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Abstract - A method for detecting shorted windings in
operational turbine-generators is described. The method is
based on the traveling wave method described by El-Sharkawi,
et. al. [6]. The method is extended in this paper to operational
rotors by the application of neural network feature extraction
and novelty detection. Results of successful laboratory
experiments are reported.

Key Words - Shorted-Turn Detection, Neural Networks, Feature
Extraction, Novelty Detection.

1. INTRODUCTION

One of the most difficult problems in the operation of large
synchronous turbine-generators is early detection of shorted turns
in the DC-field of the rotor. Not only is the existence of a shorted-
turn in the field winding hard to detect, the periodic maintenance
required to correct shorted turns may result in expenditures of
several hundred thousand dollars. Unfortunately, this expense is
incurred even in the case of a wrong diagnosis. This is because the
major expense results from the disassembly and assembly of the
machine and in the added cost of lost production. Proper
localization, and more important, accurate determination of the
actual existence of a shorted-turn, is therefore essential to avoid
huge unnecessary monetary losses. A general solution to this
problem has so far remained elusive.

The machines under consideration are those with two- or four-
pole cylindrical rotors. Shorted turns in salient pole rotors are less
detrimental to the operation of the machine and, at the same time,
easier to detect through the pole-drop test. However, the pole
windings in a cylindrical rotor are totally inaccessible for this type
of test.

A variety of methods have been proposed for the detection of
shorted windings in rotors of large turbine-generators [11, 16].
Some of the more interesting methods are described below.
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For a turbine-generator with a shorted winding, changes in
excitation will usually result in changes in vibration level.
Unfortunately, there are many other variables in play during the
process of changing the excitation making reliable discrimination
based solely on vibration almost impossible.

Given the difficulty in reaching a reliable detection decision
based on monitoring the vibration of the machine, other methods of
detecting shorted turns have been employed. One such method
relies on the indirect measurement of the impedance of the rotor
field-winding during operation [14]. Unfortunately, this method
yields dubious results unless the number of shorted-turns is
significant. One positive characteristic of this method is the
possible detection of a shorted-turn if this condition disappears at a
certain speed. Continuous monitoring of the field resistance during
the coast-down operation may reveal an abrupt change in value.
This most certainly can be related to an intermittent shorted-turn.
However, this method will not provide any help when a constant
short is present. Nilsson and Mercurio [12] discuss the use of the
pole balance test to detect shorted windings. This test has been
inconclusive also due to the large variation present in normal
operation.

Some methods detect the flux asymmetry created by a shorted-
turn by applying AC current to the field through the collectors and
holding a C-shaped pick-up coil across the slot [7]. This method is
accurate but can only be performed after removing the rotor from
the bore. This is an expensive exercise. In addition, detection of
all shorts that tend to disappear when the rotor is brought to stand-
still is precluded.

Other methods rely on special design of the stator winding [7].
Flux asymmetries generate circulating currents which can be
measured.  Although the method has the advantages of being
applied to the machine under operation and not being intrusive, it
also presents some serious disadvantages. For instance, many
machines presently in operation do not have a winding design
which lends itself to the application of this method. Redesigning a
machine for the sole purpose of detecting shorted-turns is not
practical.

Nilsson and Mercurio [13] describe a graphical method using
synchronous generator capability curves. The use of the graphical
method requires operation of the generator under various
conditions to acquire data. This testing requires a great deal of
coordination and is not an easy task.
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One of the most reliable methods developed to date is based on
the direct measurement of the air-gap magnetic flux with the
machine in operation [1]. The flux is measured by a pick-up coil
installed in the gap. Unfortunately, the presence of these coils in
existing machines (and new ones) is rare and installation requires
excessive down-time.

Another method relies on neural network models of machines
to detect shorted turns [2, 3, 4, 5, 17]. This method requires a
mathematical model of the machine or a machine in which turns
can be shorted to provide training data for the neural network. The
expense of inducing shorts in the rotor windings of large turbine-
generators makes this method impractical.

The method proposed in this paper is based on the traveling
wave method described by El-Sharkawi, et. al. [6]. Square pulses
are injected into both ends of the device windings simultaneously.
The pulses travel through the windings and reflect from a variety
of circuit elements such as impedance mismatches and winding
asymmetries. The difference between the reflected pulses is
measured and amplified to produce a signature signal. Using the
recorded signature signals and a fuzzified neural network, faults are
not only detected but located with a reasonable degree of certainty.
The equipment is very portable and the test requires little time.
Tests performed so far have indicated reliable detection of shorted
turns.

The major disadvantage of the method of El-Sharkawi, et al.
[6] is that a neural network must be trained. The rotor windings
must be accessible for the introduction of shorts between adjacent
windings. The signature signals under shorted-turn conditions
must then be collected to provide known inputs for network
training. While the rotor is in operation, the windings can not be
shorted due to the high cost of dismantling the machine and the
danger of damage to the equipment and thus no data is available
for training.

Therefore, only signatures for healthy windings are available
for operational rotors. The use of the signature signal concept is
thus proposed for detection of shorted turns in operational
machines using novelty detection. The method can be applied to
both a running and a still rotor, eliminating the problem of
detecting intermittent shorted-turns.

Section 1I describes the use of a novelty detector to detect
shorted-turns in turbine-generator field windings. Section III
describes the results of laboratory and field experiments which
demonstrate the successful detection of shorted turns in operational
equipment.

II. DETECTION OF SHORTED TURNS IN
OPERATIONAL TURBINE-GENERATORS

The detection of shorted turns in operational rotors can be
accomplished using the traveling wave method and novelty
detection. The detection of faults for a rotor which is in operation
is made much more difficult due to the presence of noise caused by
the brushes, the mechanical variations during rotation, and the
presence of the excitation source in the rotor circuit.

The brushes of a turbine-generator connect the excitation
source to the slip rings and supply power to the rotor. The motion
of the brushes and the current flowing through the brushes causes
arcing. The arc noise is measured by the acquisition hardware. It
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corrupts the signature signal. A study of brush noise was
performed on a small laboratory machine and found not to be a
difficult problem since the frequency spectrum of the noise is well
separated from the signature signal spectrum. The noise can
simply be removed by frequency domain filtering or by averaging
many signatures.

The rotation of the rotor causes the windings to shift as the
rotor turns. The signature signal is dependent on the physical
characteristics of the rotor windings and thus the signature signal
will not be identical when measured at different points in the
rotational cycle. The shifting windings will cause a low frequency
stochastic component to appear in the signature signals. Removal
of the rotational effects has not been attempted due to the
complexity. The stochastic component, however, is dealt with in
the novelty detection algorithm.

The excitation source provides another path for the pulses of
the signature signal acquisition system. The added path will
greatly change the reflected signals and thus change the signature
signal from the dismantled rotor case. As long as the excitation
windings are symmetrical from the perspective of the injected
pulses, the ability to detect faults will not be hindered.

All of the modifying effects described above prevent the use of
training examples collected while the rotor is dismantled to detect
shorted turns while the rotor is operating. Since inducing shorted
turns in an operational rotor is prohibitively expensive, the concept
of a novelty detector must be used for the detection of shorted
turns. An unlimited number of signatures can be collected for a
healthy rotor in operation. When a shorted-turn fault occurs in the
rotor, the signature signal will change. The change in the signal
produces a novel signature and will be detected by the algorithm
described below.

A. Signature Measurement

The acquisition of signature signals for operational rotors is
similar to the acquisition of signature signals for dismantled rotors
[6]. The addition of blocking capacitors in series with each pulse
generation path is required to protect the measurement circuits
from the high excitation source voltage present on the brushes
during operation. The pulses are not significantly affected by the
capacitors and thus measurement of the signature signals is not
affected.

Since the signature signals will be corrupted by noise, many
collected waveforms will be averaged to produce a single
signature. Averaging of the signals will remove any noise with
zero mean such as brush noise. The number of signals averaged
depends on the standard deviation of the noise and the degree to
which the noise is to be removed. For noise outside the bandwidth
of the signature signals, a lowpass frequency selective filter is used.
Different rotors produce signature signals with different frequency
contents. Therefore, the signature signals and the undesired noise
frequency spectrums must be analyzed for each rotor type.

B. Novelty Detection

A novelty filter, as defined by Kohonen [10], is a system which
extracts the new, anomalous, or unfamiliar part of the input data.
Neural networks have been applied to novelty filtering [9, 15].
The novelty filter neural network operates as an associative
memory where the neural network, normally a two layer feed
forward network, is trained to identify the inputs [8]. During
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training of the network by back propagation, the output of the
network is forced to repeat the input. The output layer must thus
have the same number of nodes as the input. During operation of
the network, the inputs are presented and the output produces the
values corresponding to the training input which resembles the
current input. The novelty is then the difference between the
current input and the output produced by the network. The
difference signal is then compared with a threshold using some
form of distance function. Use of neural networks for detection of
shorted windings is difficult due to the high dimension of the
signature signal and the noise characteristics. The neural network
must be able to learn all signature signals for healthy operational
rotors.

Measurements can easily be made for healthy rotors. Data
collected when the machine is new or immediately after
maintenance or cleaning increases the chance that data for a
healthy machine is being gathered. Since many “good” signals can
be measured, a statistical view can be obtained about the signal.
The basic assumption is that the signal will vary significantly when
a fault is present. A signal space boundary can then be computed
and if a signature signal lies outside the boundary, the machine is
considered faulty.

C. Computation of Detection Threshold

The first operation performed on the signature signals is the
removal of the mean. Since the signature signals are sampled and
converted to an array of digital numbers, each signal can be
considered a discrete vector or a point in the signal space. The
average signal is computed by summing all healthy rotor signatures
as vectors and dividing each component by the number of healthy
signature signals used in the sum. The average vector, called the
prototype signature, is subtracted from each signature signal to
translate the signature signals toward the signal space origin.

The signal space is then partitioned into two regions: one for
healthy rotors and one for faulted rotors. Due to the stochastic
nature of the signature signals, the region corresponding to healthy
rotors will extend away from the origin. A surface separating the
two regions must be defined to enclose the healthy region. Any
translated signature signals outside the detection surface will be
assumed to represent a rotor with a fault.

The simplest detection surface is a hypersphere. The largest
Euclidean length of the translated healthy signature signals is used
as the threshold. The region for healthy rotors is inside the
resulting  hypersphere. Any signature signal outside the
hypersphere will represent a faulted rotor. The detectors decision
is made according to

Fault = True
Fault = False

g g7
g le-sl<r

where x is a signature signal, ¥ is the prototype vector and T is the
detection threshold or radius of the hypersphere. This method
could potentially produce a detection algorithm with a high rate of
missed detections. For example, if the translated healthy signatures
all lie on a line, the sphere will enclose all the points but will have
a great deal of space with no healthy signature signals nearby. A
signature signal for a faulted rotor may lie within the hypersphere
but not on the line and thus no fault would be detected.

)

A more accurate detection boundary can be defined using
hyperellipses. The hyperellipse can be oriented in any direction
and thus would not contain large empty spaces unless the healthy
region consisted of multiple disjoint subregions. A signature
matrix X is formed by using the healthy translated signature signals
as the columns. The correlation matrix C is formed by

Cc=xXxT )

The eigenvectors of the correlation matrix C define the principle
axes of the hyperellipse [8]. Each translated healthy signature
signal is rotated into a new space by vector multiplication by the
eigenvectors.

The use of the full signature matrix results in a large
computational burden.  The signature signals obtained for
laboratory experiments have typically contained a minimum of 500
samples.  The correlation matrix would then contain 5002 =
250000 elements. Computing the eigenvectors of such a large
matrix can be difficult especially on the small personal computers
used for data acquisition. For this reason, a neural network feature
extraction method [15] is used to reduce the dimension of the
signature signals before construction of the correlation matrix.

The feedforward neural network is trained to reproduce the
input vectors at the output. However, a hidden layer containing a
small number of nodes is used. If a linear network is used, the
resulting operation can be shown to correspond to a projection onto
a linear subspace. The dimension of the subspace corresponds to
the number of nodes in the hidden layer. The activation values of
the hidden nodes then correspond to the extracted features of the
signature signals.  To improve the performance of the linear
network, the inputs are scaled to be within the interval [0, 1].

If the signature space is imagined to be three dimensional, the
projection performed by the neural network can be viewed as a
projection onto a plane. The hyperellipse detection boundary
would then lie on the plane. Figure 1 shows this idea.

Measured
/1 Signature
Signal

Decision
Hyperellipse

Projection

Figure 1: Simplified view of the projection of a signature onto the
hyperellipse. The measured signature is shown to be projected onto the
hyperellipse but to be significantly removed from the projection plane.

One problem created by the neural network projection is that
the projection of a shorted winding signature may be inside the
resulting hyperellipse. To resolve this problem, the magnitude of
the orthogonal complement is computed for each healthy signature.



Since the training of the network will not be prefect, all signals will
have a small orthogonal complement. The orthogonal complement
can be computed by subtracting the network output from the input
vector. The maximum Euclidean vector magnitude of the
orthogonal complements of all healthy signatures can be stored to
identify which vectors are potentially outside the detection surface.
Let the maximum magnitude be given by Tqc.

The threshold calculation process now consists of translated
healthy signatures which have been reduced to a smaller
dimension. Since the signatures are scaled between zero and one
and may not be centered about the origin, a new prototype is
calculated for the reduced data and removed from all healthy,
reduced signatures. The correlation matrix can then be constructed
and the cigenvectors, E, easily .calculated. The eigenvectors
correspond to the axes of the hyperellipse. By forming the dot
product between the eigenvectors and the signatures, the ellipse
can be oriented along the coordinate axis making ellipse
calculations much easier.

The next step involves calculation of the size of the ellipse or
the actual detection boundary. A hyperellipse with minimum
volume which encloses all healthy signatures is desired. This is
done using the following procedure. First, all ellipse coordinates
are set to the distance to the farthest healthy signature forming a
hypersphere. Then, for each coordinate, the minimum size which
encloses all the signatures is computed by

3

where N is the number of healthy signatures, a; is coordinate j of
the hyperellipse, and x; is component j of the signature. The
maximum is taken over all healthy signatures. The hyperellipse
coordinates must be less than the maximum magnitude used to
initialize the coordinates and each coordinate is independent of the
others. Thus, the above procedure will result in the desired
minimum volume hyperellipse.

The test to determine if a signature is within the hyperellipse is
another simple calculation. The value B given by

Nelr 2

5]
is tested to determine whether the signature is inside or outside the
detection boundary

Fault = True if B>1

Fault = False if B<l
D. The Detection Algorithm

The hyperellipse detection process can be summarized by the

following algorithm. Let X be a newly recorded signature to be
classified.

®)
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1. Center X by subtracting the prototype, x , from the raw
signal.

J=i-x
2. Propagate the centered signature through the neural network
and record the activation values of the hidden nodes and the
output nodes.

Z=Np(y)
b=N()

3. Compute the magnitude of the orthogonal complement by
subtracting the neural network output from the centered
signature and compute the vector magnitude.

w=[p-3]

4. Rotate the reduced dimension vector into the hyperellipse
space using the eigenvector matrix £.

c=E"z

5. Determine if the rotated vector is within the hyperellipse by
using equations (4) and (5) with ¢ in place of x.

i=0° i
Fault = True if B>1
Fault = False if B<l

6. If the vector is within the hyperellipse (Fault = False), test the
orthogonal complement. If the magnitude of the orthogonal
complement is greater than the threshold, declare a fault.

Fault = True if M>T,
Fault = False if M<T,

The process of detection can also include human evaluation.
Rather than a strict Fault/NoFault answer, the algorithm can also
produce a value representing the distance from the detection
boundary. For example, using the hyperellipse, a display of the
value D=B-1 could provide additional information. If D is less
than zero, the signature is inside the hyperellipse. If D is near zero,
however, a fault may yet be present. Or, even if D is positive
indicating that the signature is outside the hyperellipse, the
signature may represent a healthy signature. Recording a number
of signatures and observing the distance from the boundary for
each signature will give the added information needed to make a
more accurate prediction of the state of the rotor windings.

1I. LABORATORY TESTS

A. Transformer

The easiest test for the shorted winding detection algorithm
makes use of an autotransformer. The autotransformer wiper arm
is used to induce shorts between groups of windings but is not
connected to the transformer otherwise. The autotransformer is
then a coil of approximately 250 turns of copper wire similar to a
winding in a turbine-generator. Insulating the wiper arm from the
winding results in unshorted windings.

A set of 80 signatures was collected without an induced short
and used to train the detector. An additional 39 signatures were
collected for test purposes.
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By rotating the autotransformer wiper arm, shorted turns were
induced into the windings at arbitrary locations. The location of
each signature was recorded, however, for later identification. The
wiper arm contact spanned approximately ten turns and signatures
were collected at approximately the ten turn interval. Several
signature signals were gathered at each location, and several
independent rotations were performed. The resulting 190 shorted
turn signatures were applied to the detection algorithm.

The detection algorithm correctly classified 178 of the 190
signatures. The 12 shorted turn signatures which were incorrectly
classified as healthy signatures were found to be located very near
the center of the windings. The presence of a shorted-turn in the
center of the windings has been known to be a problem for the twin
signal sensing method. Since the detection method relies on
asymmetry of the windings, if a short occurs at the center, the
windings will still be symmetric and detection of the shorted turn
will not be possible. Due to noise in the signature signals, even
signatures slightly away from the center were classified as healthy.
The 39 healthy signatures which were not used for training the
detector were all correctly classified. A total of 229 signatures
were tested and 217 were correctly classified for a correct
classification rate of 94.8 percent.

B. Field Tests

The shorted-turn detector was tested on a 60 MW generator at
Southern California Edison’s Highgrove Power Station. The
station, located in Edison’s territory, comprises four steam turbine
generators. The station’s design offers ready access to the machine.
The generators are two-pole, hydrogen cooled machines. The DC
rotor field windings are fed from rotary exciters attached to the
shaft of the outboard end of the machine. Access to the generator’s
collector rings, and to the exciter’s commutators are readily
attainable through hatches on both sides of each machine.

The four generators are almost identical units. This fact allows
comparison tests to be performed between the different machines.
Therefore, the shorted-turn detector was also applied to a second
unit, and the waveforms were compared with those obtained in the
first one.
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Figure 2: Signature signals for various rotation rates.

In several stages, the rotor of the first machine was brought up
to full speed with the excitation connected and thus providing
power to the rotor. The voltage applied to the rotor is proportional
to rotation speed. Figure 2 shows plots of the signature signal at

several different speeds. The solid line represents no rotation, the
dotted line represents a very slow rolling rate, the dashed line
represents 1800 rpm, and the dash-dot line represents 3600 rpm.
All of the signature signals are seen to be quite similar especially in
the early portion. As the rotation speed increased, the signature
signals became more unstable, as if being modulated by a low
frequency signal.

Signatures from a second machine were recorded by
connecting the measurement leads directly to the slip rings. The
rotor was not rotating during this test. Figure 3 shows the
signatures for both machines under this condition. The two
signatures are very different implying that the machines are
different or that one machine has shorted turns. The resistance to
ground for the second machine, measured before the experiment
began, was found to be much lower than the resistance for the first
machine. It is not clear that the resistance to ground should have
such an impact and further studies are indicated.

1 T T T T T T
25 -
AR
g o) M ,/\/ \ ]
& [ I AN .

I T SRR _

o | W

I“
. I _ _ L I L
o 5107 ri0® 1310° z10® 2310° 310° 3910° 210
Time (sec)

Figure 3: Signature signals for two different machines. The measurement
leads were connected directly to the slip rings.

The signature signals collected during the experiment
demonstrate that detection of shorted rotor windings may indeed be
possible while the rotor is in operation. Several tests are required
to improve the detection accuracy. Since the signature signals for
the two similar machines were different, a test should be conducted
on two machines which are known to have identical rotors and
excitation sources and known not to have shorted rotor windings.
The resulting signatures will verify whether the detection process
will require sets of signatures for all machines before shorted turns
can be detected or if a single set of signatures for a given machine
type will be sufficient.

As pointed out by Nilsson and Mercurio [13], machines direct
from the factory may have shorted turns. However, as additional
turns are shorted, the signatures will change and the shorted turns
will be detected.

IV. CONCLUSION

The method presented in this paper for the detection of shorted
windings in large turbine-generators shows great promise. Shorted
windings can be detected in rotating machinery and other
equipment containing symmetrical windings. The method makes
use of the twin signal sensing method to provide a signature for
healthy windings. A neural network is used to extract features
from the signature data and thus reduces the dimension of the data.
A novelty detector is then used to determine if a shorted turn is
present.



Due to the inability to induce shorts between rotor windings of
an operating turbine-generator, complete testing and verification of
the detection algorithm has not been completed. However, based
on the performance shown for the dismantled rotor case by El-
Sharkawi, et al. [6] and the signals gathered for operational
turbine-generators, shorted turns should be detectable with great
accuracy.
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