equality through axioms. If we would use
a more elegant formalizations for equality, as e.g. paramodulation, we still have to take
care of the presence of the ε-symbol.

From this we see, how difficult, if not impossible to define a calculus suitable for
proof-search that formalizes the ε-calculus plus ε-equality.

4 Automated Theorem Proving and the Epsilon Calculus

In this section we reassess the δε-tableaux introduced in [1]. W. Ahrendt, and M. Giese
introduce a free-variable tableaux, denoted δε-tableaux, which includes an ε-expansion
rule. This expansion rule formalizes the axiom schema (1) presented in Section 3. The
tableaux rules are given in Table 1 and Table 2.

Table 1. δε-tableaux rules for quantified formulas

γ
γ0

�
A �

�
γ � rule �

where A is a free variable.

�
xφ

�
x �

φ
�
εxφ

�
x ���

�
δε � rule � �

�
xφ

�
x �

� φ
�
εx � φ

�
x ���

�
δε � rule �



Table 2. ε-expansion rule
�

x � φ
�
x � � φ

�
εxφ

�
x ���

It is easy to see that the δε-tableaux is equivalent to the Hilbert-type proof system T
�

introduced in Section 3. Note that for a closed formula φ the ε-expansion rule actually
amounts to the cut-rule. Hence in [1] further restrictions are introduced to control the
application of this rule. Before we go into further details we want to study the unre-
stricted tableaux calculus some more.

First it comes a surprise that the critical axioms are directly formalized as a sep-
arate rule. One is tempted to think that the same effect should have been possible by
a suitable modification of the closure rule. Recall the definition of closed tableau: A
tableau T is closed, if there is a substitution σ such that every branch in Tσ contains a
complementary pair of formulas. We alter this to take care of the ε-expansion rule.

Definition 4. A tableau T is ε-closed, if there is a substitution σ such that there exists
formulas φ

� � φ � � and φ
�
σ � φ � A �� εxφ

�
x � 
 with φ

� �
σ � 	 φ � A �� t 
 , where A is a free

variable (not necessarily occurring in φ
� � φ � � ) and t any term.

(It is obvious that the given closure rule can be simulated by one application of the
ε-expansion rule.) Unfortunately this revised definition of closure is defective, as it
encodes full second-order unification, which is well-known to be undecidable, com-
pare [5].

Now we employ the machinery presented in the previous section. For clarity reasons
we denote the δε-tableaux minus γ- and δε-rule by a separate name.

Definition 5. Consider a free-variable tableaux consisting of α and β rules, together
with the following variant translation of the ε-expansion rule

	 φ
�
A � � φ

�
εxφ
�
x � �

where A is a free variable. (Note that this rule is equivalent to the axiom schema (2).)
This tableaux system is called ε-tableaux.

An ε-tableaux T is closed, if there is a substitution σ such that every branch in T σ
contains a complementary pair of formulas.

The following proposition is an easy corollary to Proposition 1 and shows that δε-
tableaux (without restrictions on the ε-rule) is equivalent to ε-tableaux.

Proposition 6. Let φ be an arbitrary formula in L
�
, in particular φ may contain quan-

tifiers together with ε-terms.
Assume φ is δε-tableaux provable, then φ

�
is ε-tableaux provable and vice versa. In

particular let T be a closed δε-tableaux for φ. Then we can define a linear transforma-
tion of T into a closed ε-tableaux T

�
for φ

�
(and vice versa).

Proof. It suffices to show one direction, the other one is easy. We conclude from Propo-
sition 1 that any closed tableaux for a formula φ in δε-tableaux, can be transformed to a
closed ε-tableaux T

�
of φ

�
. The second part of the proposition follows directly from the

proof of Proposition 1. �	



Now we complete the presentation of the δε-tableaux: The application of this rule
is only allowed if for the ε-term εxφ

�
x)

1. the branch contains an atomic formula
� 	 � φ � t1 �������	� tn � such that

(a) εxφ
�
x � is a subterm of one of the ti and

(b) εxφ
�
x � is a term, not a semi-term,

2. εxφ
�
x � was not previously introduced by the δε-rule, and

3. the ε-rule was not previously applied for εxφ
�
x � on this branch.

Even with this restriction δε-tableaux turns out to be sound and complete for sub-
stitutive structures. (For our purpose, we need not be too precise on this semantics.
We only want to point out that the substitutive semantics defined is a restriction of the
extensional semantics described in [12].) It is not difficult to see that the introduced
restrictions do not considerably reduce the power of the Hilbert’s ε-calculus.

Proposition 7. Let φ be an arbitrary formula in L
�
, in particular it may contain quan-

tifiers together with ε-terms.
Assume φ is δε-tableaux provable (with restrictions), then there exists ψ, s.t. φ is

logically equivalent to ψ, and ψ
�

is ε-tableaux provable and vice versa.

Proof. Let Π be a δε-tableaux proof of φ. Assume w.l.o.g only one ε-expansion rule is
employed in Π which doesn’t fit the restrictions given above. Denote the critical ε-term
as εxϕ

�
x � . Assume that the restriction (1a) is violated. Then define

ψ � φ �
�
p
�
εxϕ
�
x � � 
 	 p

�
εxϕ
�
x � � �

Clearly ψ is logical equivalent to φ. Hence this takes care of restriction (1a).
Now consider the other restrictions: The case (1b) is trivially fulfilled for any ε-

tableaux by definition. The case (2) is void, as ε-tableaux does not admit δ-rules. The
last case, is a little bit more difficult, but it is easy to see that this restriction can only
occur if the ε-rule is applied wrt. the same formula φ. Hence the branch contains a cycle
that can either be eliminated or otherwise Π cannot be a proof. �	

Remark 3. Note that our argumentation to prove the propositions is purely proof-
theoretically, in particular no use of any semantics of Hilbert’s ε-calculus or any form
of completeness is made.

Remark 4. It was already noted in [1] that this schema is at least as powerful as a cut-
rule. However, it is an easy corollary of the proposition, which seems to have been
overlooked by W. Ahrendt and M. Giese, that even with the introduced restrictions,
there exists a δ

�
-tableaux proof of Statman’s example [14]. Hence δ

�
-tableaux (with

restrictions) admits non-elementary speed-up over any ‘usual’ tableaux.

Now we consider an ε-tableaux proof of

� 
 x φ
�
x � x � � � � φ

�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �



Example 1 (continued).

�
(3,ε) 	 φ

�
εx 	 φ

�
x � x � � εx 	 φ

�
x � x � �

�
(6,ε)φ

�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �

(2) 	 φ
�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �

(1)
� 
 x φ

�
x � x � � �

Remark 5. Almost the same tableaux is obtained if we consider the restricted version
of δε-tableaux with the formula


 x φ
�
x � x ��� φ

�
εx 	 φ

�
x � x � � εyφ

�
εx 	 φ

�
x � x � � y � �

Hence, Proposition 2 remains valid, if we replace the reference to the proof system
T either by the ε-tableaux system or the restricted version of δε-tableaux: We are faced
with sentences, which cannot be (re-)translated into formulas in L employing the

� � �
transformation.

We collect the pieces. The above proposition destroys our hopes that we can use
Hilbert’s ε-calculus as a black box, as motivated in the Introduction. Therefore, the
translation of formulas in L

�
back to formulas in L fails, at least with respect to the

(quite natural) transformation
� � � . Furthermore this translation even fails if we restrict

our attention to ‘interesting’ formulas in L
�
, namely those that can occur as (satisfiable)

formulas in (failed) proof attempts.
Leaving this problem aside, we conclude that any computational calculus which

proves the same formulas as the Hilbert-type system T will need to incorporate the full
power of the schema of critical axioms. This follows by Proposition 7 together with the
statement previous to Definition 5. Furthermore, if we want to reason about equality, any
computational calculus based on Hilbert’s ε-formalism will feature the same unbound
speed-up over ‘usual’ variants of tableaux; clearly this speed-up comes with the cost of
an explosion in search space.

These facts should raise some doubts whether we should employ the ε-formalism in
automated reasoning, at all. Clearly this does not imply that the ε-calculus may not be
fruitfully employed in interactive theorem proving, compare [1].

5 Variants of Tableaux

In recent years major improvements upon the basic calculus of Beth and Hintikka
have been described, which focus on different versions of δ-expansion, i.e. on different
Skolemization techniques.

In [10] a liberalization of the original δ-rule is presented: Only the variables oc-
curring in δ are taken as arguments of the introduced Skolem function. This version of
δ-expansion is called δ � -rule. A further liberalization of the δ-rule is formulated in [6].
Now we may assign a Skolem function f � δ � to each equivalence class � δ � , containing
all formulas that are identical to δ up to renaming of variables. (See [6] for a formal
definition.)



Recall that δ ��� -tableaux admit a non-elementary speed-up over δ-tableaux, cf. [3].
In [3] a further liberalization of δ-expansion, called δ

�
-rule, is defined. This rule is based

on the notion of relevant variables. (See [3] for a formal definition. A very similar, but
sligthly improved variant is defined in Section 9.) The δ

�
-rule is presented in Table 3.

Note that these liberalizations form a sort of hierarchy: Less and less variables are
taken into account in the definition of Skolem functions. It is quite reasonable to argue
that the real nature of these speed-ups comes about by the elimination of irrelevant
variables in the definition of Skolem functions, compare [3].

Table 3. δ
�

-rule
δ

δ0
�
f � δ �

�
A1 ��������� An ���

�
δ
�

-rule �

where A1 ��������� An are the relevant variables of δ and f � δ � is defined as in [3].

In [3] it is demonstrated that δ
�
-tableaux allows a further non-elementary speed-

up over δ ��� -tableaux. Arguably these speed-ups are the result of ignoring irrelevant
variables as arguments to Skolem functions.

The rules of δε-tableaux [1] have already be presented in Section 4. The cited pa-
per contains an example of an exponential speed-up over δ � � -tableaux. The authors
claim that the δε-tableaux may be strengthened, in a way such that it is strictly stronger
than δ

�
-tableaux. Furthermore the question is raised whether the method of [3] can be

employed successfully for δε-tableaux. We will comment on the raised questions below.
Finally in [8] yet another liberalization of the δ-rules is presented, called δ

� �
-rule

which combines the ideas present in [1] and in [3]. Contrary to [3] a recursive definition
of relevance is defined together with the notion of a key formula. (See [8] for a formal
definition.) Here the first concept allows the reduction argument places that need to be
taken into account, the second idea allows the reduction of different Skolem function
that need to be introduced. The cited paper presents (i) an example of an exponential
speed-up over δ

�
-tableaux which comes about as the introduction of different Skolem

functions is prevented and (ii) a non-elementary speed-up over δ
�
-tableaux which is

mainly due to the recursive definition of relevance.
We have not yet given a definition of HC for arbitrary formulas; instead HC

�
φ � is

only defined if φ does not contain weak quantifier occurrences. For δ ��� , δ
�
-tableaux,

and δ
� �

-tableaux there is a natural way to evade this problem: Since there is a one-
one correspondence between introduced Skolem functions and occurrences of weak
quantifiers in the refuted formula every such tableau τ determines a Skolemized form
of the formula: Traverse τ bottom-up and replace each occurrence of a δ-formula by
the corresponding δ0 formula. Let us call the resulting formula on the root of τ the
τ-Skolemization of F , Skτ

�
F � . Based on that, the following proposition is easy to see.

Proposition 8. For any closed δ � � -,δ
�
, or δ

� �
-tableaux τ for F we have � � τ � � �

HC
�
Skτ
�
F � � .



Note that this proposition doesn’t carry over easily to δε-tableaux as there we introduce
ε-terms instead of Skolem terms. In the case of δ- and δ � -tableaux no unique Skolem-
ization is defined, hence (the proof of) Proposition 8 doesn’t carry over. However, it
is clear that employing δ- and δ � -tableaux (instead of δ � � - or δ

�
-tableaux) can only

increase the size of the tableaux.

6 From Epsilon Terms to Skolem Functions

In this section we show how we can preserve the exponential speed-up of δε-tableaux
over δ ��� -tableau, without the need to axiomatize the full ε-calculus.

Definition 6. Assume a formula φ can be written as ψ
�
t1 ��������� tn � such that all (maximal)

occurring terms are indicated. Then ψ
�
A1 ��������� An � is called an abstraction of φ.

Note that the notion of an abstraction is similar to the concept of a key formula as
defined in [8]. We define for each δ-formula in L an equivalence class � � δ � � such that � � δ � �
consists of all formulas whose abstractions are equal upto renaming of free variables.
All formulas in an equivalence class � � δ � � are assigned the same new Skolem function
f � � φ � � . We define for the language L

Sk
�
L � � L � � f � � φ � � :φ � L � φ is an abstraction of a δ-formula 


Based on that we can inductively define an extension L
�
of L including all Skolem func-

tions obtained by the elimination of weak quantifiers in a given formula F , compare [6]:

L0 def� L and Ln � 1 def� Sk
�
Ln � . Finally we set L

� ��� i L i.

Example 2. The formulas � xφ
�
x � A � B � and � zφ

�
z � z � z � do not belong to the same equiv-

alence class. On the other hand the formulas � xφ
�
x � A � b � , � xφ

�
x � a � B � , a � b constants

do belong to the same class and therefore are assigned the same function symbol
f � � � xφ � x � A � B � � � . �	

Table 4. δ � -rule
δ

δ0
�
f � � φ � �

�
A1 ��������� An � σ

�
δ � -rule �

Let φ 	 ψ
�
A1 ��������� An � denote an abstraction of δ0, where A1 ��������� An are the fresh free

variables. Then there exists σ, s.t. the domain of σ is a subset of 
 A1 ��������� An � , s.t. δ 	
ψ

�
A1 ��������� An � σ. The Skolem function f � � φ � � is defined as above.

Before we show soundness and completeness, we restate an example from from [1];
in the presentation of [1] f actually denotes an ε-term.



Example 3.

�
(6, δ

� �
5 � ) 	 p

�
f
�
B � b � � B � b �

(5, γ
�
4 � ) � x 	 p

�
x � B � b �

(4,β
�
2 � ) 
 u � x 	 p

�
x � u � b �

�
(9, δ

� �
8 � ) 	 p

�
f
�
a � C � � a � C �

(8, γ
�
7 � ) � x 	 p

�
x � a � C �

(7,β
�
2 � ) 
 v � z 	 p

�
z � a � v �

(3,γ
�
1 � ) p

�
A � a � b �

(2) 
 u � x 	 p
�
x � u � b � 
 
 v � z 	 p

�
z � a � v �

(1) 
 xp
�
x � a � b �

The tableaux becomes closed with the substitution � A �� f
�
a � b � � B �� a � C �� b 
 . The

interesting aspect of this example is that in both branches the same function f is used.
Clearly ‘ordinary’ tableaux would need two different Skolem functions, therefore in-
creasing the size of the minimal proof. We will take up this example in Theorem 4.

Now we show soundness and completeness. It suffices to consider soundness as the
completeness of standard tableaux can be easily adapted to δ

�
-tableaux, compare [9].

Let M denote a first-order interpretation, and µ a variable assignment. (The evaluation
function v � M � µ � is defined as usual.) A branch B of a δ

�
-tableau is called satisfied by�

M � µ � if v � M � µ �
�
φ � � true for all formulas φ in B. Alternatively, we write

�
M � µ � � � B. A

tableau T is satisfiable if there exists an interpretation M and for all variable assignment
µ there exists a branch B in T such that

�
M � µ � � � B holds.

Lemma 3. If T is a tableaux whose root is labeled by a satisfiable closed formula, then
T is satisfiable.

Proof. First we define a partial interpretation M over the signature L
�
. If simplifies our

definition if we introduce the notion of rank of a Skolem-function f : The rank of f is
the least number n such that f � Ln, where L

�
equals � i L i as above.

Let f denote a Skolem function of rank n � 1. We fix a certain variable assignment
µ; now suppose

�
M � µ � � � δ

�
A � t � (A denotes the tuple of free variables in δ, while t

denotes the tuple of closed terms therein.) By definition there exists an element cM of
the domain of M such that2

�
M � µ � B �� cM 
 � � � δ0

�
B � A � t � . Therefore we set

v � M � µ �
�
f
�
v � M � µ �

�
A � � v � M � µ �

�
t � � � � cM

Otherwise the evaluation of f remains undefined. This completes the definition of the
partial interpretation M .

Based on M , the lemma is proven by induction on the expansion rules. The proof
is essentially the same as the proof given in [6] and hence omitted. �	

Lemma 4. Let T be a satisfiable tableau and σ a substitution that associates with every
free variable in T a term in the language of T , then T σ is satisfiable.

2 Since f is of rank n � 1 the symbols in δ are from the language Ln.



Proof. The claim follows as in [6].

In summary we have obtained the following theorem.

Theorem 1. If T is a closed tableau, whose root is labeled by the closed formula 	 φ,
then φ is universally valid.

7 Resolution, Functional Extension, and Tableaux

Recall that [14] demonstrate that proofs in ‘full’ logical calculi (like Gentzen- or
Hilbert-style calculi) can be non-elementarily shorter than the Herbrand complexity
of the proven formula. However, if we consider resolution, the size of the resolution
refutation of an unsatisfiable clause set C can be at most exponentially smaller than
HC
�
C � , compare [4].

We review some concepts and results from [4]. Consider the valid first order schema� 
 x � � φ � x � 
 ψ
�
x � ��� ��� x � φ � x � 
 ��� dx � ψ � x � � where

�
and

� d are dual quantifiers.

Definition 7. Let C be a set of clauses and C1 
 C2 � C . Let A1 ������� An � B be the (free)
variables that occur in both, C1 and C2. Then

C � � C1 
 C2 � B � f
�
A1 ������� An � 
 
 �

where f is a new function symbol, is called a 1-F-extension of C .

If the context uniquely determines the clause set in question we will call C1 
 C2 � B �
f
�
A1 ������� An � 
 a 1-F-extension of the clause C1 
 C2. Clearly the 1-F-extension of a

clause-set C cannot be logically equivalent to C . However, the extension rule preserves
satisfiability and if we augment a (refutationally) complete resolution calculus by this
extension rule we obtain a complete and correct calculus. (See [4] for further details.)
We denote the resulting calculus as 1-F-resolution.

Proposition 9. There exist a set of clauses C and a sequence of literals Cn such that
– the Herbrand complexities as well as the size of the shortest resolution refutations

of C � � Cn 
 are � 2n � c for some constant c (and the non-elementary function 2n

defined in Section 2).
– but there are 1-F-resolution refutations of C � � Cn 
 of size  2dn for some constant

d.

To simulate Proposition 9 in the context of tableau proofs we define for any 1-F-
extension step C1 
 C2 � C1 
 C2 � B �� f

�
A1 ������� An � 
 of a 1-F-resolution proof the cor-

responding justifying formula:
� 
 x1 � ����� � 
 xn �

� 
 y � � � C1 
 C2 � �
�
C1 


� � z � C2 � y �� z 
 � � .
where B � A1 ������� An are all free variables occurring in C1 and C2.

Proposition 10. Any 1-F-resolution refutation ρ of a clause set C can be translated
into a closed δ � � -, δ

�
, δ
� �

, or δ
�
-tableau τρ for Plf

�
C � � J, where J is the conjunction

of all justifying formulae corresponding to 1-F-extension steps in ρ. Moreover, � � τρ � ����
d � 1 � c � � ρ � � , for some constant c, where d is the maximal number of literals occurring

in a clause of ρ.



8 Some Speed-up results

To show a non-elementary speed-up of δ
�
-tableaux over δ � � -tableaux [3] define the

following variant of a justifying formula:

� 
 x1 � ����� � 
 xn �
� 
 y � � � C1 
 C2 ���

�
C1 


� � z � � C2 � y � z 
 
 � p � y � � 	 p
�
y � � � � � (9)

Observe that these variants are logically equivalent to the original formulas.

Lemma 5. Let φ be an quantifier-free formula; let φ
� � 
 yφ

�
y � � ψ1 � ����� � ψn where

ψi � 
 x � y � � Ci
1 
 Ci

2 ���
�
Ci

1 
 � Ci
2 � z � f i � x � y � 
 
 ϕi � � � , such that the ϕi are contradictory

formulas and the f i do not occur in φ nor in any ψ j, if j � i. Then HC
�
φ
� � � HC

�
φ � .

Proof. It suffices to prove the following claim; the lemma will then follow by induc-
tively applying the claim.

Claim. Let φ
� � 
 yφ

�
y � � 
 x � y � � C1 
 C2 � �

�
C1 
 � C2 � z � f

�
x � y � 
 
 ϕ � for some con-

tradictory formula ϕ. Then HC
�
φ
� � � HC

�
φ � .

We consider the smallest unsatisfiable set of instances F
� def� � � 
 zφ

�
z � � ψ � ρi :1 

i  n 
 of φ
�
, where ψ is defined as in the statement of the claim. We will show that

already the set � � 
 zφ
�
y � � ρi:1  i  n 
 is unsatisfiable. First we order the set of instances

f
�
t � t � � of f

�
z � y � occurring in F

�
according to the sub-term relation. Now we replace

each maximal instance f
�
t � t � � by t

�
. It is easy to see two facts: Firstly, as only maximal

instances (in the defined partial ordering) are replaced, other instances of f
�
z � y � are

unaffected. Secondly the formulas ψρi either keep their shape or become tautologies.
We repeat this procedure till all the ψρi become tautologies. Now, we observe that we
may remove these tautologies. Hence we obtain that the set � � 
 zφ

�
z � � ρi:1  i  n 
 is

unsatisfiable. This completely proves the claim. �	

Theorem 2. There exists a sequence of unsatisfiable formulae φn s.t.
– the smallest closed δ

�
-tableaux for φn are of size � 2n � c for some constant c,

– but there are closed δ
�
-tableaux for φn of size  e

�
n � for some elementary func-

tion e.

Proof. We take φn � Plf
�
C � � Cn 
 � � � ψ1 � ����� � ψn � where C � � Cn 
 are defined as in

Proposition 9 and ψ1 � ����� � ψn denotes the conjunction of employed variants of the
justifying formulas. Due to Proposition 10 we can translate this ‘short’ 1-F-resolution
resolution proof into a δ

�
-tableaux proof. Therefore we obtain the second assertion.

Now we consider the first assertion. Recall that HC
�
C � � Cn 
 � has a non-elementary

lower bound, due to Proposition 10. However, in general HC
�
C � �� HC

�
Plf
�
C � � , but we

have HC
�
Plf
�
C � � � HC

�
C �  � C � � HC

�
Plf
�
C � � . This together with the above lemma

shows that HC
�
C � � Cn 
 � is a lower-bound for HC

�
Skτ
�
φn � � . Finally we employ Propo-

sition 8 to observe that � � τ � � � HC
�
Skτ
�
φn � � . �	

Theorem 3. There exists a sequence of unsatisfiable formulas φ
�
n s.t.

– the smallest closed δ-tableaux for φ
�
n are of size � 2n � c for some constant c,

– but there are closed δ
�
-tableaux for φ

�
n of size  e

�
n � for some elementary function e.



Proof. Let the definition of a sequence of unsatisfiable formulas Fn be altered such
that the original justifying formulas are employed instead of the D-variants. Then the
liberalized δ

�
-rule allows us to ignore the free variable B, while the δ-rule forces its

incorporation as argument of the introduced Skolem function. This suffices to see that
the just given proof can be re-applied. �	

Theorem 4. There exists a sequence of unsatisfiable formulae ψn s.t.

– the smallest closed δ � � -tableaux for ψn are of size � 2n � c for some constant c,
– but there are closed δ

�
-tableaux for ψn of size  n � d for some constant d.

Proof. Define

ψ0 � true
ψn � 1 � � x

�
ψn � pn

�
x � a � b � � � � u
 xpn

�
x � u � b � � � v 
 zpn

�
z � a � v � � �

Now the proof proceeds similar as in [6]. �	

The following proposition is an easy corollary to the obtained theorems and answers
the related questions posed in [1].

Corollary 1. – δ
�
-tableaux admits non-elementary speed-up over the δε-tableaux,

– δε-tableaux admit non-elementary speed-up over δ-tableaux, and
– δ
�
-tableaux admit exponential speed-up over δ � � -tableaux.

Proof. We only sketch the proof for the first case. The formulas φn employed in the
theorem are free of ε-terms, hence any δε-tableaux does not admit the use of the ε-rule.
Hence the introduced ε-terms are theory-free and can simply be interpreted as Skolem
functions. This allows an argumentation as in Lemma 5. Now the further proof follows
the argumentation in the theorem. �	

Remark 6. Note in particular that the non-elementary speed of δ
�
-tableaux over δ � � -

tableaux cannot carry over to δε-tableaux. This would only be possible if we extend
δε-tableaux by further axiom schemata.

9 A new notion of relevance

In this section we define a further liberalization of the δ
�
-rule, denoted as δ

� �
-rule that

allows non-elementary speed-up over δ
�
-tableaux, and δ

� �
-tableaux. The main novelty

is a refined notion of relevance.
We define, for any formula φ, the set Rel

�
φ � A � of free variables that occur relevantly

w.r.t. to a free variable A. Note that the given definition is a straightforward extension
of the one given in [3].

Definition 8. If A does not occur in φ then Rel
�
φ � A � � /0. Otherwise:

– If φ is an atomic formula, then Rel
�
φ � A � is the set of all variables in φ except A.

– If φ � 	 ψ, then Rel
�
φ � A � � Rel

�
ψ � A � .



– If φ � ψ1 
 ψ2 or ψ2 
 ψ1 and A does not occur in ψ2 (but in ψ1) then Rel
�
φ � A � �

Rel
�
ψ1 � A � . If A does occur in ψ2 but this occurrence is restricted to at most one

literal in ψ2, and ψ2 is contradictory, then Rel
�
φ � A � � Rel

�
ψ1 � A � . If A occurs in

both, ψ1 and ψ2, then Rel
�
φ � A � is the set of all free variables in φ except A.

(Similarly for φ � ψ1 � ψ2 and φ � ψ1 � ψ2.)
– If φ � ��� y � ψ then Rel

�
φ � A � � Rel

�
ψ � y � B 
 � A � � � B 
 .

If φ is a δ-formula, i.e. φ � � � x � ψ or φ ��	 � 
 x � ψ then we define the set of relevant
variables to be Rel

�
ψ � x � A 
 � A � .

The rules for quantified formulas are given in Table 5. The soundness and complete-
ness of δ

� �
-tableaux follows, easily.

Table 5. δ � � -rule
δ

δ0
�
f � � φ � �

�
B1 ��������� Bm � σ

�
δ � � -rule �

Let φ 	 ψ
�
A1 ��������� An � denote the abstraction of δ0,

where A1 ��������� An are fresh free variables. Then there exists a σ, domain of σ is a subset of

 A1 ��������� An � , s.t. δ 	 ψ

�
A1 ��������� An � σ. Finally the set 
 B1 ��������� Bm � � 
 A1 ��������� An � denotes

the relevant variables of φ, according to the above definition.

Using the same example that was employed in the proof of Theorem 4, we can now
conclude the following theorem.

Theorem 5. There exists a sequence of unsatisfiable formulae ψn s.t.
– the smallest closed δ

�
-tableaux for ψn are of size � 2n � c for some constant c,

– but there are closed δ
� �
-tableaux for ψn of size  n � d for some constant d.

Using a similar example an exponential speed-up of the δ
���

-tableaux over δ
�
-

tableaux has been demonstrated in [8]. Furthermore a non-elementary speed-up of δ
���

-
tableaux over δ

�
-tableaux has been established. It is important to note that the second

result is due to the recursive definition of relevance, employed in the δ
� �

-tableaux, hence
comes about by the removal of “irrelevant” argument places in the definition of Skolem
functions, while the first employs the fact that through the δ

���
-rule less Skolem func-

tions need to be introduced, then via the δ
�
-rule.

Employing Definition 8 we obtain the following theorem. We define the following
variant of a justifying formula:

� 
 x1 � ����� � 
 xn �
� 
 y � � � C1 
 C2 � �

�
C1 


� � z � � C2 � y � z 
 
 � p � y � � 	 p
�
y � � q

�
z � y � � � � � (10)

Again this variant is logically equivalent to the original formula.

Theorem 6. There exists a sequence of unsatisfiable formulae ψn s.t.
– the smallest closed δ

���
-tableaux for ψn are of size � 2n � c for some constant c,



– but there are closed δ
� �
-tableaux for ψn of size  e

�
n � for some elementary func-

tion e.

Proof. The proof proceeds as the proof of Theorem 2. We only have to employ the
above variant (10) of the justifying formulas. �	

10 Conclusion and Future Work

In this paper we have studied the possibility of using Hilbert’s ε-calculus in first-order
automated reasoning and the relation between Skolem functions and ε-terms.

Based on the results in Section 3 and Section 4, we conclude that the ε-calculus
(without drastic alterations) is a too strong tool, that should not be considered as appro-
priate for automated reasoning.

On the other hand, if adjust our aims and seek for elegant liberalizations of the δ-
rule, we have seen (in Section 6) that we need not really consider the ‘full’ ε-formalism,
but can indeed simulate its effect by suitable defined Skolem functions. Thereby show-
ing how we can achieve a similar effect as in [1] replacing ε-terms by Skolem functions.

Using this result we can compare δε-tableaux with δ
� �

-tableaux and conclude that
the later allows non-elementary speed-up over the former. Finally we have defined a
further liberalizations of the δ-expansion rule, called δ

� �
-rule which is similar to the

δ
���

-rule but admits non-elementary speed-up over the latter.
With respect to the last result a warning seems appropriate: Note that the proof of

Theorem 6 depends exclusively on the special form of relevance employed. Admittingly
this form is neither natural, nor efficient. However, our point here is something else. In
effect we can define a whole zoo of different notions of relevance (even efficient ones),
s.t. each of these triggers a non-elementary speed-up over the other. With this fact in
mind, it seems save to say that δ

� �
-tableaux and δ

� �
-tableaux should be considered as

equal.
It still remains to give a more detailed analysis of the exponential speed-up of the

δ
� �
-tableaux over the δ

�
-tableaux, as reported in Theorem 5.

Is it possible to improve this exponential speed-up, following the argument of
the theorem, to a non-elementary speed-up?

Unfortunately we cannot answer this question at the moment.
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