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10.1 Introduction

A lattice path (path for short) is what the name says: a path (walk) in a lattice in

some d-dimensional Euclidean space. Formally, a lattice path P is a sequence P =
(P0,P1, . . . ,Pl) of points Pi in Zd . Figure 10.1 shows the lattice path ((0,0),(1,1),
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Figure 10.1

(2,1),(3,1),(3,2),(4,3)). The point P0 is called the starting point and Pl is called

the end point of P. The vectors
−−→
P0P1,

−−→
P1P2, . . . ,

−−−→
Pl−1Pl are called the steps of P.

Lattice paths have been studied for a very long time, explicitly at least since the

second half of the 19th century. At the beginning stand the investigations concerning

the two-candidate ballot problem [8, 123] (see the paragraph below Corollary 10.3.2

in Section 10.3) and the gambler’s ruin problem [65] (see [38, Ch. XIV, Sec. 2] and

Example 10.11.3 in Section 10.11). Since then, lattice paths have penetrated many

fields of mathematics, computer science, and physics. The reason for their ubiquity

is, on the one hand, that they are well-suited to encode various (combinatorial) ob-

jects and their properties, and, thus, problems in various fields can be solved by solv-

ing lattice path problems. On the other hand, since lattice paths are — at the outset

— reasonably simple combinatorial objects, the study of physical, probabilistic, or

statistical models is attractive in its own right. In particular, the importance of lattice

path enumeration in non-parametric statistics seems to explain that the only books

which are entirely devoted to lattice path combinatorics that I am aware of, namely

[95] and [97], are written by statisticians.

The aim of this chapter is to provide an overview of results and methods in lat-

tice path enumeration. Since, in view of the vast literature on the subject, compre-

hensiveness is hopeless, I have made a personal selection of topics that I consider of

importance in the theory, the same applying to the methods which I present here.

Clearly, when one talks of “enumeration,” this comes in two different “flavours”:

exact and asymptotic. In this chapter, I only rarely touch asymptotics, but rather

concentrate on exact enumeration results. In most cases, corresponding asymptotic

results are easily derivable from the exact formulas by using standard methods from

asymptotic analysis. See [43] for the standard text on asymptotic methods in combi-

natorial enumeration.

In many cases, I omit proofs. The proofs which are given are either reasonably

short, or they serve to illustrate a key method or idea in lattice path enumeration. If

one attempts to make a list of the important methods in lattice path enumeration, then

this will include:

1. generating functions (of course), in combination with the Lagrange inversion
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formula and/or residue calculus (see the second proof of Theorem 10.4.5, the

proof of Theorem 10.3.4, and the proof of Theorem 10.12.1 for examples);

2. bijections (they appear explicitly or implicitly at many places);

3. reflection principle (see the proof of Theorem 10.3.1 and Section 10.18);

4. cycle lemma (see Section 10.4);

5. transfer matrix method (see the proof of Theorem 10.11.1);

6. kernel method (see the proof of Theorem 10.12.2 and the paragraphs there-

after);

7. the path switching involution for non-intersecting lattice paths (see Sec-

tion 10.13);

8. manipulation of two-rowed arrays for turn enumeration (see Section 10.14);

9. orthogonal polynomials, continued fractions (see Sections 10.9–10.11).

We start with some simple results on the enumeration of paths in the d-

dimensional integer lattice in Section 10.2. The sections which follow, Sections 10.3–

10.7, discuss so-called simple lattice paths in the plane integer lattice Z2; these are

paths in Z2 consisting of horizontal and vertical unit steps in the positive direction.

While still staying in the plane integer lattice, beginning from Section 10.8, we allow

three kinds of steps: changing the geometry slightly by a rotation about 45◦, these

are up-, down-, and level-steps. The case of Motzkin paths is intimately related to

the theory of orthogonal polynomials and continued fractions. This link is explained

in Sections 10.9–10.11. Section 10.12 provides a loose collection of further results

for lattice paths in the plane integer lattice, with many pointers to the literature.

The subsequent section, Section 10.13, is devoted to the theory of non-intersecting

lattice paths, which is an extremely useful enumeration theory with many applica-

tions — particularly in the enumeration of tilings, plane partitions, and tableaux

—, but is also of great interest in its own right. Turn statistics are investigated in

Section 10.14. Again, the original motivation comes from statistics, but more re-

cent work, most importantly work on counting non-intersecting lattice paths by their

number of turns, arose from problems in commutative algebra. Then we move into

higher-dimensional space. Sections 10.15–10.17 present standard results for lattice

paths in higher-dimensional lattices. How far one can go with the reflection princi-

ple is explained in Section 10.18. The brief Section 10.19 gives some glimpses of

q-analogues, including pointers to the connections of lattice path enumeration with

the Rogers–Ramanujan identities.

We conclude this introduction by fixing some notation which will be used consis-

tently in this chapter. (It is in part inspired by standard probability notation.) Given

lattice points A and E , a set S of steps (vectors), a set of restrictions R, and a non-

negative integer m, we write

Lm

(
A→ E;S | R

)
(10.1)
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for the set of all lattice paths from A to E with m steps, all of which from S, which

obey the restrictions in R. The lattice itself in which these paths are considered will

be always clear from the context and is therefore not included in the notation. For

example, the path in Figure 10.1 is in

L5

(
(0,0)→ (4,3);{(1,0), (0,1), (1,1)} | x≥ y

)
,

where x ≥ y indicates the restriction that the x-coordinate of any lattice point of the

path is at least as large as its y-coordinate, or, equivalently, obeys the restriction to

stay weakly below the diagonal x = y.

Parts in (10.1) may be left out if we do not intend to require the corresponding

restriction, or if that restriction is clear from the context. For example, the set of

lattice paths in Z2 from A to E with horizontal and vertical unit steps in the positive

direction without further restriction will be denoted by L
(
A→ E;{(1,0), (0,1)}

)
, or

sometimes even shorter, if the step set is clear from the context, L
(
A→ E

)
.

When we consider weighted counting, then we shall also use a uniform nota-

tion. Given a set M and a weight function w on M , we denote by GF(M ;w) the

generating function for M with respect to w, i.e.,

GF(M ;w) := ∑
x∈M

w(x). (10.2)

Finally, by convention, whenever we write a binomial coefficient
(

n
k

)
, it is as-

sumed to be zero if k is not an integer satisfying 0≤ k ≤ n.

10.2 Lattice paths without restrictions

In this short section, we briefly cover the simplest enumeration problems for lattice

paths. If we are given a set of steps S, then the number of paths starting from the

origin and using n steps from S is |S|n. If we are also fixing the end point, then we

cannot expect a reasonable formula in this generality.

However, in the case of (positive) unit steps such formulae are available. Namely,

the number of paths in the plane integer lattice Z2 from (a,b) to (c,d) consisting of

horizontal and vertical unit steps in the positive direction is

∣
∣L
(
(a,b)→ (c,d)

)∣
∣=

(
c+ d− a− b

c− a

)

, (10.3)

since each path from (a,b) to (c,d) can be identified with a sequence of (c− a)
horizontal steps and (d−b) vertical steps, the number of those sequences being given

by the binomial coefficient in (10.3).

More generally, for the same reason, the number of paths in the d-dimensional

integer lattice Z
d from a = (a1,a2, . . . ,ad) to e = (e1,e2, . . . ,ed) consisting of pos-

itive unit steps in the direction of some coordinate axis is given by a multinomial
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Figure 10.2

coefficient, namely

∣
∣L
(
a→ e

)∣
∣=

(
∑d

i=1(ei− ai)

e1− a1,e2− a2, . . . ,ed− ad

)

:=

(

∑d
i=1(ei− ai)

)
!

(e1− a1)!(e2− a2)! · · · (ed− ad)!
.

(10.4)

There is another special case, in which one can write down a closed form expres-

sion for the number of paths between two given points with a fixed number of steps.

Namely, the number of paths with n horizontal and vertical unit steps (in the positive

or negative direction) from (a,b) to (c,d) is given by

∣
∣Ln

(
(a,b)→ (c,d);{(±1,0), (0,±1)}

)∣
∣ =

(
n

n+c+d−a−b
2

)(
n

n+c−d−a+b
2

)

. (10.5)

See [60] and the references given there.

If one considers other step sets then it may often be possible to obtain (non-

closed) formulae by “mixing” steps. A typical example is the case where we con-

sider lattice paths in the plane allowing three types of steps, namely horizon-

tal unit steps (1,0), vertical unit steps (0,1), and diagonal steps (1,1). Let S =
{(1,0),(0,1),(1,1)} be this step set. If we want to know how many lattice paths

there exist from (a,b) to (c,d) consisting of steps from S, then we find

∣
∣L
(
(a,b)→ (c,d);S

)∣
∣=

c−a

∑
k=0

(
c+ d− a− b− k

k,c− a− k,d− b− k

)

, (10.6)

since, if we fix the number of diagonal steps to k, then the number of ways to mix k

diagonal steps, c− a− k horizontal steps, and d− b− k vertical steps is given by the

multinomial coefficient which represents the summand in (10.6). In the special case

where (a,b) = (0,0), the corresponding numbers are called Delannoy numbers, and,

if (c,d) = (n,n), central Delannoy numbers.

As a first excursion to weighted counting, we consider the generating function for

lattice paths in Z2 from A = (a,b) to E = (c,d) consisting of horizontal and vertical

unit steps in the positive direction, in which each path is weighted by qa(P), where

a(P) denotes the area between the path and the x-axis (with portions of the path
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which lie below the x-axis contributing a negative area). More precisely, the area

a(P) is the sum of the heights (abscissa) of the horizontal steps of P. For example,

for the left-hand path in Figure 10.2 we have a( .) = 1+3+3+4= 11, while for the

right-hand path we have a( .) = (−1)+ (−1)+ 1+ 2 = 1. It is then straightforward

to check (by induction on the length of paths) that

GF
(
L
(
(a,b)→ (c,d)

)
;qa( .)

)
= qb(c−a)

[
c+ d− a− b

c− a

]

q

, (10.7)

where
[

c+d−a−b
c−a

]

q
denotes the q-binomial coefficient defined by

[
n

k

]

q

:=
(1− qn)(1− qn−1) · · · (1− q)

(1− qk)(1− qk−1) · · · (1− q)(1− qn−k)(1− qn−k−1) · · · (1− q)
,

and [ n
k ]q = 0 if k < 0. This result connects lattice path enumeration with the theory

of integer partitions. What we have computed in (10.7) is equivalent to the classical

result that the generating function for integer partitions with at most k parts, each of

which is bounded above by n is given by
[

n+k
k

]

q
. We shall say a little bit more about

q-counting in Section 10.19. The reader is referred to [2] for an excellent survey of

the theory of partitions.

10.3 Linear boundaries of slope 1

Next we want to count paths from (a,b) to (c,d), where a ≥ b and c ≥ d, which

stay weakly below the main diagonal y = x. So, what we want to know is the num-

ber
∣
∣L
(
(a,b)→ (c,d) | x≥ y

)∣
∣. This problem is most conveniently solved by the so-

called reflection principle most often attributed to André [1]. However, while André

did solve the ballot problem, he did not use the reflection principle. Its origin lies

most likely in the method of images of electrostatics, see Sections 2.3–2.6 in [64].

Theorem 10.3.1 Let a ≥ b and c ≥ d. The number of all paths from (a,b) to (c,d)
staying weakly below the line y = x is given by

∣
∣L
(
(a,b)→ (c,d) | x≥ y

)∣
∣=

(
c+ d− a− b

c− a

)

−
(

c+ d− a− b

c− b+ 1

)

. (10.8)

Proof First we observe that the number in question is the number of all paths from

(a,b) to (c,d) minus the number of those paths which cross the line y = x,

∣
∣L
(
(a,b)→ (c,d) | x≥ y

)∣
∣=
∣
∣L
(
(a,b)→ (c,d)

)∣
∣

−
∣
∣L
(
(a,b)→ (c,d) | x 6≥ y at least once

)∣
∣ . (10.9)
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Figure 10.3

By (10.3) we already know
∣
∣L
(
(a,b)→ (c,d)

)∣
∣. The reflection principle shows

that paths from (a,b) to (c,d) which cross y = x are in bijection with paths from

(b− 1,a+ 1) to (c,d). This implies

∣
∣L
(
(a,b)→ (c,d) | x 6≥ y at least once

)∣
∣=
∣
∣L
(
(b− 1,a+ 1)→ (c,d)

)∣
∣ .

Hence, using (10.3) again, we establish (10.8).

The claimed bijection is obtained as follows. Consider a path P from (a,b) to

(c,d) crossing the line y = x. See Figure 10.3 for an example. Then P must meet

the line y = x+ 1. Among all the meeting points of P and y = x + 1 choose the

right-most. Denote this point by S. Now reflect the portion of P from (a,b) to S in

the line y = x+ 1, leaving the portion from S to (c,d) invariant. Thus we obtain a

new path P′ from (b− 1,a+ 1) to (c,d). To construct the reverse mapping we only

have to observe that any path from (b− 1,a+ 1) to (c,d) must meet y = x+ 1 since

(b−1,a+1) and (c,d) lie on different sides of y = x+1. Again we choose the right-

most meeting point, denote it by S, and reflect the portion from (b− 1,a+ 1) to S

in the line y = x+ 1, thus obtaining a path from (a,b) to (c,d) that meets the line

y = x+ 1, or, equivalently, crosses the line y = x.

In particular, for a = b = 0 we obtain the following compact formula.

Corollary 10.3.2 If c≥ d we have

∣
∣L
(
(0,0)→ (c,d) | x≥ y

)∣
∣=

c+ 1− d

c+ d+ 1

(
c+ d+ 1

d

)

(10.10)
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and
∣
∣L
(
(0,0)→ (n,n) | x≥ y

)∣
∣=

1

n+ 1

(
2n

n

)

. (10.11)

The numbers c+1−d
c+d+1

(
c+d+1

d

)
are called ballot numbers since they give the answer

to the classical ballot problem, which is usually attributed to Bertrand [8], but was

actually first stated and solved by Whitworth [123]. The problem is stated as follows:

in an election candidate A received c votes and candidate B received d votes; how

many ways of counting the votes are there such that at each stage during the counting

candidate A has at least as many votes as candidate B? By representing a vote for A

by a horizontal step and a vote for B by a vertical step, it is seen that the number

in question is the same as the number of lattice paths from (0,0) to (c,d) staying

weakly below y = x. This number is given in (10.10). More about ballot problems

appears in Sections 10.12 and 10.18.

The numbers 1
n+1

(
2n
n

)
are called Catalan numbers [27, 28]. However, they have

been considered earlier by Segner [106] and Euler [37], and independently even ear-

lier in China; see the historical remarks in [101] and [113, p. 212]. They appear in

numerous places; see [113, Ex. 6.19], with many more occurrences in the addendum

[111].

An iterated reflection argument will give the number of paths between two diag-

onal lines.

Theorem 10.3.3 Let a+ t ≥ b ≥ a+ s and c+ t ≥ d ≥ c+ s. The number of all

paths from (a,b) to (c,d) staying weakly below the line y = x+ t and above the line

y = x+ s is given by

∣
∣L
(
(a,b)→ (c,d) | x+ t ≥ y≥ x+ s

)∣
∣

= ∑
k∈Z

((
c+ d− a− b

c− a− k(t− s+ 2)

)

−
(

c+ d− a− b

c− b− k(t− s+ 2)+ t+ 1

))

. (10.12)

Since this is (as well as Theorem 10.3.1) an instance of the general formula

(10.145) for the number of paths staying in regions defined by hyperplanes, we omit

the proof.

The formula in Theorem 10.3.3 is very convenient for computing the number

of paths as long as the parameters are not too large. On the other hand, it is of no

use if one is interested in asymptotic information, because the summands on the

right-hand side of (10.12) alternate in sign so that there is considerable cancellation.

However, with the help of little residue calculus, the formula can be transformed into

a surprising formula featuring cosines and sines, from which asymptotic information

can be easily read off.

Theorem 10.3.4 Let a+ t ≥ b ≥ a+ s and c+ t ≥ d ≥ c+ s. The number of all

paths from (a,b) to (c,d) staying weakly below the line y = x+ t and above the line
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y = x+ s is given by

∣
∣L
(
(a,b)→ (c,d) | x+ t ≥ y≥ x+ s

)∣
∣

=
⌊(t−s+1)/2⌋

∑
k=1

4

t− s+ 2

(

2cos
πk

t− s+ 2

)c+d−a−b

· sin

(
πk(a− b+ t+ 1)

t− s+ 2

)

· sin

(
πk(c− d+ t + 1)

t− s+ 2

)

. (10.13)

Proof Trivially, the binomial coefficient
(

n
k

)
is the coefficient of z−1 in the Laurent

series
(1+ z)n

zk+1
.

Thus, the sum (10.12) equals the coefficient of z−1 in

∞

∑
k=0

(
(1+ z)c+d−a−b zk(t−s+2)

zc−a+(c+d−a−b)(t−s+2)+1
− (1+ z)c+d−a−b zk(t−s+2)

zc−b+t+(c+d−a−b)(t−s+2)+2

)

=
(1+ z)c+d−a−b

zc−a+(c+d−a−b)(t−s+2)+1(1− zt−s+2)
− (1+ z)c+d−a−b

zc−b+t+(c+d−a−b)(t−s+2)+2(1− zt−s+2)

=
(1+ z)c+d−a−b

(

z(−c+d+a−b)/2− z(−c+d−a+b)/2−t−1
)

z(c+d−a−b)/2+(c+d−a−b)(t−s+2)+1(1− zt−s+2)
. (10.14)

(In the second line we used the formula for the geometric series. It can be either

regarded as a summation in the formal sense, or else one must assume that |z| < 1.)

Equivalently, the sum (10.12) equals the residuum of the Laurent series (10.14) at

z = 0. Now consider the contour integral of (10.14) (with respect to z, of course)

along a circle of radius r around the origin. It is a standard fact that in the limit

r→ ∞ this integral vanishes, because the integrand (10.14) is of the order O(1/z2).
Therefore, by the theorem of residues, the sum of the residues of (10.14) must be 0,

or, equivalently, the residuum at z= 0, which we are interested in, equals the negative

of the sum of the other residues. As the other poles of (10.14) are the (t− s+ 2)-th
roots of unity different from 1, we obtain

−
t−s+1

∑
k=1

(

1+ e
2πik

t−s+2

)c+d−a−b(

e
πik

t−s+2 (−c+d+a−b)− e
πik

t−s+2 (−c+d−a+b−2t−2)
)

e
2πik

t−s+2 (
c+d−a−b

2 +1)
(

−(t− s+ 2)e
2πik

t−s+2 (t−s+1)
)

=
t−s+1

∑
k=1

1

t− s+ 2

(

2cos
πk

t− s+ 2

)c+d−a−b

e
πik

t−s+2 (−c+d−t−1)

·
(

e
πik

t−s+2 (a−b+t+1)− e−
πik

t−s+2 (a−b+t+1)
)
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for the sum (10.12). Now, in the last line, we pair the k-th and the (t− s+ 2− k)-th
summand. Thus, upon little manipulation, the above sum turns into

⌊(t−s+1)/2⌋
∑
k=1

1

t− s+ 2

(

2cos
πk

t− s+ 2

)c+d−a−b

·
(

e−
πik

t−s+2 (c−d+t+1)− e
πik

t−s+2 (c−d+t+1)
)(

e
πik

t−s+2 (a−b+t+1)− e−
πik

t−s+2 (a−b+t+1)
)

.

Clearly, this formula is equivalent to (10.13).

From the generating function formula given in Section 10.11 (see Exam-

ple 10.11.2), one can see that this asymptotic formula comes from Chebyshev poly-

nomials.

10.4 Simple paths with linear boundaries of rational

slope, I

When we want to count simple lattice paths (recall the meaning of “simple” from

the introduction) in the plane bounded by an arbitrary line y = kx+ d, k,d ∈ R, the

reflection principle obviously does not help, since the reflection of a lattice path in

a generic line does not necessarily give a lattice path. In fact, a solution in form of

a determinant can be given when the boundary is viewed as a special case of a set

of general boundaries (see Section 10.7, Theorem 10.7.1; another solution was pro-

posed by Takács [118], which is of similar complexity as it involves the solution of

a large system of linear equations). However, there are cases where simpler expres-

sions can be obtained, and these are discussed in this section. All of them can be

derived from a very basic combinatorial lemma, the so-called “cycle lemma”, which

exists in several variations.

The first case which we discuss is the enumeration of simple lattice paths from

the origin to a lattice point (r,s), with r and s relatively prime, which stay weakly

below the line connecting the origin and (r,s).

Theorem 10.4.1 Let r and s be relatively prime positive integers. The number of all

paths from (0,0) to (r,s) staying weakly below the line ry = sx is given by

∣
∣L
(
(0,0)→ (r,s) | sx≥ ry

)∣
∣=

1

r+ s

(
r+ s

r

)

. (10.15)

Remark 10.4.2 The numbers in (10.15) are nowadays called rational Catalan num-

bers (cf. [4]), the Catalan numbers being the special case where r = n and s = n+1.

The above result follows easily from a form of the cycle lemma which is known

in the statistics literature as Spitzer’s lemma [110].
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Figure 10.4

Lemma 10.4.3 (SPITZER’S LEMMA) Let a1,a2, . . . ,aN be real numbers with the

property that a1 + a2 + · · ·+ aN = 0 and no other partial sum of consecutive ai’s,

read cyclically (by which we mean sums of the form a j + a j+1 + · · ·+ ak with j ≤ k

and k− j < N, where indices are interpreted modulo N), vanishes. Then there exists

a unique cyclic permutation ai,ai+1, . . . ,aN ,a1, . . . ,ai−1 with the property that for all

j = 1,2, . . . ,N the sum of the first j letters of this permuted array is non-negative.

Remark 10.4.4 This lemma could be further generalized by weakening the above

assumption to demanding that K partial sums of consecutive ai’s, read cyclically, of

minimal length vanish, with the conclusion that there be K cyclic permutations with

the above non-negativity property.

Proof We interpret the real numbers ai as steps of a path (although not necessarily

of a lattice path), by concatenating the steps (1,a1), (1,a2), . . . , (1.aN) to a path

starting at the origin. See the left half of Figure 10.4 for a typical example.

Since the sum of all ai’s vanishes, the end point of the path lies on the x-axis.

We identify this end point with the starting point (located at the origin), so that we

consider this path as a cyclic object.

By the non-vanishing of cyclic subsums, there is a unique point of minimal

height, A say. (This may also be the starting/end point, which we identified.) In the

figure this point is marked by a thick dot. Now “permute” the path cyclically, that

is, take the portion of the path from A to the end, and concatenate it with the initial

portion of the path until A. See the right half of Figure 10.4 for the result in our ex-

ample. Obviously, the new path always lies strictly above the x-axis, except at the

beginning and at the end. This identifies the cyclic permutation of the ai’s with the

required property.

Proof of Theorem 10.4.1 We consider all paths from (0,0) to (r,s). There are
(

r+s
s

)
such paths. Given a path P from (0,0) to (r,s), we consider the sequence

a1,a2, . . . ,ar+s, where ai = s if the i-th step of the path is a horizontal step, and

ai =−r if the i-th step of the path is a vertical step. Since r and s are relatively prime,
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no cyclic subsum of the ai’s, except the complete sum, can vanish. The cycle lemma

in Lemma 10.4.3 then implies that, out of the r+ s cyclic “permutations” of the path

P, there is exactly one which stays (weakly) below the line sx = ry. Thus, there are

in total 1
r+s

(
r+s

r

)
paths with that property.

The next case where a closed form formula can be obtained (partially overlapping

with the result in Theorem 10.4.1) is when counting lattice paths from (0,0) to (c,d)
which stay weakly below the line x = µy, where µ is a positive integer. Of course we

have to assume c≥ µd. There are two conceptually different standard approaches to

obtain the corresponding result: application of another version of the cycle lemma

(see Lemma 10.4.6), respectively generating functions combined with the use of the

Lagrange inversion formula.

Theorem 10.4.5 Let µ be a non-negative integer and c ≥ µd. The number of all

lattice paths from the origin to (c,d) which lie weakly below x = µy is given by

∣
∣L
(
(0,0)→ (c,d) | x≥ µy

)∣
∣=

c− µd+ 1

c+ d+ 1

(
c+ d+ 1

d

)

. (10.16)

This result is essentially equivalent to the cycle lemma due to Dvoretzky and

Motzkin [36]. It has been rediscovered many times; see [35] for a partial survey and

many related references, as well as [113, Lemma 5.3.6 and Example 5,3,7].

Lemma 10.4.6 (CYCLE LEMMA) Let µ be a non-negative integer. For any sequence

p1 p2 . . . pm+n of m 1’s and n 2’s, with m ≥ µn, there exist exactly m− µn cyclic

permutations pi pi+1 . . . pm+n p1 . . . pi−1, 1 ≤ i ≤ m+ n, that have the property that

for all j = 1,2, . . . ,m+ n the first j letters of this permutation contain more 1’s than

µ times the number of 2’s.

Proof A sequence p1 p2 . . . pm+n of m 1’s and n 2’s can be seen as a lattice path

from (0,0) to (m,n) by interpreting the 1’s as horizontal steps and the 2’s as vertical

steps. Cyclically permuting p1 p2 . . . pm+n means to cut the corresponding lattice path

into two pieces and put them together in exchanged order, thus obtaining a new lattice

path from (0,0) to (m,n). Finally, the property that in each initial string of a sequence

the number of 1’s dominates (i.e., is larger than) µ times the number of 2’s means that

the corresponding lattice path stays strictly below the line x = µy, with the exception

of the starting point (0,0).
For the proof of the lemma interpret p1 p2 . . . pm+n as a path, as described before,

and join a shifted copy of this path at the end point (m,n), another shifted copy at

(2m,2n), etc. Figure 10.5 shows an example with µ = 2, m = 9, n = 3. The path

P corresponds to the sequence 121111122111. Cyclic permutations of p1 p2 . . . pm+n

correspond to cutting a piece of m+ n successive steps out of this lattice path struc-

ture. Then imagine a sun to be located in direction (µ ,1) illuminating the lattice path

structure. A cyclic permutation will satisfy the dominance property for each initial

string if and only if the first step of the corresponding lattice path is illuminated. In

Figure 10.5 the illuminated steps are indicated by thick lines. It is an easy matter of
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Figure 10.5

fact that of any m+ n successive steps there are exactly m− µn illuminated steps.

Therefore out of the m+ n cyclic permutations of p1 p2 . . . pm+n there are exactly

m− µn cyclic permutations having the dominance property for each initial string.

First proof of Theorem 10.4.5 We want to count paths from (0,0) to (c,d) stay-

ing weakly below x = µy. To fit with the cycle lemma we adjoin a horizontal step

at the beginning and shift everything by one unit to the right. Thus we are now ask-

ing for the number of paths from (0,0) to (c+ 1,d) staying strictly below x = µy,

except for the starting point (0,0). Now one applies Lemma 10.4.6 with m = c+ 1

and n = d: given a path P from (0,0) to (c+ 1,d), exactly m− µn = c+ 1− µd of

its cyclic “permutations” satisfy the property of staying strictly below x = µy, except

for the starting point (0,0). Thus, the total number of paths from (0,0) to (c,d) with

that property is given by (10.16).

For instructional purposes, we also present the generating function proof.

Second proof of Theorem 10.4.5 The generating function proof works in two

steps. First, an equation is found for the generating function of those paths which

return in the end to the boundary x = µy. Then, in a second step, paths ending arbi-

trarily are decomposed into paths of the former type, leading to a generating function

expression in terms of the earlier generating function to which the Lagrange inversion

formula is applicable.

Let P be a path in L
(
(0,0)→ (µd,d) | x≥ µy

)
(see Figure 10.6). For l = 0,1, . . . ,

µ − 1, the path P will meet the line x = µy+ l (which is parallel to our boundary

x = µy) somewhere for the last time. Denote this point by Sl. Clearly, the path P

must leave Sl by a horizontal step, which we denote by sh for short. This gives us a

unique decomposition of P of the form

P = P0shP1sh . . . shPµsv,
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where P0 is P’s portion from the origin up to S0, P1 is P’s portion from the point

immediately following S0 up to S1, etc. By sv we denote the final vertical step. All

the portions Pi (when shifted appropriately) belong to L
(
(0,0)→ (µn,n) | x ≥ µy

)

for some n. Let

L0 =
⋃

n≥0

L
(
(0,0)→ (µn,n) | x≥ µy

)
. (10.17)

Then we have the following decomposition:

L0 = {ε}∪
(
(L0sh)

µ
L0sv

)
.

Here, as always in the sequel, ε denotes the empty path.

By elementary combinatorial principles, this immediately translates into a func-

tional equation for the generating function

F0(z) := ∑
n≥0

∣
∣L
(
(0,0)→ (µn,n) | x≥ µy

)∣
∣zn

for L0 (note that the summation index n records the vertical height of the end point

of paths), namely

F0(z) = 1+ zF0(z)
µ+1. (10.18)

If we write F0(z) = 1+G0(z), then Equation (10.18) in terms of the series G0(z)
reads

G0(z)

(1+G0(z))µ+1
= z, (10.19)

which simply says that G0(z) is the compositional inverse of z/(1+ z)µ+1.

Turning to the more general problem, consider a lattice path P in
∣
∣L
(
(0,0)→

(µd+ k,d) | x≥ µy
)∣
∣ (see Figure 10.7). For l = 0,1, . . . ,k−1 the path will meet the

line x = µy+ l somewhere for the last time. Denote this point by Sl . Clearly, the path
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P must leave Sl by a horizontal step, for which we again write sh. This gives us a

decomposition of P of the form

P = P0shP1sh . . . shPk,

where P0 is the portion of P from the origin up to S0, P1 is the portion of P from the

point immediately following S0 up to S1, and so on. Observe that again the portions

Pl belong to L0 (being defined in (10.17)). Let

Lk =
⋃

n≥0

L
(
(0,0)→ (µn+ k,n) | x≥ µy

)
.

Then we have the following decomposition:

Lk = (L0sh)
k
L0.

This translates again into an equation for the corresponding generating function

Fk(z) := ∑
n≥0

∣
∣L
(
(0,0)→ (µn+ k,n) | x≥ µy

)∣
∣zn

for Lk, namely into

Fk(z) = F0(z)
k+1 = (1+G0(z))

k+1,

We noted above that G0(z) is the compositional inverse of z/(1+ z)µ+1. Therefore,

we may apply the Lagrange formula (see [113, Corollary 5.4.3]; for the current pur-
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pose, we have to choose H(z) = (1+ z)k+1, f (z) = z/(1+ z)µ+1 there). This yields

L
(
(0,0)→ (µn+ k,n) | x≥ µy

)
=

1

n
〈z−1〉(k+ 1)(1+ z)k (1+ z)n(µ+1)

zn

=
k+ 1

n

(
µn+ k+ n

n− 1

)

=
k+ 1

µn+ k+ n+ 1

(
µn+ k+ n+ 1

n

)

,

which turns into (10.16) once we replace µn+ k by c and n by d.

In particular, for µ = 1 the generating function F0(z) can be explicitly evaluated

from solving the quadratic equation (10.18). In the case, where the paths return to the

boundary x = y, i.e., where (c,d) = (n,n), this gives the familiar generating function

for the Catalan numbers (compare with the second paragraph after Corollary 10.3.2)

∑
n≥0

Cnzn =
1−
√

1− 4z

2z
. (10.20)

More generally, if µ is kept generic and (c,d) = (µn,n) (that is, we consider

again paths which return to the boundary), then the formula on the right-hand side

of (10.16) becomes 1
µn+1

((µ+1)n
n

)
. These numbers are now commonly called Fuß–

Catalan numbers, cf. [3, pp. 59–60] for more information on their significance and

historical remarks.

So far we only counted paths bounded by x = µy where the starting point lies

on the boundary. If we drop this latter assumption and now want to enumerate all

paths from (a,b) to (c,d) staying weakly below x = µy, there is still an answer, al-

though only in terms of a sum. In fact, we can offer two different expressions. Which

of these two is preferable depends on the particular situation, to be more precise,

on which of the numbers (a/µ − b) or (d− a/µ) being larger (see Figure 10.8 for

the pictorial significance of these numbers). While the proof for the first expression

is rather straightforward, the proof for the second expression is more difficult. The

result below was first found by Korolyuk [73]. It is a special case of an even more

general result of Niederhausen [98, Sec. 2.2] on the enumeration of simple paths with

piecewise linear boundaries, which we will discuss in Section 10.6.

Theorem 10.4.7 Let µ be a non-negative integer, a ≥ µb and c ≥ µd. The number

of all lattice paths from (a,b) to (c,d) staying weakly below x = µy is given by

∣
∣L
(
(a,b)→ (c,d) | x≥ µy

)∣
∣=

(
c+ d− a− b

c− a

)

−
d

∑
i=⌊a/µ⌋+1

(
i(µ + 1)− a− b− 1

i− b

)
c− µd+ 1

c+ d− i(µ + 1)+ 1

(
c+ d− i(µ + 1)+ 1

d− i

)

,

(10.21)
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Figure 10.8

and also

∣
∣L
(
(a,b)→ (c,d) | x≥ µy

)∣
∣=

⌊a/µ⌋−b

∑
i=0

(−1)i

(
a− µ(b+ i)

i

)

× c− µd+ 1

c+ d− (µ + 1)(b+ i)+ 1

(
c+ d− (µ + 1)(b+ i)+ 1

d− b− i

)

. (10.22)

Proof of (10.21) The number of paths in question equals the number of all paths

from (a,b) to (c,d) minus those paths which cross x= µy. To count the latter observe

that any path crossing x = µy must meet the line x = µy− 1, and for the last time in

some point (µ i−1, i) where ⌊a/µ⌋+1≤ i≤ c. Fix such an i, then the number of all

these paths is

∣
∣L
(
(a,b)→ (µ i− 1, i)

)∣
∣ ·
∣
∣L
(
(µ i, i)→ (c,d) | x≥ µy

)∣
∣ .

We already know the first number due to (10.3), and we also know the second number

due to (10.16), since a shift in direction (−µ i,−i) shows that the second number

equals
∣
∣L
(
(0,0)→ (c− µ i,d− i) | x≥ µy

)∣
∣.

Proof of (10.22) This is the special case of Theorem 10.6.1 where m = 2, µ1 =
ν1 = 0, y1 = ⌊a/µ⌋− b, µ2 = µ , ν2 = µb− a.

For a different, direct proof, in the sum in (10.21) replace the index i by i+b; the

new index then ranges from ⌊a/µ⌋− b+ 1 to d− b; extend the sum to all i between

0 and d− b, thereby adding a partial sum where i ranges from 0 to ⌊a/mu⌋− b; the

former sum can be evaluated by means of a convolution formula of the Hagen–Rothe

type (cf. [54, Eq. (11)]), and the result is the binomial coefficient
(

c+d−a−b
c−a

)
.

Enumeration of lattice paths in the presence of several linear boundaries can in

the best cases be solved by an iterated application of the reflection principle; see
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Section 10.18 for the most general situation where the reflection principle applies.

But, if it does not apply (which, in a random case, will certainly be so), then the

enumeration problem will be very challenging. Usually, one cannot expect to find a

useful exact formula (but see Section 10.7), and will instead investigate asymptotic

behaviours. This is still quite challenging. The reader is referred to [22, 68, 69] for

work in this direction.

10.5 Simple paths with linear boundaries with rational

slope, II

In Section 10.4 we considered lattice paths bounded by a line x = µy, with µ a non-

negative integer. Now we want to consider a more general linear boundary of the

form νx = µy, where ν,µ are non-negative integers. We describe a generating func-

tion approach, due to Sato [104], which works for a large class of cases. Alternative

solutions, which work in all cases, in the form of a determinant, can be given as a

special case of a set of general boundaries. These are discussed in Section 10.7, see

in particular Theorem 10.7.1.

The problem that we want to attack here is to enumerate all lattice paths from

an arbitrary starting point to an arbitrary end point staying weakly below the line

νx = µy, where ν and µ are positive integers. A simple shift of the plane shows

that this is equivalent to enumerating paths from the origin to an arbitrary end point

staying weakly below νx = µy−ρ , for an appropriate ρ . Without loss of generality

we may assume in the sequel that ν < µ . For the approach of Sato, this is the more

convenient formulation of the problem. The idea is to introduce ν×ν matrices which

contain the path numbers that we are looking for. More precisely, define the ν × ν
matrix W (z;c,ρ) by

W (z;c,ρ) :=
(
w(z;c+ g,ρ + h)

)

0≤g,h≤ν−1
, (10.23)

where

w(z;c,ρ) = ∑
µn+c≡ρ (mod ν)

w(n;c,ρ)zn, (10.24)
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with

w(n;c,ρ) =







∣
∣L
(
(0,0)→ ( µn+c−ρ

ν ,n) | νx≥ µy−ρ
)∣
∣ , µn+ c≡ ρ (mod ν)

and µn+ c≥ ρ ,
(

n+
µn+c−ρ

ν
n

)
, µn+ c≡ ρ (mod ν)

and µn+ c < ρ .

(10.25)

So, what the matrix W (z;c,ρ) contains is generating functions of the path numbers

w(n;c,ρ) that we want to know. The definition of w(n;c,ρ) for µn+c< ρ (in which

case there cannot be any paths from (0,0) to ( µn+c−ρ
ν ,n)) is just for technical conve-

nience. Basically, the matrix W (z;c,ρ) is

W (z;c,ρ) =

(

∑
µn+c+g−h≡ρ (mod ν)

∣
∣
∣
∣
L
(
(0,0)→

(
µn+ c+ g−ρ− h

ν
,n

)

|

νx≥ µy−ρ− h
)
∣
∣
∣z

n

)

0≤g,h≤ν−1

. (10.26)

The following theorem of Sato [104, Theorem 1] tells us how to compute

W (z;c,ρ).

Theorem 10.5.1 Let

M =
(

(−1)ν−h−1s(c+g+1,1ν−h−1)

(
u0(z), . . . ,uν−1(z)

))

0≤g,h≤ν−1
, (10.27)

where

s(α ,1β )(u0, . . . ,uν−1)

= ∑
ν−1≥iα≥iα−1≥···≥i1< j1<···< jβ≤ν−1

uiα (z)uiα−1
(z) · · ·ui1(z)u j1(z) · · ·u jβ

(z), (10.28)

ul(z) being defined by

ul(z) = e(2π il/ν) ∑
n≥0

1

1+(ν + µ)n

(
1
ν +(1+ µ

ν )n

n

)(

ze2π ilµ/ν
)n

,

l = 0,1, . . . ,ν− 1. (10.29)

Furthermore, let

Φ(z;ρ) =

(

∑
µl≡ρ−g+h (mod ν)

µl≤ρ−g+h

(−1)l

(
(ρ− g+ h− µ l)/ν

l

)

zl

)

0≤g,h≤ν−1

. (10.30)
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Then, for any non-negative integers c, ρ , ν , µ , with ν < µ , we have

W (z;c,ρ) = M(z;c,ρ)Φ(z;ρ). (10.31)

Note 10.5.2 Note that s(α ,1β )(u0, . . . ,uν−1) is a Schur function of hook shape (cf.

[89, Ch. I, Sec. 3, Ex. 9]).

It might be useful to discuss an example, in order to illustrate what this is all about.

Example 10.5.3 We take ν = 2, µ = 3. So, by (10.25), the quantity w(n;c,ρ) rep-

resents the number of all lattice paths from (0,0) to ((3n+ c−ρ)/2,n) which stay

weakly below the line 2x= 3y−ρ , where c≡ 3n−ρ (mod 2), i.e., c≡ n+ρ (mod 2).
By definition (10.23), we have

W (z;c,ρ) =
(
w(z;c+ g,ρ + h)

)

0≤g,h≤1

=

(
w(z;c,ρ) w(z;c,ρ + 1)

w(z;c+ 1,ρ) w(z;c+ 1,ρ + 1)

)

.

Using (10.31), this can be written as

W (z;c,ρ) = M(z;c,2)Φ(z;ρ),

where

Φ(z;ρ)

=







∑µl≡ρ (mod ν)
µl≤ρ

(−1)l
((ρ−µl)/ν

l

)
zl ∑µl≡ρ+1 (mod ν)

µl≤ρ+1

(−1)l
((ρ+1−µl)/ν

l

)
zl

∑µl≡ρ−1 (mod ν)
µl≤ρ−1

(−1)l
((ρ−1−µl)/ν

l

)
zl ∑µl≡ρ (mod ν)

µl≤ρ

(−1)l
((ρ−µl)/ν

l

)
zl







by (10.30), and

M(z;c,2) =

(−s(c+1,1)

(
u0(z),u1(z)

)
s(c+1)

(
u0(z),u1(z)

)

−s(c+2,1)

(
u0(z),u1(z)

)
s(c+2)

(
u0(z),u1(z)

)

)

by (10.27), with s(α ,1β )(u0(z),u1(z)) being defined in (10.28), and

ul(z) = (−1)l ∑
n≥0

(−1)ln

1+ 5n

(
1
2
+ 5

2
n

n

)

zn,

as given in (10.29).

So, in particular, in case that c = ρ = 0 the matrix Φ(z;0) is the 2× 2 identity

matrix, and so we have

W (z;0,0) =

(
w(z;0,0) w(z;0,1)
w(z;1,0) w(z;1,1)

)

= M(z;0,2) =

(
−u0(z)u1(z) u0(z)+ u1(z)

−u0(z)u1(z)(u0(z)+ u1(z)) u2
0(z)+ u0(z)u1(z)+ u2

1(z)

)

.
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Whence, for even n the number of all lattice paths from (0,0) to (3n/2,n) which stay

weakly below the line 2x≥ 3y equals

∣
∣L
(
(0,0)→ ( 3n

2
,n) | 2x≥ 3y

)∣
∣= 〈zn〉w(z;0,0)

=
n

∑
l=0

(−1)l 1

1+ 5l

(
1
2
+ 5

2
l

l

)

· 1

1+ 5(n− l)

(
1
2
+ 5

2
(n− l)

n− l

)

,

and for odd n the number of all lattice paths from (0,0) to ((3n−1)/2,n) which stay

weakly below the line 2x≥ 3y− 1 equals

∣
∣L
(
(0,0)→ ( 3n−1

2
,n) | 2x≥ 3y− 1

)∣
∣= 〈zn〉w(z;0,1) =

2

1+ 5n

(
1
2
+ 5

2
n

n

)

.

Sato [104] also derived a result of similar type for two parallel linear boundaries

with rational slope. To be precise, we want to enumerate all lattice paths from an

arbitrary starting point to an arbitrary end point staying weakly below a given line

νx = µy−ρ and above another given line νx = µy+σ , where µ ,ν,ρ ,σ are non-

negative integers. Again, without loss of generality we may assume that ν < µ and

that the starting point is the origin.

Following the approach we have taken earlier, we define the ν × ν matrix

T (z;c,ρ ,σ) by

T (z;c,ρ ,σ) :=
(
t(z;c+ g,ρ + h,σ − h)

)

0≤g,h≤ν−1
, (10.32)

where

t(z;c,ρ ,σ) = ∑
µn+c≡ρ (mod ν)

t(n;c,ρ ,σ)zn, (10.33)

with

t(n;c,ρ ,σ) =







∣
∣L
(
(0,0)→ ( µn+c−ρ

ν ,n) | µy+σ ≥ νx≥ µy−ρ
)∣
∣ ,

µn+ c≡ ρ (mod ν)

and µn+ c≥ ρ ,
(

n+ µn+c−ρ
ν

n

)
, µn+ c≡ ρ (mod ν)

and µn+ c < ρ .

(10.34)

Similarly to the one boundary case, what the matrix T (z;c,ρ ,σ) contains is gen-

erating functions of the path numbers t(n;c,ρ ,σ) that we want to compute. The

definition of t(n;c,ρ ,σ) for µn+ c < ρ (in which case there cannot be any paths
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from (0,0) to ( µn+c−ρ
ν ,n)) is just for technical convenience. Basically, the matrix

T (z;c,ρ ,σ) is

T (z;c,ρ ,σ) =

(

∑
µn+c+g−h≡ρ (mod ν)

∣
∣
∣
∣
L
(
(0,0)→

(
µn+ c+ g−ρ− h

ν
,n

)

|

µy+σ− h≥ νx≥ µy−ρ− g
)
∣
∣
∣z

n

)

0≤g,h≤ν−1

. (10.35)

The following theorem of Sato [104, Theorem 4] tells us how to compute

T (z;c,ρ ,σ).

Theorem 10.5.4 For any non-negative integers c, ρ , σ , ν , µ , with ν < µ , we have

T (z;c,ρ ,σ) = Φ(z;ρ +σ + 1− c− µ)Φ−1(z;ρ +σ + 1)Φ(z;ρ), (10.36)

where Φ(z;ϑ) is given by (10.30).

Example 10.5.5 As an illustration, let us again consider the case ν = 2, µ = 3. By

(10.34), the quantity t(n;c,ρ ,σ) represents the number of all lattice paths from (0,0)
to ((3n+ c−ρ)/2,n) which stay weakly below the line 2x = 3y−ρ and above the

line 2x = 3y+σ , where c≡ 3n−ρ (mod 2), i.e., c≡ n+ρ (mod 2).
By definition (10.32), we have

T (z;c,ρ ,σ) =
(
t(z;c+ g,ρ + h,σ − h)

)

0≤g,h≤1

=

(
t(z;c,ρ ,σ) t(z;c,ρ + 1,σ − 1)

t(z;c+ 1,ρ ,σ) t(z;c+ 1,ρ + 1,σ− 1)

)

.

By Theorem 10.5.4, this can be written as

T (z;c,ρ ,σ) =

(
φ(z;ρ +σ− c− 1) φ(z;ρ +σ− c)
φ(z;ρ +σ− c− 2) φ(z;ρ +σ − c− 1)

)

×
(

φ(z;ρ +σ + 1) φ(z;ρ +σ + 2)
φ(z;ρ +σ) φ(z;ρ +σ + 1)

)−1

×
(

φ(z;ρ) φ(z;ρ + 1)
φ(z;ρ − 1) φ(z;ρ)

)

, (10.37)

where

φ(z;a) = ∑
µl≡a (mod ν)

µl≤a

(−1)l

(
(a− µ l)/ν

l

)

zl .

In particular, if c= σ and ρ = 0, so that we are e.g. interested in the number of all

lattice paths from (0,0) to ((3n+ c)/2,n) which stay weakly below the line 2x = 3y

and above the line 2x = 3y+ c (the reader should observe that this means that the
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starting point is on the first line whereas the end point is on the second line), then our

formula (10.37) reduces to

T (z;c,ρ) =

(
t(z;c,0,c) t(z;c,1,c− 1)

t(z;c+ 1,0,c) t(z;c+ 1,1,c− 1)

)

=
1

φ2(z;c+ 1)−φ(z;c)φ(z;c+ 2)

(
φ(z;c) φ(z;c+ 1)

0 0

)

.

Thus we obtain

t(z;c,0,c) = ∑
n≡c (mod 2)

∣
∣L
(
(0,0)→

(
3n+c

2
,n
)
| 3y+ c≥ 2x≥ 3y

)∣
∣ zn

=
φ(z;c)

φ2(z;c+ 1)−φ(z;c)φ(z;c+ 2)
, (10.38)

with

φ(z;a) = ∑
3l≡a (mod 2)

3l≤a

(−1)l

(
(a− 3l)/2

l

)

zl .

10.6 Simple paths with a piecewise linear boundary

In this section we generalize the one-sided linear boundary results in Corollary 10.3.2

and Theorems 10.4.5, 10.4.7 to piecewise linear boundaries. To be more precise, we

want to count lattice paths from the origin (0,0) to (c,d) staying weakly below the

line segments

{(x,y) : x = µ1y+ν1,0 = y0 ≤ y≤ y1}, {(x,y) : x = µ2y+ν2,y1 < y≤ y2},
. . . , {(x,y) : x = µmy+νm,ym−1 < y≤ ym = d}, (10.39)

for some sequence 0= y0 < y1 < · · ·< ym = d of non-negative integers, non-negative

integers µ1,µ2, . . . ,µm, and integers ν1,ν2, . . . ,νm. Let us denote this piecewise linear

restriction by Rm. See Figure 10.9 for an example. By an iteration argument it will

be seen that the solution to this problem can be given in form of an m-fold sum.

The result below is due to Niederhausen [98, Sec. 2.2 in connection with (2.4) and

(2.7)], but see also [96]. In order to understand the statement below, it is important to

observe that the number of paths which we want to determine is a polynomial in c,

while keeping all other variables fixed. We shall not provide a detailed argument here

but, instead, refer to [98, Sec. 2.2]. For convenience, let us denote this polynomial by

LRm,d(c).
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Figure 10.9

A piecewise linear boundary

Theorem 10.6.1 The number of lattice paths from (0,0) to (c,d) staying weakly

below the piecewise linear boundary Rm given in (10.39) is equal to

∣
∣L
(
(0,0)→ (c,d) | Rm

)∣
∣=

ym−1

∑
i=0

LRm−1,i(µmi+νm− 1)

· c− µmd−νm + 1

c+ d− i(µm + 1)−νm+ 1

(
c+ d− i(µm + 1)−νm+ 1

d− i

)

. (10.40)

Remark 10.6.2 Clearly, we may now apply Theorem 10.6.1 to LRm−1,i(µmi+νm−1)
so that, iteratively, we obtain an m-fold sum. (In the last step, one applies (10.22).)

Idea of proof of Theorem 10.6.1 To begin with, let us assume that the piecewise

linear boundary be convex. See Figure 10.9 for an example. Evidently, any path from

(0,0) to (c,d) has to touch x = µmy+ νm for the last time, say in (µmi+ νm, i). In

Figure 10.9 we have m = 3, the last touching point of the path P with x = µmy+νm is

(10,2), it is marked by a star. Then we utilize the same idea which led to the formula

(10.21) to obtain the number in question being equal to
∣
∣L
(
(0,0)→ (c,d) | Rm

)∣
∣

=
ym−1

∑
i=0

∣
∣L
(
(0,0)→ (µmi+νm− 1, i) | Rm

)∣
∣

·
∣
∣L
(
(µmi+νm, i)→ (c,d) | x≥ µmy+νm

)∣
∣

=
ym−1

∑
i=0

∣
∣L
(
(0,0)→ (µmi+νm− 1, i) | Rm−1

)∣
∣

· c− µmd−νm + 1

c+ d− i(µm + 1)−νm+ 1

(
c+ d− i(µm + 1)−νm+ 1

d− i

)

,
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Figure 10.10

by virtue of Theorem 10.4.5. In the summand, we were allowed to replace Rm by

Rm−1 since the summation ends at i = ym−1, and thus the m-th segment does not

come into play.

Evidently, if the piecewise linear boundary should not be convex, then this argu-

ment breaks down. However, Niederhausen shows in [98, Sec. 2.2], using the polyno-

miality of the path numbers (and some results from umbral calculus), that the above

formula continues to hold in that case also, even if the substitution of µmi+νm−1 in

the argument of the polynomial LRm−1,i( .) has no combinatorial meaning anymore.

10.7 Simple paths with general boundaries

The most general problem to encounter is to count paths in a region that is bounded

by nonlinear upper and lower boundaries as exemplified in Figure 10.10.

To have a convenient notation, let a1 ≤ a2 ≤ ·· · ≤ an and b1 ≤ b2 ≤ ·· · ≤ bn be

integers with ai ≥ bi. We abbreviate a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn). By

L
(
(0,b1)→ (n,an) | a ≥ y ≥ b

)
we denote the set of all lattice paths from (0,b1)

to (n,an) that satisfy the property that for all i = 1,2, . . . ,n the height yi of the i-th

horizontal step is in the interval [bi,ai]. If we also write y(P) = (y1,y2, . . . ,yn) for the

sequence of heights of horizontal steps of a path P, then the notation just introduced

explains itself. Pictorially (see Figure 10.10), the described restriction means that we

consider paths in a ladder-shaped region, the upper ladder being determined by a, the
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Lattice path with a general boundary

lower ladder being determined by b. See Figure 10.11, which displays an example

with n = 6, a = (3,5,7,8,8,8), b = (0,1,1,2,5,5), y(P0) = (2,2,2,4,6,8).
Originally, the result below was derived by Kreweras [85] using recurrence rela-

tions, but the most conceptual and most elegant way to attack this problem is by the

method of non-intersecting lattice paths; see Section 10.13 and [115].

Theorem 10.7.1 Let a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) be integer se-

quences with a1 ≤ a2 ≤ ·· · ≤ an, b1 ≤ b2 ≤ ·· · ≤ bn, and ai ≥ bi, i = 1,2, . . . ,n.

The number of all paths from (0,b1) to (n,an) satisfying the property that for all

i = 1,2, . . . ,n the height of the i-th horizontal step is between bi and ai is given by

∣
∣L
(
(0,b1)→ (n,an) | a≥ y≥ b

)∣
∣= det

1≤i, j≤n

((
ai− b j + 1

j− i+ 1

))

. (10.41)

Proof We apply Theorem 10.13.3 with λ = (1,1, . . . ,1) and µ = (0,0, . . . ,0), both

vectors containing n entries. This counts vectors (π1,π2, . . . ,πn) with π1 < π2 < · · ·<
πn with a lower and an upper bound on each πi. By replacing πi by πi− i, this counting

problem is translated into the counting problem we consider here, πi− i correspond-

ing to the height of the i-th horizontal step of a path.

Of course, with increasing n this formula will become less tractable. An alter-

native formula can be obtained by rotating the whole picture by 90◦ and applying

formula (10.41) to the new situation. Now the size of the determinant is an, which is

smaller than before if an < n, i.e., if the difference between the y-coordinates of end

and starting point is less than the difference between the respective x-coordinates.

In some cases, a different type of formula might be preferrable, which one may
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obtain by the so-called dummy path technique, as proposed in Krattenthaler and Mo-

hanty [83]. Again, it comes from non-intersecting lattice paths. It is based on the

following observation (see Stanley [112, Ex. 2.7.2]).

Lemma 10.7.2 Let C1,C2, . . . ,Cn be pairwise distinct points in Z2. Then the number

of lattice paths from (a,b) to (c,d) which avoid C1,C2, . . . ,Cn is given by

det
1≤i, j≤n+1

(∣
∣L(A j → Ei)

∣
∣
)
, (10.42)

where A1 = (a,b), A2 =C1, . . . , An+1 =Cn, E1 = (c,d), E2 =C1, . . . , En+1 =Cn.

Proof We reformulate our counting problem in that we want to determine the num-

ber of families (P1,P2, . . . ,Pn+1) of non-intersecting lattice paths, where P1 runs from

A1 = (a,b) to E1 = (c,d), and for i = 1,2, . . . ,n the “dummy path” Pi+1 runs from

Ai+1 =Ci to Ei+1 =Ci. By Theorem 10.13.1, with G the directed graph with vertices

Z2 and edges given by horizontal and vertical unit steps in the positive direction, all

weights being 1, Ai and Ei as above, this number equals the determinant in (10.42).

The idea now is that, given some (possibly two-sided) boundary, one “describes”

this boundary by such “dummy points” (paths) and uses the above lemma to compute

the number of paths which avoid these, thus avoiding the boundary. In cases the

boundary can be “described” by only very few “dummy points”, this may lead to a

useful formula. Several formulae which appear in the literature are instances of this

idea (sometimes of minor variations), although it may not be stated there that way;

see [95, Theorem 2 on p. 36] and [83] and the references given there.

10.8 Elementary results on Motzkin and Schröder

paths

The subject of this section and the following three sections is lattice paths in Z2

which consist of up-steps (1,1), down-steps (1,−1), and level-steps (1,0) or (2,0),
and which do not pass below the x-axis. If the only allowed level-steps are unit steps

(1,0), then the corresponding paths are called Motzkin paths. If the only allowed

level-steps are double steps (2,0), then the corresponding paths are called Schröder

paths. We call the special paths which consist of just up- and down-steps (but contain

no level-steps) Catalan paths. In the special case, where these paths start and end on

the x-axis, they are commonly called Dyck paths.

Let M = {(1,1),(1,−1),(1,0)} and S = {(1,1),(1,−1),(2,0)}, so that M is the

set of steps allowed in Motzkin paths (see Figure 10.12 for an example) and S is the

set of steps allowed in Schröder paths (see Figure 10.13 for an example).

A frequently used alternative way to view Schröder paths is by reflecting the



616 Enumerative Combinatorics

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

�
�
�
� ❅

❅ �
�
�
�❅

❅
❅
❅�

�

•
•
• •

• • •
•
•
•
•
•

Figure 10.12

A Motzkin path
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A Schröder path
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A Catalan path
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Figure 10.15

A Schröder path rotated-reflected

picture with respect to the x-axis, rotating the result by 45◦, and finally scaling ev-

erything by a factor of 1/
√

2, so that the steps (1,1),(1,−1),(2,0) are replaced by

the steps (1,0),(0,1),(1,1), in that order. Figure 10.15 shows the result of this trans-

lation when applied to the Schröder path in Figure 10.13. It translates Schröder paths

into paths which consist of unit horizontal and vertical steps in the positive direc-

tion and of upwards diagonal steps, and which stay weakly below the main diagonal

y = x. Without the diagonal restriction, the counting problem would be solved by the

Delannoy numbers in (10.6).

Nevertheless, this translation, combined with Theorem 10.3.1, already tells us

how to enumerate Motzkin and Schröder paths with given starting and end point.

Theorem 10.8.1 Let b ≥ 0 and d ≥ 0. The number of all paths from (a,b) to (c,d)
which consist of steps out of M = {(1,1),(1,−1),(1,0)} and do not pass below the

x-axis (Motzkin paths) is given by

∣
∣L
(
(a,b)→ (c,d);M | y≥ 0

)∣
∣

=
c−a

∑
k=0

(
c− a

k

)((
c− a− k

(c+ d− k− a− b)/2

)

−
(

c− a− k

(c+ d− k− a+ b+ 2)/2

))

,

(10.43)

where, by convention, a binomial coefficient is 0 if its bottom parameter is not an

integer.

Furthermore, the number of all paths from (a,b) to (c,d) which consist of steps

out of S = {(1,1),(1,−1),(2,0)} and do not pass below the x-axis (Schröder paths)
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is given by

∣
∣L
(
(a,b)→ (c,d);S | y≥ 0

)∣
∣=

(c−a)/2

∑
k=0

(
c− a− k

k

)

·
((

c− a− 2k

(c+ d− 2k− a− b)/2

)

−
(

c− a− 2k

(c+ d− 2k− a+ b+2)/2

))

, (10.44)

with the same convention for binomial coefficients.

Proof By the above described translation (reflection + rotation), a Motzkin

path from (a,b) to (c,d) with exactly k level-steps is translated into a path from
(

a+b
2
, a−b

2

)
to
(

c+d
2
, c−d

2

)
, which consists of steps from {(1,0),(0,1),( 1

2
, 1

2
)}, among

them exactly k diagonal steps ( 1
2
, 1

2
), and which stays weakly below the main diag-

onal y = x. Clearly, if we remove the k diagonal steps and concatenate the resulting

path pieces, we obtain a simple path from
(

a+b
2
, a−b

2

)
to
(

c+d
2
− k

2
, c−d

2
− k

2

)
which

stays weakly below y = x. The number of the latter paths was determined in Theo-

rem 10.3.1. On the other hand, there are
(

c−a
k

)
ways to reinsert the k diagonal steps.

Thus, Eq. (10.43) is established.

The proof of (10.44) is analogous.

We will derive expressions for corresponding generating functions in Sec-

tion 10.9, see Theorem 10.9.2.

It is worth stating the special case of Theorem 10.8.1 where the paths start and

terminate on the x-axis separately.

Corollary 10.8.2 The number of Motzkin paths from (0,0) to (n,0) is given by

∣
∣L
(
(0,0)→ (n,0);M | y≥ 0

)∣
∣=

⌊n/2⌋
∑
k=0

(
n

2k

)
1

k+ 1

(
2k

k

)

. (10.45)

If n is even, the number of Schröder paths from (0,0) to (n,0) is given by

∣
∣L
(
(0,0)→ (n,0);S | y≥ 0

)∣
∣=

n/2

∑
k=0

(
n/2+ k

2k

)
1

k+ 1

(
2k

k

)

. (10.46)

The numbers in (10.45) are called Motzkin numbers. The numbers in (10.46) are

called large Schröder numbers. If n ≥ 1, the latter are all divisible by 2 (which is

easily seen by switching the first occurrence of a level-step with a pair consisting

of an up-step and a down-step, and vice versa). Dividing these numbers by 2, we

obtain the little Schröder numbers. Similarly to Catalan numbers, also Motzkin and

Schröder numbers appear in numerous contexts; see [113, Ex. 6.38 and 6.39].

The summations in (10.43) and (10.44) do not simplify, not even in the special

cases given in (10.45) and (10.46).

In concluding this section, we point out that Motzkin paths, or, more precisely,
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decorated Motzkin paths, are of utmost importance for the enumeration of many

other combinatorial objects, most importantly for the enumeration of permutations

and (set) partitions. A decorated Motzkin path (in the french literature: “histoire”)

is a Motzkin path in which each step carries a certain label. In terms of enumer-

ation, one may consider this as allowing several different steps of the same kind:

for example, several different horizontal steps, etc. In terms of generating functions,

this labelling is reflected by appropriate weights of the steps. The importance of

decorated Motzkin paths comes from the fact that several bijections have been con-

structed between them and permutations or partitions, which have the property that

they “transfer” detailed information about permutations or partitions to the world of

(decorated) Motzkin paths, allowing for very refined enumeration results for permu-

tations and partitions. Such bijections have been constructed by Biane [9], Foata and

Zeilberger [44], Françon and Viennot [46], Médicis and Viennot [94], and by Simion

and Stanton [107]. See [33] for a unifying view.

10.9 A continued fraction for the weighted counting of

Motzkin paths

We now assign a weight to each Motzkin path which starts and ends on the x-axis,

and express the corresponding generating function in terms of a continued fraction.

The corresponding result is due to Flajolet [42]. The weight is so general that the

result also covers Schröder paths and Catalan paths.

Given a Motzkin path P, we define the weight w(P) to be the product of the

weights of all its steps, where the weight of an up-step is 1 (hence, does not contribute

anything to the weight), the weight of a level-step at height h is bh, and the weight

of a down-step from height h to h− 1 is λh. Figure 10.16 shows a Motzkin path the

steps of which are labelled by their corresponding weights, so that the weight of the

path is b2λ2b1b1λ3λ2λ1 = b2
1b2λ1λ 2

2 λ3.

Then the following theorem is true.
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Theorem 10.9.1 With the weight w defined as above, the generating function for

Motzkin paths running from the origin back to the x-axis, which stay weakly below

the line y = k, is given by

GF
(
L
(
(0,0)→ (∗,0);M | 0≤ y≤ k

)
;w
)

=
1

1− b0−
λ1

1− b1−
λ2

1− b2−·· ·−
λk

1− bk

. (10.47)

In particular, the generating function for all Motzkin paths running from the origin

back to the x-axis is given by the infinite continued fraction

GF
(
L
(
(0,0)→ (∗,0);M | 0≤ y

)
;w
)
=

1

1− b0−
λ1

1− b1−
λ2

1− b2−·· ·

. (10.48)

Proof Clearly, it suffices to prove (10.47). Equation (10.48) then follows upon

letting k→ ∞.

We prove (10.47) by induction on k. For k = 0, Equation (10.47) is trivially true.

Hence, let us assume the truth of (10.47) for k replaced by k− 1. For accomplishing

the induction step, we consider a Motzkin path starting at the origin, staying weakly

below y = k, and finally returning to the x-axis, see Figure 10.17 for an example with

k = 3.

Such a path can be uniquely decomposed into

le0 uP1d le1uP2d le2 . . . ,

where l denotes a level-step at height 0, u an up-step, and d a down-step, where ei

are non-negative integers, and where, for any i, Pi is some path between the lines

y = 1 and y = k which starts at and returns to the line y = 1. For example, this
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decomposition applied to the path in Figure 10.17 yields

l1uP1d l2uP2d l0uP3d,

where P1 = uld, P2 is the empty path, and P3 = luudd. This implies immediately the

generating function equation

GF
(
L
(
(0,0)→ (∗,0);M | 0≤ y≤ k

)
;w
)

=
1

1− b0−λ1 ·GF
(
L
(
(0,1)→ (∗,1);M | 1≤ y≤ k

)
;w
) .

By induction, the generating function on the right-hand side is known: it is given by

(10.47) with k replaced by k−1, bi replaced by bi+1, and λi replaced by λi+1, for all

i. This completes the induction step.

This result has numerous consequences. First of all, it allows us to derive alge-

braic expressions for the generating functions ∑n≥0 Mnzn and ∑n≥0 Snzn, where Mn

denotes the number of all Motzkin paths from (0,0) to (n,0), and where Sn denotes

the number of all Schröder paths from (0,0) to (2n,0). By definition, M0 = S0 = 1.

The numbers Mn are called Motzkin numbers, while the numbers Sn are called large

Schröder numbers.

Theorem 10.9.2 We have

∑
n≥0

Mnzn =
1− z−

√
1− 2z− 3z2

2z2
(10.49)

and

∑
n≥0

Snzn =
1− z−

√
1− 6z+ z2

2z
. (10.50)

Proof By (10.48) with bi = z and λi = z2 for all i (the reader should note that for

any down-step there is a corresponding up-step before), we have

∑
n≥0

Mnzn =
1

1− z− z2

1− z− z2

1− z−·· ·

.

Thus, in particular, we have M(z) = 1/(1− z− z2M(z)). The appropriate solution of

this quadratic equation is exactly the right-hand side of (10.49).

Similarly, by setting bi = λi = z2 in (10.48) for all i, we obtain

∑
n≥0

Snz2n =
1

1− z2− z2

1− z2− z2

1− z2−·· ·

,
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and eventually (10.50) after solving the analogous quadratic equation.

In Section 10.11, we will express the continued fraction (10.47) in numera-

tor/denominator form, the numerator and denominator being orthogonal polynomi-

als.
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We conclude this section with another continued fraction result, due to Roblet

and Viennot [102]. We restrict our attention to Dyck paths, that is, to paths consisting

of up- and down-steps, starting at the origin and returning to the x-axis, and never

running below the x-axis. We refine the earlier defined weight w in the following

way, so that in addition it also takes into account peaks: given a Dyck path P, we

define the weight ŵ(P) of P to be the product of the weights of all its steps, where

the weight of an up-step is 1, the weight of a down-step from height h to h−1 which

follows immediately after an up-step (thus, together, forming a peak of the path)

is νh, and where the weight of a down-step from height h to h− 1 which follows

after another down-step is λh. Thus, the weight of the Dyck path in Figure 10.18 is

ν2ν4ν4λ3ν3λ2λ1ν1 = ν1ν2ν3ν2
4 λ1λ2λ3. With these definitions, the theorem of Roblet

and Viennot [102, Prop. 1] reads as follows.

Theorem 10.9.3 With the weight ŵ defined as above, the generating function

∑P ŵ(P), where the sum is over all Dyck paths starting at the origin and returning to

the x-axis, is given by

GF
(
L
(
(0,0)→ (∗,0);{(1,1), (1,−1)} | y≥ 0

)
; ŵ
)

=
1

1− (ν1−λ1)−
λ1

1− (ν2−λ2)−
λ2

1− (ν3−λ3)−·· ·

. (10.51)
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10.10 Lattice paths and orthogonal polynomials

Orthogonal polynomials play an important role in many different subject areas, may

they be pure or applied. The reader is referred to [117] for an in-depth introduc-

tion. It is well-known that the theory of orthogonal polynomials is intimately con-

nected with Hankel determinants and continued fractions, which we just discussed

in Section 10.9 from a combinatorial point of view. It is Viennot [119] who made

the connection, and who showed that a large part of the theory of orthogonal poly-

nomials is in fact combinatorics. The key objects in this combinatorial theory of

orthogonal polynomials are Motzkin paths. If one is forced to, one may compress

the interplay between the theory of orthogonal polynomials and path enumeration to

two key facts: first, (generalized) moments of orthogonal polynomials are generating

functions for Motzkin paths, see Theorem 10.10.3; second, generating functions for

bounded Motzkin paths can be expressed in terms of orthogonal polynomials; see

Theorem 10.11.1. But, of course, this combinatorial theory of orthogonal polynomi-

als has much more to offer, of which we present an extract in this section, with a

focus on path enumeration.

We call a sequence (pn(x))n≥0 of polynomials overC, where pn(x) is of degree n.

orthogonal if there exists a linear functional L on polynomials over C (i.e., a linear

map, which maps a polynomial to a complex number) such that

L(pn(x)pm(x)) =

{

0, if n 6= m,

nonzero, if n = m.
(10.52)

We alert the reader that our definition deviates from the classical analytic definition in

that we do not require L(pn(x)
2) to be positive. The above somewhat weaker notion

of orthogonality is sometimes referred to as formal orthogonality. The term ‘formal’

expresses the fact that the corresponding theory does not require any analytic tools,

just formal, algebraic arguments. In fact, the formal theory could be equally well

developed over any field K of characteristic 0 (instead of over C).

It is easy to see that it is not true that for every linear functional L there is a cor-

responding sequence of orthogonal polynomials. Let us consider the example of the

linear functional defined by L(xn) := 1, n = 0,1,2, . . . . Equivalently, this means that

L(p(x)) = p(1). In order to construct a corresponding sequence of orthogonal poly-

nomials, we start with p0(x). This must be a polynomial of degree 0, but otherwise we

are completely free. Without loss of generality we may choose p0(x) ≡ 1. To deter-

mine p1(x), we use (10.52) with m = 0 and n = 1. Thus we obtain p1(x) = x−1. But

then we have L(p1(x)
2) = L((x− 1)2) = 0, which violates the requirement (10.52),

with m = n = 1, that L(p1(x)
2) should be nonzero.

On the other hand, if we have a linear functional L such that there exists a se-

quence of orthogonal polynomials, then it is easy to see that all other sequences are

just linear multiples of the former sequence.
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Lemma 10.10.1 Let L be a linear functional on polynomials and (pn(x))n≥0 be a

sequence of polynomials orthogonal with respect to L. If (qn(x))n≥0 is another se-

quence of polynomials orthogonal with respect to L, then there are nonzero numbers

an ∈ C such that qn(x) = an pn(x).

Lemma 10.10.1 justifies that from now on we will restrict our attention to se-

quences of monic polynomials.

One of the key results in the theory of orthogonal polynomials is Favard’s Theo-

rem, which we state next.

Theorem 10.10.2 A sequence (pn(x))n≥0 of monic polynomials, pn(x) being of de-

gree n, is orthogonal if and only if there exist sequences (bn)n≥0 and (λn)n≥1, with

λn 6= 0 for all n≥ 1, such that the three-term recurrence

xpn(x) = pn+1(x)+ bn pn(x)+λnpn−1(x), for n≥ 1, (10.53)

holds, with initial conditions p0(x) = 1 and p1(x) = x− b0.

In our context, more important than the statement of the theorem itself is its proof,

which introduces Motzkin paths in a surprising way in (10.57), and in particular

Theorem 10.10.3 below, which is the key ingredient in the proof, given after the

proof of Theorem 10.10.3.

Theorem 10.10.3 Let the polynomials pn(x) be given by the three-term recurrence

(10.53), and let L be the linear functional defined by L(1) = 1 and L
(

pn(x)
)
= 0 for

n≥ 1. Then

L
(
xn pk(x) pl(x)

)
= λ1 · · ·λl ·GF

(
L
(
(0,k)→ (n, l);M | 0≤ y

)
;w
)
, (10.54)

where w is the weight on Motzkin paths defined in Section 10.9.

Proof We prove the assertion by induction on n.

If n = 0, then we have to show

L
(

pk(x) pl(x)
)
= λ1 · · ·λl ·δk,l , (10.55)

where δk,l denotes the Kronecker delta. We establish this claim by induction on k+ l.

It is obviously true for k = l = 0. Without loss of generality, we assume k ≥ l. Then,

using the three-term recurrence (10.53) twice, together with the induction hypothesis,

we have

L
(

pk(x) pl(x)
)
= L
(

pk(x)xpl−1(x)
)
− bl−1L

(
pk(x) pl−1(x)

)
−λl−1L

(
pk(x) pl−2(x)

)

= L
(
xpk(x) pl−1(x)

)

= L
(

pk+1(x) pl−1(x)
)
+ bkL

(
pk(x) pl−1(x)

)
+λkL

(
pk−1(x) pl−1(x)

)

= λkL
(

pk−1(x) pl−1(x)
)
.

Clearly, this achieves the induction step, and thus establishes (10.55).



Lattice Path Enumeration 625

We may now continue with the induction on n. For the induction step, we apply

(10.53) with n = k on the left-hand side of (10.54). This leads to

L
(
xn pk(x) pl(x)

)

= L
(
xn−1 pk+1(x) pl(x)

)
+ bkL

(
xn−1 pk(x) pl(x)

)
+λkL

(
xn−1 pk−1(x) pl(x)

)
.

By the induction hypothesis, we may interpret the right-hand side of this equality as

generating function for Motzkin paths, as described by (10.54) with n replaced by

n− 1. It is then straightforward to see that this implies (10.54) itself.

Now we have all the prerequisites available in order to prove Theorem 10.10.2.

Proof of Theorem 10.10.2 For showing the forward implication, let (pn(x))n≥0

be a sequence of monic polynomials, pn(x) of degree n, which is orthogonal with

respect to the linear functional L. Then we can express xpn(x) in terms of a linear

combination of the polynomials pn+1(x), pn(x), . . . , p0(x),

xpn(x) = pn+1(x)+ bnpn(x)+λnpn−1(x)+ωn,n−2pn−2(x)+ · · ·+ωn,0p0(x).
(10.56)

We have to show that in fact the first three terms on the right-hand side suffice, i.e.,

that all other terms are zero.

In order to do that, we multiply both sides of (10.56) by pi(x), for some i < n−1,

and apply L on both sides. Because of (10.52), on the right-hand side it is only the

term ωn,iL
(

pi(x)
2
)

which survives. On the left-hand side we obtain L
(
xpi(x)pn(x)

)
.

The polynomial xpi(x) of degree i+1 can be expressed as a linear combination of the

polynomials pi+1(x), pi(x), . . . , p0(x). Because of (10.52) and i< n−1, we therefore

conclude that L
(
xpi(x)pn(x)

)
= 0. Hence, ωn,i is indeed 0 for i < n− 1. Similarly,

we have

λn L
(

pn−1(x)
2
)
= L
(
xpn−1(x)pn(x)

)
= L
(

pn(x)
2
)
,

which is nonzero because of (10.52). Hence, we have λn 6= 0, as desired.

For the proof of the backward implication, we must construct a linear functional

L such that (10.52) holds, given a sequence (pn(x)) of polynomials, pn(x) of degree

n, satisfying the three-term recurrence (10.53). We construct L by defining L(1) = 1

and L
(

pn(x)
)
= 0 for n ≥ 1. Theorem 10.10.3 with n = 0 immediately implies that

L
(

pk(x)pl(x)
)
= 0 if k 6= l, as there is no Motzkin path from (0,k) to (0, l), and that

L
(

pk(x)
2
)
= λ1 · · ·λk 6= 0. This completes the proof of the theorem.

In the above proof, we have found a linear functional L by defining (cf. Theo-

rem 10.10.3) its moments µn := L(xn) to be generating functions for Motzkin paths,

namely

µn = GF
(
L
(
(0,0)→ (n,0);M | 0≤ y

)
;w
)
= ∑

P a Motzkin path

from (0,0) to (n,0)

w(P), (10.57)
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the weights of the paths carrying the coefficients in the three-term recurrence (10.53).

This definition generates a linear functional with µ0 = L(1) = 1. It is easy to see

that all other such linear functionals are constant nonzero multiples of the linear

functional defined by (10.57). This justifies to restrict ourselves to linear functionals

with first moment equal to 1.

In view of Theorem 10.9.1, the backward implication of Theorem 10.10.2 can

also be phrased in the following way.

Corollary 10.10.4 Let (pn(x))n≥0 be a sequence of polynomials satisfying the three-

term recurrence (10.53) with initial conditions p0(x) = 1 and p1(x) = x− b0. Then

(pn(x))n≥0 is orthogonal with respect to the linear functional L, where the generating

function of its moments µn = L(xn) is given by

∑
n≥0

µn zn =
1

1− b0z− λ1z2

1− b1z− λ2z2

1− b2z−·· ·

. (10.58)

All other linear functionals with respect to which the sequence (pn(x))n≥0 is orthog-

onal are constant nonzero multiples of L.

Remark 10.10.5 A continued fraction of the type (10.58) is called a Jacobi contin-

ued fraction or J-fraction.

Proof of Corollary 10.10.4 Combine (10.57) and (10.48) with bi replaced by biz

and λi replaced by λiz.

Below, we illustrate what we have found so far by an example. The polynomials

which appear in this example, the Chebyshev polynomials, are of particular impor-

tance for path counting.

Example 10.10.6 We choose bi = 0 and λi = 1 for all i. Then the three-term recur-

rence (10.53) becomes

xun(x) = un+1(x)+ un−1(x), for n≥ 1, (10.59)

with initial values u0(x) = 1 and u1(x) = x. These polynomials are, up to reparametri-

zation, Chebyshev polynomials of the second kind. To see that, recall that the latter

are defined by

Un(cosϑ) =
sin((n+ 1)ϑ)

sin ϑ
,

or, equivalently,

Un(x) =
sin((n+ 1)arccosx)√

1− x2
.
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Because of the easily verified fact that

sin((n+ 1)ϑ)+ sin((n− 1)ϑ) = 2cosϑ sinnϑ ,

the Chebyshev polynomials of the second kind satisfy the three-term recurrence

2xUn(x) =Un+1(x)+Un−1(x), for n≥ 1, (10.60)

with initial values U0(x) = 1 and U1(x) = 2x. Therefore we have

Un(x) = un(2x) (10.61)

for all n.

It is straightforward to verify

Un(x) = ∑
k≥0

(−1)k

(
n− k

k

)

(2x)n−2k, (10.62)

whence, by (10.61), we have

un(x) = ∑
k≥0

(−1)k

(
n− k

k

)

xn−2k.

Another well-known fact is

2

π

∫ π

0
sin((n+ 1)ϑ)sin((m+ 1)ϑ)dϑ =

{

1, n = m,

0, n 6= m.

Substitution of x = cosϑ then yields

2

π

∫ 1

−1
Un(x)Um(x)

√

1− x2 dx = δnm. (10.63)

Thus the linear functional L for Chebyshev polynomials of the second kind is given

by

L(p(x)) =
2

π

∫ π

0
p(x)

√

1− x2 dx.

Using (10.57) we can now easily compute the corresponding moments. On the

right-hand side of (10.57) all the terms corresponding to paths which contain a level-

step vanish, because bi = 0 for all i. Therefore, what the right-hand side counts are

paths which contain only up-steps and down-steps (and never pass below the x-axis).

Clearly, there cannot be such a path if n is odd. If n is even, then by (10.11) the

number of these paths is the Catalan number 1
n/2+1

(
n

n/2

)
. Hence, by also taking into

account (10.61), we have shown that

2

π

∫ 1

−1
xm
√

1− x2 =

{
1
4n

1
n+1

(
2n
n

)
, m = 2n,

0, m = 2n+ 1.
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Chebyshev polynomials are not only tied to Catalan paths (Dyck paths), i.e., paths

that consist of just up- and down-steps, but also to Motzkin paths. To see this, let us

now choose bi = λi = 1 for all i. Then the three-term recurrence (10.53) becomes

xmn(x) = mn+1(x)+mn(x)+mn−1(x), for n≥ 1, (10.64)

with initial values m0(x) = 1 and m1(x) = x− 1. Comparison with (10.60) reveals

that these polynomials are expressible by means of Chebyshev polynomials of the

second kind as

mn(x) =Un

(
x− 1

2

)

. (10.65)

We will take advantage of this relation in Section 10.11 to obtain further enumerative

results on Motzkin paths.

We now come back to the earlier observed fact that not all linear functionals allow

for a corresponding sequence of orthogonal polynomials. Which linear functionals

do is told by the following theorem. The criterion is given in terms of Hankel deter-

minants of the moments of L. A Hankel determinant (or persymmetric or Turánian

determinant) is a determinant of a matrix which has constant entries along antidiag-

onals, i.e., it is a determinant of the form det1≤i, j,≤n(ai+ j). We omit the proof here,

but Viennot [119, Ch. IV, Cor. 6 and 7] has shown that it can be given by an elegant

application of the main theorem on non-intersecting lattice paths, Theorem 10.13.1,

by using the interpretation of moments in terms of generating functions for Motzkin

paths as given in Theorem 10.10.3.

Theorem 10.10.7 Let L be a linear functional on polynomials with n-th moment

µn = L(xn). For any non-negative integer n let

∆n = det










µ0 µ1 µ2 . . . µn

µ1 µ2 . . . . . . . µn+1

µ2 . . . . . . . . . . . . µn+2

...
...

µn . . . . . . . . . . . . µ2n










and

χn = det










µ0 µ1 . . . µn−1 µn

µ1 µ2 . . . µn µn+1

...
...

...
...

µn−1 µn . . . µ2n−2 µ2n−1

µn+1 µn+2 . . . µ2n µ2n+1










Let (pn(x))n≥0 be the sequence of monic polynomials which is orthogonal with re-

spect to L. Then the polynomials satisfy the three-term recurrence (10.53) with

λn =
∆n∆n−2

∆2
n−1

(10.66)
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and

bn =
χn

∆n

− χn−1

∆n−1

. (10.67)

In particular, given a linear functional L on the set of polynomials, then there

exists a sequence of orthogonal polynomials which are orthogonal with respect to L

if and only if all Hankel determinants ∆n = det0≤i, j≤n(µi+ j) of moments are nonzero.

Implicit in (10.66) is the Hankel determinant evaluation

∆n = λ n
1 λ n−1

2 · · ·λ 1
n , (10.68)

which expresses the close interplay between Hankel determinants, moments of or-

thogonal polynomials, and Motzkin path enumeration (via Theorem 10.10.3).

We conclude this section with an explicit, determinantal formula for orthogo-

nal polynomials, given the moments of the orthogonality functional. Again, Viennot

[119, Ch. IV, §4] has given a beautiful combinatorial proof for this formula. using

non-intersecting lattice paths.

Theorem 10.10.8 Let L be a linear functional defined on polynomials with moments

µn = L(xn). Then the corresponding sequence (pn(x))n≥0 of monic orthogonal poly-

nomials is given by

pn(x) =
1

∆n−1

det











µ0 µ1 µ2 . . . µn

µ1 µ2 . . . µn µn+1

µ2 . . . µn µn+1 µn+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
µn−1 µn µn+1 . . . µ2n−1

1 x . . . xn−1 xn











, (10.69)

where, again, ∆n−1 = det0≤i, j≤n−1(µi+ j).

Proof It suffices to check that L(xm pn(x)) = 0 for 0 ≤ m < n. Indeed, by (10.69)

we have

L(xm pn(x)) =
1

∆n−1

det











µ0 µ1 µ2 . . . µn

µ1 µ2 . . . µn µn+1

µ2 . . . µn µn+1 µn+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
µn−1 µn µn+1 . . . µ2n−1

µm µm+1 . . . µm+n−1 µm+n











.

Thus the result is zero, because for 0≤ m < n the m-th and the last row in the above

determinant are identical.

In Section 10.11 we derive several further enumeration results on Motzkin paths

which feature orthogonal polynomials.

We close this section by pointing out that Motzkin paths can be seen as so-called
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heaps of pieces. The corresponding theory has been developed by Viennot [120]. As

a matter of fact, it is the combinatorial realization of the Cartier–Foata monoid [26].

For further intriguing work on the connections between lattice path counting,

Hankel determinants, and continued fractions, the reader is referred to Gessel and

Xin [52], and also Sulanke and Xin [116].

10.11 Motzkin paths in a strip

In Sections 10.8 and 10.9 we have derived enumeration results for Motzkin paths

which start and terminate on the x-axis. In particular, Theorem 10.9.1 provided a

continued fraction for the generating function with respect to a very general weight.

This continued fraction can be compactly brought in numerator/denominator form,

using orthogonal polynomials. In fact, more generally, a compact expression for the

generating function of Motzkin paths which start and terminate at arbitrary points

can be given, again using orthogonal polynomials.

In order to be able to state the corresponding result, we need two definitions.

Recall that, given sequences (bn)n≥0 and (λn)n≥1, with λn 6= 0 for all n ≥ 1, the

three-term recurrence (10.53),

xpn(x) = pn+1(x)+ bnpn(x)+λnpn−1(x), for n≥ 1, (10.70)

with initial conditions p0(x) = 1 and p1(x) = x−b0, produces a sequence (pn(x))n≥0

of orthogonal polynomials. We also need associated “shifted” polynomials (often

simply called associated orthogonal polynomials), denoted by (Spn(x))n≥0, which

arise from the sequence (pn(x)) by replacing λi by λi+1 and bi by bi+1, i = 0,1,2, . . . ,
everywhere in the three-term recurrence (10.70) and in the initial conditions. Further-

more, given a polynomial p(x) of degree n, we denote the corresponding reciprocal

polynomial xn p(1/x) by p∗(x).

Theorem 10.11.1 With the weight w defined as before Theorem 10.9.1, the generat-

ing function for Motzkin paths running from height r to height s which stay weakly

below the line y = k is given by

∑
n≥0

GF
(
L
(
(0,r)→ (n,s);M | 0≤ y≤ k

)
;w
)
xn

=







xs−r p∗r (x)S
s+1 p∗k−s(x)

p∗k+1(x)
, if r ≤ s,

λr · · ·λs+1

xr−s p∗s (x)S
r+1 p∗k−r(x)

p∗k+1(x)
, if r ≥ s.

(10.71)

In particular, the generating function for Motzkin paths running from the origin back
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to the x-axis which stay weakly below the line y = k, is given by

∑
n≥0

GF
(
L
(
(0,0)→ (n,0);M | 0≤ y≤ k

)
;w
)
xn =

Sp∗k(x)
p∗k+1(x)

. (10.72)

Proof Consider the directed graph, Pk+1 say, with vertices v0,v1, . . .vk, where for

h= 0,1, . . . ,k−1 there is an arc from vh to vh+1 as well as an arc from vh+1 to vh, and

where there is a loop for each vertex vh. Motzkin paths which never exceed height

k correspond in a one-to-one fashion to walks on Pk+1. In this correspondence, an

up-step from height h to h+1 in the Motzkin path corresponds to a step from vertex

vh to vertex vh+1 in the walk, and similarly for level- and down-steps. To make the

correspondence also weight-preserving, we attach a weight of 1 to an arc from vh to

vh+1, h = 0,1, . . . ,k− 1, a weight of λh to an arc from vh to vh−1, and a weight of bh

to a loop at vh.

By the transfer matrix method (see e.g. [112, Theorem 4.7.2]), the generating

function for walks from vr to vs is given by

(−1)r+s det(I− xA;s,r)

det(I− xA)
,

where A is the (weighted) adjacency matrix of Pk+1, where I is the (k+ 1)× (k+ 1)
identity matrix, and where det(I− xA;s,r) is the minor of (I− xA) with the s-th row

and r-th column deleted.

Now, the (weighted) adjacency matrix of Pk+1 with the property that the weight

of a particular walk would correspond to the weight w of the corresponding Motzkin

path is the tridiagonal matrix

A =














b0 1 0 . . .
λ1 b1 1 0 . . .
0 λ2 b2 1 0 . . .
...

. . .
. . .

. . .
. . .

. . .
...

. . . 0 λk−2 bk−2 1 0

. . . 0 λk−1 bk−1 1

. . . 0 λk bk














.

It is easily verified that, with this choice of A, we have det(I− xA) = p∗k+1(x) (by

expanding the determinant with respect to the last row and comparing with the three-

term recurrence (10.53)), and, similarly, that the numerator in (10.71) agrees with

(−1)r+s det(I− xA;r,s).

Example 10.11.2 We illustrate Theorem 10.11.1 for the special cases which were

considered in Example 10.10.6.

Let first bi = 0 and λi = 1 for all i. Combinatorially, we are talking about paths

consisting of up- and down-steps, that is, Catalan paths (Dyck paths). Since for this

choice of bi’s and λi’s there is no difference between the orthogonal polynomials and
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the corresponding associated orthogonal polynomials arising from (10.53), Exam-

ple 10.10.6 tells us that

pn(x) = Spn(x) =Un(x/2).

From (10.71), it then follows that

∑
n≥0

∣
∣L
(
(0,r)→ (n,s);{(1,1),(1,−1)} | 0≤ y≤ k

)∣
∣ · xn

=







Ur(1/2x)Uk−s(1/2x)

xUk+1(1/2x)
, if r ≤ s,

Us(1/2x)Uk−r(1/2x)

xUk+1(1/2x)
, if r ≥ s.

(10.73)

Next let bi = λi = 1 for all i. Combinatorially, we are talking about paths con-

sisting of up-, down-, and level-steps, that is, Motzkin paths. Again, since for this

choice of bi’s and λi’s there is no difference between the orthogonal polynomials and

the corresponding associated orthogonal polynomials arising from (10.53), Exam-

ple 10.10.6 tells us that

pn(x) = Spn(x) =Un

(
x− 1

2

)

.

From (10.71), it then follows that

∑
n≥0

∣
∣L
(
(0,r)→ (n,s);M | 0≤ y≤ k

)∣
∣ · xn

=







Ur

(
1−x
2x

)
Uk−s

(
1−x
2x

)

xUk+1

(
1−x
2x

) , if r ≤ s,

Us

(
1−x
2x

)
Uk−r

(
1−x
2x

)

xUk+1

(
1−x
2x

) , if r ≥ s.

(10.74)

Example 10.11.3 The standard application of (10.74) concerns the gambler’s ruin

problem (see also [38, Ch. XIV]): two players A and B have initially a and R− a

dollars, respectively. They play several rounds, in each of which the probability that

player A wins is pA, the probability that player B wins is pB, and the probability that

there is a tie is pT = 1− pA− pB. If one player wins, (s)he takes a dollar from the

other. If there is a tie, nothing happens. The play stops when one of the players is

bankrupt. What is the probability that player A, say, goes bankrupt after N rounds?

By disregarding the last round (which is necessarily a round in which B wins),

this problem can be represented by a lattice path starting at (0,a− 1), ending at

(N−1,0), with steps (1,1) (corresponding to player A to win a round), (1,−1) (cor-

responding to player B to win a round), and (1,0) (corresponding to a tie), which

does not pass below the x-axis, and which does not pass above the horizontal line

y = R− 2. For example, the lattice path in Figure 10.19 corresponds to the play,

where player A starts with 2 dollar, player B starts with 4 dollar, the outcome of the

rounds is in turn TATBTTAABBBB (the letter A symbolizing a round where A won,
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y = R− 2

Figure 10.19

with an analogous meaning of the letter B, and the letter T symbolizing a tie), so that

A goes bankrupt after N = 12 rounds (while B did not).

If we assign the weight pA to an up-step (1,1), pB to a down-step (1,−1), and

pT to a level-step (1,0), then the probability of this play is the product of the weights

of all the steps of the path P times pB (corresponding to the last round where B wins

and A goes bankrupt; in our example, it is pT pA pT pB pT pT pA pA pB pB pB pB). If we

write p(P) for the product of the weights of the steps of P, then, in order to solve

the problem, we need to compute the sum ∑P pB p(P), where the sum is over all the

above described paths from (0,a− 1) to (N− 1,0).
Clearly, (10.74) with r = a− 1 and s = 0 provides the solution for the above

problem, in terms of a generating function. Since the zeroes of the Chebyshev poly-

nomials are explicitly known, one can apply partial fraction decomposition to obtain

an explicit formula for the coefficients in the generating function. If this is carried

out, then we get

∣
∣L
(
(0,r)→ (n,s);M | 0≤ y≤ k

)∣
∣

=
2

k+ 2

k+1

∑
j=1

(

2cos
π j

k+ 2
+ 1

)n

· sin
π j(r+ 1)

k+ 2
· sin

π j(s+ 1)

k+ 2
. (10.75)

10.12 Further results for lattice paths in the plane

In this section we collect various further results on the enumeration of two-

dimensional lattice paths, respectively pointers to further such results.

The first set of results that we describe concerns lattice paths in the plane integer

lattice Z2 which consist of steps from a finite set S that contains steps of the form

(1,b). Here, b is some integer. Say,

S= {(1,b1), (1,b2), . . . ,(1,bm)}. (10.76)
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We also assume that to each step (1,b j) there is associated a weight w j ∈ C.

Banderier and Flajolet [5] completely solved the exact and asymptotic enumera-

tion of lattice paths consisting of steps from S obeying certain restrictions. We con-

centrate here on the exact enumeration results.

The key object in their theory is the characteristic polynomial of the step set S,

PS(u) =
m

∑
j=1

w ju
b j . (10.77)

If we write c =−min j b j and d = max j b j, then PS(u) can be rewritten in the form

PS(u) =
d

∑
j=−c

p ju
j,

for appropriate coefficients p j. Associated with the characteristic polynomial is the

characteristic equation

1− zPS(u) = 0, (10.78)

or, equivalently,

uc− zucPS(u) = uc− z
c+d

∑
j=0

p j−cu j = 0. (10.79)

The form (10.79) has only non-negative powers in u, and it shows that, counting mul-

tiplicity, there are c+ d solutions to the characteristic equation when u is expressed

as a function in z. These c+ d solutions fall into two categories; there are c “small

branches” u1(z),u2(z), . . . ,uc(z) satisfying

u j(z)∼ e2π i( j−1)/cp
1/c
−c z1/c as z→ 0,

and d “large branches” uc+1(z),uc+2(z), . . . ,uc+d(z) satisfying

u j(z)∼ e2π i(c+1− j)/d p
−1/d

d z−1/d as z→ 0.

One can show that there are functions A(z) and B(z) which are analytic and non-zero

at 0 such that, in a neighbourhood of 0,

u j(z) = ω j−1z1/cA(ω j−1z1/c), with ω = e2π i/c, j = 1,2, . . . ,c, (10.80)

u j(z) = ϖc+1− jz−1/dB(ϖ j−c−1z1/d), with ϖ = e2π i/d, j = c+ 1,c+ 2, . . .,c+ d.
(10.81)

We are now in the position to state the enumeration results for lattice paths with

steps from S without further restriction. In the formulation, we use ℓ(P) to denote the

length of a path P, and h(P) to denote the abscissa (height) of the end point of P.

Theorem 10.12.1 The generating function ∑P zℓ(P)uh(P) for lattice paths P which

start at the origin and consist of steps from S as given in (10.76) equals

GF
(
L
(
(0,0)→ (∗,∗);S

)
;zℓ( .)uh( .)

)
=

1

1− zPS(u)
, (10.82)
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with PS(u) the characteristic polynomial of S given in (10.77). Moreover, the gener-

ating function ∑P zℓ(P) for those paths P which end at height 0 equals

GF
(
L
(
(0,0)→ (∗,0);S

)
;zℓ( .)

)
= z

c

∑
j=1

u′j(z)

u j(z)
= z

d

dz

(
u1(z)u2(z) · · ·uc(z)

)
, (10.83)

where u1(z),u2(z), . . . ,uc(z) are the small branches given in (10.80). Finally, for k <
c the generating function ∑P zℓ(P) for those paths P which end at height k equals

GF
(
L
(
(0,0)→ (∗,k);S

)
;zℓ( .)

)
= z

c

∑
j=1

u′j(z)

uk+1
j (z)

=− z

k

d

dz

(
c

∑
j=1

u−k
j (z)

)

, (10.84)

where again u1(z),u2(z), . . . ,uc(z) are the small branches given in (10.80), while for

k >−d it equals

GF
(
L
(
(0,0)→ (∗,k);S

)
;zℓ( .)

)
=−z

c+d

∑
j=c+1

u′j(z)

uk+1
j (z)

=
z

k

d

dz

(
c+d

∑
j=c+1

u−k
j (z)

)

,

(10.85)

Proof By elementary combinatorial principles, the generating function

∑P zℓ(P)uh(P) for lattice paths P which start at the origin and consist of steps from

S is given by ∑n≥0 znPn
S
(u), which equals (10.82).

In order to determine the generating function ∑P zℓ(P) for those lattice paths P

which end at height 0, we have to extract the coefficient of u0 in (10.82). This can be

achieved by computing the contour integral

1

2π i

∫

C

1

1− zPS(u)

du

u
, (10.86)

where C is a contour encircling the origin in the positive direction. One has to choose

C so that, for sufficiently small z, the small branches lie within the contour, while

the large branches lie outside. Then, by the residue theorem, only the small branches

contribute to the integral (10.86). The residue at u = u j(z) equals (assuming that, in

addition, we have chosen z so that all small branches are different)

Res
u=u j(z)

(

1

u
(
1− zPS(u)

)

)

=− 1

zu j(z)P′S(u j(z))
.

The integral in (10.86) equals the sum of these residues. This sum simplifies to

(10.83) since differentiation of both sides of the characteristic equation (10.78) shows

that P′
S
(u j(z))

−1 =−z2u′j(z) for all small branches u j(z).
The arguments for establishing (10.84) and (10.85) are similar.

The second set of results concerns lattice paths starting at the origin with steps

from S which do not run below the x-axis.
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Theorem 10.12.2 The generating function ∑P zℓ(P)uh(P) for lattice paths P which

start at the origin, consist of steps from S as given in (10.76), and do not run below

the x-axis, equals

GF
(
L
(
(0,0)→ (∗,∗);S | y≥ 0

)
;zℓ( .)uh( .)

)
=

∏c
j=1(u− u j(z))

uc(1− zPS(u))

=− 1

pdz

c+d

∏
j=c+1

1

(u− u j(z))
, (10.87)

with PS(u) the characteristic polynomial of S given in (10.77), and u1(z),u2(z), . . . ,
uc(z) and uc+1(z),uc+2(z), . . . ,uc+d(z) the small and large branches given in (10.80)

and (10.81). In particular, the generating function ∑P zℓ(P) for those paths P which

end at height 0 equals

GF
(
L
(
(0,0)→ (∗,0);S | y≥ 0

)
;zℓ( .)

)
=

(−1)c−1

p−cz

c

∏
j=1

u j(z))

=
(−1)d−1

pdz

c+d

∏
j=c+1

1

u j(z))
. (10.88)

Proof Here, we use the so-called kernel method (cf. e.g. [18]). Let F(z,u) denote

the generating function on the left-hand side of (10.87). Then we have

F(z,u) = 1+ zPS(u)F(z,u)− z[u<0]
(
PS(u)F(z,u)

)
, (10.89)

where [u<0]G(z,u) means that in the series G(z,u) all monomials znum with m≥ 0 are

dropped. For, any lattice path that is counted by F(z,u) is either empty, or it consists

of a step (zPS(u) describes the possibilities) added to a path, except that the steps that

would take the walk below level 0 are to be taken out (the operator [u<0] extracts the

terms to be taken out). Since PS(u) involves only a finite number of negative powers,

we may rewrite (10.89) in the form

F(z,u)(1− zPS(u)) = 1− z
c−1

∑
k=0

rk(u)Fk(z), (10.90)

for some Laurent polynomials rk(u) that can be computed from PS(u) via (10.89),

rk(u) = [u<0](PS(u)u
k) =

−k−1

∑
j=−c

p ju
j+k.

Here, Fk(z) is the generating function ∑P zℓ(P) for those paths P which end at height k.

In the current context, the factor 1−zPS(u) on the left-hand side of (10.90) (which

is identical with the left-hand side of the characteristic equation (10.78)) is called the

kernel. The idea of the kernel method is to substitute u = u j(z), j = 1,2, . . . ,c (that
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is, the small branches) on both sides of (10.90) so that the kernel — and thus the

left-hand side — vanishes. In this way, we arrive at the system of equations

uc
j(z)− z

c−1

∑
k=0

uc
j(z)rk(u j(z))Fk(z) = 0, j = 1,2, . . . ,c.

This system of linear equations in the unknowns F0(z),F1(z), . . . ,Fc−1(z) could now

be solved. Alternatively, we could observe that the expression

uc− z
c−1

∑
k=0

ucrk(u)Fk(z)

is a polynomial in u of degree c with leading monomial uc. Its roots are exactly the

small branches u j(z), j = 1,2, . . . ,c. Hence, it factorizes as

uc− z
c−1

∑
k=0

ucrk(u)Fk(z) =
c

∏
j=1

(u− u j(z)). (10.91)

Extraction of the coefficient of u0 on both sides gives immediately F0(z), the gener-

ating function for the paths which end at height 0. This leads directly to (10.88). The

formula (10.87) follows from (10.90) and (10.91).

Sometimes, the kernel method is also applicable if the the set of steps S is infinite.

This is. for instance, the case for Łukasiewicz paths, which are paths consisting of

steps from SL =
{
(1,b) : b∈ {−1,0,1,2, . . .}

}
, which start at the origin, return to the

x-axis, never running below it. In that case, the equation (10.90) for the generating

function ∑P zℓ(P)uh(P) becomes

F(z,u)

(

1− z

u(1− u)

)

= 1− zu−1F0(z), (10.92)

where, as before, F0(z) is the generating function for those paths which end at height

0 (that is, return to the x-axis). Here, the kernel is

1− z

u(1− u)
,

and it vanishes for u(z) = 1−
√

1−4z
2

. If this is substituted in (10.92), then we obtain

GF
(
L
(
(0,0)→ (∗,0);SL | y≥ 0

)
;zℓ( .)

)
= F0(z) =

1−
√

1− 4z

2z
,

the Catalan number generating function (10.20). Hence, also Łukasiewicz paths of

length n are enumerated by the Catalan number Cn =
1

n+1

(
2n
n

)
.

To conclude this topic, it must be mentioned that Banderier and Gittenberger [6]

have extended the analyses of [5] to also include the area statistics.

A very cute problem, which arose in a probabilistic context around 2000, is the
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problem of counting paths (walks) in the slit plane. The slit plane is the integer

lattice Z2 where one has taken out the half-axis {(k,0) : k≤ 0}. Investigation of this

problem started with the conjecture that the number of paths in the slit plane which

start at (1,0) and do 2n+ 1 horizontal or vertical unit steps (in the positive or in

the negative direction) is given by the Catalan number C2n+1. This conjecture was

proved by Bousquet-Mélou and Schaeffer in [20], but they provide much stronger

and more general results on the enumeration of lattice paths in the slit plane in that

paper. When it is not possible to find exact formulas, then the focus is on the nature of

the generating function, whether it be algebraic or not, D-finite or not, etc. Methods

used are the cycle lemma and the kernel method.

An innocent looking three-candidate ballot problem stands at the beginning of

another long line of investigation: Let E1,E2,E3 be candidates in an election, E1

receiving e1 votes, E2 receiving e2 votes, and E3 receiving e3 votes, e1≥max{e2,e3}.
How many ways of counting the votes are there such that at any stage during the

counting candidate E1 has at least as many votes as E2 and at least as many votes as

E3? In lattice path formulation this means to count all simple lattice paths in Z3 from

the origin to (e1,e2,e3) staying in the region {(x1,x2,x3) : x1 ≥ x2 and x1 ≥ x3}. ∗
We state the result below. Solutions were given by Kreweras [85] and Niederhausen

[99], see also Gessel [48]. This line of research was picked up later by Bousquet-

Mélou [16] who showed, again with the help of the kernel method, that the generating

function of these “Kreweras walks” is algebraic. It must be pointed out that this

counting problem is a “non-example” for the reflection principle (see Section 10.18),

that is, the reflection principle does not apply. The reason is that, if one tries to set it

up for application of the reflection principle, then one realizes that the nice property

that for permutations other than the identity permutation some hyperplane has to be

touched would fail.

Theorem 10.12.3 Let e1 ≥ max{e2,e3}. The number of all lattice paths in Z3 from

(0,0,0) to (e1,e2,e3) subject to x1 ≥ x2 and x1 ≥ x3 is given by

∣
∣L
(
(0,0,0)→ (e1,e2,e3) | x1 ≥max{x2,x3}

)∣
∣

=

(
e1 + e2 + e3

e1,e2,e3

)

− e2 + e3

1+ e1

(
e1 + e2 + e3

e1,e2,e3

)

+ ∑
i, j≥1

(−1)i+ j (e1 + e2 + e3)!(2i+ 2 j− 2)!(i+ j− 2)!

i!(e3− i)! j!(e2− j)!(2i− 1)!(2 j− 1)!(i+ j+ e1)!
. (10.93)

In particular, if e1 = e2 this number simplifies to

∣
∣L
(
(0,0,0)→ (e1,e1,e3) | x1 ≥max{x2,x3}

)∣
∣

= 22e3+1 (2e1 + e3)!(2e1− 2e3 + 1)!

(2e1 + 2)!e3!(e1− e3)!2
. (10.94)

∗It seems that this is a non-planar lattice path problem, contradicting the title of the section However, the

problem can be translated into a two-dimensional problem, see [16].
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We come to a relatively recent research field: the enumeration of walks in the

quarter plane. The question that was posed is: given a particular step set, can one

find an explicit formula for the corresponding generating function, and, if not, is the

generating function rational, algebraic, D-finite, or neither? For “small” step sets,

the analysis is now complete, due to work by Bousquet-Mélou and Mishna [19], by

Bostan and Kauers [12], and by Bostan, Kurkova, Raschel and Salvy [13, 14]. How-

ever, there is not yet a good understanding how, or whether at all, one can decide from

the step set that the generating function has one of the above mentioned properties.

The last topic that I mention here is the connection between Dyck and Schröder

path enumeration on the one hand, and Hilbert series for diagonal harmonics and

Macdonald polynomials on the other hand. This topic would by itself require a whole

chapter. We refer the reader to the survey [61] and the references therein. One of the

most intriguing combinatorial problems originating from the investigations in this

area is new statistics for Dyck paths, most prominently “bounce” and “dinv.” It has

been shown (algebraically) that the pair (bounce. area) is equally distributed as (area,

bounce), and the same for area and dinv. However, although much effort has been put

into it, so far nobody could come up with a direct combinatorial reason (in the best

case: a bijection) why this symmetry holds.

10.13 Non-intersecting lattice paths

The technique of non-intersecting lattice paths is a powerful counting method. We

have already seen its effectiveness in Section 10.7. Originally, non-intersecting paths

arose in matroid theory, in the work of Lindström [88]. Lindström’s result was redis-

covered (not always in its most general form) in the 1980s at about the same time

in three different communities, not knowing of each other at that time: in statistical

physics by Fisher [41, Sec. 5.3] in order to apply it to the analysis of vicious walkers

as a model of wetting and melting, in combinatorial chemistry by John and Sachs

[70] and Gronau, Just, Schade, Scheffler and Wojciechowski [58] in order to com-

pute Pauling’s bond order in benzenoid hydrocarbon molecules, and in enumerative

combinatorics by Gessel and Viennot [50, 51] in order to count tableaux and plane

partitions. It must however be mentioned that in fact the same idea appeared even ear-

lier in work by Karlin and McGregor [72, 71] in a probabilistic framework, as well

as that the so-called “Slater determinant” in quantum mechanics (cf. [108] and [109,

Ch. 11]) may qualify as an “ancestor” of the determinantal formula of Lindström.

Since then, many more applications have been found, particularly in plane partition

and rhombus tiling enumeration, see e.g. [23, 30, 40, 114] and Chapter [Tiling Enu-

meration by Jim Propp] for more information on this topic.

We devote this section to developing the theory of non-intersecting lattice paths

and give some sample applications. This will be continued in Section 10.14, where
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Family of non-intersecting paths

we give results on the enumeration of non-intersecting lattice paths in the plane with

respect to turns.

The most general version of the non-intersecting path theorem ([88, Lemma 1],

[51, Theorem 1]) is formulated for paths in a directed graph. Let G be a directed

graph with vertices V and (directed) edges E . A path (actually, the usual notion in

graph theory is walk) in G is a sequence v0,v1, . . . ,vm of vertices, for some m, such

that there is an edge from vi to vi+1, i = 0,1, . . . ,m−1. We denote the set of all paths

in G from A to E by LG(A→ E). The directed graph G is called acyclic if there is no

non-trivial closed path in G, i.e., if there is no path that starts and ends in the same

vertex other than a zero-length path.

The central definition is that a family P= (P1,P2, . . . ,Pn) of paths Pi in G is called

non-intersecting if no two paths of P have a vertex in common. Otherwise P is called

intersecting. In the context of lattice path enumeration, the graph G comes from a

lattice. In many examples, the vertices of G are the lattice points Z2 in the plane,

and the edges of G connect a point (i, j) to (i+ 1, j), respectively a point (i, j) to

(i, j+1). Figure 10.20 displays a family of non-intersecting lattice paths in this sense,

Figure 10.21 a family of intersecting lattice paths. (It is very important to note that, in

the geometric realization of paths as piecewise linear trails, the corresponding trails

may very well have common points, but never in starting and end points of steps, see

Figure 10.22 for such an example. In particular, non-intersecting lattice paths may

even cross each other in the geometric visualization.)

Returning to the general setup, we furthermore assume that to any edge e in

the graph G there is assigned a weight w(e) (an element in some commutative ring

R). The weight of a path P is the product w(P) = ∏e w(e), where the product is
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Family of intersecting paths
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Non-intersecting lattice paths may even cross
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over all edges e of the path P. The weight w(P) of a family P = (P1,P2, . . . ,Pn) of

paths is defined as the product of all the weights of paths in the family, w(P) =
w((P1,P2, . . . ,Pn)) = ∏n

i=1 w(Pi).
Given two sequences A = (A1,A2, . . . ,An) and E = (E1,E2, . . . ,En) of vertices of

G, we write LG(A→ E) for the set of all families (P1,P2, . . . ,Pn) of paths, where Pi

runs from Ai to Ei, i = 1,2, . . . ,n, whereas LG(A→ E | non-intersecting) denotes the

subset of families of non-intersecting paths.

We need one more piece of notation. Given a permutation σ ∈ Sn and a vector

v = (v1,v2, . . . ,vn), by vσ we mean (vσ(1),vσ(2), . . . ,vσ(n)). We are now in the posi-

tion to state and prove the main theorem on non-intersecting paths, due to Lindström

[88, Lemma 1].

Theorem 10.13.1 Let G by a directed, acyclic graph, and let A = (A1,A2, . . . ,An)
and E = (E1,E2, . . . ,En) be sequences of vertices in G. Then

∑
σ∈Sn

(sgnσ) ·GF
(
LG(Aσ → E | non-intersecting);w

)

= det
1≤i, j≤n

(
GF
(
LG(A j→ Ei);w

))
. (10.95)

Proof By expanding the determinant on the right-hand side of (10.95), we obtain

det
1≤i, j≤n

(
GF
(
LG(A j → Ei);w

))
= ∑

σ∈Sn

sgnσ
n

∏
i=1

GF
(
LG(Aσ(i)→ Ei);w

)

= ∑
(σ ,P)

σ∈Sn,P∈LG(Aσ→E)

sgnσ w(P). (10.96)

The sum in (10.96) expresses the determinant in (10.95) as a generating function for

pairs (σ ,P) in the set
⋃

σ∈Sn

LG(Aσ → E). (10.97)

We now define a sign-reversing, weight-preserving involution ϕ on the set of all

pairs (σ ,P) in (10.97) with the property that P is intersecting. Sign-reversing means

that if ϕ((σ ,P)) = (σϕ ,Pϕ) then sgnσ =−sgnσϕ , while weight-preserving means

that w(P) = w(Pϕ). Suppose that we had already constructed such a ϕ . Then, in the

sum (10.96), all contributions of pairs (σ ,P) in (10.97) where P is intersecting would

cancel. Only contributions of pairs (σ ,P) in (10.97) where P is non-intersecting

would survive, establishing (10.95).

Next we construct the sign-reversing, weight-preserving involution ϕ . Let (σ ,P)
be in LG(Aσ → E) where P is intersecting. In the left-hand picture of Figure 10.23

an example is shown with G the directed graph corresponding to the integer lattice

Z2, n = 3, and σ = 213. Among all pairs of paths with a common point, choose the

lexicographically largest, say (Pi,Pj), i < j, and among all common points of that

pair choose the last along the paths. (It does not matter on which of the two paths
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of the pair we choose the last common point since the graph G is acyclic.) Denote

this common point by M. In our example, the common points between paths are

(3,2), (3,3), (4,5). The lexicographically largest pair of paths with common points

is (P2,P3). The last common point of this pair is M = (4,5).
Returning to the general construction of the involution ϕ , we now interchange

the initial portions of Pi and Pj up to M. To be more precise, we form the new paths

P′i = [subpath of Pj from Aσ( j) to M joined with subpath of Pi from M to Ei]

and

P′j = [subpath of Pi from Aσ(i) to M joined with subpath of Pj from M to E j].

Then we define

ϕ
(
(σ ,P)

)
= ϕ

(
(σ ,(P1, . . . ,Pi, . . . ,Pj, . . . ,Pn))

)

= (σ ◦ (i j),(P1, . . . ,P
′
i , . . . ,P

′
j, . . . ,Pn)),

where (i, j) denotes the transposition interchanging i and j. The right-hand picture

in Figure 10.23 shows what is obtained by this operation in our example. The image

ϕ((σ ,P)) is again an element of the set in (10.97) since the new permutation of

the starting points of P is exactly σ ◦ (i j). Moreover, (P1, . . . ,P
′
i , . . . ,P

′
j, . . . ,Pn) is

intersecting since P′i and P′j are. From all this it is obvious that when ϕ is applied to

ϕ((σ ,P)) we arrive back at (σ ,P). Hence, ϕ is an involution. Since σ and σ ◦ (i j)
differ in sign, ϕ is sign-reversing. Finally, since the total (multi)set of edges in the

path families does not change under application of ϕ , the map ϕ is also weight-

preserving. This finishes the proof.

The most frequent situation in which the general result in Theorem 10.13.1 is
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applied is the one where non-intersecting paths can only occur if the starting and

end points are connected via the identity permutation, that is, if (P1,P2, . . . ,Pn) can

only be non-intersecting if Pi connects Ai with Ei, i = 1,2, . . . ,n. In that situation,

Theorem 10.13.1 simplifies to the following result.

Corollary 10.13.2 Let G be a directed, acyclic graph, and let A = (A1,A2, . . . ,An)
and E = (E1,E2, . . . ,En) be sequences of vertices in G such that the only permutation

σ that allows for a family (P1,P2, . . . ,Pn) of non-intersecting paths such that Pi con-

nects Aσ(i) with Ei, i = 1,2, . . . ,n, is the identity permutation. Then the generating

function ∑P w(P) for families P = (P1,P2, . . . ,Pn) of non-intersecting paths, where Pi

is a path running from Ai to Ei, i = 1,2, . . . ,n, is given by

GF
(
LG(A→ E | non-intersecting);w

)
= det

1≤i, j≤n

(
GF
(
LG(A j → Ei);w

))
. (10.98)

The standard application of Corollary 10.13.2 concerns semistandard tableaux.

These are important objects particularly in the representation theory of the general

and the special linear groups, cf. [103].

Let λ = (λ1,λ2, . . . ,λn) and µ = (µ1,µ2, . . . ,µn) be n-tuples of integers such that

λ1 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λn, (10.99a)

µ1 ≥ µ2 ≥ µ3 ≥ ·· · ≥ µn, (10.99b)

and λi ≥ µi for all i. (10.99c)

A semistandard tableau T of shape λ/µ is an array of integers

π1,µ1+1 . . . . . . . . . . . . . . . π1,λ1

π2,µ2+1 . . . π2,µ1+1 . . . . . . . . . π2,λ2

. .
. ... . .

.

πn,µn+1 . . . . . . . . . . . . . . . . . . . . . . . . . πn,λn

(10.100)

such that entries along rows are weakly increasing and entries along columns are

strictly increasing. A semistandard tableau of shape (7,6,6,4)/(3,3,1,0) is shown

in Figure 10.24.a. (The lower and upper bounds on the entries displayed to the left

and right of the tableau should be ignored at this point.)

Let a = (a1,a2 . . . ,an) and b = (b1,b2, . . . ,bn) be sequences of integers such that

a1 ≤ a2 ≤ ·· · ≤ an (10.101a)

b1 ≤ b2 ≤ ·· · ≤ bn, (10.101b)

and ai ≥ bi for all i. (10.101c)

We claim that semistandard tableaux of shape λ/µ where the entries in row i

are at most ai and at least bi bijectively correspond to families (P1,P2, . . . ,Pn) of

non-intersecting lattice paths Pi, where Pi runs from (µi− i,bi) to (λi− i,ai).
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Figure 10.24
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This is seen as follows. Let π be a semistandard tableau of shape λ/µ where the

entries in row i are at most ai and at least bi. The semistandard tableau π is mapped

to a family of lattice paths by associating the i-th row of π with a path Pi from

(µi− i,bi) to (λi− i,ai) where the entries in the i-th row are interpreted as heights of

the horizontal steps in the path Pi. Thus, from π we obtain the family P= (P1, . . . ,Pn)
of lattice paths. The lower picture of Figure 10.24 displays the family of lattice paths

that in this way results from the array displayed in the upper picture of Figure 10.24.

Clearly, the property that the columns of π are strictly increasing translates into

the condition that (P1,P2, . . . ,Pn) is non-intersecting.

By applying Corollary 10.13.2 to this situation, we obtain the following enumer-

ation result.

Theorem 10.13.3 Let λ = (λ1,λ2, . . . ,λn) and µ = (µ1,µ2, . . . ,µn) be sequences

of integers satisfying (10.99). Let a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) be

sequences of integers satisfying (10.101). Then the number of all semistandard

tableaux π of shape λ/µ where the entries in row i are at most ai and at least bi

equals

det
1≤i, j≤n

((
ai− b j +λi− µ j− i+ j

λi− µ j− i+ j

))

. (10.102)

More generally, the generating function ∑π qn(π) for the same set of semistandard

tableaux π , where n(π) denotes the sum of all entries of π , equals

det
1≤i, j≤n

(

qb j(λi−µ j−i+ j)

[
ai− b j +λi− µ j− i+ j

λi− µ j− i+ j

]

q

)

. (10.103)

If the shape λ/µ is a straight shape and the bounds a and b are constant, that is,

if, say, µ = (0,0, . . . ,0), b = (1,1, . . . ,1), and a = (a,a, . . . ,a), then the above de-

terminants can be evaluated in closed form. Rewritten appropriately, the result is the

hook-content formula. (We refer the reader to [103, Sec. 3.10] or [113, Cor. 7.21.6]

for unexplained terminology).

Theorem 10.13.4 Let λ = (λ1,λ2, . . . ,λn) be a sequence of non-negative integers

satisfying (10.99). Then the number of all semistandard tableaux π of shape λ with

entries in row i being positive integers at most a equals

∏
ρ

a+ c(ρ)

h(ρ)
, (10.104)

where the product is over all cells ρ in the Ferrers diagram of the partition λ , c(ρ)
is the content of the cell ρ , and h(ρ) is the hook-length of the cell ρ . More generally,

the generating function ∑π qn(π) for the same set of semistandard tableaux π equals

q∑n
i=1 iλi ∏

ρ

1− qa+c(ρ)

1− qh(ρ)
. (10.105)
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By introducing more general weights, in the same way one can provide com-

binatorial proofs for the Jacobi–Trudi-type identities for Schur functions (cf. [103,

Sec. 4.5]), respectively formulas for so-called flagged Schur functions, originally in-

troduced by Lascoux and Schützenberger [87], see also [121].

If in an array (10.100) one also introduces a relationship between the first row

and the last row, then one is led to define so-called cylindric partitions, as was done

by Gessel and Krattenthaler [49]. Also in that theory, non-intersecting paths play an

essential role.

It may seem that the general result in Theorem 10.13.1 is a very artificial state-

ment, perhaps being of no use. However, even this result does have several applica-

tions. For example, the most elegant proof of the determinant formula for higher-

dimensional path counting under a general two-sided restriction ([115]; see Sec-

tion 10.17, Theorem 10.17.1) fundamentally makes use of the full generality of The-

orem 10.13.1. Further applications of the general formula (10.95) can be found in

rhombus tiling enumeration (see [30, 40]), in combinatorial commutative algebra

(see [79]), and in the combinatorial theory of orthogonal polynomials developed in

Section 10.10 (see the proof of Theorem 10.10.8 as given in [119]).

In several applications, one has to deal with the problem of enumerating non-

intersecting lattice paths where the starting and end points are not fixed. Either it is

only the starting points which are fixed and the end points are any points from a given

set (or the other way round), or it is even that the starting points may come from one

set and the end points from another. The solution to these counting problems comes

from Pfaffians.

A Pfaffian is very similar to a determinant. Whereas in the definition of a deter-

minant there appear permutations, in the definition of a Pfaffian there appear perfect

matchings. A perfect matching of a set of objects, A say, is a pairing of the ob-

jects. For example, if A = {1,2,3,4,5,6}, then {{1,3},{2,5},{4,6}} is a match-

ing of A . A matching of {1,2, . . . ,N} can be realized geometrically by drawing

points labelled 1,2, . . . ,N along a line, and then connecting any two points whose

labels are paired in the matching by a curve, so that there are no touching points

between curves and no triple intersections. Figure 10.25 shows the geometric re-

alization of {{1,3},{2,5},{4,6}}. Any two pairs {i,k} and { j, l} in a matching

for which i < j < k < l are called a crossing of the matching. The sign sgnπ of a

matching π is (−1)c, where c is the number of crossings of π . Thus, the sign of

{{1,3},{2,5},{4,6}} is (−1)2 =+1. In the geometric realization of a matching, its

sign can be read off as (−1)c′ , where c′ is the number of crossing points between two

curves. (It is easily checked that it does not matter how we draw the curves.)

With these definitions, the Pfaffian Pf(A) of an upper triangular array A =
(ai j)1≤i< j≤2n is defined by

Pf(A) := ∑
π a perfect matching of {1,2,...,2n}

sgnπ ∏
{i, j}∈π

ai j. (10.106)

For example, for n = 2 we have

Pf
(
(ai j)1≤i< j≤4

)
= a12a34− a13a24 + a14a23.
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◦ ◦ ◦ ◦ ◦ ◦
1 2 3 4 5 6

✬ ✩

✬ ✩

✬ ✩

Figure 10.25

A perfect matching

Alternatively, the Pfaffian could be defined as the (appropriate) square root of a

skew symmetric matrix. To be precise, if A is a skew symmetric matrix, then

Pf(A)2 = det(A), (10.107)

where Pf(A) has to be interpreted as the Pfaffian of the upper triangular part of A. For

a (combinatorial) proof of this fact see e.g. [114, Prop. 2.2].

Now let again G be a directed, acyclic graph. Let A1,A2, . . . ,An be vertices in

G, and E = (. . . ,E1,E2, . . .) be an ordered set of vertices. What we want to count

is the number of all families P = (P1,P2, . . . ,Pn) of non-intersecting paths, where

Pi runs from Ai to some vertex in E, i = 1,2, . . . ,n. The difference to the situation

in Theorem 10.13.1 is that the end vertices of the paths are not fixed. Neverthe-

less, we adopt the earlier notation for this more general situation. To be precise, by

LG(A→ E | non-intersecting) we mean the set of all families P = (P1,P2, . . . ,Pn)
of non-intersecting paths in G, where Pi runs from Ai to some vertex Eki

in E,

i = 1,2, . . . ,n and k1 < k2 < · · ·< kn. The corresponding enumeration result is due to

Okada [100, Theorem 3] and Stembridge [114, Theorem 3.1].

Theorem 10.13.5 Let G be a directed, acyclic graph with a weight function w on its

edges. Let A = (A1,A2, . . . ,A2n) and E = (. . . ,E1,E2, . . . ) be sequences of vertices in

G. Then

∑
σ∈S2n

(sgnσ) ·GF
(
LG(Aσ → E | non-intersecting);w

)
= Pf1≤i< j≤2n(QG(i, j;w)),

(10.108)

where LG(Aσ →E | non-intersecting) is the set of all families (P1,P2, . . . ,P2n) of non-

intersecting paths, Pi connecting Aσ(i) with Eki
, i = 1,2, . . . ,2n and k1 < k2 < .. .k2n,

and QG(i, j;w) is the generating function ∑(P′,P′′) w(P′)w(P′′) for all pairs (P′,P′′)
of non-intersecting lattice paths, where P′ connects Ai with some Ek and P′′ connects

A j with some El , with k < l.

The proof uses the same involution idea as the proof of Theorem 10.13.1 does.

See [114, Proof of Theorem 3.1].

Similarly to Theorem 10.13.1, the most frequent situation in which the general

result in Theorem 10.13.5 is applied is the one where non-intersecting paths can

only occur if the starting and end points are connected via the identity permutation,
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that is, if (P1,P2, . . . ,P2n) can only be non-intersecting if Pi connects Ai with Eki
,

i = 1,2, . . . ,2n and k1 < k2 < · · ·< k2n. In that situation, Theorem 10.13.5 simplifies

to the following result.

Corollary 10.13.6 Let G be a directed, acyclic graph with a weight function w on its

edges. Let A = (A1,A2, . . . ,A2n) and E = (. . . ,E1,E2, . . . ) be sequences of vertices

in G such that the only permutation σ that allows for a family (P1,P2, . . . ,P2n) of

non-intersecting paths such that Pi connects Aσ(i) with Eki
, i = 1,2, . . . ,2n and k1 <

k2 < · · ·< k2n, is the identity permutation. Then the generating function ∑P w(P) for

families P = (P1,P2, . . . ,P2n) of non-intersecting paths, where Pi is a path running

from Ai to Eki
, i = 1,2, . . . ,2n and k1 < k2 < · · ·< k2n, is given by

GF
(
LG(A→ E | non-intersecting);w

)
= Pf1≤i< j≤2n(QG(i, j;w)), (10.109)

where QG(i, j;w) has the same meaning as in Theorem 10.13.5.

Theorem 10.13.5 and Corollary 10.13.6 are only formulated for an even number

of paths. However, a simple trick allows us to also use it for an odd number of paths:

one introduces a “phantom” vertex X that cannot be reached by any other vertex (one

can think of a vertex at infinity), and adjoins this point as a new starting point and

as a new end point. A family of non-intersecting paths would necessarily contain the

zero-length path from X to X as one of the paths, which therefore can be ignored.

Theorem 10.13.5 applies, and yields the following corollary.

Corollary 10.13.7 Let G be a directed, acyclic graph with a weight function w on its

edges. Let A = (A1,A2, . . . ,A2n−1) and E = (. . . ,E1,E2, . . . ) be sequences of vertices

in G. Then

∑
σ∈S2n

(sgnσ) ·GF
(
LG(Aσ → E | non-intersecting);w

)
= Pf(QG(i, j;w))1≤i< j≤2n,

(10.110)

where LG(Aσ → E | non-intersecting) has the same meaning as in Theorem 10.13.5,

where for j ≤ 2n− 1 the quantity QG(i, j;w) has the same meaning as in Theo-

rem 10.13.5, and where QG(i,2n;w) is the generating function ∑P w(P) for all paths

running from Ai to some point of E.

In particular, if the vertices A and E are such that the only permutation σ that

allows for a family (P1,P2, . . . ,P2n−1) of non-intersecting paths such that Pi connects

Aσ(i) with Eki
, i = 1,2, . . . ,2n− 1 and k1 < k2 < · · · < k2n−1, is the identity permu-

tation, then the generating function ∑P w(P) for families P = (P1,P2, . . . ,P2n−1) of

non-intersecting paths, where Pi is a path running from Ai to Eki
, i = 1,2, . . . ,2n− 1

and k1 < k2 < · · ·< k2n−1, is given by

GF
(
LG(A→ E | non-intersecting);w

)
= Pf(QG(i, j;w))1≤i< j≤2n. (10.111)

For various applications of this theorem, see e.g. [77, 100, 114].

Next we consider a mixed case, in which the starting points of the paths are fixed,

some end points are fixed, but some end points can be chosen from a given set. To
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be precise, let m and n be a positive integer with m ≤ n, let A = (A1,A2, . . . ,An)
and E = (E1,E2, . . . ,Em) be vertices in a given directed, acyclic graph G, let Ê =
(. . . , Ê1, Ê2, . . . ) be an ordered set of (finitely many or infinitely many) vertices. What

we want to determine is the generating function for all families P = (P1,P2, . . . ,Pn)
of non-intersecting paths, where for i = 1,2, . . . ,m the path Pi runs from Ai to Ei, and

where for i = m+1,m+2, . . . ,n the path Pi runs from Ai to some point Êki
in Ê, with

km+1 < km+2 < · · · < kn. We write LG(A→ E∪ Ê | non-intersecting) for the set of

these families of paths. The corresponding enumeration result is due to Stembridge

[114, Theorem 3.2].

Theorem 10.13.8 Let G be a directed, acyclic graph with a weight function w on its

edges, and let m and n be a positive integer such that m ≤ n and m+ n is even. Let

A = (A1,A2, . . . ,An), E = (E1,E2, . . . ,Em) and Ê = (. . . , Ê1, Ê2, . . . ) be sequences of

vertices in G. Then

∑
σ∈Sn

(sgnσ) ·GF
(
LG(Aσ → E∪ Ê | non-intersecting);w

)
= Pf

(
Q H

−Ht 0

)

,

(10.112)

where LG(Aσ → E∪ Ê | non-intersecting) is the set of all families (P1,P2, . . . ,Pn)
of non-intersecting paths, Pi connecting Aσ(i) with Ei, i = 1,2, . . . ,m, Pi connect-

ing Aσ(i) with Êki
, i = m + 1,m + 2, . . . ,n and km+1 < km+2 < · · · < kn, where

Q = (QG(i, j;w))1≤i, j≤n is a skew-symmetric matrix with QG(i, j;w) denoting the

generating function ∑(P′,P′′) w(P′)w(P′′) for all pairs (P′,P′′) of non-intersecting lat-

tice paths, where P′ connects Ai with some Êk and P′′ connects A j with some Êl ,

with k < l, and where H = (HG(i, j;w))1≤i≤n,1≤ j≤m is the rectangular matrix with

HG(i, j;w) denoting the generating function ∑P w(P) for all paths P from Ai to E j.

The Pfaffian of a skew-symmetric matrix has to be interpreted according to the re-

mark containing (10.107).

In particular, if the vertices A and E∪ Ê are such that the only permutation σ
that allows for a family (P1,P2, . . . ,Pn) of non-intersecting paths such that Pi connects

Aσ(i) with Ei, i = 1,2, . . . ,m, and Pi connects Aσ(i) with Êki
, i = m+ 1,m+ 2, . . . ,n

and km+1 < km+2 < · · ·< kn, is the identity permutation, then the generating function

∑P w(P) for all families (P1,P2, . . . ,Pn) of non-intersecting lattice paths, where for

i = 1,2, . . . ,m the path Pi runs from Ai to Ei, and where for i = m+1,m+2, . . . ,n the

path Pi runs from Ai to some point Êki
in Ê, km+1 < km+2 < · · ·< kn, is given by

GF
(
LG(A→ E∪ Ê | non-intersecting);w

)
= (−1)(

m
2)Pf

(
Q H

−Ht 0

)

. (10.113)

Again, the proof uses the same involution idea as the proof of Theorem 10.13.1

does. See [114, Proof of Theorem 3.2]. Applications can for example be found in

[32, 31, 114].

As a matter of fact, Theorem 10.13.8 is a special case of the so-called minor

summation formula due to Ishikawa and Wakayama [66, Theorem 2].



Lattice Path Enumeration 651

Theorem 10.13.9 Let m, n, p be integers such that n+m is even and 0≤ n−m≤ p.

Let M be any n× p matrix, H be any n×m matrix, and A = (ai j)1≤i, j≤p be any

skew-symmetric matrix. Then we have

∑
K

Pf
(
AK

K

)
det
(
MK

... H
)
= (−1)(

m
2)Pf

(
M AMt H

−Ht 0

)

.

where K runs over all (n−m)-element subsets of [1, p], AK
K is the skew-symmetric

matrix obtained by picking the rows and columns indexed by K, and MK is the sub-

matrix of M consisting of the columns corresponding to K.

Theorem 10.13.8 results from the special case of Theorem 10.13.9 where A is the

p× p skew-symmetric matrix with all 1s above the diagonal, and M and H are ma-

trices the entries of which are appropriately chosen path generating functions. This

is based on the well-known fact (see e.g. [114, Prop. 2.3(c)]) that Pf(1)1≤i< j≤2N = 1

for all N.

The last theorem in this section addresses the case where starting and end

points are chosen from given sets. To be precise, let A = (A1,A2, . . . ,An) and

E = (. . . ,E1,E2, . . .) be ordered sets of vertices (finitely many or infinitely many

in the case of E). What we want to determine is the generating function for all fam-

ilies P = (P1,P2, . . . ,Ps) of non-intersecting paths, where for i = 1,2, . . . ,s the path

Pi runs from some Aki
to some Eli . The corresponding enumeration result is due to

Okada [100, Theorem 4] and Stembridge [114, Theorem 4.1]. In the formulation

below, by abuse of notation, A′ ⊆ A means that A′ is a subsequence of A, with an

analogous meaning for E′ ⊆ E.

Theorem 10.13.10 Let G be a directed, acyclic graph with a weight function w on its

edges, and let A = (A1,A2, . . . ,An) and E = (. . . ,E1,E2, . . . ) be sequences of vertices

in G.

(a) If n is even, then

n/2

∑
s=0

ts ∑
A′⊆A,E′⊆E

|A′ |=|E′|=2s

GF
(
LG(A

′→ E′ | non-intersecting);w
)

= Pf1≤i< j≤n

(
(−1)i+ j−1 + tQG(i, j;w)

)
, (10.114)

where QG(i, j;w) has the same meaning as in Theorem 10.13.5.

(b) If n is odd, then

n

∑
s=0

ts ∑
A′⊆A,E′⊆E

|A′|=|E′|=s

GF
(
LG(A

′→ E′ | non-intersecting);w
)

= Pf
1≤i< j≤n+1

(
(−1)i+ j−1 + t2QG(i, j;w)

)
, (10.115)
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where for j≤ n the quantity QG(i, j;w) has the same meaning as in Theorem 10.13.5,

while QG(i,n+1;w) equals the generating function t−1 ∑P w(P) for all paths P from

Ai to some vertex in E.

(c) If n is even, then

n

∑
s=0

ts ∑
A′⊆A,E′⊆E

|A′|=|E′|=s

GF
(
LG(A

′→ E′ | non-intersecting);w
)

= Pf
1≤i< j≤n+2

(
(−1)i+ j−1 + t2QG(i, j;w)

)
, (10.116)

where for j ≤ n+ 1 the quantity QG(i, j;w) has the same meaning as in (b), and

QG(i,n+ 2;w) = 0.

For applications of this theorem in plane partition enumeration see [100] and

[114].

If one weakens the condition of non-intersection of lattice paths in the plane to

the requirement that paths are allowed to touch each other in isolated points but not

to change sides, then one arrives at the model of osculating paths. The motivation to

consider this model comes from an observation of Bousquet-Mélou and Habsieger

[17] that alternating sign matrices are in bijection with families of osculating paths

with appropriate starting and end points. Alternating sign matrices are fascinating,

but notoriously difficult to count, therefore it may be useful to investigate objects

which are equivalent to them. So far, this point of view has not led to much, but

recently Brak and Galleas [21] proved a constant term formula for families of oscu-

lating paths.

10.14 Lattice paths and their turns

In this section we consider turns of lattice paths. Literally, a turn of a lattice path

is any vertex of a path where the direction of the path changes. The enumeration of

lattice paths with a given number of turns is motivated by problems of correlated

random walks, distribution of runs (cf. [95]), coefficients of Hilbert polynomials of

determinantal and Pfaffian rings (cf. [84, 86]), and summations for Schur functions

(cf. [76]).

The approach for the enumeration of simple plane lattice paths with respect to

their number of turns which we present here is by encoding lattice paths in terms of

two-rowed arrays, a point of view put forward in [78].

For simple lattice paths in the plane there are two types of turns. We call a vertex

T of a path a North-East turn (NE-turn for short) if T is reached by a step towards

north and left by a step towards east. We call a vertex T of a path an east-north turn
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P0

Figure 10.26

(EN-turn for short) if T is reached by a step towards east and left by a step towards

north. Thus, the NE-turns of the path P0 in Figure 10.26 are (1,1), (2,3), and (5,4),
the EN-turns of P0 are (2,1), (5,3), and (6,4). We denote by NE(P) the number of

NE-turns of P and by EN(P) the number of EN-turns of P.

Now we describe the encoding of paths in terms of two-rowed arrays. Actually,

we use two encodings, one corresponding to NE-turns, one corresponding to EN-

turns. Let (p1,q1), (p2,q2), . . . , (pℓ,qℓ) be the NE-turns of a path P. Then the NE-

turn representation of P is defined by the two-rowed array

p1 p2 . . . pℓ
q1 q2 . . . qℓ,

(10.117)

which consists of two strictly increasing sequences. Clearly, if P runs from (a,b) to

(c,d) then a ≤ p1 < p2 < · · · < pℓ ≤ c− 1 and b+ 1 ≤ q1 < q2 < · · · < qℓ ≤ d are

satisfied. If we wish to make this fact transparent, we write

a≤ p1 p2 . . . pℓ ≤ c− 1

b+ 1≤ q1 q2 . . . qℓ ≤ d.
(10.118)

For a given starting point and a given final point, by definition the empty array is

the representation for the only path that has no NE-turn. For the path in our running

example we obtain the NE-turn representation

1 2 5

1 3 4
,

or, with bounds included,

1≤ 1 2 5 ≤ 5

0≤ 1 3 4 ≤ 6

.
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Similarly, if (p1,q1), (p2,q2), . . . , (pℓ,qℓ) denote the EN-turns of a path P, then

(10.117) is called the EN-turn representation of P. If P runs from (a,b) to (c,d) then

a+ 1 ≤ p1 < p2 < · · · < pℓ ≤ c and b ≤ q1 < q2 < · · · < qℓ ≤ d− 1 are satisfied.

Again, as earlier, we write

a+ 1≤ p1 p2 . . . pℓ ≤ c

b≤ q1 q2 . . . qℓ ≤ d− 1.
(10.119)

For a given starting point and a given final point, by definition the empty array is

the representation for the only path that has no EN-turn. For the path in our running

example we obtain the EN-turn representation

2 5 6

1 3 4
,

or, with bounds included,

2≤ 2 5 6 ≤ 6

−1≤ 1 3 4 ≤ 5

.

Also two-rowed arrays with its rows being of unequal length will be considered.

These arrays will also have the property that the rows are strictly increasing. So,

by convention, whenever we speak of two-rowed arrays, we mean two-rowed arrays

with strictly increasing rows. For these arrays we will use a notation of the kind

(10.118) or (10.119) as well. We shall frequently use the short notation (a | b) for

two-rowed arrays, where a denotes the sequence (ai) of elements of the first row, and

b denotes the sequence (bi) of elements of the second row.

From (10.118) we see at once that the number of all paths from (a,b) to (c,d)
with exactly ℓ NE-turns equals the number of ℓ-element subsets of {a,a+ 1, . . . ,c−
1} times the number of ℓ-element subsets of {b+1,b+2, . . .,d}. A similar argument

holds for EN-turns. Thus we have proved

∣
∣L
(
(a,b)→ (c,d) | NE(.) = ℓ

)∣
∣=
∣
∣L
(
(a,b)→ (c,d) | EN(.) = ℓ

)∣
∣

=

(
c− a

ℓ

)(
d− b

ℓ

)

. (10.120)

A lattice path statistic that is frequently used is the number of runs of a lattice

path. A run in a path P is a maximal subpath of P consisting of steps of equal type.

We write run(P) for the number of runs of P. The runs of the path P0 in Figure 10.26

are the subpaths from (1,−1) to (1,1), from (1,1) to (2,1), from (2,1) to (2,3),
from (2,3) to (5,3), from (5,3) to (5,4), from (5,4) to (6,4), and from (6,4) to

(6,6). Thus we have run(P0) = 7. Obviously, the number of runs of a path is exactly

one more than the total number of turns (both, NE-turns and EN-turns). Besides,

there is also a close relation between NE-turns and runs, which allows us to translate

any enumeration result for NE-turns into one for runs.
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To avoid case by case formulations, depending on whether the number of runs is

even or odd, we prefer to consider generating functions. Suppose we know the num-

ber of all paths from A to E satisfying some property R and containing a given num-

ber of NE-turns. Then we know the generating function GF(L(A→ E | R);xNE(.)).
For brevity, let us denote it by F(A → E | R;x). We define four refinements of

F(A→E |R;x). Let Fhv(A→E |R;x) be the generating function ∑P xNE(P) where the

sum is over all paths in L(A→ E | R) that start with a horizontal step and end with a

vertical step. The notations Fhh(A→E |R;x), Fvh(A→E |R;x), and Fvv(A→E |R;x)
are defined analogously. The relation between enumeration by runs and enumeration

by NE-turns is given by

GF(L(A→ E | R);xrun(.)) = xFhh(A→ E | R;x2)+ x2Fhv(A→ E | R;x2)

+Fvh(A→ E | R;x2)+ xFvv(A→ E | R;x2). (10.121)

All the four refinements of the NE-turn generating function can be expressed

in terms of NE-turn generating functions. This is seen by setting up a few linear

equation and solving them. Evidently, the following is true:

F(A→ E | R;x) = Fhh(A→ E | R;x)+Fhv(A→ E | R;x)

+Fvh(A→ E | R;x)+Fvv(A→ E | R;x).

Besides, if E1 = (1,0) and E2 = (0,1) denote the standard unit vectors, we have

Fhh(A→ E | R;x)+Fhv(A→ E | R;x) = F(A+E1→ E | R;x)

Fhv(A→ E | R;x)+Fvv(A→ E | R;x) = F(A→ E−E2 | R;x)

Fhv(A→ E | R;x) = F(A+E1→ E−E2 | R;x).

Solving for Fhh, Fhv, Fvh, Fvv we get

Fhh(A→ E | R;x) = F(A+E1→ E | R;x)−F(A+E1→ E−E2 | R;x) (10.122a)

Fhv(A→ E | R;x) = F(A+E1→ E−E2 | R;x) (10.122b)

Fvh(A→ E | R;x) = F(A→ E | R;x)+ (A+E1→ E−E2 | R;x)

−F(A+E1→ E | R;x)−F(A→ E−E2 | R;x)
(10.122c)

Fvv(A→ E | R;x) = F(A→ E−E2 | R;x)−F(A+E1→ E−E2 | R;x). (10.122d)

As we know from Section 10.3, counting paths restricted by x = y, or even by

two lines x = y+ t and x = y+ s, is effectively solved by the reflection principle. Of

course, reflection by itself is useless for counting paths by turns, since the reflection

of portions of paths does not take care of turns. It might introduce new turns or make

turns disappear. However, there are “analogues” of reflection for two-rowed arrays,

which are due to Krattenthaler and Mohanty [81].
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Theorem 10.14.1 Let a≥ b and c≥ d. The number of all paths from (a,b) to (c,d)
staying weakly below x = y with exactly ℓ NE-turns is given by

∣
∣L
(
(a,b)→ (c,d) | x≥ y, NE(.) = ℓ

)∣
∣

=

(
c− a

ℓ

)(
d− b

ℓ

)

−
(

c− b− 1

ℓ− 1

)(
d− a+ 1

ℓ+ 1

)

, (10.123)

and with exactly ℓ EN-turns is given by

∣
∣L
(
(a,b)→ (c,d) | x≥ y, EN(.) = ℓ

)∣
∣

=

(
c− a

ℓ

)(
d− b

ℓ

)

−
(

c− b+ 1

ℓ

)(
d− a− 1

ℓ

)

. (10.124)

Proof We start with proving (10.123). By the NE-turn representation (10.118), the

paths from (a,b) to (c,d) staying weakly below x = y with exactly ℓ NE-turns can be

represented by

a≤ p1 p2 . . . pℓ ≤ c− 1

b+ 1≤ q1 q2 . . . qℓ ≤ d,
(10.125a)

where

pi ≥ qi, i = 1,2, . . . , ℓ. (10.125b)

Following the argument in the proof of Theorem 10.3.1, the number of these two-

rowed arrays is the number of all two-rowed arrays of the type (10.125a) minus

those two-rowed arrays of the type (10.125a) which violate (10.125b), i.e., where

pi < qi for some i between 1 and ℓ. We know the first number from (10.120).

Concerning the second number, we claim that two-rowed arrays of the type

(10.125a) which violate (10.125b) are in one-to-one correspondence with two-rowed

arrays of the type

b+ 1≤ p̄2 . . . p̄ℓ ≤ c− 1

a≤ q̄0 q̄1 q̄2 . . . q̄ℓ ≤ d.
(10.126)

The number of all these two-rowed arrays is
(

c−b−1
ℓ−1

)(
d−a+1
ℓ+1

)
, as desired. So it only

remains to construct the one-to-one correspondence.

Take a two-rowed array (p | q) of the type (10.125a) such that pi < qi for some i.

Let I be the largest integer such that pI < qI . Then map (p | q) to

q1 . . . . . . qI−1 pI+1 . . . pℓ
p1 p2 . . . . . . pI qI qI+1 . . . qℓ

. (10.127)

Note that both rows are strictly increasing because of qI−1 < qI < qI+1 ≤ pI+1 and

pI < qI . By some case by case analysis it can be seen that (10.127) is of type (10.126).

For example, if I = ℓ then we must check qI−1 ≤ c− 1, among others. Clearly, this

follows from the inequalities qI−1 < qI ≤ d ≤ c.

The inverse of this map is defined in the same way. Let (p̄ | q̄) be a two-rowed
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array of the type (10.126). Let Ī be the largest integer such that p̄Ī < q̄Ī . If there are

none, take Ī = 2. Then map (p̄ | q̄) to

q̄0 . . . . . . q̄Ī−1 p̄Ī+1 . . . p̄ℓ
p̄2 . . . p̄Ī q̄Ī . . . . . . . . . q̄ℓ

. (10.128)

It is not difficult to check that the mappings (10.127) and (10.128) are inverses of

each other. This completes the proof of (10.123).

The second identity, (10.124), can be established similarly.

Remark 10.14.2 The above proof leads in fact to q-analogues; see [81].

A refinement of Theorem 10.3.3 taking into account turns may as well be derived

in this way.

Theorem 10.14.3 Let a+ t ≥ b ≥ a+ s and c+ t ≥ d ≥ c+ s. The number of all

paths from (a,b) to (c,d) staying weakly below the line y = x+ t and above the line

y = x+ s with exactly ℓ NE-turns is given by

∣
∣L
(
(a,b)→ (c,d) | x+ t ≥ y≥ x+ s, NE(.) = ℓ

)∣
∣

= ∑
k∈Z

((
c− a− k(t− s)

ℓ+ k

)(
d− b+ k(t− s)

ℓ− k

)

−
(

c− b− k(t− s)+ s− 1

ℓ+ k

)(
d− a+ k(t− s)− s+ 1

ℓ− k

))

. (10.129)

Some of the results in Section 10.4 allow also for refinements taking into account

turns.

Theorem 10.14.4 Let µ be a positive integer and c≥ µd. The number of all lattice

paths from the origin to (c,d) which stay weakly below x = µy with exactly ℓ NE-

turns is given by

∣
∣L
(
(0,0)→ (c,d) | x≥ µy, NE(.) = ℓ

)∣
∣=

(
c

ℓ

)(
d

ℓ

)

− µ

(
c− 1

ℓ− 1

)(
d + 1

ℓ+ 1

)

,

(10.130)

and with exactly ℓ EN-turns is given by

∣
∣L
(
(0,0)→ (c,d) | x≥ µy, EN(.) = ℓ

)∣
∣

=
c− µd+ 1

c+ 1

(
c+ 1

ℓ

)(
d− 1

ℓ− 1

)

=

(
c+ 1

ℓ

)(
d− 1

ℓ− 1

)

− µ

(
c

ℓ− 1

)(
d

ℓ

)

. (10.131)

Two-rowed arrays may also be used to prove this result, see [78]. A very elegant

alternative proof using a rotation operation on paths is given by Goulden and Serrano

[55].

We conclude this section by stating results on the enumeration of families of non-

intersecting lattice paths with respect to turns. This type of problem originally arose
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from the study of the Hilbert polynomial of certain determinantal and Pfaffian rings

(cf. [84, 86]). The results are due to Krattenthaler [75]. We do not provide proofs.

Suffice it to mention that they work by using two-rowed arrays.

Let A = (A1,A2, . . . ,An) and E = (E1,E2, . . . ,En) be points in Z2. How many

families P = (P1,P2, . . . ,Pn) of non-intersecting lattice paths, where Pi runs from Ai

to Ei, i = 1,2, . . . ,n, are there such that the total number of NE-turns in P is some

fixed number, ℓ say?

We give the following three theorems about the counting of non-intersecting lat-

tice paths with a given number of turns. The first theorem concerns counting families

of non-intersecting lattice paths with given starting and end points with a given num-

ber of NE-turns.

Theorem 10.14.5 Let Ai = (a
(i)
1 ,a

(i)
2 ) and Ei = (e

(i)
1 ,e

(i)
2 ) be lattice points satisfying

a
(1)
1 ≤ a

(2)
1 ≤ ·· · ≤ a

(n)
1 , a

(1)
2 > a

(2)
2 > · · ·> a

(n)
2 ,

and

e
(1)
1 < e

(2)
1 < · · ·< e

(n)
1 , e

(1)
2 ≥ e

(2)
2 ≥ ·· · ≥ e

(n)
2 .

The number of all families P = (P1,P2, . . . ,Pn) of non-intersecting lattice paths Pi :

Ai→ Ei, such that the paths of P altogether contain exactly ℓ NE-turns, is

∑
ℓ1+···+ℓn=ℓ

det
1≤i, j≤n

((
e
( j)
1 − a

(i)
1 + i− j

ℓi + i− j

)(
e
( j)
2 − a

(i)
2 − i+ j

ℓi

))

. (10.132)

The second theorem concerns counting families of non-intersecting lattice paths stay-

ing weakly below x = y, with given starting and end points, by their number of NE-

turns.

Theorem 10.14.6 Let Ai = (a
(i)
1 ,a

(i)
2 ) and Ei = (e

(i)
1 ,e

(i)
2 ) be lattice points satisfying

a
(1)
1 ≤ a

(2)
1 ≤ ·· · ≤ a

(n)
1 , a

(1)
2 > a

(2)
2 > · · ·> a

(n)
2 ,

e
(1)
1 < e

(2)
1 < · · ·< e

(n)
1 , e

(1)
2 ≥ e

(2)
2 ≥ ·· · ≥ e

(n)
2 ,

and a
(i)
1 ≥ a

(i)
2 , e

(i)
1 ≥ e

(i)
2 , i = 1,2, . . . ,n. The number of all families P =

(P1,P2, . . . ,Pn) of non-intersecting lattice paths Pi : Ai→ Ei, which stay weakly below

the line x = y, and where the paths of P altogether contain exactly ℓ NE-turns, is

∑
ℓ1+···+ℓn=ℓ

det
1≤i, j≤n

((
e
( j)
1 − a

(i)
1 + i− j

ℓi + i− j

)(
e
( j)
2 − a

(i)
2 − i+ j

ℓi

)

−
(

e
( j)
1 − a

(i)
2 − i− j+ 1

ℓi− j

)(
e
( j)
2 − a

(i)
1 + i+ j− 1

ℓi + i

))

. (10.133)
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In the third theorem (basically) the same families of non-intersecting lattice paths as

before are counted, but with respect to their number of EN-turns. By a rotation by

180◦ this could be translated into a result about counting families of non-intersecting

lattice paths staying above x = y, with given starting and end points, with respect to

NE-turns.

Theorem 10.14.7 Let Ai = (a
(i)
1 ,a

(i)
2 ) and Ei = (e

(i)
1 ,e

(i)
2 ) be lattice points satisfying

a
(1)
1 < a

(2)
1 < · · ·< a

(n)
1 , a

(1)
2 ≥ a

(2)
2 ≥ ·· · ≥ a

(n)
2 ,

e
(1)
1 ≤ e

(2)
1 ≤ ·· · ≤ e

(n)
1 , e

(1)
2 > e

(2)
2 > · · ·> e

(n)
2 ,

and a
(i)
1 ≥ a

(i)
2 , e

(i)
1 ≥ e

(i)
2 , i = 1,2, . . . ,n. The number of all families P =

(P1,P2, . . . ,Pn) of non-intersecting lattice paths Pi : Ai→ Ei, which stay weakly below

the line x = y, and where the paths of P altogether contain exactly ℓ EN-turns, is

∑
ℓ1+···+ℓn=ℓ

det
1≤i, j≤n

((
e
( j)
1 − a

(i)
1 + i− j

ℓi + i− j

)(
e
( j)
2 − a

(i)
2 − i+ j

ℓi

)

−
(

e
( j)
1 − a

(i)
2 − i− j+ 3

ℓi− j+ 1

)(
e
( j)
2 − a

(i)
1 + i+ j− 3

ℓi + i− 1

))

. (10.134)

10.15 Multidimensional lattice paths

This section and the following three contain enumeration results for lattice paths in

spaces of higher dimension. Most of the time, we shall be concerned with the d-

dimensional lattice Z
d . The coordinates in d-dimensional space will be denoted by

x1,x2, . . . ,xd .

Obviously, as a basis to start with, we need the number of all simple paths in Zd

(that is, paths consisting of positive unit steps in the direction of some coordinate

axis) from (a1,a2, . . . ,ad) to (e1,e2, . . . ,ed). Since these lattice paths can be seen as

permutations of e1−a1 steps in x1-direction, e2−a2 steps in x2-direction, . . . , ed−ad

steps in xd-direction, the answer is a multinomial coefficient,

∣
∣L
(
(a1, . . . ,ad)→ (e1, . . . ,ed)

)∣
∣=

(
∑d

i=1(ei− ai)

e1− a1,e2− a2, . . . ,ed− ad

)

. (10.135)
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10.16 Multidimensional lattice paths bounded by a hy-

perplane

Here, we consider simple lattice paths in Zd+1 restricted by a hyperplane of the form

x0 = ∑d
i=1 µixi where the µi’s, i = 0,1, . . . ,d, are non-negative integers. It should be

noted that the reflection principle does not apply because, in general, the set of steps

is not invariant under reflection with respect to such a hyperplane (except of course

when µi = 1 for all i, in which case the reflection principle does apply).

Theorem 10.16.1 Let µ0,µ1, . . . ,µd be non-negative integers and c0,c1, . . . ,cd in-

tegers such that c0 ≥ ∑d
i=1 µici. The number of all lattice paths from the origin to

(c0,c1, . . . ,cd) not crossing the hyperplane x0 = ∑d
i=1 µixi is given by

∣
∣
∣
∣
∣
L
(
0→ (c0,c1, . . . ,cd) | x0 ≥

d

∑
i=1

µixi

)

∣
∣
∣
∣
∣
=

c0−∑d
i=1 µici + 1

1+∑d
i=0 ci

(
1+∑d

i=0 ci

c0 + 1,c1,c2, . . . ,cd

)

.

(10.136)

We omit the proof. Both proofs of Theorem 10.4.5, the generating function proof

and the proof by use of the cycle lemma, can be extended to proofs of the above

theorem.

To conclude this section, we point out that Sato [105] has extended his generating

function results for the number of paths in the plane integer lattice between two par-

allel lines that we presented in Section 10.5 to the multidimensional case. Similarly,

the result of Niederhausen on the enumeration of paths in the plane integer lattice

subject to a piece-wise linear boundary, which was presented in Section 10.6, has a

multidimensional extension, see [98, Sec. 2.2].

10.17 Multidimensional paths with a general boundary

In this section we generalize the enumeration problem of Section 10.7 to arbitrary

dimensions. Let n1,n2, . . . ,nd be non-negative integers and a and b be increasing

integer functions defined on the box

[0,n] :=
d

∏
i=1

{0,1, . . . ,ni}

such that a ≥ b. a is increasing means that a(i) ≤ a(j) whenever i ≤ j in the usual

product order. We ask for the number of all paths in Zd+1 from (0,b(0)) to (n,a(n))
that always stay in the region “that is bounded by a and b”, by which we mean the

region

{(i,y) : b(i) ≤ y≤ a(i)}. (10.137)
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The generalization of Theorem 10.7.1, due to Handa and Mohanty [62], reads as

follows.

Theorem 10.17.1 Let n1,n2, . . . ,nd be non-negative integers and p = ∏d
i=1 ni. As-

sume that the points in the box [0,n] are 0 = u0,u1,u2, . . . ,up = n, ordered lexico-

graphically. Then the number of all lattice paths in Z
d+1 from (0,b(0)) to (n,a(n))

that always stay in the region (10.137) equals

∣
∣L
(
(0,b(0))→ (n,a(n)) | a≥ y≥ b

)∣
∣

= (−1)∑d
i=1 ni+∏d

i=1 ni det
0≤i, j≤∑d

i=1 ni−1

((
a(ui)−b(u j+1)+ 1

u j+1−ui

))

. (10.138)

The most elegant and illuminating proof is by the use of non-intersecting lattice

paths, see [115]. Sulanke proves in fact a q-analogue in [115].

10.18 The reflection principle in full generality

We have explained the reflection principle in the proof of Theorem 10.3.1 in Sec-

tion 10.3, where it solved the problem of counting simple lattice paths in the plane

bounded by the diagonal. Nothing prevents us from applying the same idea in a

higher-dimensional setting. It is then natural to ask: how far can we go with the re-

flection principle? What is the most general situation where it applies? This question

was raised and answered by Gessel and Zeilberger [53], and, independently, by Biane

[10] in a more restricted setting, see also Grabiner and Magyar [57].

The standard example, which will serve as our running example, is the problem

of counting all paths from (a1,a2, . . . ,ad) to (e1,e2, . . . ,ed) which always stay in

the region x1 ≥ x2 ≥ ·· · ≥ xd . This problem is equivalent to several other enumer-

ation problems, the most prominent being the d-candidate ballot problem (for the

2-candidate ballot problem see Section 10.3) and the problem of counting standard

Young tableaux of a given shape.

In the d-candidate ballot problem there are d candidates in an election, say

E1,E2, . . . ,Ed , E1 receiving e1 votes, E2 receiving e2 votes, . . . , Ed receiving ed votes.

How many ways of counting the votes are there, such that at any stage during the

counting E1 has at least as many votes as E2, E2 has at least as many votes as E3,

etc.? It is evident that by encoding each vote for candidate Ei by a step in xi-direction

this ballot problem is transferred into counting paths from the origin to (e1,e2, . . . ,ed)
which are staying in the region x1 ≥ x2 ≥ ·· · ≥ xd .

A standard Young tableaux of skew shape λ/µ , where λ = (λ1,λ2, . . . ,λd)
and µ = (µ1,µ2, . . . ,µd) are d-tuples of non-negative integers which are in non-

increasing order and satisfy λi ≥ µi for all i, is an arrangement of the numbers
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1,2, . . . ,∑d
i=1(λi− µi) of the form

π1,µ1+1 . . . . . . . . . . . . . . . π1,λ1

π2,µ2+1 . . . π2,µ1+1 . . . . . . . . . π2,λ2

. .
. ... . .

.

πd,µd+1 . . . . . . . . . . . . . . . . . . . . . . . . . πd,λd

such that numbers along rows and columns are increasing. See Chapter [Standard

Young Tableaux by Adin and Roichman] for more information on these important

combinatorial objects. By encoding an entry i located in row j of the tableau by a

step in x j-direction, i = 1,2, . . . ,∑d
i=1(λi−µi), it is easy to see that standard tableaux

of shape λ/µ are in bijection with lattice paths from µ = (µ1,µ2, . . . ,µd) to λ =
(λ1,λ2, . . . ,λd) consisting of positive unit steps in the direction of some coordinate

axis, and which stay in the region x1 ≥ x2 ≥ ·· · ≥ xd .

It is a classical result due to MacMahon [90, p. 175] (see also [91, §103]) that the

solution to the counting problem is given by a determinant, see e.g. [113, Prop. 7.10.3

combined with Cor. 7.16.3].

Theorem 10.18.1 Let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be points in Zd

with a1 ≥ a2 ≥ ·· · ≥ ad and e1 ≥ e2 ≥ ·· · ≥ ed . The number of all lattice paths from

A to E consisting of positive unit steps in the direction of some coordinate axis and

staying in the region x1 ≥ x2 ≥ ·· · ≥ xd equals

|L(A→ E | x1 ≥ x2 ≥ ·· · ≥ xd)|=
( d

∑
i=1

(ei− ai)
)

! det
1≤i, j≤d

(
1

(ei− a j− i+ j)!

)

.

(10.139)

If the starting point A equals the origin, then the above determinant can be re-

duced to a Vandermonde determinant by elementary column operations, and thus it

can be evaluated in closed form. If one rewrites the result appropriately, then one

arrives at the celebrated hook formula due to Frame, Robinson and Thrall [45]. (We

refer the reader to [103, Sec. 3.10] or [113, Cor. 7.21.6] for unexplained terminol-

ogy).

Theorem 10.18.2 Let E = (e1,e2, . . . ,ed) be a point in Zd with e1 ≥ e2 ≥ ·· · ≥ ed ≥
0. The number of all lattice paths from the origin to E consisting of positive unit steps

in the direction of some coordinate axis and staying in the region x1 ≥ x2 ≥ ·· · ≥ xd

equals

|L(A→ E | x1 ≥ x2 ≥ ·· · ≥ xd)|=

(

∑d
i=1 ei

)

!

∏ρ h(ρ)
, (10.140)

where the product is over all cells ρ in the Ferrers diagram of the partition

(e1,e2, . . . ,ed), and h(ρ) is the hook-length of the cell ρ .

It was pointed out by Zeilberger [124] that the formula in (10.139) can be proved

by means of the reflection principle. The natural environment for a “general reflection
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principle” is within the setting of reflection groups. A reflection group is a group

which is generated by all reflections with respect to the hyperplanes H in a given set

H of hyperplanes (in some Rd). We review the facts about reflection groups that are

relevant for us below. For an excellent exposition of the subject see Humphreys [63].

As we already said, the situation of Theorem 10.18.1 will be our running example.

As above, let H be a (finite) set of hyperplanes in some Rd . Let W denote the

group that is generated by the corresponding reflections. By definition, W is a sub-

group of O(d). Some of the elements of W happen to be reflections with respect to a

hyperplane (not necessarily belonging to H ), and let R denote the collection of all

these hyperplanes. Of course, R contains H . In the example when H is the set of

hyperplanes Hi given by

Hi : xi− xi+1 = 0, i = 1,2, . . . ,d− 1, (10.141)

(these are the hyperplanes restricting the paths in Theorem 10.18.1), the group W is

the permutation group Sd , acting on Rd by permuting coordinates. All the reflec-

tions in this group are the interchanges of two coordinates xi and x j, 1 ≤ i < j ≤ d,

corresponding to the transpositions (i, j) in Sd . Hence, the corresponding set R of

hyperplanes in this case is

R = {xi− x j = 0 : 1≤ i < j ≤ d}. (10.142)

The hyperplanes in R cut the space into different regions. The connected com-

ponents of the complement of
⋃

H∈R H in Rd are called chambers. Each chamber is

enclosed by a set R0 of bordering hyperplanes. Clearly, R0 is a subset of R. In our

running example a typical chamber is the region

{(x1,x2, . . . ,xd) : x1 > x2 > · · ·> xd}, (10.143)

which is bounded by the hyperplanes in (10.141). As a matter of fact, in this special

case any chamber has the form

{(x1,x2, . . . ,xd) : xσ(1) > xσ(2) > · · ·> xσ(d)}, (10.144)

where σ is some permutation in Sd .

It can be shown that the reflections with respect to the hyperplanes in R0 generate

the complete reflection group W . Another important fact is that, given one chamber

C, all chambers are w(C), where w runs through the elements of the reflection group

W , all w(C)’s being distinct.

Now we are in the position to formulate and prove Gessel and Zeilberger’s result

[53, Theorem 1]. The motivation for the technical conditions in the statement of the

theorem involving kH and rH is that they make sure that it is not possible to “jump”

over a hyperplane without touching it in a lattice point.

Theorem 10.18.3 Let C be a chamber of some reflection group W , determined by

the hyperplanes in the set R0. Let S be a set of steps which is invariant under W,

i.e., w(S) = S, and with the property that for all hyperplanes H ∈R0 and all steps
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s ∈ S the Euclidean inner product (s,rH) is either 0 or ±kH , where kH is a fixed

constant, rH is a fixed non-zero vector perpendicular to H, both depending only on

the hyperplane H. Furthermore, let A and E be lattice points inside the chamber C

such that also w(A) and w(E) are lattice points for all w ∈W, and such that for all

hyperplanes H ∈R0 the Euclidean inner product (A,rH) is an integral multiple of

kH .

Then the number of all lattice paths from A to E, with exactly m steps from S, and

staying strictly inside the chamber C, equals

|Lm(A→ E;S | inside C)|= ∑
w∈W

(sgnw) |Lm(w(A)→ E;S)| , (10.145)

where sgnw = detw, considering w as an orthogonal transformation of Rd .

Remark 10.18.4 A weighted version of the above theorem in which steps carry

weights such that images of steps under W carry the same weight holds as well.

Proof We may rewrite (10.145) in the form

|Lm(A→ E;S | inside C)|= ∑
(w,P)

sgnw, (10.146)

where the sum is over all pairs (w,P) with w ∈W and P ∈ Lm(w(A)→ E;S). The

proof of (10.146) is by a sign-reversing involution on the set of all such pairs (w,P),
where P touches at least one of the hyperplanes in H0. Sign-reversing has to be

understood with respect to sgnw. Provided the existence of such an involution, the

only contributions to the sum in (10.146) would be by pairs (w,P) where P does

not touch any of the hyperplanes in H0. We claim that this can only be the case for

w = id. In fact, as we already mentioned, it is one of the properties of a reflection

group W that, given one chamber C, all chambers are w(C), w ∈W , and all w(C)’s
are distinct. Therefore, if A is in C and w 6= id, then w(A) must be in a different

chamber and so cannot be in C. Thus, evidently, any path from w(A) to E , the point

E being inside C, must touch at least one of the bordering hyperplanes. This would

prove (10.146) and hence the theorem.

Now we construct the promised involution. Fix some order of the hyperplanes in

H0. Let (w,P) be a pair with w ∈W , P ∈ Lm(w(A)→ E;S), and P touching at least

one of the hyperplanes in H0. Consider all meeting points of P with hyperplanes in

H0. Choose the last meeting point along the path P and denote it by M. M must be a

lattice point because of the assumptions that involve the constants kH . Let H be the

first hyperplane (in the chosen order) that meets P. Then we form the new path P′ by

reflecting the portion of P from the starting point w(A) up to M with respect to H and

leaving the portion from M to P invariant. By assumption, reflection of a step from S

is again a step in S. So, also P′ consists of steps from S only. Evidently, the starting

point of P′ is wHw(A), where wH denotes the reflection with respect to H. Hence,

(wHw,P′) is a pair under consideration for the sum in (10.146), and P′ touches one

of the hyperplanes in H0 (namely H). This mapping is an involution since nothing
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was changed after M. Moreover, we have sgnwHw = −sgnw. Therefore it is also

sign-reversing. This completes the proof of the theorem.

In the case of our running example, W is the group of permutations of coordi-

nates, C is given by (10.143), the set of hyperplanes is (10.141), the set of steps is

{ε1,ε2, . . . ,εd}, with εi denoting the positive unit vector in xi-direction. If Hi is the

hyperplane xi− xi+1 = 0, we may choose rHi
= εi− εi+1, so that all constants kHi

are 1, i = 1,2, . . . ,d− 1. Since the number of lattice paths between two given lattice

points is given by a multinomial coefficient (see (10.135)), it is then not difficult to

see that (10.145) yields (10.139) in this special case.

Which other examples are covered by the general setup in Theorem 10.18.3? The

answer is that all reflection groups that are “relevant” in our context are completely

classified. The meaning of “relevant” is as follows. In order our formula (10.145)

to make sense, the sum on the right-hand side of (10.145) should be finite. So, only

reflection groups that are “discrete” and act “locally finite” will be of interest to us.

It is exactly these reflection groups that are precisely known (see Humphreys [63,

Sec. 4.10], Bourbaki [15, Ch. V, VI]).

The classification of all finite reflection groups says that any such finite reflec-

tion group decomposes into the direct product of irreducible reflection groups, all of

which act on pairwise orthogonal subspaces. These irreducible reflection groups do

not decompose further. There exist four infinite families of types I2(m) (m= 1,2, . . . ),
Ad , Bd =Cd , Dd (d = 1,2, . . . ) of such groups, and the seven exceptional groups of

types G2, F4, E6, E7, E8, and H3, H4. (The indices mark the dimension of the vector

space on which they act faithfully.) In addition, for most of these irreducible finite

reflection groups there exists an affine reflection group, which is infinite. The finite

reflection group is generated by all reflections with respect to the hyperplanes which

run through a given point (we assume that this is the origin). The affine reflection

group is generated by a larger set of hyperplanes, which includes the aforementioned

hyperplanes plus certain translates of them. The reflection groups corresponding to

G2 are the same as those for I2(6), therefore we need not consider G2.

Grabiner and Magyar [57, p. 247] have determined all possible step sets (up to

dilation) for each of the irreducible reflection groups such that the technical con-

ditions of Theorem 10.18.3 are satisfied. Not for all types do there exist such step

sets. It should be noted however that the “empty” step (0,0, . . . ,0) can always be

added to any possible step set. The following list describes all possible instances

of Theorem 10.18.3 when applied to an irreducible finite or affine reflection group.

The results for lattice paths in chambers of affine reflection groups have been made

explicit by Grabiner [56].

Types H3, H4, F4, E8, I2(m): There are no possible step sets.

Type Ad−1: The set of reflecting hyperplanes is R = {xi−x j = 0 : 1≤ i< j≤ d}.
Obviously, the reflection with respect to xi−x j = 0 acts by interchanging the i-th and

j-th coordinate. So, the associated finite reflection group is the group of permutations

of the coordinates x1,x2, . . . ,xd , which is isomorphic to the permutation group Sd . A

typical chamber is C = {(x1,x2, . . . ,xd) : x1 > x2 > · · ·> xd}.
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Possible step sets are the sets

Sk := {w · (1, . . . ,1,0, . . . ,0) : w ∈Sd}, k = 1,2, . . . ,d,

(with k occurrences of 1), all compatible with each other, as well as

S
±
k := {w · (±1, . . . ,±1,0, . . . ,0) : w ∈Sd}, k = 1 and k = d,

(with k occurrences of ±1), which can not be mixed together.

Theorem 10.18.1 is a direct consequence of Theorem 10.18.3 with W =Sd and

S= S1.

The second standard application is the one for S= S
±
d .

Theorem 10.18.5 Let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be points in Z
d ,

with all ai’s of the same parity, all ei’s of the same parity, a1 > a2 > · · · > ad and

e1 > e2 > · · ·> ed . The number of all lattice paths from A to E consisting of m steps

from S
±
d and staying in the region x1 > x2 > · · ·> xd equals

∣
∣L(A→ E;S±d | x1 > x2 > · · ·> xd)

∣
∣= det

1≤i, j≤d

((
m

m+ei−a j

2

))

. (10.147)

We should point out that the lattice paths in Theorem 10.18.5 are in bijection with

configurations in the lock step model, a frequently studied vicious walker model. On

the other hand, the lattice paths in Theorem 10.18.1 are in bijection with configu-

rations in another popular vicious walker model, the so-called random turns model.

We refer the reader to [80, Sec. 2] for more detailed comments on these connections.

The associated affine reflection group, the affine reflection group of type Ãd−1, is

generated by the reflections with respect to the hyperplanes R = {xi− x j = k : 1 ≤
i< j≤ d, k ∈Z}. The elements of this group are called affine permutations. They act

by permuting the coordinates x1,x2, . . . ,xd and adding a vector (k1,k2, . . . ,kd) with

k1 + k2 + · · ·+ kd = 0. A typical chamber † is C = {(x1,x2, . . . ,xd) : x1 > x2 > · · ·>
xd > x1−1}. For enumeration purposes, we inflate this chamber, see (10.148) below.

The probably first explicitly stated enumeration result for lattice paths in an affine

chamber is the result below due to Filaseta [39], although it was not formulated in

that way.

Theorem 10.18.6 Let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be points in Zd

with a1 > a2 > · · ·> ad and e1 > e2 > · · ·> ed . The number of all paths from A to E

consisting of steps from S1 and staying in the chamber

{(x1,x2, . . . ,xd) : x1 > x2 > · · ·> xd > x1−N} (10.148)

of type Ãd−1, equals

|L(A→ E;S1 | x1 > x2 > · · ·> xd > x1−N)|

=
( d

∑
i=1

(ei− ai)
)

! ∑
k1+···+kd=0

det
1≤i, j≤d

(
1

(ei− a j + kiN)!

)

. (10.149)

†Actually, the chambers of affine reflection groups are usually called alcoves.
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See [82] for a q-analogue. It should be noted that Theorem 10.3.3 follows from

the special case of the above theorem where d = 2.

For the step set S±1 consisting of positive and negative unit steps in the direction

of some coordinate axis, we obtain the following result.

Theorem 10.18.7 Let m and N be positive integers. Furthermore, let A=(a1,a2, . . . ,
ad) and E = (e1,e2, . . . ,ed) be vectors of integers in the chamber (10.148) of type

Ãd−1. Then the number of lattice paths from A to E with exactly m steps from S
±
1 ,

which stay in the alcove (10.148), is given by the coefficient of xm/m! in

∑
k1+···+kd=0

det
1≤i, j≤d

(

Ie j−ai+Nki
(2x)

)

, (10.150)

where Iα(x) is the modified Bessel function of the first kind

Iα(x) =
∞

∑
j=0

(x/2)2 j+α

j!( j+α)!
.

The last result for type Ad−1 which we state is the one for paths in an affine

chamber of type Ãd−1 with steps from S
±
d .

Theorem 10.18.8 ([56, Eq. (35)]) Let m and N be positive integers. Furthermore,

let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be vectors of integers in the chamber

(10.148) of type Ãd−1 such that all ai’s have the same parity, and all ei’s have the

same parity. Then the number of lattice paths from A to E with exactly m steps from

S
±
d , which stay in the chamber (10.148), is given by

∣
∣Lm(A→ E;S±d | x1 > x2 > · · ·> xd > x1−N)

∣
∣

= ∑
k1+···+kd=0

det
1≤i, j≤d

((
m

m+ei−a j

2
+Nk j

))

. (10.151)

Types Bd , Cd : The finite reflection groups of types Bd and Cd are identical. The set

of reflecting hyperplanes is R = {±xi±x j = 0 : 1≤ i< j≤ d}∪{xi = 0 : 1≤ i≤ d}.
Obviously, the reflection with respect to xi−x j = 0 acts by interchanging the i-th and

j-th coordinate, the reflection with respect to xi+x j = 0 acts by interchanging the i-th

and j-th coordinate and changing the sign of both, while the reflection with respect

to xi = 0 acts by changing sign of the i-th coordinate.

Here, the possible step sets are only S
±
1 and S

±
d .

The associated finite reflection group is the group of signed permutations of the

coordinates x1,x2, . . . ,xd , which acts by permuting and changing signs of (some of)

the coordinates x1,x2, . . . ,xd . It is frequently called the hyperoctahedral group, since

it is the symmetry group of a d-dimensional octahedron. It is furthermore isomorphic

to the semidirect product (Z/2Z)d ⋊Sd . A typical chamber is C = {(x1,x2, . . . ,xd) :

x1 > x2 > · · · > xd > 0}. We have the following enumeration result for lattice paths

staying in this chamber.
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Theorem 10.18.9 Let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be points in Zd ,

with all ai’s of the same parity, all ei’s of the same parity, a1 > a2 > · · ·> ad > 0 and

e1 > e2 > · · · > ed > 0. The number of all lattice paths from A to E consisting of m

steps from S
±
d and staying in the region x1 > x2 > · · ·> xd > 0 equals

∣
∣Lm(A→ E;S±d | x1 > x2 > · · ·> xd)

∣
∣= det

1≤i, j≤d

((
m

m+ei−a j

2

)

−
(

m
m+ei+a j

2

))

.

(10.152)

The associated affine reflection group now comes in two flavours, types B̃d and

C̃d . A typical chamber of type C̃d is C = {(x1,x2, . . . ,xd) : 1 > x1 > x2 > · · · > xd >
0}, while a typical chamber of type B̃d is C = {(x1,x2, . . . ,xd) : x1 > x2 > · · ·> xd >
0 and x1 + x2 < 1},

Next we quote the two results from [56] on the enumeration of lattice paths in

chambers of type C̃d .

Theorem 10.18.10 ([56, Eq. (23)]) Let m and N be positive integers. Furthermore,

let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be vectors of integers in the chamber

{(x1,x2, . . . ,xn) : N > x1 > x2 > · · ·> xd > 0} (10.153)

of type C̃d . Then the number of lattice paths from A to E with exactly m steps from

S
±
1 , which stay in the chamber (10.153), is given by the coefficient of xm/m! in

det
1≤i, j≤d

(

1

N

2N−1

∑
r=0

sin
πrei

N
· sin

πra j

N
· exp

(

2xcos
πr

N

)
)

. (10.154)

The result for lattice paths with steps from S
±
d is the following.

Theorem 10.18.11 ([56, Eq. (18)]) Let m and N be positive integers. Furthermore,

let A = (a1,a2, . . . ,ad) and E = (e1,e2, . . . ,ed) be vectors of integers in the chamber

(10.153) of type C̃d such that all ai’s are of the same parity, and all ei’s are of the

same parity. Then the number of lattice paths from A to E with exactly m steps from

S
±
d , which stay in the chamber (10.153), is given by

det
1≤i, j≤d

(

2m−1

N

4N−1

∑
r=0

sin
πrλt

N
· sin

πrηh

N
· cosm πr

2N

)

. (10.155)

Enumeration results for lattice paths in a chamber of type B̃d can be also derived

from Theorem 10.18.3. We omit to state them here, but instead refer to [56] and [80,

Theorems 8 and 9].

Type Dd : The set of reflecting hyperplanes is R = {±xi±x j = 0 : 1≤ i< j≤ d}.
Obviously, Dd is a subset of Bd or Cd . The action of the reflection with respect to a

hyperplane±xi± x j = 0 was already explained there.

The associated finite reflection group is the group of signed permutations of the
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Figure 10.27

A Dyck path

coordinates x1,x2, . . . ,xd with an even number of sign changes. It acts by permuting

the coordinates x1,x2, . . . ,xd and changing an even number of signs thereof. A typical

chamber is C = {(x1,x2, . . . ,xd) : x1 > x2 > · · ·> xd−1 > |xd |}.
The associated affine reflection group is generated by the reflections with respect

to the hyperplanes R = {±xi± x j = k : 1≤ i < j ≤ d, k ∈ Z}. The elements of this

group act by permuting the coordinates x1,x2, . . . ,xd , changing an even number of

signs thereof, and adding a vector (k1,k2, . . . ,kd) with k1+k2+ · · ·+kd ≡ 0 (mod 2).
A typical chamber is C = {(x1,x2, . . . ,xd) : x1 > x2 > · · ·> xd−1 > |xd|, and x1+x2 <
1}.

We omit the explicit statement of enumeration results for types Dd and D̃d which

one may derive from Theorem 10.18.3, and instead refer to [56] and [80, Theo-

rems 10 and 11].

Types E6 and E7: There are possible step sets (see [57, p. 247]), but since this

does not yield interesting enumeration results, we refrain from discussing these two

cases further.

A non-example for the application of the reflection principle has been discussed

in Section 10.12, see Theorem 10.12.3.

10.19 q-Counting of lattice paths and Rogers–Ramanu-

jan identities

In this section, we discuss some q-analogues of earlier (plain) enumeration results,

and we briefly present work showing the close link between lattice path enumeration

and the celebrated Rogers–Ramanujan identities.

As we have already seen in the introduction, one source of q-analogues is area

counting of lattice paths. This idea has also been used to construct a q-analogue of

Catalan numbers. Given a Dyck path P (see Section 10.8) from (0,0) to (2n,0),
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let ã(P) := 1
2

(
a(P)− n). In other words, ã(P) is half of the area between P and the

“lowest” Dyck path from (0,0) and (2n,0), that is, the zig-zag path in which up-steps

and down-steps alternate. Alternatively, ã(P) counts the squares with side length
√

2

(rotated by 45◦) which fit between P and the zig-zag path. In Figure 10.27 this zig-

zag path is indicated as the dotted path. For the Dyck path shown with full lines in

the figure, we have ã( .) = 6. This (modified) area statistics is now used to define the

q-Catalan number Cn(q) as the generating function for Dyck paths of length 2n with

respect to the statistics ã( .),

Cn(q) = GF
(
L
(
(0,0)→ (2n,0);{(1,1), (1,−1)}

)
;qã(P)

)
. (10.156)

By decomposing a given Dyck path P uniquely into

P = suP1sdP2,

where su denotes an up-step, sd denotes a down-step, and P1 and P2 are Dyck paths,

one obtains the recurrence

Cn(q) =
n−1

∑
k=0

qkCk(q)Cn−k−1(q), n≥ 1, (10.157)

with initial condition C0(q) = 1. These q-Catalan numbers have been originally in-

troduced by Carlitz and Riordan [25]. We shall say more about these further below.

A different statistics can be derived from turn enumeration (cf. Section 10.14). In

the geometry which we are considering here, turns are peaks and valleys of a Dyck

path. For a peak at lattice point S, denote by x(S) the number of steps along the path

from the origin to S. (Equivalently, x(S) is the ordinate of S.) In the Dyck path in

Figure 10.27, the peaks are at (2,2), (5,3), (10,2), and (12,2). The ordinates are

x
(
(2,2)

)
= 2, x

(
(5,3)

)
= 5, x

(
(10,2)

)
= 10, x

(
(12,2)

)
= 12, The major index of a

Dyck path P, denoted by maj(P), is the sum of all values x(S) over all peaks S of P.

For the Dyck path in Figure 10.27, we have maj( .) = 2+5+10+12= 29. Fürlinger

and Hofbauer [47] used this statistic to define alternative q-Catalan numbers, namely

cn(q) = GF
(
L
(
(0,0)→ (2n,0);{(1,1), (1,−1)}

)
;qmaj(P)

)
. (10.158)

They showed that

cn(q) =
1− q

1− qn+1

[
2n

n

]

q

, (10.159)

the “natural” q-analogue of the Catalan number in view of its explicit formula
1

n+1

(
2n
n

)
. More on these q-Catalan numbers and further work in this direction can

be found in [47, 74, 81]. These ideas have been extended to Schröder paths and num-

bers by Bonin, Shapiro and Simion in [11],

Returning to the q-Catalan numbers of Carlitz and Riordan, we see that by the

choice of bi = 0, i = 0,1, . . . , λi = qi−1z, i = 1,2, . . . , in Theorem 10.9.1, we obtain a
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continued fraction for the generating function of q-Catalan numbers Cn(q), namely

∞

∑
n=0

Cn(q)z
n =

1

1− z

1− qz

1− q2z

1− q3z

1− . . .

. (10.160)

If one substitutes z=−q in this continued fraction, then it becomes the reciprocal

of the celebrated Ramanujan continued fraction (cf. [2, Ch. 7])

1+
q

1+
q2

1+
q3

1+
q4

. . .

=
∑∞

n=0
qn2

(q;q)n

∑∞
n=0

qn(n+1)

(q;q)n

, (10.161)

where (α;q)n := (1−α)(1−αq) · · ·(1−αqn−1), n≥ 1, and (α;q)0 := 1.

Numerator and denominator on the right-hand side of this identity feature in the

equally celebrated Rogers–Ramanujan identities (cf. also [2, Ch. 7])

∞

∑
n=0

qn2

(q;q)n

=
1

(q;q5)∞ (q4;q5)∞
(10.162)

and
∞

∑
n=0

qn(n+1)

(q;q)n

=
1

(q2;q5)∞ (q3;q5)∞
. (10.163)

The fact that we came across the left-hand sides of these identities by starting with

lattice path counting problems may indicate that the Rogers–Ramanujan identities

themselves may be linked with lattice path enumeration. Bressoud [24] was the first

to actually set up such a link. Since then, this connection has been explored much

further and extended in various directions, particularly so in the physics literature,

see [7, 29, 34, 93, 122] and the references therein.

10.20 Self-avoiding walks

A path (walk) in a lattice in d-dimensional Euclidean space is called self-avoiding if

it visits each point of the lattice at most once. One cannot expect useful formulas for
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the exact enumeration of self-avoiding paths (except in extremely simple lattices).

This is the reason why, with a few exceptions, research in this area concentrates on

asymptotic counting: how many self-avoiding walks are there in a particular lattice,

consisting of n steps from a given step set, asymptotically as n tends to infinity? This

is a notoriously difficult question, which has been investigated mainly in the physics

and probability literature. In fact, the self-avoiding walk constitutes a fascinating,

vast subject area, which would need a chapter by itself. We refer the reader to the

standard book [92], and to the more recent volumes [59, 67] which contain more

recent material on or relating to self-avoiding walks.
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groups. Séminaire Lotharingien Combin., 52:Article B52i, 72 pp, 2007.

[81] C. Krattenthaler and S. G. Mohanty. On lattice path counting by major and

descents. Europ. J. Combin., 14:43–51, 1993.

[82] C. Krattenthaler and S. G. Mohanty. q-Generalization of a ballot problem.

Discrete Math., 126:195–208, 1994.

[83] C. Krattenthaler and S. G. Mohanty. Counting tableaux with row and column

bounds. Discrete Math., 136:273–286, 1995.

[84] C. Krattenthaler and M. Prohaska. A remarkable formula for counting nonin-

tersecting lattice paths in a ladder with respect to turns. Trans. Amer. Math.

Soc., 351:1015–1042, 1999.

[85] G. Kreweras. Sur une classe de problèmes de dénombrement liés au treillis
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mants de Padé en deux points. Discrete Math., 153:271–288, 1996.

[103] B. E. Sagan. The Symmetric Group. 2nd edition, Springer–Verlag, New York,

2001.

[104] M. Sato. Generating functions for the number of lattice paths between two

parallel lines with a rational incline. Math. Japonica, 34:123–137, 1989.

[105] M. Sato. Generating functions for the number of lattice paths restricted by

two parallel hyperplanes. J. Statist. Plann. Inference, 34:251–258, 1993.

[106] J. A. Segner. Enumeratio modorum, quibus figurae planaerectilineae per di-

agonales dividuntur in triangula. Novi Commentarii Academiae Scientiarum

Petropolitanae, 7:203–209, 1758/59.

[107] R. Simion and D. Stanton. Octabasic Laguerre polynomials and permutation

statistics. J. Comput. Appl. Math., 68:297–329, 1996.

[108] J. C. Slater. The theory of complex spectra. Phys. Rev., 34:1293–1322, 1929.

[109] J. C. Slater. Quantum Theory of Matter. 2nd ed., McGraw–Hill, New York,

1968.

[110] F. Spitzer. A combinatorial lemma and its application to probability theory.

Trans. Amer. Math. Soc., 82:323–339, 1956.

[111] R. P. Stanley. Catalan addendum. Continuation of Exercise 6.19 from [113];

available at http://math.mit.edu/~rstan/ec/catadd.pdf.



680 References

[112] R. P. Stanley. Enumerative Combinatorics. vol. 1, Wadsworth & Brooks/Cole,

Pacific Grove, California, 1986. Reprinted by Cambridge University Press,

Cambridge, 1998.

[113] R. P. Stanley. Enumerative Combinatorics. vol. 2, Cambridge University

Press, Cambridge, 1999.

[114] J. R. Stembridge. Nonintersecting paths, pfaffians and plane partitions. Adv.

Math., 83:96–131, 1990.

[115] R. A. Sulanke. A determinant for q-counting lattice paths. Discrete Math.,

81:91–96, 1990.

[116] R. A. Sulanke and G. Xin. Hankel determinants for some common lattice

paths. Adv. in Appl. Math., 40:149–167, 2008.
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