
M A N N I N G

Kenneth A. Kousen
FOREWORD BY Guillaume Laforge

 A P P E N D I X C

Making Java Groovy

by Kenneth A. Kousen

 Appendix C

 Copyright 2014 Manning Publications

vii

brief contents
PART 1 UP TO SPEED WITH GROOVY..1

1 ■ Why add Groovy to Java? 3

2 ■ Groovy by example 18

3 ■ Code-level integration 46

4 ■ Using Groovy features in Java 64

PART 2 GROOVY TOOLS ..91

5 ■ Build processes 93

6 ■ Testing Groovy and Java projects 126

PART 3 GROOVY IN THE REAL WORLD....................................165

7 ■ The Spring framework 167

8 ■ Database access 199

9 ■ RESTful web services 227

10 ■ Building and testing web applications 257

1

appendix C
SOAP-based web services

A few years ago, many businesses decided to integrate their internal systems
together into a Service-Oriented Architecture using web services. The promise was
that automated tools would make the integration straightforward, and by assem-
bling a coherent, reusable set of services, development time for new systems could
be considerably reduced.

 The idea makes sense when viewed as a way to connect applications written in dif-
ferent languages, running on different operating systems, possibly even deployed in
different locations. After all, every language can read and write strings, and what are
SOAP-based web services but highly formatted strings transmitted over a network?

 Though today RESTful web services are more popular (see chapter 10), many
organizations spent considerable resources building a SOAP-based SOA infrastruc-
ture. A typical Java developer in the field almost inevitably will have to deal with
them sooner or later. The question posed in this appendix, as always, is to ask if
Groovy can make that job simpler and easier.

 As it turns out, this is another area in which the guiding principle stated in
chapter 1 works: Java is good for tools, libraries, and infrastructure, and Groovy is
good for everything else. In this appendix, I’ll demonstrate how Groovy can be
used with the standard Java tools to build SOAP-based clients and services, and see
where else Groovy can simplify the overly complex world that is SOAP, WSDL, and
lots of XML.

C.1 A quick review of SOAP and WSDL
The web services in this appendix are based on the XML markup languages known
as SOAP and WSDL. In this section I’ll review the basics of each. After that, I’ll use
the Java-supplied tools to build web services clients and services, and show how
Groovy implementations factor into each.

2 APPENDIX C SOAP-based web services

C.1.1 SOAP

In the original Note for SOAP 1.1 (www.w3.org/TR/2000/NOTE-SOAP-20000508/)
prepared by the World Wide Web Consortium (W3C), SOAP was defined as an acro-
nym for Simple Object Access Protocol. In the current version of the specification
(1.2), SOAP is now a full technical recommendation of the W3C (www.w3.org/TR/
soap12/) and no longer stands for anything.

 SOAP is designed to be a simple wrapper around an XML payload (see figure C.1).
Because SOAP-based web services are supposed to be independent of transport proto-
col, the wrapper provides a mechanism for specifying meta information like security
and transactions. SOAP 1.2 may be current, but version 1.1 is still the most common
version found in practice.

 The schema for SOAP defines a root element called <Envelope>, which contains an
optional <Header> and a mandatory <Body>. The contents of the header and body are
nearly arbitrary, which makes sense because both contain information supplied by the
client outside the SOAP specification.

 The longest section of the SOAP 1.1 specification discusses how data types are to be
encoded, or represented, in XML. SOAP-based web services are normally viewed as a way
to do remote procedure calls, so a mechanism is needed to define method arguments
and return types. This part of the specification is contained in section five, and ever
since, the mechanism for converting data types to XML has been known as SOAP Sec-
tion 5 Encoding. This encoding scheme still shows up in older web services, but in
general newer services use the XML Schema specification, which will be discussed fur-
ther in section C.1.2.

 If you take out section five, the SOAP specification really is Simple. The Object
Access part is still unclear, but SOAP certainly is a Protocol, so I guess the lost acronym
makes some sort of sense.

 In principle, you can build SOAP messages programmatically through an API. The
relevant Java API is called SAAJ, which stands for SOAP with Attachments API for Java.
SAAJ is a thin layer that maps very closely to the SOAP elements, with classes like SOAP-
Body, SOAPElement, and SOAPHeader. Still, constructing and manipulating XML through
the API is tedious at best. Instead, Java provides tools and infrastructure for creating
and transmitting SOAP messages automatically. The tools are based on having an XML
file full of information describing the service. That file is called a Web Services Defini-
tion Language file, or WSDL, and will be discussed next.

Meta data

(security,)and so on

Payload (operation,

parameters,
and so on)

SOAP header

SOAP body

SOAP message

Figure C.1 A SOAP message containing an
optional header and a mandatory body. The
header contains header elements, normally
processed by intermediaries. The body holds the
message, which usually consists of an element
representing the operation and child elements
for request parameters.

3Building a Groovy web service client

C.1.2 WSDL

The WSDL specification (version 1.1 of which can be found at www.w3.org/TR/wsdl)
contains all you need to build a client of a web service. WSDL files contain

■ An XML schema, which defines all the elements and attributes (if any) used to
map the data types used by the operations

■ A <portType> element, which contains method signatures for the <operation>s
■ Descriptions of any <input> and <output> messages used for request/response

operations
■ A <binding> section, which explains how to create and transmit the messages
■ A <service> element, which lists where the service resides and links the bind-

ings to the port types so messages can be sent either way

In J2EE 1.4, the web services specification for Java was called the Java API for XML-
based Remote Procedure calls, or JAX-RPC. The current specification is the Java API
for XML-based Web Services, or JAX-WS. Of particular interest here is that several of
the tools implemented by JAX-WS are now part of the Java 1.6 Standard Edition. This
means that in this appendix I can demonstrate everything with a regular JDK.

 Given a WSDL file, the relevant Java tool is called wsimport. That command gener-
ates and compiles classes called stubs, which construct SOAP messages from Java
method invocations, transmit them to a service, receive the SOAP responses, and trans-
late them back to into Java. The wsimport tool (and similar tools from other vendors)
is one of the keys to the value of SOAP-based web services. With only the WSDL file
available, a fully functional client for a web service can be generated without dealing
with XML at all.

 The other important tool Java includes is called wsgen. It generates the WSDL file
from existing Java code. One method for implementing web services is to write the
service code first, or at least build its skeleton, and then generate the WSDL file. This is
the so-called bottom-up approach. Alternatively, the WSDL itself can be written, or gen-
erated from other modeling tools, and then the service is implemented based on it.
That’s the top-down approach. The bottom-up approach is easiest to illustrate, so I’ll
use it in this appendix. I’ll use both those tools later in this appendix, first to illustrate
how web services work, and then to see how the tools interact with Groovy.

C.2 Building a Groovy web service client
The goal in this section is to build a client for an existing web service. This is very easy,
because the Java tools do most of the work. The Java tool in question is the wsimport
tool described in the previous section, which generates stubs in Java. A Groovy client
instantiates the generated stub and calls methods as usual. In this section I’ll pick a
web service, review its WSDL file to see what it does, generate the stubs using the Java
tool, and build a Groovy client that uses the stubs.

4 APPENDIX C SOAP-based web services

C.2.1 The Global Weather web service

To demonstrate this process I need an existing, publically available, preferably simple
web service. To make sure there’s no Java bias anywhere in this system, I’ll pick one
that I know to be implemented in .NET, called the Global Weather service.

 Microsoft makes available a set of SOAP-based web services at www.webservicex.net.
One of these is called the Global Weather service, which provides weather condi-
tions for cities around the world. The WSDL file for this service can be accessed at
www.webservicex.net/globalweather.asmx?WSDL.

 That’s a standard pattern, by the way. You access the WSDL file associated with a
web service at the service endpoint (the URL without the query string) and append
?WSDL to the end. The fact that the endpoint address in this case ends with asmx is
another clue that the service is implemented using .NET.

 Figure C.2 shows a graphical view of the WSDL file from Eclipse.
 Microsoft web services, by default, embed the name of the transport protocol

(SOAP, HTTP GET, or HTTP POST) into the name of the interface. Because I’m only
interested in the SOAP 1.1 service, I’ll focus on the port type (shown with an “I” for
“interface”) called GlobalWeatherSoap. The XML defining the port type is shown next:

Figure C.2 A graphical view of the WSDL file for Microsoft’s Global Weather web service. The service
element is on the left, the port types (interfaces) are on the right, and the bindings are in the middle.

5Building a Groovy web service client

<wsdl:portType name="GlobalWeatherSoap">
 <wsdl:operation name="GetWeather">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">Get

weather report for all major cities around the world.</
wsdl:documentation>

 <wsdl:input message="tns:GetWeatherSoapIn" />
 <wsdl:output message="tns:GetWeatherSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">Get

all major cities by country name(full / part).</wsdl:documentation>
 <wsdl:input message="tns:GetCitiesByCountrySoapIn" />
 <wsdl:output message="tns:GetCitiesByCountrySoapOut" />
 </wsdl:operation>
</wsdl:portType>

The GlobalWeatherSoap interface contains two operations, called GetWeather and
GetCitiesByCountry. Each is a request/response service, because they each have a
single input message and a single output message.

 To call the methods I need to know what to supply for parameters and what I’m
going to get back. The included schema shows that for the GetWeather operation the
arguments are a CityName and a CountryName, both of which are strings:

<s:element name="GetWeather">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="CityName" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1"
 name="CountryName" type="s:string" />
 </s:sequence>
 </s:complexType>
</s:element>

Both the CityName and CountryName elements have a minOccurs attribute of 0, imply-
ing they are optional, but presumably in a normal request both would be set. The
response to the operation is called, naturally enough, a GetWeatherResponse, which
contains a string:

<s:element name="GetWeatherResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="GetWeatherResult" type="s:string" />
 </s:sequence>
 </s:complexType>
</s:element>

Similarly, in reading through the WSDL I can see that the GetCitiesByCountry opera-
tion takes a string argument called CountryName and returns a string called Get-
CitiesByCountryResult.

6 APPENDIX C SOAP-based web services

 The name of the <service> element is GlobalWeather. The service contains three
ports, each of which has the name of the service with the name of the transport proto-
col appended. Again, all I care about is the GlobalWeatherSoap port. It contains an
<address> element that gives the endpoint address, or the URL where the service can
be accessed. Here’s the XML for the service element in question:

<wsdl:service name="GlobalWeather">
 <wsdl:port name="GlobalWeatherSoap" binding="tns:GlobalWeatherSoap">
 <soap:address location=
 "http://www.webservicex.net/globalweather.asmx" />
 </wsdl:port>
 ...
</wsdl:service>

Finally, the <binding> element contains lots of XML, but it all boils down to saying
that the service is in the “document/literal wrapped” style and transmitted as SOAP
over HTTP. This is typical of most web services developed in the past few years, and for-
tunately matches what the tools expect as well.

C.2.2 Generating the stubs

Now it’s time to use the tool. The wsimport script is a command-line tool that flags the
WSDL location as well as where to put the generated stubs. In my system, I created a
typical Eclipse project, which contained src and bin directories for the source code
and compiled files, respectively. That means I used the tool by opening a command
prompt in the root of the Eclipse project and typing the following string:

c:\> wsimport –d bin –s src –keep \
 http://www.webservicex.net/globalweather.asmx?WSDL

The command arguments say to put the compiled files in the bin directory and any
generated source in the src directory, keep the source (otherwise only the compiled
files would remain), and use the specified URL for the location of the WSDL file.
Because no package name was specified for the generated code, a package based on
the target namespace (www.webservicex.net) was used by default. The resulting classes
are shown in figure C.3.

Figure C.3 The net.webservicex package
contains the classes generated by the
wsimport tool. There’s a class for each
operation and a class for each request and
response type for the operations.

7Building a Groovy web service client

C.2.3 Building the Groovy client

All the generated files are, of course, implemented in Java. To access the web service, a
client instantiates the service stub and invokes the operations. According to the JAX-WS
specification, the client stub is created according to the following pattern:

<portType> stub = new <service_name>().get<port_name>Port()

A simple client for the Global Weather service looks like

GlobalWeatherSoap stub = new GlobalWeather().getGlobalWeatherSoapPort()

Then I use the stub to make method calls as though the service is local. Note that the
client can be written in either Java or Groovy, and until this point the distinction
doesn’t matter. As it happens, though, a Groovy client is definitely preferred here,
because unlike most web services that return objects, this particular service returns a
chunk of XML.

 The operation GetCitiesByCountry returns the list of valid cities in a given coun-
try. A bit of experimentation shows that although the return type of the GetCities-
ByCountry operation is String, the value is formatted XML that looks similar to the
following listing.

<NewDataSet>
 <Table>
 <Country>Canada</Country>
 <City>Nitinat Lake Meteorological Aero</City>
 </Table>
 <Table>
 <Country>Canada</Country>
 <City>Ile Rouge Meteorological Aeronau</City>
 </Table>
 <Table>
 <Country>Canada</Country>
 <City>La Scie, Nfld.</City>
 </Table>
...
 <Table>
 <Country>Canada</Country>
 <City>Belle River</City>
 </Table>
</NewDataSet>

Processing this in Java is as ugly as processing any other block of raw XML. You need
either a SAX parser or a DOM parser, and then you need to search for the desired ele-
ments and extract their contents, keeping in mind that the character data of an element
isn’t the value of the element, but rather is the value of the first child of the element.

 Groovy, however, has no problem parsing XML and walking the resulting tree to
find what you want. Dealing with XML is one of Groovy’s sweet spots, as shown in chap-
ter 4 on integration.

Listing C.1 The String output for the GetCitiesByCountry operation for Canada

8 APPENDIX C SOAP-based web services

 For example, the next listing shows a Groovy client that prints the first 10 city val-
ues in the response for Canada.

import net.webservicex.GlobalWeather;
import net.webservicex.GlobalWeatherSoap;

GlobalWeatherSoap stub = new GlobalWeather().globalWeatherSoap
def dataSet = new XmlSlurper().parseText(stub.getCitiesByCountry("Canada"))
def cities = dataSet.Table.City

println "There are ${cities.size()} cities"
cities[0..10].each { println it }

In three lines of Groovy I instantiate the stub, call the getCitiesByCountry method,
parse the resulting XML, and extract the values of all the City elements. I then print
out the total number of cities and list the first 10:

There are 561 cities
Nitinat Lake Meteorological Aero
Ile Rouge Meteorological Aeronau
La Scie, Nfld.
Amherst, N. S.
Erieau Meteorological Aeronautic
Amphitrite Point
Coronach Spc
Argentia, Nfld
Pam Rocks
Sundre
St. Anthony, Nfld.

The web service returns 561 Canadian cities. The listing of the first 10 shows that
apparently there’s a length limit in the web service for the name of the associated
weather station, but there aren’t any other surprises.

 The other operation exposed by this web service is called GetWeather. I appended
the following lines to the previous listing:

def city = 'Ottawa'
def country = 'Canada'
println "The weather report for $city, $country is"
println stub.getWeather(city, country)

The resulting output once again is in XML form, via the returned string:

The weather report for Ottawa, Canada is
<?xml version="1.0" encoding="utf-16"?>
<CurrentWeather>
 <Location>Ottawa Int'L. Ont., Canada (CYOW) 45-19N 075-40W 114M</Location>
 <Time>Aug 31, 2010 - 04:00 PM EDT / 2010.08.31 2000 UTC</Time>
 <Wind> from the SW (230 degrees) at 13 MPH (11 KT):0</Wind>
 <Visibility> 15 mile(s):0</Visibility>
 <SkyConditions> mostly cloudy</SkyConditions>
 <Temperature> 89 F (32 C)</Temperature>
 <DewPoint> 71 F (22 C)</DewPoint>

Listing C.2 Parsing the XML string returned by GetCitiesByCountry

9Building a web service in Java and Groovy

 <RelativeHumidity> 55%</RelativeHumidity>
 <Pressure> 30.01 in. Hg (1016 hPa)</Pressure>
 <Status>Success</Status>
</CurrentWeather>

Once again, to access the individual details it’s easy enough to use the parseText
method from XmlSlurper and get the child values:

GlobalWeatherSoap stub = new GlobalWeather().globalWeatherSoap
def xml = stub.getWeather('Ottawa', 'Canada')
def root = new XmlSlurper().parseText(xml)
println "The temperature is ${root.Temperature}"

The script then prints

The temperature is -4 F (-20 C)

Using Groovy on the Global Weather web service is helpful because the designers of
the service restricted their outputs to simple strings, even though the results were
XML complex types. The stubs, though, were Java. Groovy is able to instantiate and
invoke methods on the stubs without any changes.

 In most cases, especially when the web service is generated from existing code, the
returned values won’t be just blocks of XML. Instead, for Java, the Java API for XML
Binding will create classes to map to the complex XML types in the schema. I’ll deal
with this situation in the next section when I create a web service.

C.3 Building a web service in Java and Groovy
As the previous section demonstrated, building a web service client starts with apply-
ing the wsimport tool to the service’s WSDL file. The tool produced Java stubs that the
Groovy client used as usual. In this section I’ll look at the opposite problem: imple-
menting the web service itself. I’ll take the bottom-up approach, writing the implemen-
tation code first and then using the wsgen tool to generate the WSDL file. Again, the
goal is to see how the standard Java tools work in general, and see what happens when I
use Groovy for the service implementations rather than Java. Groovy implementations
tend to be shorter, simpler, and more powerful, so if I can use Groovy where I would
normally use Java and the tools still work, the development tasks will be easier.

 When you learn about web services, most of the available tutorials use as their
“Hello, World” application what I like to call the World’s Slowest Calculator. The ser-
vice consists of add, subtract, multiply, and divide methods in a class, and everything
is generated from that. The advantage to this example is that the implementation is
extremely simple, so it doesn’t distract from the tools and concepts. Just try not to
think about the fact that I’m generating SOAP messages and transmitting them over
the network just to add a couple of numbers.

 Two terms are relevant here. First is the Service Endpoint Interface (SEI), which is
the interface containing the methods exposed by the web service. The other is the
Service Implementation Bean (SIB), which implements the interface. I’ll use a Java
SIB first and then write a Groovy one to illustrate the tool differences, if any. Then I’ll

10 APPENDIX C SOAP-based web services

use the tools to implement a web service in Java and see how it changes when I move
to Groovy.

C.3.1 A Java SIB for the Calculator

A bottom-up web service starts with a POJO. I sprinkle in JAX-WS annotations,1 which
are used by the tool when it generates the WSDL file. The following listing shows the
Calculator SIB, implemented as a POJO with annotations.

import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;

@WebService
public class Calculator {

 @WebResult(name="sum")
 public double add(
 @WebParam(name="x") double x,
 @WebParam(name="y") double y) {
 return x+y;
 }

 @WebResult(name="difference")
 public double subtract(
 @WebParam(name="x") double x,
 @WebParam(name="y") double y) {
 return x-y;
 }

 @WebResult(name="product")
 public double multiply(
 @WebParam(name="x") double x,
 @WebParam(name="y") double y) {
 return x*y;
 }

 @WebResult(name="quotient")
 public double divide(
 @WebParam(name="x") double x,
 @WebParam(name="y") double y) {
 return x/y;
 }
}

All that’s needed to turn a POJO into a web service is the @WebService annotation.
This annotation has various optional parameters, but here I’m relying on the
defaults. Because the WSDL is generated using reflection, the operation arguments
and return types all wind up with generic names, like arg0, arg1, and return in the

1 Strictly speaking, the annotations are from a different specification than JAX-WS. For simplicity, however, I’ll
refer to everything related to JAX-WS as being from that spec.

Listing C.3 A Java SIB with web service annotations

Expose as
web service

Return
parameter
in WSDL

Operation
arguments

in WSDL

Return parameter
in WSDL

Operation
arguments in WSDL

11Building a web service in Java and Groovy

WSDL file. I used the @WebResult and @WebParam annotations to set the names in
the WSDL file. Because the WSDL file is the contract between the clients and the ser-
vice, and the WSDL is exposed to the outside world, it seems prudent to use realistic
names in it.

 This service avoids a lot of issues because all the arguments and return types are
doubles. Therefore, no annotations from the Java API for XML Binding (JAXB) specifi-
cation are needed yet, because Java doubles map naturally to XML schema doubles.
Later I’ll show a more complex example in which extra work will be needed for the
argument and return type mappings.

 I created an Eclipse project containing this class, as in the previous section. This
time I want to run the wsgen tool, with the arguments shown:

C:\> wsgen –d bin –s src –r resources –wsdl –cp bin calc.service.Calculator

The command-line arguments say to store any gener-
ated classes in the bin directory, save any generated
source code in src, store the generated WSDL file in
the resources directory (which has to be created
ahead of time), and generate everything from the
compiled Calculator class, which resides in the bin
directory. After running the wsgen command, the
updated project is as shown in figure C.4.

 The tool generated two classes for each opera-
tion, one for the request and one for the response. It
also generated a WSDL file, which imports an XML
schema. Rather than include both listings here, I’ll
present the representative sections.

 First, the portType element from the WSDL file
contains all the operations. Here’s the listing for the
add operation:

 <portType name="Calculator">
 <operation name="add">
 <input message="tns:add"/>
 <output message="tns:addResponse"/>
 </operation>
...
 </portType>

The other operations are similar. Following the normal conventions, the input and
output messages delegate to message elements, each of which has a <part> child with
an attribute named element. Those then lead to the add and addResponse elements in
the schema, which are shown next:

<xs:element name="add" type="tns:add"/>

<xs:element name="addResponse" type="tns:addResponse"/>
...

Figure C.4 The updated Eclipse
project, showing the generated
classes in the jag.calc
.service.jaxws package and
the generated WSDL and schema in
the resources directory

12 APPENDIX C SOAP-based web services

<xs:complexType name="add">
 <xs:sequence>
 <xs:element name="x" type="xs:double"/>
 <xs:element name="y" type="xs:double"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="addResponse">
 <xs:sequence>
 <xs:element name="sum" type="xs:double"/>
 </xs:sequence>
</xs:complexType>

The @WebResult and @WebParam annotations set the names of the associated elements
to x, y, and sum, as shown.

 Incidentally, the tool doesn’t know where I plan to deploy the service, so the ser-
vice element in the WSDL file only has a placeholder in it:

<service name="CalculatorService">
 <port name="CalculatorPort" binding="tns:CalculatorPortBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
 </port>
</service>

One additional observation before I move on—for some strange reason, the wsgen
tool is designed to work with the SIB, not the SEI. Every other distributed applica-
tion specification, from JAX-RPC to RMI to even CORBA, expects a clean separation
between the endpoint interface and the implementation bean. JAX-WS doesn’t
require this, and it’s simpler if I don’t have it. Life gets more complicated if I do
what’s normally considered good design and separate the interface from the imple-
mentation, but I’ll have to come back to that later when I show a more sophisti-
cated service.

 The next step is to deploy the service, because the client stubs are generated using
wsimport aimed at the deployed WSDL file. Normally that would require creating a
web application with a special deployment descriptor called webservices.xml, but the
JAX-WS API affords me a simplification for testing purposes. Instead of a web applica-
tion, I can use the javax.xml.ws.Endpoint class from the standard library. Publishing
the service can be done as a one-liner in a regular Java application, as shown in the
next listing.

import javax.xml.ws.Endpoint;

public class CalculatorServer {
 public static void main(String[] args) {
 Endpoint.publish("http://localhost:1234/calc", new Calculator());
 System.out.println(
 "Calculator ready to receive requests on port 1234...");
 }
}

Listing C.4 Publishing the Calculator service for testing

13Building a web service in Java and Groovy

The static Endpoint.publish method exposes the web service at the specified URL
using a single-threaded HTTP server. That’s not sufficient for production, but it’s good
enough for testing purposes. To prove that everything is working, I’ll write a test based
on GroovyTestCase. That means I need a client, which is generated the same way the
Global Weather client was generated previously:

c:\> wsimport –d bin –s src –keep http://localhost:1234/calc?WSDL

This generates the stubs that do the plumbing necessary to generate a SOAP message,
transmit it to the service, receive a response, and convert it back to a double.

 Looking at the WSDL file, note that the portType is called Calculator, the service
is called CalculatorService, and the contained port is called CalculatorPort. The
following listing shows a GroovyTestCase to test the calculator.

import jag.calc.service.*
import groovy.util.GroovyTestCase;

class CalculatorTest extends GroovyTestCase {
 Calculator calc

 void setUp() {
 super.setUp();
 calc = new CalculatorService().calculatorPort
 }

 void testAdd() { assertEquals 5, calc.add(2,3), 0.0001 }
 void testSubtract() { assertEquals 2, calc.subtract(5, 3), 0.0001 }
 void testMultiply() { assertEquals 6, calc.multiply(2, 3), 0.0001 }
 void testDivide() { assertEquals 0.25, calc.divide(1, 4), 0.0001 }
}

The setUp method runs before each test. The code in the setUp method reinstanti-
ates the stub each time to ensure that the test cases do not conflict with each other.
Each test uses the assertEquals method with three arguments: the first is the right
answer, the second is the test, and the third is a precision, needed because I’m com-
paring doubles. All of the tests pass, as expected.

 This section showed how the wsgen tool is used with POJO annotations to generate
a WSDL file, and the wsimport tool uses the resulting WSDL to generate client stubs.
The service implementation is in Java, as are the client stubs, but at least the test case
is in Groovy. The question now is, what happens if the SIB is implemented in Groovy?
Does that affect the wsgen tool at all?

C.3.2 Implementing the SIB in Groovy

The Groovy SIB, shown in the next listing, is somewhat simpler. First, I don’t have to
assign data types to the method parameters. Second, in Groovy a closure returns the
last computed value, so I don’t need any formal return statements, either.

Listing C.5 A GroovyTestCase to evaluate the calculator web service

Runs before
each test

Initializes
the stub

14 APPENDIX C SOAP-based web services

import javax.jws.WebService;

@WebService
class GroovyCalculator {
 double add(x,y) { x + y }
 double subtract(x,y) { x - y }
 double multiply(x,y) { x*y }
 double divide(x,y) { x/y }
}

I could add @WebResult and @WebParam annotations as before, but I want to make a
point first. Running wsgen on the compiled version of GroovyCalculator already
leads to problems:

C:\> wsgen –d bin –s src –keep –r resources \
 –cp bin jag.calc.service.GroovyCalculator
Exception in thread main:
 java.lang.NoClassDefFoundError: groovy/lang/GroovyObject
...

The wsgen tool is thrown by the lack of a Groovy library class. That’s probably not a big
surprise. Groovy classes extend groovy.lang.GroovyObject, not java.lang.Object
as Java classes do. The first attempt to solve the problem is to add the groovy-all JAR
file (from the embeddable subdirectory of my Groovy installation) to the classpath
and try again.

 Rather than show the somewhat dazzling exception stack trace that results, let
me explain the next problem. The @WebService annotation tells wsgen to expose
every public method as a web service. Unfortunately, when the tool is applied to a
Groovy SIB, one of the methods it finds is getMetaClass, and it has no idea what to
do with that.

 Every Groovy class has an associated metaclass, which is the key to Groovy
metaprogramming. Metaprogramming is how you create Groovy builders, domain-
specific languages, and lots more. Here, though, it’s an inconvenience. I certainly
don’t want the getMetaClass method exposed as a web service, so how do I stop
that from happening?

 The answer is to do what I wanted to do all along, which is to separate the interface
from the implementation. Rather than let the tool generate an SEI, I’ll provide one
and tell the tool about it via the @WebService annotation. The tool then knows that
only the methods defined in the SEI are supposed to be exposed as web services,
which solves the problem.

 The new SEI is shown here:

@WebService
public interface Calculator {
 @WebResult(name="sum")
 double add(
 @WebParam(name="x") double x,

Listing C.6 A Groovy implementation of the calculator web service

15Building a web service in Java and Groovy

 @WebParam(name="y") double y);
 ...
}

To play nicely with the tool, the SEI is written in Java, but if you try it (which I’ll do
later) you’ll find that the SEI could just as easily have been written in Groovy.
Because I’m using Java this time, though, I have to supply data types for the
method arguments. All of the annotations that were previously on the SIB are now
on the SEI.

 With all those annotations now on the SEI, the Groovy SIB becomes very simple:

@WebService(endpointInterface="jag.calc.service.Calculator")
class GroovyCalculator implements Calculator {
 double add(double x, double y) { x + y }
 double subtract(double x, double y) { x - y }
 double multiply(double x, double y) { x*y }
 double divide(double x, double y) { x/y }
}

The @WebService annotation is now there to tell wsgen that this SIB implements the
listed Calculator endpoint interface.

 This version of the calculator, with its Java SEI and Groovy SIB, works the same as
the pure Java version, but there are a few changes. First, here’s a Groovy script to run the
new calculator:

import javax.xml.ws.Endpoint

Endpoint.publish 'http://localhost:1234/calc', new GroovyCalculator()
println 'Calculator ready to receive requests on port 1234...'

There’s nothing unusual there, other than instantiating the Groovy SIB rather than
the Java one. The analogous test case is basically the same, too, but there’s one annoy-
ing change that will become apparent:

class GroovyCalculatorTest extends GroovyTestCase {
 Calculator calc

 protected void setUp() throws Exception {
 super.setUp()
 calc = new GroovyCalculatorService().groovyCalculatorPort
 }
...
}

I may have introduced an interface, but the name of the SIB is embedded in the name
of the service and the port. Part of the appeal of separating the interface from the
implementation is that I avoid exposing details of the implementation to the outside
client, and the name of the implementation class is certainly one of those details.
Although there are multiple ways to fix that problem, a particularly interesting one is
to use the @Delegate AST transformation discussed in chapter 2.

16 APPENDIX C SOAP-based web services

C.3.3 Splitting the interface from the implementation

As the saying goes, every problem in computer science is solved by adding a layer of
indirection. If my problem is that the name of the SIB becomes part of the service and
port elements, I’ll make an acceptable name for the SIB and delegate its implementa-
tion to another class.

 That’s a perfect use case for Groovy’s @Delegate AST transformation. I annotate a
field inside a wrapper class with @Delegate, and all methods in the field’s class are
exposed by the wrapper.

 For the calculator, let’s assume I have the same Calculator interface as before, but
instead the implementation bean looks like the following:

package jag.calc.service

import groovy.lang.Delegate;
import javax.jws.WebService;

@WebService(endpointInterface="jag.calc.service.Calculator")
class GenericCalculator {
 @Delegate Calculator calc
}

All the Calculator methods are implemented by the contained delegate, here
called calc. Now it isn’t even necessary to make GenericCalculator implement the
Calculator interface, though it does do so here because it helps my IDE under-
stand what’s going on. In many IDEs, if you say that GenericCalculator implements
Calculator, the IDE will not realize that the @Delegate annotation passes all the
methods through. The GenericCalculator uses duck typing to invoke the delegated
methods, so it doesn’t need the delegate to implement Calculator.

 If I now implement Calculator in two ways, once as a Java class that I call Java-
Calculator, and once as a Groovy class I call GroovyCalculator, then I can choose
which implementation to use for the delegate at runtime:

import javax.xml.ws.Endpoint;

Calculator calc = new GenericCalculator(calc:new JavaCalculator())
Endpoint.publish "http://localhost:1234/calc", calc
println 'Calculator ready to receive requests on port 1234...'

In this Groovy deployment I need to assign the calc parameter inside the Generic-
Calculator to either the Java implementation or the Groovy implementation. Here
I chose the Java implementation. Either way, though, (1) as far as the tool is con-
cerned the actual SIB is a Groovy class called GenericCalculator, and (2) the client
has no idea which actual implementation class is being used. The corresponding
GroovyTestCase is the same as the previous one, with the only change being the
instantiation of the stub:

calc = new GenericCalculatorService().genericCalculatorPort

17Building a web service in Java and Groovy

Note that now it has the name GenericCalculator embedded in it, rather than either
actual implementation class. The delegate provides the needed layer of indirection.

 The World’s Slowest Calculator is a useful example because it illustrates the con-
cepts and the simple tools, without getting into complex type-mapping issues. To be
honest, though, if a framework can’t handle this example, it can’t handle anything.
Now I’ll show what happens if I have object-based arguments and/or return types in
the operations.

C.3.4 A nontrivial domain model

The next web service I’ll build will use complex types as arguments and return values
from the operations. To illustrate the differences, I’ll start by using POJOs and then
introduce POGOs.

 The new service is called Potter’s Potions. If you send Potter’s Potions a cauldron
full of ingredients, the service’s wizards will brew the potion for you, guaranteeing a
certain level of effectiveness.2

 As before, I’ll build the web service from the bottom up, first developing the
classes and then generating everything else. The previous section showed that if
Groovy is involved, the wsgen tool works best when there’s a clean separation between
the SEI and the SIB. With that in mind, here’s the Wizard interface, this time imple-
mented in Groovy:

@WebService
interface Wizard {
 @WebResult(name="potion")
 Potion brewPotion(@WebParam(name="cauldron") Cauldron c);
}

The interface has only a single method, brewPotion, which takes a Cauldron as an
argument and returns a Potion. The @WebService, @WebResult, and @WebParam anno-
tations have been added as usual. The Cauldron class shows that the domain model
also includes an Ingredient class, as shown in the next listing.

public class Cauldron {
 @XmlElementWrapper(name="ingredients")
 @XmlElement(name="ingredient")
 private List<Ingredient> ingredients = new ArrayList<Ingredient>();

 public void addIngredient(Ingredient i) {
 ingredients.add(i);
 }

 public void removeIngredient(Ingredient i) {
 ingredients.remove(i);
 }

2 Harry isn’t directly involved. He provided financial support and lent his name for marketing purposes.

Listing C.7 The Cauldron POJO, which wraps the list of ingredients

JAXB annotations for
wrapper element

18 APPENDIX C SOAP-based web services

 public Cauldron leftShift(Ingredient i) {
 addIngredient(i);
 return this;
 }
}

The XmlElementWrapper and XmlElement annotations make the SOAP messages more
intuitive. They imply that an instance of the Cauldron class represented in XML will
contain a root element called <ingredients>, which in turn will have a set of <ingre-
dient> children.

 The other interesting aspect of the Cauldron POJO is that by implementing the
leftShift method, operator overloading works in the Java class. The << operator can
be applied to the Cauldron in a Groovy script to add new Ingredients. For example,
given this POJO I can write (in Groovy)

Cauldron c = new Cauldron()
c << new Ingredient(...)
c << new Ingredient(...)

Actually, because the method returns the this reference, I can chain those calls, as I’ll
show in a test class later. Speaking of the Ingredient class, it also is a simple POJO, as
shown in the following listing.

public class Ingredient {
 private String name;
 private double amount;
 private String units;

 public Ingredient() {}

 public Ingredient(String name, double amount, String units) {
 this.name = name;
 this.amount = amount;
 this.units = units;
 }
...
}

The rest of the Ingredient class consists of getters and setters for the name, amount,
and units fields. The other POJO in the system is for the Potion itself, which is shown
in the next listing.

public class Potion {
 private String name;
 private String effect;
 private Date expiration;
 private double probability;

 private List<Ingredient> ingredients;

Listing C.8 The Ingredient POJO, used in the Cauldron

Listing C.9 The Potion POJO

Used by <<
operator in
Groovy scripts

19Building a web service in Java and Groovy

 public Potion() {}

 public Potion(String name, String effect, Date expiration) {
 this.name = name;
 this.effect = effect;
 this.expiration = expiration;
 }
...
}

Once again, the rest of the class is getters and setters for the fields shown. The idea
behind the Potion class is that each one has a name and an effect, as well as an
expiration date and a probability that the potion will work. Better wizards will
produce potions with a higher likelihood of being effective. Better wizards cost
more, of course.

 The Calculator example also demonstrated how to use the @Delegate annotation
to keep the name of the implementation class out of the WSDL file. Therefore, here’s
the generic Hogwarts wizard (in Groovy):

import groovy.lang.Delegate;
import javax.jws.WebService;

@WebService(endpointInterface="jag.pp.service.Wizard")
class HogwartsWizard {
 @Delegate Wizard wizard
}

The HogwartsWizard class includes the endpointInterface attribute on the Web-
Service annotation, which is necessary for the wsgen tool to work, but doesn’t explic-
itly have an implements clause on the class, to avoid IDE issues. The methods are
available, but because they’re supplied by the AST transformation, I’ll use duck typing
to take advantage of them.

 The following listing shows a Groovy Wizard implementation.

import jag.pp.entities.Cauldron;
import jag.pp.entities.Potion;

class Granger implements Wizard {

 Potion brewPotion(Cauldron c) {
 Potion p = new Potion(name:'test',effect:'none',
 expiration:new Date() + 1, probability:0.9);
 p.ingredients = c.ingredients;
 return p
 }
}

Just for testing, the brewed potion is called test, expires tomorrow, and has no
effect, though there’s a 90-percent likelihood of that. The Granger wizard is imple-
mented in Groovy.

Listing C.10 The Granger implementation, which is a high-quality Wizard

20 APPENDIX C SOAP-based web services

 Starting the server can now be done with the following script:

Wizard wiz = new HogwartsWizard(wizard:new Granger())
Endpoint e = Endpoint.publish("http://localhost:1234/wizard", wiz)
println "Wizard available to receive requests..."

The next listing shows a client to access this service. This time, to show another possi-
bility, the client uses a dynamic proxy rather than the static stubs. The implementa-
tion uses the URL, Service, and QName classes from Java web service libraries. Only the
Wizard interface itself is referenced, and no other generated classes.

Service service = Service.create(
 new URL('http://localhost:1234/wizard?WSDL'),
 new QName('http://service.pp.jag/','HogwartsWizardService'))
Wizard w = service.getPort(
 new QName('http://service.pp.jag/','HogwartsWizardPort'),
 Wizard.class)

Cauldron c = new Cauldron()
c << new Ingredient(name:'sopophorous bean',amount:1,units:'bean')
c << new Ingredient(name:'gillyleaf',amount:1,units:'handful')
println c
Potion p = w.brewPotion(c)
println p

The left-shift operator is used to add Ingredient instances to the Cauldron. It’s time
to show test cases to prove everything works. Then I’ll replace the POJOs with POGOs
and show what happens.

SPOCK TESTS FOR POTTER’S POTIONS

In chapter 6, I discussed the Spock testing framework. Spock tests are written in
Groovy but can be used to test purely Java or mixed Java and Groovy systems. Here I’ll
show a test for the Cauldron implementation, which will verify that the operator over-
loading works, and a test for the web service itself.

 First, the next listing shows the Cauldron tests.

class CauldronTests extends Specification {
 Cauldron c

 def setup() { c = new Cauldron() }

 def "cauldron starts off empty"() {
 expect: c.ingredients.size() == 0
 }

 def "add ingredient increases size by 1"() {
 when: c.addIngredient(new Ingredient())
 then: c.ingredients.size() == old(c.ingredients.size()) + 1
 }

Listing C.11 Client

Listing C.12 Spock specification for the Cauldron

21Building a web service in Java and Groovy

 def "remove ingredient decreases size by 1"() {
 given:
 Ingredient i = new Ingredient()
 c.addIngredient(i)
 c.addIngredient(new Ingredient())

 when: c.removeIngredient(i)
 then: c.ingredients.size() == old(c.ingredients.size()) - 1
 }

 def "left shift operator adds ingredient"() {
 when: c << new Ingredient()
 then: c.ingredients.size() == old(c.ingredients.size()) + 1
 }

 def "left shift operator can be chained"() {
 when: c << new Ingredient(name:'a') << new Ingredient(name:'b')
 then: c.ingredients*.name.containsAll 'a','b'
 }
}

The addIngredient and removeIngredient methods work as expected. It’s interest-
ing to see that using the << operator in a Groovy test automatically invokes the left-
shift operation in the Java class, and, as implemented, allows chaining so it can be
invoked repeatedly.

 For the test of the web service itself, see the following listing.

class HogwartsWizardTest extends Specification {
 @Shared Endpoint e
 Wizard w
 Cauldron c

 def setupSpec() {
 e = Endpoint.publish("http://localhost:1234/wizard",
 new HogwartsWizard(wizard:new Granger()))
 }

 def setup() {
 Service service = Service.create(
 new URL('http://localhost:1234/wizard?WSDL'),
 new QName('http://service.pp.jag/','HogwartsWizardService'))
 w = service.getPort(
 new QName('http://service.pp.jag/','HogwartsWizardPort'),
 Wizard.class)
 c = new Cauldron()
 c << new Ingredient(
 name:'sopophorous bean',amount:1,units:'bean') <<
 new Ingredient(name:'gillyleaf',amount:1,units:'handful')
 }

 def "wizard exposed as a web service"() {
 expect: w
 }

Listing C.13 Spock specification for the Potter's Potions web service

Shared endpoint
and its initialization

Dynamic
client

Potential
trap avoided!

22 APPENDIX C SOAP-based web services

 def "brew a potion"() {
 when: Potion p = w.brewPotion(c)
 then:
 p != null
 p.ingredients*.name.containsAll 'sopophorous bean','gillyleaf'
 }

 def cleanupSpec() {
 e?.stop()
 }
}

In this case I use the @Shared annotation, which publishes the endpoint and makes it
available to all the tests. By keeping a shared reference to the Endpoint itself, I can
later shut it down when all the tests are finished. The service is published in a setup-
Spec method, analogous to the @BeforeClass annotation in JUnit 4, which means the
setupSpec method runs only once for the entire test. Its match is the cleanupSpec
method (like the @AfterClass annotation in JUnit 4), which shuts down the service.
The setup method, here used to initialize the cauldron, is run before each test. Note
that when I stop the service I use the wicked cool3 safe dereference operator ?. in case
the start-up was unsuccessful.

 By the way, I avoided a potential trap by putting the << operator at the end of the
current line, rather than at the beginning of the next line. Although I know from the
previous test that the operator can be chained, that’s not the issue here. Java uses
semicolons to terminate statements. In Groovy those are optional, so I need to make
sure that Groovy understands there’s more information coming on the next line.
Without the operator, Groovy sees the line as a complete statement and then doesn’t
know what to do with the following line. By placing the << operator at the end of one
line, Groovy knows the statement isn’t over yet and reads on.

HELP THE GROOVY PARSER Always make it clear to the Groovy parser when a
statement is not finished.

The test accesses the list of ingredients in the resulting potion, collects their names
into another list, and then uses the GDK method containsAll to check that the sup-
plied values appear somewhere in the list.

USING POGOS IN THE DOMAIN MODEL

The Potter’s Potions web service works using POJOs. At the moment, the only Groovy
classes are the SIB wrapper (HogwartsWizard, which uses the @Delegate AST) and the
Wizard implementation itself, Granger. What if I replace one of the POJOs with a POGO?

 Here’s a Groovy version of the Ingredient class. It has the same functionality as
the associated POJO but lacks semicolons, getter and setter methods, and public and
private modifiers:

3 Sorry for the colloquialism, but sometimes the safe dereference operator in Groovy impresses Java developers
as much as the most elegant metaprogramming example.

Collect ingredient
names for validationShut down

web service

23Building a web service in Java and Groovy

class Ingredient {
 String name
 double amount
 String units
}

If I run the wsgen tool on this, I immediately run into a problem, and it’s similar to the
problem I had earlier with the Groovy service. The wsgen task asks JAXB to figure out
how to serialize instances of this class. That causes the JAXB processor to search for all
the properties in Ingredient. Because Ingredient is written in Groovy, it contains a
method called getMetaClass, implying that there’s a metaClass property JAXB needs
to manage. JAXB has no idea what to do with that, so the process fails.

 With the Groovy service, I found that if I enforce a clean separation between the
interface and the implementation I can still use the same tools. Here the solution is
even easier. Following is the updated class, which works just fine:

import javax.xml.bind.annotation.XmlAccessType
import javax.xml.bind.annotation.XmlAccessorType

@XmlAccessorType(XmlAccessType.FIELD)
class Ingredient {
 String name
 double amount
 String units
}

The annotations tell JAXB to use the private fields for the properties, rather than going
through the getter methods. Therefore, it only looks at the fields I’ve exposed, and the
getMetaClass method no longer enters into it. Now everything works.

FIELD ACCESS To use POGOs in SOAP-based web services, go directly to
the fields.

One of the features of SOAP and WSDL is that the tools hide the actual XML. At no
point in the examples presented so far did I need to parse or generate any actual XML
messages. There’s one situation, however, in which XML is involved, even using the

Using Groovy in SOAP-based web services
To use Groovy classes in a SOAP-based web service

■ Define an SEI to go with the SIB, using Groovy for either or both.
■ Annotate all domain classes to require field access for the properties.

The choice of whether or not to use Groovy in each case is dependent on the actual
problem. For example, the Global Weather service returned an XML block, so Groovy
was a natural for the client. On the server side, if the service itself is simpler when
implemented in Groovy (and almost every service will be), then go right ahead, as long
as these two rules are followed.

Go directly to
the private fields

24 APPENDIX C SOAP-based web services

tools, and that’s when pre- or postprocessing of the messages is necessary. That’s the
subject of the next section.

C.4 Processing XML messages with web service handlers
One of the main benefits of using the JAX-WS infrastructure is that neither the client
nor the service ever has to deal directly with the SOAP messages. When the client
called the potions service, no XML processing was exposed on either side. Using JAX-
WS virtually eliminates the need to deal with the Java API for XML Processing (JAXP)
or the SOAP with Attachments API for Java (as in parsley, SAAJ, rosemary, and thyme).

 Still, there are times when I have to deal with the actual XML. For those times,
the JAX-WS infrastructure provides handlers, which process any messages passing
through them.

 The web services architecture presumes that a SOAP message travels through a series
of intermediaries on its way from the client to the service and back. These intermediaries
serve a variety of roles, from routing to encryption to logging to application-specific tasks.

 In JAX-WS, handlers come in two forms: logical handlers and protocol handlers.
Logical handlers have access only to the body of SOAP messages, whereas protocol
handlers work with the entire message. Multiple handlers can be added to a web ser-
vice, forming a chain of responsibility that processes messages on their way to the ser-
vice and back. Figure C.5 illustrates a handler chain on a service.

As usual, I’m interested more in the sweet spots where Groovy can help Java, rather
than looking for ways to do everything in Groovy. In the case of handlers, it turns out
to be easiest to define the handler in Java but let it delegate any XML processing to
Groovy. Defining a handler requires implementing an interface based on generic
types, and although that can be done in Groovy, sometimes it’s easier to do so in Java
because the Java tools prefer Java interfaces.

 The following example adds a handler to the Potter’s Potions web service. The
idea is to check the incoming Cauldron for ingredients that might be used to practice
Dark Arts and, if any are found, to add a disclaimer message to the outgoing message.
The process is as follows:

1 Write a Java class that implements the SOAPHandler interface using the
SOAPMessageContext generic type.

2 In the handleMessage method, determine whether the message is incoming
or outgoing.

3 Pass the message to a Groovy class for further processing.

Client ServerH2 H1

Request
Handlers

Response

Figure C.5 Handlers H1 and H2 intercept requests and responses from the client to the
server and can modify the message both on the way in and on the way out again.

25Processing XML messages with web service handlers

4 In the Groovy processor, if the message is on the way in, scan the body for
potentially dangerous ingredients. If it’s on the way out, and evil has been
found, add an appropriate disclaimer.

Each step is demonstrated in the subsections that follow. The overall process is illus-
trated in figure C.6.

C.4.1 SOAP handler in Java

The following listing shows a Java handler for the Potter’s Potions service, called
CauldronHandler. The real work is done in the handleMessage method.

public class CauldronHandler implements SOAPHandler<SOAPMessageContext> {

 private CauldronProcessor cp = new CauldronProcessor();
 private boolean darkArtsDetected;

 @Override
 public boolean handleMessage(SOAPMessageContext context) {
 boolean response = (Boolean) context.get(
 MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 try {
 cp.setBody(context.getMessage().getSOAPBody());
 if (!response) {
 darkArtsDetected = cp.detectDarkArts();
 cp.printInfo();

Listing C.14 A Java handler to check for evil

Incoming SOAP

message (XML)

CauldronProcessor

(Groovy)

CauldronHandler

(Java) implements

SOAPHandler

HogwartsWizard

(Groovy)

Granger (Groovy)

or (Java)Weasley

Outgoing SOAP

message (XML)

CauldronHandler

(Java) implements

SOAPHandler

Check for incoming message

and delegate to Groovy processor

1

Check for outgoing message

and delegate to Groovy processor

7

Check for Dark Arts2

Add disclaimer
if needed

6

Return SOAP response5

Delegate to SIB3

Brew potion4

Figure C.6 Handling XML is best done by delegating to Groovy, but the SOAPHandler
interface is most easily implemented in Java. Implement the Handler in Java, but delegate
the actual XML processing to Groovy to get the best of both worlds.

Groovy
delegate
for XML

processing

Shared between
request and response

Block for incoming
requests

26 APPENDIX C SOAP-based web services

 } else {
 if (darkArtsDetected) {
 cp.addDisclaimer();
 }
 }
 } catch (SOAPException e) {
 e.printStackTrace();
 }
 return true;
 }

 public boolean handleFault(SOAPMessageContext context) {
 return false;
 }

 public void close(MessageContext context) {}
 public Set<QName> getHeaders() { return null; }
}

This is typical Java, meaning it has a lot of ceremony surrounding the essence. The
class implements the SOAPHandler interface, which takes the generic type SOAPMessage-
Context. The interface contains four methods: handleMessage, which is invoked on
each message; handleFault, which is called if something goes wrong; getHeaders, which
retrieves any header blocks that can be processed by this handler; and close, which is
self-explanatory.

DISTINGUISHING INCOMING FROM OUTGOING MESSAGES

The handleMessage method is called once with the inbound request and once with
the outbound response. On the way in, I check for ingredients that can be used for
Dark Arts potions, and if I find any I set the Boolean variable darkArtsDetected to
true.4 The company can’t be associated with anything like that, so if the detector
found anything suspicious, a disclaimer message is added to the response. The stan-
dard idiom for handlers is to check the MESSAGE_OUTBOUND_PROPERTY to determine
which way the message is traveling. The actual message is in XML, so I use a Groovy
class to work with it.

C.4.2 Using Groovy for XML manipulation

SOAPMessage is part of the SAAJ API, which is easier to work with than a standard DOM
tree but still tedious. I need some way to get the XML data out of the SOAP message
and into something that Groovy can process easily. Normally when I work with XML-
based formats in Groovy I use an XmlParser or an XmlSlurper. In this particular case,
however, something different is available. The SOAP message is composed of a SOAP-
Part, which in turn is made up of a SOAPHeader and a SOAPBody. The key observation
is that SOAPPart implements org.w3c.dom.Node, whereas SOAPHeader and SOAPBody
implement both that interface as well as org.w3c.dom.Element.

4 I’m assuming here that a new handler is created for each request, so the Boolean property will have a single
value for the request going in and the response coming out. If the app server generates a single handler for
all requests, this approach will have to be changed.

Block for outgoing
responses

27Processing XML messages with web service handlers

 As part of its metaprogramming capabilities, Groovy includes a construct known as
a category. A category is a special type of class, composed of all static methods, that’s
used to add new methods to an existing class. Rather than add the methods to a class’s
metaclass, however, with a category the additional methods are only available inside a
use block. The result is a set of additional methods that are restricted to a controlled
environment.

CATEGORIES Groovy categories add methods to existing classes inside a use
block only.

One of the categories built into the Groovy API is groovy.xml.dom.DOMCategory. This
category adds methods to both the Element and Node interfaces described previously.
Because the SOAPBody class implements Element and Node, I can use these additional
methods to make processing easier.

 In the CauldronHandler class, I extract the SOAP body from the incoming message
and put it into the (Groovy) CauldronProcessor class:

cp.setBody(context.getMessage().getSOAPBody());

Then I use the CauldronProcessor to get the job done. The following listing shows
the CauldronProcessor.

class CauldronProcessor {
 Element body

 def printInfo() {
 use (DOMCategory) {
 println "There are ${body.'**'.size()} nodes"
 println body.list()
 }
 }

 boolean detectDarkArts() {
 use (DOMCategory) {
 return body.'**'.any { it =~ /.*unicorn.*/ }
 }
 }

 def addDisclaimer() {
 use (DOMCategory) {
 def e = body.'**'.find { it.name() == 'effect' }
 e.replaceNode {
 effect "No warranty expressed or implied"
 }
 }
 }
}

In the Groovy class, a reference of type Element holds the body of the SOAP message.
In the Java class, calling the setBody method puts the body into this object. Like all

Listing C.15 A Groovy class for working with the body of a SOAP message

Element to hold
SOAP body

Use block for
DOMCategory Search

using regular
expression

Modify
tree

28 APPENDIX C SOAP-based web services

Groovy attributes, the setBody method is generated automatically by declaring the
body property.

 The DOMCategory adds a list method to Element. The list method prints the
complete tree in a nicely formatted output. Although normally I wouldn’t print to the
console when running a web service, it’s useful for demonstration purposes, and I can
always use a logger later instead.

 I also use the syntax body.'**' in each of the body processing methods. The **
symbol is shorthand for a depth-first search among all the descendent nodes and
returns all of them in a collection. In the printInfo method, I invoke the size
method to see how many there are in all. In the detectDarkArts method, I search the
resulting list to see if any of the contained elements (which include all the supplied
ingredients in the cauldron) have the word unicorn in them. Nothing good can come
of that, so if that’s found, the method returns true and the darkArtsDetected Bool-
ean in the Java class is set to true.

 If Dark Arts are detected, I want to change the properties of the returned response. I
could add a new element with a warning, but the response message is eventually going
to be converted into a Potion, one of the domain classes. Therefore, it’s easy to modify
the effect child of the potion, replacing its normal value with a disclaimer.

 Putting the handler into the system requires two additional steps. First, I need to
prepare an XML file declaring the handler, as shown next:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<handler-chains
 xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>jag.pp.handlers.CauldronHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

This file, handler-chain.xml, declares that I have a chain of handlers consisting of
a single handler. The current handler is the Java class that implements the SOAP-
Handler interface.

 Now that I have the configuration file, I also need to tell the web service to use it.
Fortunately, that can be done with a single annotation applied to the SIB, which is
reproduced here in its entirety:

@WebService(endpointInterface="jag.pp.service.Wizard")
@HandlerChain(file="handler-chain.xml")
class HogwartsWizard {
 @Delegate Wizard wizard
}

The HandlerChain annotation tells the JAX-WS processor where to find the handler
configuration file for this service implementation bean. Now when I run the service
all requests will go through the handler on the way to the service, and all responses
will pass through it on the way back to the client.

29Gradle tasks for wsimport and wsgen

 Back in listing C.13, I presented a Spock specification for testing the web service.
To test the handler I add a single new test, as shown next:

def "check for dark arts disclaimer"() {
 setup:
 c << new Ingredient(name:'unicorn blood',amount:2,units:'smidges')

 when: Potion p = w.brewPotion(c)
 then: p.effect == 'No warranty expressed or implied'
}

If I add a smidge of unicorn blood to the ingredients in the cauldron, the Dark Arts
detector sees it and changes the value of the potion’s effect property to the disclaimer.

 One of Groovy’s greatest advantages over Java is its ease of working with XML. In this
section, a Java handler delegated SOAP message processing to a Groovy class, which used
a category to easily process the message. The Java class connected the Groovy processor
to the existing infrastructure. The Groovy class made the XML manipulation easy. The
combination makes writing web service handlers a simple task.

C.5 Gradle tasks for wsimport and wsgen
The previous sections discussed how to use a combination of Groovy and Java to both
access and implement web services. Because the goal was to highlight how the tech-
nologies worked, I didn’t spend time showing the details of the build process. In each
case, the wsimport and wsgen tools were run from the command line. Part of their
appeal is that they’re included in the standard JDK 1.6 installation. I can include run-
ning the tasks as part of a Gradle build, however, if I declare the proper dependen-
cies. This also gives me an opportunity to illustrate a conditional task in a Gradle
build file.

 Both the wsimport and wsgen commands have corresponding Ant tasks available.
The key here is to use those tasks, making sure they run at the proper stage of the

What about GroovyWS?
The Groovy ecosystem has spawned a large number of projects based on the lan-
guage, with many more coming all the time. One project, called GroovyWS, is aimed
at the same problems discussed in this appendix.

GroovyWS is an elegant attempt to remove all Java from the system, though it
does depend on an underlying JAX-WS implementation. You can download a com-
plete GroovyWS implementation, which comes with Apache CXF as its Java web
services engine.

For details about GroovyWS, including an installation guide and some examples, look
for the GroovyWS link on the main Groovy page. I've heard good things about the proj-
ect from some dedicated users. Still, in a book about Java and Groovy integration it
feels a bit outside the book’s scope. To be honest, I’ve never needed it to accomplish
my goals.

30 APPENDIX C SOAP-based web services

build and that they only run when necessary. In my case, I have a separate project for
the client and for the server, so there are two similar build files involved.

 For wsimport, I want to run the command before the compileJava task, because
I’m generating Java stubs that are relied upon by the client. The JAR dependencies
containing the necessary Ant tasks are found in repositories other than Maven central,
so I have to declare them as well. Here’s the new repositories section of the build files:

repositories {
 mavenCentral()
 mavenRepo urls:["http://download.java.net/maven/1,
 "http://download.java.net/maven/2"]
}

Now Gradle will check the standard Maven repository first and then search the listed
Maven 1 and Maven 2 download areas for any unresolved dependencies.

 Because the Ant tasks are external to my projects, I declare a configurations ele-
ment, here called jaxws:

configurations {
 jaxws
}

The jaxws element gives a name that can be used both in the tasks, in order to put the
required JARs in the classpath, and in the dependencies section. Here’s the updated
dependencies section:

dependencies {
 compile group:'org.codehaus.groovy', name:'groovy-all', version:'2.1.6'
 jaxws 'com.sun.xml.ws:jaxws-tools:2.1.4'

 testCompile "org.spockframework:spock-core:$spockVersion"
}

The jaxws label identifies the tools dependency for both the wsimport and wsgen
Ant tasks. Next is the wsgen task, along with lines specifying when it should run, as
shown in the next listing.

task wsgen(dependsOn: compileGroovy) {
 doLast{
 ant {
 taskdef(name:'wsgen',
 classname:'com.sun.tools.ws.ant.WsGen',
 classpath:configurations.jaxws.asPath)
 wsgen(keep:true,
 destdir: 'bin',
 sourcedestdir:'src',
 resourcedestdir:'resources',
 genwsdl:'true',
 classpath:sourceSets.main.classes.asPath,
 sei:'mjg.pp.service.HogwartsWizard')
 }

Listing C.16 The wsgen task in Gradle, based on its Ant task

Compile
SIB first

Put JARs in
classpath

wsgen command-
line args

31Gradle tasks for wsimport and wsgen

 }
}
wsgen.onlyIf { !(new File('src/mjg/pp/service/jaxws')).exists() }
classes.dependsOn wsgen

The wsgen task depends on the compileGroovy task, because the wsgen tool operates
on the compiled SIB. The rest of the parameters are analogous to the same command-
line parameters used earlier, including the destination directories for the generated
WSDL and XML schema files. Also note how the classpath of the wsgen task refers to
JARs from the configuration element. Finally, the Gradle onlyIf method of the Gra-
dle task takes a closure and only runs if the closure returns true. In this case, I check
to see if the task has already been run by looking for the expected package on the
disk. If it isn’t there, Gradle runs the task.

 The Gradle task for wsimport is quite similar. Because the Potter’s Potions application
uses dynamic proxies, the code in the next listing is for the Global Weather client instead.

task wsimport(dependsOn: processResources) {
 doLast{
 ant {
 taskdef(name:'wsimport',
 classname:'com.sun.tools.ws.ant.WsImport',
 classpath:configurations.jaxws.asPath)
 wsimport(keep:true,
 destdir: sourceSets.main.classesDir,
 sourcedestdir:'src',
 wsdl:'http://www.webservicex.net/GlobalWeather.asmx?wsdl')
 }
 }
}
wsimport.onlyIf { !(new File('src/net/webservicex')).exists() }
compileJava.dependsOn(wsimport)

As with the wsgen task, I choose when to run the task, use the jaxws configuration to
set the classpath, supply the command-line arguments, and only run if the stubs have
not already been generated. Once again, Gradle makes customizing the build straight-
forward—a great advantage over more traditional build tools like Ant and Maven.

Listing C.17 The Gradle task for wsimport, again based on the Ant task

Conditional
execution

When
to run

Classpath for
Ant tasks

Command-line
args

Conditional
execution

Kenneth A. Kousen

Y
ou don’t need the full force of Java when you’re writing
a build script, a simple system utility, or a lightweight
web app—but that’s where Groovy shines brightest. Th is

elegant JVM-based dynamic language extends and simplifi es Java
so you can concentrate on the task at hand instead of managing
minute details and unnecessary complexity.

Making Java Groovy is a practical guide for developers who want
to benefi t from Groovy in their work with Java. It starts by
introducing the key diff erences between Java and Groovy and
how to use them to your advantage. Th en, you’ll focus on the
situations you face every day, like consuming and creating
RESTful web services, working with databases, and using the
Spring framework. You’ll also explore the great Groovy tools
for build processes, testing, and deployment and learn how to
write Groovy-based domain-specifi c languages that simplify
Java development.

What’s Inside
● Easier Java
● Closures, builders, and metaprogramming
● Gradle for builds, Spock for testing
● Groovy frameworks like Grails and Griff on

Written for developers familiar with Java. No Groovy experience
required.

Ken Kousen is an independent consultant and trainer specializing
in Spring, Hibernate, Groovy, and Grails.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/MakingJavaGroovy

$44.99 / Can $47.99 [INCLUDING eBOOK]

Making Java Groovy

JAVA

M A N N I N G

“Focuses on the tasks
that Java developers

 must tackle every day.”—From the Foreword by
Guillaume Laforge

Groovy Project Manager

“Th oroughly researched,
highly informative, and
mightily entertaining.”

—Michael Smolyak
Next Century Corporation

“A comprehensive tour
through the Groovy

 development ecosystem.”—Sean Reilly
Equal Experts in the UK

“I measured this book’s ROI
in Revelations per Minute.”—Tim Vold, Minnesota State

Colleges and Universities

SEE INSERT

