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THE FERMAT CUBIC, ELLIPTIC FUNCTIONS, CONTINUED
FRACTIONS, AND A COMBINATORIAL EXCURSION

ERIC VAN FOSSEN CONRAD AND PHILIPPE FLAJOLET

Kindly dedicated to Gérard · · ·Xavier Viennot on the occasion of his sixtieth birthday.

Abstract. Elliptic functions considered by Dixon in the nineteenth century and re-
lated to Fermat’s cubic, x3+y3 = 1, lead to a new set of continued fraction expansions
with sextic numerators and cubic denominators. The functions and the fractions are
pregnant with interesting combinatorics, including a special Pólya urn, a continuous-
time branching process of the Yule type, as well as permutations satisfying various
constraints that involve either parity of levels of elements or a repetitive pattern of
order three. The combinatorial models are related to but different from models of
elliptic functions earlier introduced by Viennot, Flajolet, Dumont, and Françon.

In 1978, Apéry announced an amazing discovery: “ζ(3) ≡
∑

1/n3 is irrational”.
This represents a great piece of Eulerian mathematics of which van der Poorten has
written a particularly vivid account in [59]. At the time of Apéry’s result, nothing
was known about the arithmetic nature of the zeta values at odd integers, and not
unnaturally his theorem triggered interest in a whole range of problems that are now
recognized to relate to much “deep” mathematics [38, 51]. Apéry’s original irrationality
proof crucially depends on a continued fraction representation of ζ(3). To wit:

(1)

ζ(3) =
6

$(0)−
16

$(1)−
26

$(2)−
36

. . .

,

where $(n) = (2n+ 1)(17n(n+ 1) + 5).

(This is not of a form usually considered by number theorists.) What is of special
interest to us is that the nth stage of the fraction involves the sextic numerator n6,
while the corresponding numerator is a cubic polynomial in n. Mention must also be
made at this stage of a fraction due to Stieltjes (to be later rediscovered and extended

Date: July 9, 2005; accepted March 2, 2006; revised March 25, 2006.
Key words and phrases. Combinatorial analysis, elliptic function, continued fraction, permutation,

urn process.
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by Ramanujan [4, Ch. 12]), namely,

(2)

∞∑
k=1

1

(k + z)3
=

1

σ(0)−
16

σ(1)−
26

σ(2)−
36

. . .

,

where σ(n) = (2n+ 1)(n(n+ 1) + 2z(z + 1) + 1).

Unfortunately that one seems to have no useful arithmetic content.
Explicit continued fraction expansions of special functions are really rare [48, 62].

Amongst the very few known, most involve numerators and denominators which, at
depth n in the continued fraction, depend rationally on n in a manner that is at
most quartic. In this context, the Stieltjes-Ramanujan-Apéry fractions stand out. It
then came as a surprise that certain functions related to Dixon’s nineteenth century
parametrization of Fermat’s cubic X3 + Y 3 = 1 lead to continued fractions that pre-
cisely share with (1) and (2) the cubic–sextic dependency of the their coefficients on
the depth n, for instance,

(3)

∫ ∞

0

sm(u)e−u/x du =
x2

1 + b0x3 −
1 · 22 · 32 · 4x6

1 + b1x3 −
4 · 52 · 62 · 7x6

1 + b2x3 −
7 · 82 · 92 · 10x6

. . .

,

where bn = 2(3n+ 1)((3n+ 1)2 + 1).

There, the function sm is in essence the inverse of a 2F1–hypergeometric of type
F [1

3
, 2

3
; 4

3
]; see below for proper definitions. This discovery, accompanied by several

related continued fractions, was first reported in Conrad’s PhD thesis [12] defended
in 2002. It startled the second author with a long standing interest in continued frac-
tions [19, 20, 21], when he discovered from reading Conrad’s thesis in early 2005, that
certain elliptic functions could precisely lead to a cubic–sextic fraction. This paper
describes our ensuing exchanges. We propose to show that there is an interesting orbit
of ideas and results surrounding the Fermat cubic, Dixon’s elliptic functions, Conrad’s
fractions, as well as certain urn models of probability theory, Flajolet’s combinatorial
theory of continued fractions, and finally, the elementary combinatorics of permutations.

Plan of the paper. The Dixonian elliptic functions, “sm” and “cm, are introduced in
Section 1. Their basic properties are derived from a fundamental nonlinear differential
system that they satisfy. It this way, one can prove simply that they parametrize the
Fermat cubic and at the same time admit of representations as inverses of hypergeo-
metric functions. Section 2 presents the complete proof of six continued fractions of the
Jacobi type and three fractions of the Stieltjes type that are associated (via a Laplace
transform) to Dixonian functions—this is the first appearance in print of results from
Conrad’s PhD thesis [12]. Next, in Section 3, we prove that the combinatorics of the
nonlinear differential system defining sm, cm is isomorphic to the stochastic evolution
of a special process, which is an urn of the Pólya type. As a consequence, this urn,
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together with its continuous-time analogue (a two-particle version of a classical binary
branching process) can be solved analytically in terms of Dixonian functions. Con-
versely, this isomorphism constitutes a first interpretation of the coefficients of sm, cm
phrased in terms of combinatorial objects that are urn histories. Our second combina-
torial interpretation is in terms of permutations and it involves peaks, valleys, double
rises, and double falls as well as the parity of levels of nodes in an associated tree
representation; see Section 4. (Several combinatorial models of elliptic functions due
to Dumont, Flajolet, Françon, and Viennot [14, 15, 19, 21, 60] are otherwise known
to involve parity-constrained permutations.) Next, the continued fraction expansions
relative to Dixonian functions can be read combinatorially through the glasses of a
theorem of Flajolet [19] and a bijection due to Françon and Viennot [27], relative to
systems of weighted lattice paths and continued fractions. This is done in Section 5
which presents our third combinatorial model of Dixonian functions: the coefficients
of sm, cm are shown to enumerate certain types of permutations involving a repetitive
pattern of order three. Finally, Section 6 briefly summarizes a few other works where
Dixonian functions make an appearance.

Warning. This paper corresponds to an invited lecture at the Viennotfest and, as
such, its style is often informal. Given the scarcity of the literature relative to Dixonian
functions, we have attempted to provide pointers to all of the relevant works available
to us. Thus, our article attempts to kill three birds with one stone, namely be a tribute
to Viennot, survey the area, and present original results.

Dedication. This paper is kindly dedicated to Gérard · · ·Xavier Viennot on the occa-
sion of his sixtieth birthday, celebrated at Lucelle in April 2005. His works in lattice
path enumeration, bijective combinatorics, and the combinatorics of Jacobian elliptic
functions have inspired us throughout the present work.

1. The Fermat curves, the circle, and the cubic

The Fermat curve Fm is the complex algebraic curve defined by the equation

Xm + Y m = 1.

(Fermat-Wiles asserts that this curve has no nontrivial rational point as soon as m ≥ 3.)
Let’s start with the innocuous looking F2, that is, the circle. Of interest for this

discussion is the fact that the circle can be parametrized by trigonometric functions.
Consider the two functions from C to C defined by the linear differential system,

(4) s′ = c, c′ = −s, with initial conditions s(0) = 0, c(0) = 1.

Then the transcendental functions s, c do parametrize the circle, since

s(z)2 + c(z)2 = 1,

as is verified immediately from the differential system, which implies (s2 + c2)′ = 0. At
this point one can switch to conventional notations and set

s(z) ≡ sin z, c(z) ≡ cos(z).
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Figure 1. The two Fermat curves F2 and F3.

It is of interest to note that these functions are also obtained by inversion from an
Abelian integral1 on the F2 curve:

z =

∫ sin z

0

dt√
1− t2

, cos(z) =
√

1− sin(z)2

For combinatorialists, it is of special interest to note that coefficients in the series
expansions of the related functions

tan z =
sin z

cos z
, sec z =

1

cos z
,

enumerate a special class of permutations, the alternating (also known as “up-and-
down” or “zig-zag”) ones. This last fact is a classic result of combinatorial analysis
discovered by Désiré André around 1880.

1.1. The Fermat cubic and its Dixonian parametrization. Next to the circle,
in order of complexity, comes the Fermat cubic F3. Things should be less elementary
since the Fermat curve has (topological) genus 1, but this very fact points to strong
connections with elliptic functions.

The starting point is a clever generalization of (4). Consider now the nonlinear
differential system

(5) s′ = c2, c′ = −s2,

with initial conditions s(0) = 0, c(0) = 1. These functions are analytic about the
origin, a fact resulting from the standard existence theorem for solutions of ordinary
differential equations. Then, a one line calculation similar to the trig function case
shows that

s(z)3 + c(z)3 = 1,

since (
s3 + c3

)′
= 3s2c2 − 3c2s2 = 0.

Consequently, the pair 〈s(z), c(z)〉 parametrizes the Fermat curve F3, at least locally
near the point (0, 1). The basic properties of these functions have been elicited by

1Given an algebraic curve P (z, y) = 0 (with P a polynomial), an Abelian integral is any integral∫
R(z, y) dz, where R is a rational function.
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Figure 2. Plots of sm(z) [left] and cm(z) [right] for z ∈ R.

Alfred Cardew Dixon (1865–1936) in a long paper [13]. Dixon established that the
functions are meromorphic in the whole of the complex plane and doubly periodic
(that is, elliptic), hence they provide a global parametrization of the Fermat cubic.

From now on, we shall give the s, c functions the name introduced by Dixon (see
Figure 2 for a rendering) and set

sm(z) ≡ s(z), cm(z) ≡ c(z).

Their Taylor expansions at 0 (not currently found in Sloane’s Encyclopedia of Integer
Sequences (EIS) [54]) start as follows:

(6)


sm(z) = z − 4

z4

4!
+ 160

z7

7!
− 20800

z10

10!
+ 6476800

z13

13!
− · · ·

cm(z) = 1− 2
z3

3!
+ 40

z6

6!
− 3680

z9

9!
+ 8880000

z12

12!
− · · · .

In summary, we shall operate with the new notations sm, cm and with the defining
system:

(7) sm′(z) = cm2(z), cm′(z) = − sm2(z); sm(0) = 0, cm(0) = 1.

1.2. A hypergeometric connection. At this point, it is worth noting that one can
easily make the s ≡ sm and c ≡ cm functions somehow “explicit.” Start from the
defining system (System (7) abbreviated here as (Σ)) and apply differentiation (∂):

(8) s′ = c2
∂

=⇒ s′′ = 2cc′
Σ

=⇒ s′′ = −2cs2 Σ
=⇒ s′′ = −2s2

√
s′.

Then “cleverly” multiply by
√
s′ to get, via integration (

∫
),

(9) s′′
√
s′ = −2s2s′

R
=⇒ 2

3
(s′)3/2 = −2

3
s3 +K,

for some integration constant K which must be equal to 2
3
, given the initial conditions.

This proves in two lines(!) that sm is the inverse of an integral,

(10)

∫ sm(z)

0

dt

(1− t3)2/3
= z,
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this integral being at the same time an incomplete Beta integral and an Abelian integral
over the Fermat curve (

∫
dy
y2 ). By the same devices, it is seen that the function cm(z)

satisfies

(11) z =

∫ 1

cm z

dt

(1− t3)2/3
,

and is thus also the inverse of an Abelian integral.
Via expansion and term-wise integration, the latest finding (10) can then be rewritten

in terms of the classical hypergeometric function,

2F1[α, β, γ; z] := 1 +
α · β
γ

z

1!
+
α(α+ 1) · β(β + 1)

γ(γ + 1)

z2

2!
+ · · · .

with special rational values of the parameters. Letting Inv(f) denote the inverse of f
with respect to composition (i.e., Inv(f) = g if f ◦ g = g ◦ f = Id) we state:

Proposition 1 (Dixon [13]). The function sm is the inverse of an Abelian integral
over F3 and equivalently the inverse of a 2F1:

sm(z) = Inv

∫ z

0

dt

(1− t3)2/3
= Inv z · 2F1

[
1

3
,
2

3
,
4

3
; z3

]
.

The function cm is then defined near 0 by cm(z) = 3
√

1− sm3(z), or alternatively
by (11).

The analogy with the sine function is striking. Of course, Proposition 1 is not new
and all this is related to extremely classical material. Dixon [13] discusses the implicit
integral representations (10), (11) and writes concerning the prehistory of his sm, cm:

The only direct references that I have come across elsewhere are certain pas-
sages in the lectures of Professor Cayley and Mr. Forsyth where the integral∫

dx
(1−x3)2/3 was used to illustrate Abel’s Theorem, in the treatises of Legendre,

and Briot and Bouquet, and again in Professor Cayley’s lectures and elsewhere
where it is shewn how to turn the integral into elliptic form, and lastly at the
end of Bobek’s Einleitung in die Theorie der elliptischen Functionen where
expressions are found for the coordinates of any point on the above cubic.

It is fascinating to be able to develop a fair amount of the theory from the differential
equation (7), using only first principles of analysis. (See Dixon’s article as well as
Section 6 of the present paper for more.)

Note 1. Lundberg’s hypergoniometric functions. The question of higher degree general-
izations of the differential system satisfied by sm, cm is a natural one. Indeed, the system
s′ = cp−1, c′ = −sp−1 parametrizes locally near (0, 1) the Fermat curve Xp + Y p = 1. (This
parametrization ceases to be a global one, however, since Fp has genus g = (p−1)(p−2)/2, so
that g ≥ 3 as soon as p ≥ 4; see for instance [39]. Thus, only the case p = 3 leads directly to
elliptic functions.) The corresponding functions are still locally inverses of Abelian integrals
over the Fermat curve, which is verified by calculations similar to Equations (8) and (9). In
fact, a rather unknown high school teacher from Sweden, Erik Lundberg, developed in 1879
an elementary theory (see [44]) of what he called “hypergoniometric functions”, including a
sinualis and a cosinualis that are indexed by rational numbers. Interest in these questions was
recently rekindled by an insightful article of Lindqvist and Peetre published in the American
Mathematical Monthly [42]. The authors discuss various connections to elliptic functions, in
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particular, the reduction of Fermat’s cubic to its Weierstraß normal form by elementary ma-
nipulations. See also a problem [41] in the same issue of the Monthly posed by these authors
together with a remark due to Jon Borwein to the effect that

sm
(π3

3
− x
)

= cm(x).

There π3 is a fundamental constant of Dixonian functions:

(12) π3 = 3
∫ 1

0

dt

(1− t3)2/3
= B

(
1
3
,
1
3

)
≡

Γ
(

1
3

)2
Γ
(

2
3

) =
√

3
2π

Γ
(

1
3

)3
.= 5.29991 62508.

Many more properties of this type are to be found in Dixon’s paper. In particular, one has,

sm(π3 + u) = sm(u), cm(π3 + u) = cm(u),

that is, π3 is a real period. The complete lattice of periods of sm, cm is

Zπ3 ⊕ Zπ3ω, ω := e2iπ/3,

which is consistent with the rotational invariance: sm(ωu) = ω sm(u) and cm(ωu) = cm(u).
It thus corresponds to the hexagonal lattice displayed in Figure 8 and to Case C of the urn
models evoked in Subsection 3.5. �

2. Some startling fractions

In 1907, L. J. Rogers [52] devised two methods to obtain continued fraction expansions
of Laplace transforms of the Jacobian elliptic functions sn, cn (see for instance [63] for
the basic theory of these functions). In his first method, he resorted to integration by
parts. His second method involves a general “addition theorem” [48, 62]; it was to some
extent a rediscovery of a technique introduced by T. J. Stieltjes in [57] that relies on
diagonalization of certain infinite quadratic forms. Stieltjes and Rogers found altogether
three families of continued fractions relative to sn, cn. (A fourth family, implicit in the
work of Rogers, was discovered almost a century later by Ismail and Masson [33].)
Such expansions turn out to be useful: S. Milne in [46] obtained additional expansions
implying explicit Hankel determinant evaluations, which enabled him to prove some
deep results about sums of squares and sums of triangular numbers. Milne’s results in
particular include exact explicit infinite families of identities expressing the number of
ways to write an integer as the sum of 4N2 or 4N(N + 1) squares of integers, where N
is an arbitrary positive integer.

In his PhD thesis defended in 2002, Conrad [12, Ch. 3] applied the integration by
parts method to develop completely new continued fractions arising from Dixon’s elliptic
functions. These fractions fall into six families which are naturally grouped as two sets
of three. The underlying symmetries suggest that this classification into families is
fundamental and complete.

In what follows, we make use of the Laplace transform classically defined by

L(f, s) =

∫ ∞

0

f(u)e−su du.

For our purposes, it turns out to be convenient to set s = x−1. In that case, one has

x−1L
(
uν , x−1

)
= ν!xn,
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which means that the Laplace transform formally maps exponential generating functions
(EGFs) to ordinary generating functions (OGFs):

(13) x−1L

(∑
ν≥0

aν
uν

ν!
, x−1

)
=
∑
ν≥0

aνx
ν .

There are a number of conditions ensuring the analytic or asymptotic validity of this
last equation. In what follows, we shall make use of the integral notation for the
Laplace transformation, but only use it as a convenient way to represent the formal
transformation from EGFs to OGFs in (13).

The continued fractions that we derive are of two types [48, 62]. The first type, called
a J-fraction (J stands for Jacobi), associates to a formal power series f(z) a fraction
whose denominators are linear functions of the variable z and whose numerators are
quadratic monomials:

f(z) =
1

1− c0z −
b1z

2

1− c1z −
b2z

2

. . .

.

(Such fractions are the ones naturally associated to orthogonal polynomials [11].) The
second type2, called in this paper an S-fraction (S stands for Stieltjes) has denominators
that are the constant 1 and numerators that are monomials of the first degree:

f(z) =
1

1−
d1z

1−
d2z

. . .

.

An S-fraction can always be contracted into a J-fraction, with the corresponding for-
mulæ being explicit, but not conversely. Accordingly, from the point of view of the
theory of special functions, an explicit S-fraction expansion should be regarded as a
stronger form than its J-fraction counterparts.

2.1. J-fractions for the Dixon functions. We introduce three classes of formal
Laplace transforms:

(14)

Sn :=

∫ ∞

0

sm(u)n e−u/xdu

Cn :=

∫ ∞

0

sm(u)n cm(u) e−u/xdu

Dn :=

∫ ∞

0

sm(u)n cm(u)2 e−u/xdu

(Since sm3 + cm3 = 1, we can reduce any polynomial in sm and cm to one which is
at most of degree 2 in cm. We let powers of sm grow since smu vanishes at u =

2An alternative name for S-fraction is “regular C-fraction”. What we called J-fraction is also known
as an “associated continued fraction”.
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0.) After integrating by parts and reducing to canonical form using the Fermat cubic
parametrization, we obtain the following recurrences:

(15)

S0 = x, Sn = nxDn−1 (n > 0)

C0 = x− xS2, Cn = nxSn−1 − (n+ 1)xSn+2 (n > 0)

D0 = x− 2xC2, Dn = nxCn−1 − (n+ 2)xCn+2 (n > 0)

These recurrences will provide six J-fractions and three S-fractions.
For Laplace transforms of powers of sm(u), the recurrences (15) yield the fundamental

relation,

(16)
Sn

Sn−3

=
n(n− 1)(n− 2)x3

1 + 2n(n2 + 1)x3 − n(n+ 1)(n+ 2)x3 Sn+3

Sn

,

subject to the initial conditions

S1 =
x2

1 + 4x3 − 6x3 S4

S1

, S2 =
2x3

1 + 20x3 − 24x3 S5

S2

, S3 =
6x4

1 + 60x3 − 60x3 S6

S3

.

Repeated use of the relation (16) starting from the initial conditions then leads to three
continued fraction expansions relative to each of S1, S2, S3.

An entirely similar process applies to Cn. We find

Cn

Cn−3

=
n(n− 1)(n− 2)x3

1 + ((n− 1)n2 + (n+ 1)2(n+ 2))x3 − (n+ 1)(n+ 2)(n+ 3)x3 Cn+3

Cn

,

subject to

C0 =
x

1 + 2x3 − 6x3 C3

C0

, C1 =
x2

1 + 12x3 − 24x3 C4

C1

, C2 =
2x3

1 + 40x3 − 60x3 C5

C2

.

For Dn, we could handle things in a similar manner, but it turns out that there is
a simpler procedure available to us. Differentiating powers of sm(u) with respect to u,
we have

d

du
sm(u)n+1 = (n+ 1) sm(u)n cm2(u).

Given the effect of Laplace transforms on derivatives, it follows that

L(sm(u)n cm(u)2, x−1) =
1

(n+ 1)x
L(smn+1(u), x−1).

We thus obtain no substantially new J-fractions from Dn by this process.

Theorem 1 (Conrad [12]). The formal Laplace transform of the functions smn (n =
1, 2, 3) and smn · cm (n = 0, 1, 2) have explicit J-fraction expansions with cubic denom-
inators and sextic numerators as given in Figure 3.

Consider the list of positive integers in ascending order with each integer listed twice:

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, . . .

There are essentially six ways to break this up into ascending 6-tuples, allowing for
the possibility of missing leading entries in the first 6-tuple. The an terms in the J-
fraction for the Laplace transform of sm(u), sm2(u), sm3(u) are seen to correspond to
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∫ ∞

0
sm u e−u/x du =

x2

1 + 4x3 −
a1x

6

1 + b1x3 −
a2x

6

1 + b2x3 − . . .

where an = (3n− 2)(3n− 1)2(3n)2(3n + 1), bn = 2(3n + 1)
(
(3n + 1)2 + 1

)
.∫ ∞

0
sm2(u) e−u/x du =

2x3

1 + 20x3 −
a1x

6

1 + b1x3 −
a2x

6

1 + b2x3 − . . .

where an = (3n− 1)(3n)2(3n + 1)2(3n + 2), bn = 2(3n + 2)
(
(3n + 2)2 + 1

)
.∫ ∞

0
sm3(u) e−u/x du =

6x4

1 + 60x3 +
a1x

6

1 + b1x3 −
a2x

6

1 + b2x3 − . . .

where an = (3n)(3n + 1)2(3n + 2)2(3n + 3), bn = 2(3n + 3)
(
(3n + 3)2 + 1

)
.∫ ∞

0
cm(u) e−u/x du =

x

1 + 2x3 +
a1x

6

1 + b1x3 −
a2x

6

1 + b2x3 − . . .

where an = (3n− 2)2(3n− 1)2(3n)2, bn = (3n− 1)(3n)2 + (3n + 1)2(3n + 2).∫ ∞

0
sm(u) cm(u) e−u/x du =

x2

1 + 12x3 +
a1x

6

1 + b1x3 −
a2x

6

1 + b2x3 − . . .

where an = (3n− 1)2(3n)2(3n + 1)2, bn = (3n)(3n + 1)2 + (3n + 2)2(3n + 3).∫ ∞

0
sm2(u) cm(u) e−u/x du =

2x3

1 + 40x3 +
a1x

6

1 + b1x3 −
a2x

6

1 + b2x3 − . . .

where an = (3n)2(3n + 1)2(3n + 2)2, bn = (3n + 1)(3n + 2)2 + (3n + 3)2(3n + 4).

Figure 3. The six basic J-fractions relative to Dixonian functions.
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the partitions:

sm(u) : (1, 2, 2, 3, 3, 4), (4, 5, 5, 6, 6, 7), (7, 8, 8, 9, 9, 10), . . . ,

sm2(u) : (2, 3, 3, 4, 4, 5), (5, 6, 6, 7, 7, 8), (8, 9, 9, 10, 10, 11), . . . ,

sm3(u) : (3, 4, 4, 5, 5, 6), (6, 7, 7, 8, 8, 9), (9, 10, 10, 11, 11, 12), . . . ,

These are the three possible “odd” partitions, odd in the sense that the first integer
in each 6-tuple appears exactly once. The three remaining continued fractions, those
of cm, cm · sm, cm · sm2, are associated in the same way with the three possible even
partitions.

2.2. S-fractions for Dixon functions. Starting with the original recurrences of the
previous section(Equation (15), we can use the relation between Sn and Dn−1 to elimi-
nate either the letter S or the letter D. These recurrences reduce to S-fraction recur-
rences, which we tabulate here:

Sn

Cn−2

=
n(n− 1)x2

1 + n(n+ 1)x2 Cn+1

Sn

,
Cn

Sn−1

=
nx

1 + (n+ 1)xSn+2

Cn

Cn

Dn−2

=
n(n− 1)x2

1 + (n+ 1)(n+ 2)x2 Dn+1

Cn

,
Dn

Cn−1

=
nx

1 + (n+ 2)xCn+2

Dn

.

We need initial conditions to generate S-fractions, and the six candidate starting
points give just three S-fraction initial conditions:

S1 = x2 − 2x2C2 =
x2

1 + 2xC2

S1

C0 = x− xS2 =
x

1 + x S2

C0

C1 = x2 − 2xS3 =
x

1 + 2x S3

C1

.

The three that fail to give good initial conditions for an S-fraction are as follows:

S2 = 2x3 − 2x3S2 − 6x2C3 =
2x3

1 + 2x3 + 6x2 C3

S2

S3 = 6x4 − 12x3S3 − 12x2C4 =
6x4

1 + 12x3 + 12x2 C4

S3

C2 = 2x3 − 4x3C2 − 3x2S4 =
2x3

1 + 4x3 + 3x2 S4

C2

.

On iterating the first three relations, we obtain three S-fraction expansions:

Theorem 2 (Conrad [12]). The formal Laplace transform of the functions sm, cm and
sm · cm have explicit S-fraction expansions with cubic numerators,∫ ∞

0

smu e−u/x du =
x2

1 +
a1x

3

1 +
a2x

3

1 +
. . .
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where for r ≥ 1: a2r−1 = (3r − 2)(3r − 1)2, a2r = (3r)2(3r + 1);∫ ∞

0

cmu e−u/x du =
x

1 +
a1x

3

1 +
a2x

3

1 +
. . .

where for r ≥ 1: a2r−1 = (3r − 2)2(3r − 1), a2r = (3r − 1)(3r)2;∫ ∞

0

sm(u) cm(u) e−u/x du =
x2

1 +
a1x

3

1 +
a2x

3

1 +
. . .

where for r ≥ 1: a2r−1 = (3r − 1)2(3r), a2r = (3r)(3r + 1)2.

.

Consider now the set of positive integers taken in increasing order with each integer
written twice:

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, . . .

There are three ways to divide this list into ascending triples if we permit ourselves to
discard leading ones, corresponding to the numerators coefficients an of the S-fractions
associated to cm, sm, and sm · cm:

cm(u) : (1, 1, 2), (2, 3, 3), (4, 4, 5), (5, 6, 6), . . . ,

sm(u) : (1, 2, 2), (3, 3, 4), (4, 5, 5), (6, 6, 7), . . . ,

sm(u) · cm(u) : (2, 2, 3), (3, 4, 4), (5, 5, 6), (6, 7, 7), . . . .

This correspondence suggests that these three continued fractions form a complete set.

Note 2. The cubic X3 + Y 3− 3αXY = 1. Conrad in his dissertation [12], follows Dixon and
examines the larger class of functions corresponding to the cubic

X3 + Y 3 − 3αXY = 1,

for arbitrary α. These do give rise to continued fractions, but ones that are non-standard:
they are not of the S or J type as they involve denominators that are linear (in x) and
numerators that are cubic. �

An alternative derivation of the J-fraction expansions, based on a direct use of the
differential system, will be given in Subsection 5.1, when we discuss a method of André
(Note 8).

3. First combinatorial model: Balls games

Dixonian elliptic functions, as we shall soon see, serve to describe the evolution of a
simple urn model with balls of two colours. In this perspective, the Taylor coefficients
of sm, cm count certain combinatorial objects that are urn “histories”, or equivalently,
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weighted knight’s walks in the discrete plane—this provides our first combinatorial in-
terpretation. Going from the discrete to the continuous, we furthermore find that Dixo-
nian functions quantify the extreme behaviour of a classic continuous-time branching
process, the Yule process. Finally, we show that the composition of the system at any
instant, whether in the discrete or the continuous, case, can be fully worked out and is
once more expressible in terms of Dixonian functions.

3.1. Urn models. Balls games have been of interest to probabilists since the dawn of
time. For instance in his Théorie analytique des probabilités (first published in 1812),
Laplace writes “Une urne A renfermant un très grand nombre n de boules blanches et
noires; à chaque tirage, on en extrait une que l’on remplace par une boule noire; on
demande la probabilité qu’après r tirages, le nombre des boules blanches sera x.” Such
games were later systematically studied by Pólya. What is directly relevant to us here
is the following version known in the standard probability literature as the Pólya urn
model (also Pólya-Eggenberger):

Pólya urn model. An urn is given that contains black and white balls. At
each epoch (tick of the clock), a ball in the urn is chosen at random (but not
removed). If it is black, then α black and β white balls are placed into the urn;
if it is white, then γ black and δ white balls are placed into the urn.

The model is fully described by the “placement matrix”,

M =

(
α β

γ δ

)
.

The most frequently encountered models are balanced, meaning that α+β = γ+ δ, and
negative entries in a matrix M are interpreted as subtraction (rather than addition) of

balls. For instance, Laplace’s original problem corresponds to
(

0 0
1 −1

)
, which is none

other than the coupon collector’s problem in modern terminology. What is sought in
various areas of science is some characterization, exact or asymptotic, of the composition
of the urn at epoch n, given fixed initial conditions. The elementary introduction by
Johnson and Kotz [36] mentions applications to sampling statistics, learning processes,
decision theory, and genetics. Recently, Pólya urn models have been found to be of
interest in the analysis of several algorithms and data structures of computer science;
see especially Mahmoud’s survey [45].

The main character of this section is the special urn defined by the matrix

M12 =

(
−1 2

2 −1

)
.

This can be visualized as a game with balls of either black (‘x’) or white (‘y’) colour. If
a ball is chosen, it is removed [the −1 entry in the matrix] from the urn and replaced
by two balls of the opposite colour according to the rules

(17) x −→ yy, y −→ xx.
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A history3 of length n is, loosely speaking, any complete description of a legal se-
quence of n moves of the Pólya urn. Let conventionally the urn be initialized at time 0
with one black ball (x). A history (of length n) is obtained by starting with the one-
letter word x at time 0 and successively applying (n times) the rules of (17). For
instance,

x −→ yy −→ yxx −→ yyyx −→ xxyyx −→ xyyyyx,

is the complete description of a history of length 5. (The replaced letters have been
underlined for readability.) We let Hn,k be the number of histories that start with
an x and, after n actions, result in a word having k occurrences of y (hence n + 1 − k
occurrences of x). Clearly the total number of histories of length n satisfies

Hn :=
∑

k

Hn,k = n!,

since the number of choices is 1, 2, 3, . . . at times 1, 2, 3 . . . . Here is a small table of all
histories of length ≤ 3:

n = 0 : x

n = 1 : x −→ yy

n = 2 : x −→ yy −→ xxy

x −→ yy −→ yxx

n = 3 : x −→ yy −→ xxy −→ yyxy

x −→ yy −→ xxy −→ xyyy

x −→ yy −→ xxy −→ xxxx

x −→ yy −→ yxx −→ xxxx

x −→ yy −→ yxx −→ yyyx

x −→ yy −→ yxx −→ yxyy

The sequence (Hn,0) starts as 1, 0, 0, 2 for n = 0, 1, 2, 3 and it is of interest to characterize
these combinatorial numbers.

3.2. Urns and Dixonian functions. Let us come back to Dixonian functions. Con-
sider for notational convenience the (autonomous, nonlinear) ordinary differential sys-
tem

(18) Σ :
dx

dt
= y2,

dy

dt
= x2, with x(0) = x0, y(0) = y0,

which is the signless version of (5). In this subsection, we only need the specialization
x(0) = 0, y(0) = 1, but we will make use of the general case (18) in Subsection 3.4
below.

The pair 〈x(t), y(t)〉 with initial conditions x(0) = 0, y(0) = 1 parametrizes the
“Fermat hyperbola”,

y3 − x3 = 1,

3A history is the combinatorial analogue of a trajectory or sample path for combinatorial processes.
See Françon’s work [26] on “histoires” for this terminology and similar ideas.
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which is plainly obtained from Fermat’s “circle” F3 by a vertical reflection. It is natural
to denote this pair of functions by 〈smh(t), cmh(t)〉, these functions smh, cmh being
trivial variants of sm, cm, where the alternation of signs has been suppressed:

(19) smh(z) = − sm(−z), cmh(z) = cm(−z).

A first combinatorial approach to Dixonian functions can be developed in a straight-
forward manner by simply looking at the basic algebraic relations induced by the sys-
tem Σ of (18). For this purpose, we define a linear transformation δ acting on the vector
space C[x, y] of polynomials in two formal variables x, y that is specified by the rules,

(20) δ[x] = y2, δ[y] = x2, δ[u · v] = δ[u] · v + u · δ[v],

u, v being arbitrary elements of C[x, y]. A purely mechanical way to visualize the
operation of δ comes from regarding δ as a rewriting system

(21) x
δ−→ yy, y

δ−→ xx,

according to the first two rules of (20). The third rule means that δ is a derivation, and
it can be read algorithmically as follows: when δ is to be applied to a monomial w of
total degree d in x, y, first arrange d copies of w, where in each copy one instance of a
variable is marked (underlined), then apply the rewrite rule (21) once in each case to
the marked variable, and finally collect the results. For instance,

xyy 7→ xyy, xyy, xyy
δ−→ (yy)yy, x(xx)y, xy(xx), so that δ[xy2] = y4 + 2x3y.

Two facts should now be clear from the description of δ and the definition of histories.

(i) Combinatorially, the nth iterate δn[xayb] describes the collection of all the pos-
sible histories at time n of the Pólya urn with matrix M12, when the initial
configuration of the urn has a balls of the first type (x) and b balls of the second
type (y). This is exactly the meaning of the replacement rule (21). In particular,
the coefficient4,

H
(a,b)
n,k = [xky`]

(
δn[xayb]

)
, k + ` = n+ a+ b

is the number of histories of a Pólya urn that lead from the initial state xayb to
the final state xky`.

(ii) Algebraically, the operator δ does nothing but describe the “logical conse-
quences” of the differential system Σ. In effect, the first two rules of (21) mimic
the effect of a derivative applied to terms containing x = x(t) and y = y(t),
“knowing” that x′ = y2, y′ = x2. Accordingly, the quantity δn[xayb] represents
an nth derivative,

δn[xayb] =
dn

dtn
x(t)ay(t)b expressed in x(t), y(t),

where x(t), y(t) solve the differential system x′ = y2, y′ = x2.

4If f =
∑

m,n fm,nxmyn, then the notation [xmyn]f is used to represent coefficient extraction:
[xmyn]f ≡ fm,n.
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In summary, we have a principle5 whose informal statement is as follows.

Equivalence principle. The algebra of a nonlinear autonomous system that is
monomial and homogeneous, like Σ in (18), is isomorphic to the combinatorics
of an associated Pólya urn.

This principle can be used in either direction. For us it makes it possible to analyse the
Pólya urn M12 in terms of the functions sm, cm that have already been made explicit in
Proposition 1. In so doing, we rederive and expand upon an analysis given in a recent
paper on analytic and probabilistic aspects of urn models [22]. Here is one of the many
consequences of this equivalence.

Theorem 3 (First combinatorial interpretation). The exponential generating function
of histories of the urn with matrix M12 that start with one ball and terminate with balls
that are all of the other colour is∑

n≥0

Hn,0
zn

n!
= smh(z) =

sm(z)

cm(z)
= − sm(−z).

The exponential generating function of histories that start with one ball and terminate
with balls that are all of the original colour is∑

n≥0

Hn,n+1
zn

n!
= cmh(z) =

1

cm(z)
= cm(−z).

Proof. This is nothing but Taylor’s formula. Indeed, for the first equation, we have by
the combinatorial interpretation of the differential system:

Hn,0 = δn[x]|x=0,y=1 .

But from the algebraic interpretation,

δn[x]|x=0,y=1 =
dn

dtn
smh(t)

∣∣∣∣
t=0

.

The result then follows. �

Theorem 3 thus provides a first combinatorial model of Dixonian functions in terms
of urn histories.

Note 3. On Dumont. Though ideas come from different sources, there is a striking parallel
between what we have just presented and some of Dumont’s researches in the 1980’s and
1990’s. Dumont gives an elegant presentation of Chen grammars in [18]. There, he considers
chains of general substitution rules on words: such chains are partial differential operators in
disguise. For instance, our δ operator is nothing but

δ = x2 ∂

∂y
+ y2 ∂

∂x
.

Dumont has shown in [18] that operators of this type can be used to approach a variety of
questions like rises in permutations, Bell polynomials, increasing trees, parking functions, and

5In this paper, we have chosen to develop a calculus geared for Dixonian functions. Our approach
is in fact more general and it can be applied to any balanced urn model, as considered in [22] corre-
sponding to a monomial system, of the form {x′ = xαyβ , y′ = xγyδ}, which is homogeneous in the
sense that α + β = γ + δ.
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uP = (p, q)

r
r�u

r r
?u

uP = (p, q)

r multiplicity p
r�u

r multiplicity qr
?u

Figure 4. The Bousquet-Mélou-Petkovšek moves (left) and their ver-
sion with multiplicities (right) for the M12 urn model.

Pólya grammars. The interest of such investigations is also reinforced by consideration of the
trivariate operator

yz
∂

∂x
+ zx

∂

∂y
+ xy

∂

∂z
,

itself related to the differential system

x′ = yz, y′ = zx, z′ = xy,

and to elliptic functions of the Jacobian type, which had been formerly researched by Dumont
and Schett; see [14, 15, 53] and Subsection 3.5 below for further comments on the operator
point of view. �

Note 4. Knight’s walks of Bousquet-Mélou and Petkovšek. Theorem 3 is somehow related to
other interesting combinatorial objects (Figure 4). Say we only look at the possible evolutions
of the urn, disregarding which particular ball is chosen. An urn with p black balls and q white
balls may be represented in the Cartesian plane by the point P with coordinates (p, q). A
sequence of moves then defines a polygonal line, P0P1 · · ·Pn with P0 = (1, 1), each move
−−→
PjP j+1 being of type either β = (−1,+2) [i.e., one step West, two steps North] when a black
ball is picked up or ω = (+2,−1) [i.e., two steps East, one step South] otherwise. This defines
a random walk in the first quadrant that makes use of two types of knight moves on the
chessboard. The enumeration of these walks is a nontrivial combinatorial problem that has
been solved recently by Bousquet-Mélou and Petkovšek in [7]. They show for instance that
the ordinary generating function of walks that start at (1, 1) and end on the horizontal axis is

G(x) =
∑
i≥0

(−1)i
(
ξ〈i〉(x)ξ〈i+1〉(x)

)2
,

where ξ is a branch of the (genus 0) cubic xξ − x3 − ξ3 = 0:

ξ(x) = x2
∑
m≥0

(
3m

m

)
x3m

2m + 1
.

There, ξ〈i〉 = ξ ◦ · · · ◦ ξ is the ith iterate of ξ. These walks have a merit [7]: they provide
an extremely simple example of a (multivariate!) linear recurrence with constant coefficients
whose generating function is highly transcendental (in fact, not even holonomic).

In order to obtain a complete history from a knight’s walk, one has to add some supplemen-
tary information, namely, which ball is chosen at each stage. This corresponds to introducing
multiplicative weights. The rule is then as follows. For a walk with a β-step that starts at
point (p, q) (a black ball is chosen) the weight is p; dually, for an ω-step the weight is q. �
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In summary, at this stage, we have available three variants of the interpretation of
the Taylor coefficients of the Dixonian functions sm, cm provided by Theorem 3: (i) the
enumeration of urn histories relative to the M12 urn; (ii) the iterates of the special
operator δ = x2∂y + y2∂x in the style of Dumont; (iii) multiplicatively weighted knight
walks of the type introduced by Bousquet-Mélou and Petkovšek.

Note 5. A probabilistic consequence: extreme large deviations. From a probabilistic stand-
point, the Pólya urn model is a discrete time Markov chain with a countable set of states
embedded in Z × Z. The number of black balls at time n then becomes a random variable,
Xn. Theorem 3 quantifies the probability (P) of extreme large deviations of Xn as

P(Xn = 0) =
Hn,0

n!
= [zn] smh(z) = [zn]− sm(−z).

Then by an easy analysis of singularities, one finds that this quantity decreases exponentially
fast,

P(X3ν+1 = 0) ∼ c
(π3

3

)−3ν−1
, where

π3

3
=
√

3
6π

Γ
(

1
3

)3

,

a quantity already encountered in Equation (12). For instance, we have to 10 decimal places
(10D): ∣∣∣∣ [z28] sm(z)

[z31] sm(z)

∣∣∣∣1/3
.= 1.76663 87502 · · · ;

π3

3
.= 1.76663 87490 · · · .

One can refer to the calculation of [22], but is is just as easy to note that Proposition 1 provides
directly the dominant positive singularity ρ of smh(z) as a special value of the fundamental
Abelian integral. �

3.3. A continuous-time branching process. The Dixonian functions also make it
possible to answer questions concerning chain reactions in a certain form of particle
physics. You have two types of particles, say, foatons and viennons. Any particle
lives an amount of time T that is an exponentially distributed random variable (i.e.,
P(T ≥ t) = e−t), this independently of the other particles; then it disintegrates into
two particles of the other type. Thus a foaton gives rise to two viennons and a viennon
gives rise to two foatons (see Figure 5). What is the composition of the system at some
time t ≥ 0, assuming one starts with one foaton?

Figure 5. A truncated view of a tree of particles provided by the Yule
process (the ordinate of each particle represents the time at which it splits
into two particles of the other type).
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The resemblance with the Pólya urn should be clear (with a foaton being a black x
and a viennon a white y). First, considering only the total population of particles, one
gets what is perhaps the simplest continuous-time branching process, classically known
as the Yule process. (For useful information regarding this process, see for instance
the recent articles by Chauvin, Rouault, and collaborators [9, 10].) Let Sk(t) be the
probability that the total population at time t is of size k. Introduce the bivariate
generating function,

Ξ(t;w) =
∞∑

k=1

Sk(t)w
k.

Examination of what happens between times 0 and dt leads to the recurrence

(22) Sk(t+ dt) = (1− dt)Sk(t) + dt
∑

i+j=k

Si(t)Sj(t),

which is none other than the usual “backwards equation” of Markov processes. Then,
one has

S ′k(t) + Sk(t) =
∑

i+j=k

Si(t)Sj(t).

This induces a nonlinear equation satisfied by Ξ, namely,

Ξ′(t;w) + Ξ(t;w) = Ξ(t;w)2, Ξ(0, w) = w,

where derivatives are implicitly taken with respect to the time parameter t. The solution
of this ordinary differential equation is easily found by separation of variables,

Ξ(t;w) =
we−t

1− w(1− e−t)
,

which yields

(23) Sk(t) = e−t
(
1− e−t

)k−1
, k ≥ 1.

In summary, the size of the population at time t obeys a geometric law of parameter
(1 − e−t), with expectation et. (The previous calculations are of course extremely
classical: they are disposed of in just six lines in Athreya and Ney’s treatise [3, p. 109].)

The result of (23) shows that any calculation under the discrete urn model can be
automatically transferred to the continuous branching process. Precisely, let H be the
set of all histories of the Pólya urn with matrix M12. Let K ⊆ H be a subset of H
and let K(z) be the exponential generating function of K. Then, by virtue of (23), the
probability that, at time t, the Yule process has evolved according to a history that lies
in K is given by

(24) e−tK
(
1− e−t

)
.

This has an immediate consequence.

Proposition 2. Consider the Yule process with two types of particles. The probabilities
that particles are all of the second type at time t are

X(t) = e−t smh(1− e−t), Y (t) = e−t cmh(1− e−t),

depending on whether the system at time 0 is initialized with one particle of the first
type (X) or of the second type (Y ).
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Like its discrete-time counterpart, this proposition can be used to quantify extreme
deviations: the probability that all particles be of the second type at time t is asymptotic
to

(25) e−t smh(1), smh(1)
.
= 1.20541 51514.

At time t, the Yule system has expected size et. On the other hand, for the discrete
process, the probability at a large discrete time that balls or particles be all of one colour
is exponentially small. These two facts might lead to expect that, in continuous time,
the probability of all particles to be of the same colour is doubly (and not singly, as
in Equation (25)) exponentially small. The apparent paradox is resolved by observing
that the extreme large deviation regime is driven by the very few cases where the system
consists of O(1) particles only, an event whose probability is exponentially small (but
not a double exponential).

Note 6. An alternative direct derivation. The memoryless nature of the process implies, like
in (22), the differential system:

X(t) + X ′(t) = Y (t)2, Y (t) + Y ′(t) = X(t)2,

with initial conditions X(0) = 0, Y (0) = 1. This system closely resembles some of our earlier
equations. By simple algebra [first multiply by et, then apply the change of variables t 7→ e−t],
the solution in terms of Dixonian functions results. �

3.4. Dynamics of the Pólya and Yule processes. The previous sections have quan-
tified the extreme behaviour of the processes—what is the probability that balls be all
of one colour? In fact, a slight modification of previous arguments gives complete access
to the composition of the system at any instant.

Consider once more the differential system

(26)
dx

dt
= y2,

dy

dt
= x2, with x(0) = x0, y(0) = y0

(this repeats Equation (18)). The initial conditions are now treated as free parameters
or formal variables. This system can be solved exactly by means of previously exposed
techniques, and, by virtue of the equivalence principle, its solution describes combinato-
rially the composition of the urn, not just the extremal configurations (that correspond
to x0 = 0, y0 = 1).

First, the solution to the system. Following the chain of (8) and (9), one finds

x′(t)3/2 = x(t)3 + ∆3, ∆3 := y3
0 − x3

0,

where the initial conditions have been taken into account. This last equation can be
put under the form

x′

(x3 + ∆3)2/3
= 1,

which, after integration, gives

(27) ∆t =

∫ x/∆

x0/∆

dw

(1 + w3)2/3
.
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Figure 6. A plot of the coefficients of 1
n!
δn[x] for n = 50 and n = 150

illustrating the asymptotically gaussian character of coefficients.

The function smh(t) is also defined by an inversion of an integral,

t = I(smh(t)), where I(y) :=

∫ y

0

dw

(1 + w3)2/3
,

as is easily verified by the technique of Section 1.2. Then Equation (27) provides

(28) x(t) = ∆ smh
(
∆t+ I

(x0

∆

))
,

which constitutes our main equation.
Second, the interpretation of δ in Section 3.2 implies that δn[x] expresses the com-

position of the urn at the nth stage of its operation when it has been initialized with
one ball of the first type (x). Thus the quantity

(29) F (t, x0) =
∑
n≥0

tn

n!
(δn[x])x 7→x0, y 7→1

is none other than the x(t) solution to the system (26) initialized with x(0) = x0 and
y(0) = 1. On the other hand, δn[x] represents the nth derivative of x ≡ x(t) expressed
as a function of x and y.

There results from Equations (28), (29) and the accompanying remarks an expression
for the bivariate generating function of histories with t marking length and x0 marking
the number of balls of the first kind. Switching to more orthodox notations (x0 7→ x),
we state:

Proposition 3. The composition of the M12 urn at all discrete instants is described
by ∑

n,k≥0

Hn,kx
k z

n

n!
= (1− x3)1/3 smh

(
(1− x3)1/3z +

∫ x(1−x3)−1/3

0

ds

(1 + s3)2/3

)
,

=

(
x+ y2 z

1!
+ 2x2y

z2

2!
+ (4xy3 + 2x4)

z3

3!
+ · · ·

)
y=1

,

where Hn,k is the number of histories of length n of the urn initialized with x and
terminating with xkyn+1−k.
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(M) (Σ) (δ) Type
A

(−2 3
4 −3

)
x′ = x−1y3, y′ = x4y−2 x−1y3 ∂

∂x + x4y−2 ∂
∂y ℘ [22, 47];

also Dixonian (§6.1)
B

(−1 2
3 −2

)
x′ = y2, y′ = x3y−1 y2 ∂

∂x + x3y−1 ∂
∂y

C
(−1 2
2 −1

)
x′ = y2, y′ = x2 y2 ∂

∂x + x2 ∂
∂y Dixonian

D
(−1 3
3 −1

)
x′ = y3, y′ = x3 y3 ∂

∂x + x3 ∂
∂y lemniscatic [22]

E
(−1 3
5 −3

)
x′ = y3, y′ = x5y−2 y3 ∂

∂x + x5y−2 ∂
∂y

F
(−1 4
5 −2

)
x′ = y4, y′ = x5y−1 y4 ∂

∂x + x5y−1 ∂
∂y

Figure 7. The six elliptic cases of a 2 × 2 Pólya urn: matrix (M),
system (Σ), operator (δ), and type, following [22].

This statement is the incarnation of Theorem 1 of [22] in the case of the M12 urn
model. From it, one can for instance deduce by an application of the Quasi-powers
Theorem of analytic combinatorics [22, 24, 31]: The distribution of the number of balls
of the first kind, equivalently the sequence of coefficients of the homogeneous polynomial
δn[x], is asymptotically normal. See Figure 6.

The transfer from discrete to continuous time afforded by (24) now permits us to
deduce the composition of the Yule process from the Pólya urn via the transformation
K(z) 7→ e−tK(1− e−t).

Proposition 4. In the Yule process with two types of particles, the probability generating
function of the number of particles of the first type (x) at time t is

e−t(1− x3)1/3 smh

(
(1− x3)1/3(1− e−t) +

∫ x(1−x3))−1/3

0

ds

(1 + s3)2/3

)
.

By means of the continuity theorem for characteristic functions, it can be verified
that the distribution of the number of particles of the first type at large times is asymp-
totically exponential with mean ∼ et/2. (In this case, the distribution is essentially
driven by the size of the system.)

3.5. Complements regarding elliptic urn models. As already noted, the operator
δ of the M12 urn is a partial differential operator,

δ[f ] = y2 ∂

∂x
f + x2 ∂

∂y
f,

which is linear and first order. In a recent study, Flajolet, Gabarró and Pekari [22],
investigate the general class of 2 × 2 balanced urn schemes corresponding to matrices
of the form

(30) M =

(
−a s+ a

s+ b −b

)
.

Any such urn is modelled by a particular partial differential operator,

(31) δ = x1−ays+a ∂

∂x
+ xs+by1−b ∂

∂y
, (a, b, s > 0).
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Figure 8. The six lattices
(

A B C
D E F

)
corresponding to urn models that

are exactly solvable in terms of elliptic functions.

The bivariate generating function of urn histories (a prototype is provided by Propo-
sition 3 under the M12 scenario) is in each case expressed in terms of a function ψ
that is determined as the inverse of an Abelian integral over the Fermat curve Fp of
degree p = s + a + b (so that the genus is (p − 1)(p − 2)/2). Reference [22] starts by
building the bivariate generating function of histories as H := ezδ[x]; then the method
of characteristics is applied in order to solve a partial differential equation satisfied
by H. Elementary conformal mapping arguments eventually lead to a complete char-
acterization of all urn models and operators (31) such that H is expressible in terms of
elliptic functions. (Caveat: In [22], a model is said to be solvable by elliptic functions
if its “base” function ψ is a power, possibly fractional, of an elliptic function. Under
this terminology, some of the models eventually turn out to be elliptic, though they
are a priori associated to Fermat curves of genus > 1.). It is found in [22] that there
are altogether only six possibilities, which correspond to regular tessellations of the
Euclidean plane; see Figures 7 and 8.

This classification nicely complements some of Dumont’s researches in the 1980s;
see [16]. In particular Dumont developed a wealth of combinatorial connections between
the Jacobian elliptic function, Schett’s operator (which involves three variables rather
than two), and permutations. The Dumont–Schett result should in particular provide
a complete analytic model for the urn with balls of three colours,

M =

 −1 1 1

1 −1 1

1 1 −1

 ,

corresponding to the trivariate operator introduced by Schett [53]

(32) δ = yz
∂

∂x
+ zx

∂

∂y
+ xy

∂

∂z
.
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Observe that very few models are known to be explicitly solvable in the case of urns
with three types of balls or more6.

The proofs obtained in the present paper rely on the basic combinatorial properties of
an associated nonlinear differential system. They are purely “conceptual”, thereby by-
passing several computational steps of [22], in particular the method of characteristics.
The process based on ordinary differential systems that has been developed here for the
M12 urn is in fact applicable to all urns of type (30) that are balanced (α+β = γ+ δ).
This observation suggests, more generally, that interesting combinatorics is likely to be
found amongst several nonlinear autonomous systems. Perhaps something along the
lines of Leroux and Viennot’s combinatorial-differential calculus [40] is doable here.

4. Second model: permutations and parity of levels

Our second combinatorial model of Dixonian functions is in terms of permutations.
It needs the notion of level of an element (a value) in a permutation, itself related to
a basic tree representation, as well as a basic classification of elements into four local
order types (peaks, valleys, double rises, and double falls).

A permutation can always be represented as a tree, which is binary, rooted, and
increasing (see Stanley’s book [55, p. 23]). Precisely, let w = w1w2 · · ·wn be a word on
the alphabet Z>0 without repeated letters. A tree denoted by Tree(w) is associated to
a word w by the following rules.

— If w is the empty word, then Tree(w) = ε is the empty tree.
— Else, let ξ = min(w) be the least element of w. Factor w as w′ξw′′. The tree

Tree(w) is then inductively defined by

Tree(w) = 〈Tree(w′), ξ,Tree(w′′)〉,

that is, the root is ξ, and Tree(w′),Tree(w′′) are respectively the left and right
subtrees of the root.

The tree so obtained7 is such that the smallest letter of the word appears at the root,
and the labels of any branch stemming from the root go in increasing order. This

construction applies in particular to any permutation, σ =

(
1 2 · · · n

σ1 σ2 · · · σn

)
, once

it is written as the equivalent word σ1σ2 · · ·σn. An infix order traversal of the tree,
a projection really, gives back the permutation from the increasing tree, so that the
correspondence is bijective; see Figure 9. Observe also that we are dealing with binary
trees in the usual sense of computer science [37, §2.3], a nonempty node being of one
of four types: binary, nullary (leaf), left-branching, and right-branching.

6Puyhaubert’s thesis [50] provides a discussion of 3 × 3 triangular cases. On the other hand,
probabilistic techniques yielding asymptotic information are available for urns with an arbitrary number
of colours: see for instance recent studies by Janson and Pouyanne [35, 49]. In particular, Pouyanne
(following a suggestion of Janson) obtains results relative to the Yule process with k types of balls.
The rules are of the form x1 −→ x2x2, x2 −→ x3x3, . . . , xk−1 −→ xkxk, xk −→ x1x1, and a curious
“phase transition” is found to occur at k = 9.

7In [55, p. 41], Stanley writes that such models of permutations have been “extensively developed
primarily by the French” and refers to Foata-Schützenberger [25].
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9

6

10
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5

4
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2

1

8        9        6       4        1     10      5        7        2        3

Figure 9. A permutation of length 10 and its corresponding increasing
binary tree.

Definition 1. Given a rooted tree, the level of a node ν is defined as the distance,
measured in the number of edges, between ν and the root. The level of an element
(letter) in a word comprised of distinct letters is the level of the corresponding node in
the associated tree.

The statement below also makes use of a fundamental classification of local order
types in permutations; see in particular Françon and Viennot’s paper [27].

Definition 2. Let a permutation be written as a word, σ = σ1 · · ·σn. Any value σj can
be classified into four local order types called peaks, valleys, double rises, and double
falls, depending on its order relative to its neighbours:

Peaks Valleys Double rises Double falls
σj−1 < σj > σj+1 σj−1 > σj < σj+1 σj−1 < σj < σj+1 σj−1 > σj > σj+1

For definiteness, border conditions must be adopted, and we shall normally opt for
one of the two choices,

σ0 = −∞, σn+1 ∈ {−∞,+∞}.

(For instance, an alternating permutation is characterized by the fact that it has only
peaks and valleys.) The corresponding quadrivariate exponential generating function
of all permutations was first determined by Carlitz.

Theorem 4 (Second combinatorial model). Consider the class X of permutations bor-
dered by (−∞,−∞) such that elements at any odd level are valleys only. Then the
exponential generating function is

X(z) = smh(z) = − sm(−z).

For the class Y of permutations also bordered by (−∞,−∞) such that elements at any
even level are valleys only, the exponential generating function is

Y (z) = cmh(z) = − cm(−z).
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Proof. This statement8 easily results from first principles of combinatorial analysis. The
interpretation is obtained by examining the differential system

X ′(z) = Y (z)2, Y ′(z) = X(z)2, X(0) = 0, Y (0) = 1,

or, under an equivalent integral form,

X(z) =

∫ z

0

Y (w)2 dw, Y (z) = 1 +

∫ z

0

X(w)2 dw.

It suffices to note that, if A and B are two combinatorial classes with exponential
generating functions A and B, then the product A ·B enumerates the labelled product
A ? B. Also, the integral

∫
A · B enumerates all well-labelled triples 〈α, ξ, β〉, where ξ

is the smallest of all labels and α, β are of respective types A,B.
By the preceding remarks, we see that X, Y are the generating function of increasing

trees satisfying the relations

X = 〈Y ,min,Y〉, Y = ε+ 〈X ,min,X〉.

It is then apparent that trees of type X have only double nodes at odd levels, while
those of type Y have only double nodes at even levels. The statement of the proposition
finally results from the correspondence between tree node and permutation value types,
to wit,

double node ↔ valley , left-branching node ↔ double fall,

leaf ↔ peak, right-branching node ↔ double rise,

which is classical (and obvious via projection). �

Consequently, for n = 3ν, the number of permutations of type Y is Yn = n![zn] cmh(z).
We have

Y0 = 1 Y2 = {ε} (the empty permutation)

Y3 = 2 Y2 = {213, 312},
which agree with (6). In order to form the shapes of trees of type Y , one can use the
grammar represented graphically as (� represents the empty tree)

Y = � + uu
@

@

u
�

�

Y
J
J

Y






Y
J
J

Y






This automatically generates trees whose sizes are multiples of 3. (The number of such
tree shapes of size n = 3ν is the same as the number of quaternary trees of size ν,
namely, 1

3ν+1

(
4ν
ν

)
). The increasing labellings of these trees in all possible ways followed

by projections provide a way of listing all permutations of type Y . (See Figure 10 for
an illustration of this construction.) In this way, it is found that there are 4 legal tree
shapes of type Y for n = 3ν = 6, each of which admitting 10 increasing labellings,
which globally corresponds to Y6 = 40, in agreement with (6).

8As we learnt in May 2005, this result was also obtained independently by Dumont at Ouagadougou
in 1988; see his unpublished note [17].
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1
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9

10

11

12

12 6 10 3 1 2 5 11 8 9 4 7

Figure 10. The construction of a Y-permutation enumerated by cm(z).
The elements at even level (underlined) are valleys only.

Similarly, trees corresponding to X are determined by the grammar

X = uY
@

@

Y
�

�

which yields, again in agreement with (6):

X1 = 1 : X1 = {1},
X4 = 4 : X4 = {3241, 4231, 1324, 1423}.

Note 7. Parity-based permutation models for elliptic functions. There already exist several
combinatorial models of the Jacobian elliptic functions sn, cn due to Viennot, Flajolet and
Dumont9 and discovered around 1980. These all involve permutations restricted by a parity
condition of sorts.

— Viennot [60] developed a model based on the differential system satisfied by the Ja-
cobian elliptic functions, namely

x′ = yz, y′ = −zx, z′ = −k2xy,

where x, y, z represent the classical Jacobian functions sn, cn, dn. This leads to an
interpretation of the coefficients in terms of a class of permutations called by Viennot
“Jacobi permutations”. Such permutations satisfy parity restrictions (mimicking the
differential system) and are enumerated by Euler numbers.

— Flajolet [19] observed, from continued fraction theory, that the quantity

(−1)n(2n)! · [z2nα2k] cn(z, α)

counts alternating permutations of length 2n that have k valleys of even value.
— Dumont [14, 15] provided an elegant interpretation of the coefficients of sn, cn, dn in

terms of the parity of peaks of cycles in the cycle decomposition of permutations.
Dumont’s results are based on consideration of Schett’s partial differential operator,
already encountered in (32).

Theorem 4 adds another parity-based permutation model to the list. �

9These authors were answering a question of Marco Schützenberger in the 1970’s. Schützenberger
first conjectured that Jacobian elliptic functions should have combinatorial content since their coeffi-
cients involve both factorial and Euler numbers.
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5. Third model: permutations and repeated patterns

Our third combinatorial model of Dixonian functions is again in terms of permuta-
tions. It relies on repeated permutations, much in the style of Flajolet and Françon’s
earlier interpretation of Jacobian (sn, cn) elliptic functions [21], but different. It is no-
table that the Flajolet-Françon permutations are based on a binary pattern, whereas
those needed here involve a symmetry of order three. The type of an element (a value)
in a permutation is, as in the previous section, any of peak, valley, double rise, double
fall.

Definition 3. An r–repeated permutation of size n is a permutation such that for
each j with j ≥ 0, the elements of value in {jr+ 1, jr+ 2, . . . , jr+ r− 1} ∩ {1, . . . , n}
are all of the same local order type, namely all peaks, valleys, double rises, or double
falls.

For instance, the permutation

12 8 7 2 5 10 3 6 13 9 1 4 11

↗↘ ↘↘ ↘↘ ↘↗ ↗↗ ↗↘ ↘↗ ↗↗ ↗↘ ↘↘ ↘↗ ↗↗ ↗↘

bordered with (−∞,−∞) is a 3-repeated permutation of size 13, as is immediately
verified by the listing of order types on the second line.

Dixonian functions will be proved to enumerate a variety of 3–repeated permutations.
The proof is indirect and it first needs Flajolet’s combinatorial theory of continued
fractions [19, 30] as well as a bijection between a system of weighted lattice paths and
permutations, of which a first instance was discovered by Françon and Viennot in [27].

5.1. Combinatorial aspects of continued fractions. Define a lattice path, also
known as a Motzkin path, of length n as a sequence of numbers s = (s0, s1, . . . , sn),
satisfying the conditions

s0 = sn = 0, sj ∈ Z≥0, |sj+1 − sj| ∈ {−1, 0,+1}.
This can be represented as a polygonal line in the Cartesian plane Z × Z. A step is
an edge (sj, sj+1), and it is said to be (respectively) an ascent, a level, or a descent
according to the value (respectively) +1, 0,−1, of sj+1 − sj; the quantity sj is called
the (starting) altitude of the step. A path without level steps is a Dyck path. Motzkin
paths are enumerated by Motzkin numbers; Dyck paths belong to the Catalan realm [56,
pp. 219–229].

Let P (a,b, c) be the generating function of lattice paths in infinitely many inde-
terminates a = (ak), b = (bk), c = (ck), with ak marking an ascent from altitude k
and similarly for descents marked by bk and for levels marked by ck. In other words,
associate to each path $ a monomial m($), as in this example:

$ = r��r��r r
@@r��r

@@r
@@r��r

@@r
m($) = a0a1c2b2a1a2b3b2b1a0b1

= a2
0a

2
1a2b

2
1b

2
2b3c1.

One has
P (a,b, c) =

∑
$

m($),

where the sum is over all Motzkin paths $.
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Here is what Foata once called “the shallow Flajolet Theorem”10 taken from [19]:

Theorem 5 (Flajolet [19]). The generating function in infinitely many variables enu-
merating all Motzkin paths according to ascents, descents, levels, and corresponding
altitudes is

(33) P (a,b, c) =
1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
a2b3
. . .

.

Proof. All there is to it is the correspondence between a rational generating function
given by a quasi-inverse and certain Motzkin paths of height ≤ 1. Figuratively, start
from

1

1− c0 − a0Y1b1
≡

{
r c0 r + r��

ra0
rY1

@
@
b1 r
}?

.

(These are Motzkin paths of height at most 1, with level steps at altitude 1 marked by
Y1.) It then suffices to apply repeatedly substitutions of the form

Y1 7→ (1− c1 − a1Y2b2)
−1, Y2 7→ (1− c2 − a2Y3b3)

−1, · · · ,
in order to generate the continued fraction of the statement. �

A bona fide generating function is obtained by making the generating function ho-
mogeneous, setting

aj 7→ αjz, bj 7→ βjz, cj 7→ γjz

where αj, βj, γj are new formal variables. Once these variables are assigned numerical
values (for instance αj = βj = γj = j + 1), the generating function of (33) enumer-
ates weighted lattice paths by length (marked by z), with weights {αj} ∪ {βj} ∪ {γj}
taken multiplicatively. For ease of reference, we encapsulate this notion into a formal
definition.

Definition 4. A system of path diagrams is the class of multiplicatively weighted
Motzkin paths determined by a possibility function Π, which assigns numerical values
to the formal variables αj, βj, γj.

The values are normally integers, in which case a particular path diagram is equivalent
to a lattice path augmented by a sequence of “choices”, the number of possible choices
being αj for an ascent from altitude j, and so on. Various systems of path diagrams
are known to be bijectively associated to permutations, involutions, set partitions, and
preferential arrangements, to name a few [19, 20, 27, 30].

Note 8. André’s method and an alternative derivation of the J-fractions relative to sm, cm.
Désiré André published in 1877 a remarkable study [1], in which he was able to represent the
coefficients of the Jacobian functions sn, cn as arising from weighted lattice paths, that is,
from a system of path diagrams. We apply here André’s methodology to Dixonian functions.

10This designation stands to reason as the proof is extremely easy, so that the theorem borders on
being an “observation”. However, the paper [19] is really a “framework” where orthogonal polynomial
systems, lattice paths, continued fractions, Hankel determinants, etc, all find a combinatorial niche.



30 ERIC VAN FOSSEN CONRAD AND PHILIPPE FLAJOLET

A direct use of the continued fraction Theorem 5, then provides a direct derivation of the
J-fractions relative to sm, cm, which relies in a simple way on basic algebraic properties of
the fundamental differential system (7).

Let us consider the case of smh, which is the s-component of the usual system s′ = c2,
c′ = s2. From this system and elementary algebra induced by c3 − s3 = 1, we find that s
satisfies a third-order non linear differential equation, s′′′ = 6s4 + 4s, and more generally (∂
represents differentiation with respect to the independent variable):

(34) ∂3sm =
(

m(m + 1)(m + 2)s3 + 2m(m2 + 1) +
m(m− 1)(m− 2)

s3

)
sm.

This shows that there exists a family of polynomials (Pk) with deg(Pk) = 3k + 1 such that

∂3ks = Pk(s),

where Pk is of the form Pk(w) = wP̂k(w3), with P̂k itself a polynomial. Then, Taylor’s formula
provides

(35) smh(z) =
∞∑

k=1

P ′
k(0)

z3k+1

(3k + 1)!

upon taking into account the fact that only coefficients of index 1, 4, 7, . . . in smh are nonzero.
Thus, the Taylor coefficients of smh are accessible from the coefficients of the lowest degree
monomials in the Pk polynomials.

Introduce now a notation for the coefficients of the Pk polynomials:

Pk,m = [wm]Pk(w).

The basic equation (34) implies the recurrence (m ≡ 1 (mod 3)):

Pk+1,m = (m + 1)(m + 2)(m + 3)Pk,m+3 + 2m(m2 + 1)Pk,m + (m− 1)(m− 2)(m− 3)Pk,m−3.

This relation expresses precisely the fact that the coefficient [wm]Pk(w) is the number of
weighted paths starting at the point (0, 1) and ending at (k, m) in the lattice Z ⊕ (1 + 3Z),
where the elementary steps are of the form ~a = (1,+3), ~b = (1,−3), ~c = (1, 0), and the weights
of steps starting at an ordinate m ≡ 1 (mod 3) are respectively

(36) α̂m = m(m + 1)(m + 2), β̂m = m(m− 1)(m− 2), γ̂m = 2m(m2 + 1).

Up to a vertical translation of −1 and a vertical rescaling of the lattice by a factor of 1
3 ,

the coefficient Pν,1 is seen to enumerate standard weighted lattice paths (having steps (1, 1),
(1,−1), and (1, 0)) of length ν with the new weights for steps starting at altitude ` being:

α` = (3` + 1)(3` + 2)(3` + 3), β` = (3`− 1)(3`)(3` + 1), γ` = 2(3` + 1)((3` + 1)2 + 1).

Theorem 5 then yields the continued fraction expansion of the ordinary generating function
associated to smh (equivalently, to sm under a simple change of signs). Similar calculations
apply to the other J-fractions of Section 2, including the one relative to cm.

It is especially interesting to observe the way in which the original differential system
satisfied by smh, cmh churns out weighted lattice paths by means of higher order differential
relations. This is the spirit of André’s work who played the original game on the Jacobi
normal form of elliptic functions taken under the form (André’s notations):[

dϕ(x)
dx

]2

= D + Vϕ2(x) + Gϕ4.

Obviously, André intends D to mean “right” (“droite” in french), G to mean “left” (“gauche”
in french) and V to mean “vertical”, as he had in mind paths rotated by 90◦. (In one
more step, André could have discovered the continued fractions associated to sn, cn had he
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known Theorem 5 or the earlier technique of “Stieltjes matrices” [57], whose determination is
equivalent to a continued fraction expansion.) �

Note 9. On addition theorems. A standard way to derive explicit continued fraction expan-
sions is by means of Rogers’ addition theorem (itself logically equivalent to a diagonalization
technique of Stieltjes). We say that an analytic function defined near 0 (or a formal power
series) f(z) satisfies an addition formula if it can be decomposed in terms of a sequence φk of
functions as

(37) f(z) =
∑
k≥0

φk(x) · φk(y), where φk(x) =
x→0

O(xk).

Then knowledge of the coefficients [xk]φk(x) and [xk+1]φk(x) implies knowledge of the coeffi-
cients in the J-fraction representation of the formal Laplace transform F of f , F (s) = L(f, s):
the formulæ are simple, see Theorem 53.1 in Wall’s treatise [62, p. 203]. A good illustration
is the addition formula for sec(z), namely

sec(x + y) =
1

cos x cos y − sinx sin y
=
∑
k≥0

sec x tank x · sec y tank y,

which provides analytically the continued fraction expansion of the ordinary generating func-
tion of Euler numbers derived combinatorially below as (41).

Dixonian functions, being elliptic functions, are known to admit addition formulæ, albeit
of a form different from (37). For instance, one has

cm(u + v) =
c1c2 − s1s2(s1c

2
2 + s2c

2
1)

1− s3
1s

3
2

with s1 = sm(u), c1 = cm(u), s2 = sm(v), c2 = cm(v),

found in Dixon’s paper (§33, Equation (39), p. 183 of [13]). It is in fact possible to combine
this elliptic addition theorem with developments from the previous note in order to come up
with an addition theorem of Stieltjes-Rogers type (37) relative to Dixonian functions: the form
of the φk is essentially given by Pk(sm(z)) and the generating function for the Pk polynomials
can be explicitly determined (details omitted). �

5.2. Correspondences between lattices paths and permutations. We next need
bijections due to Françon-Viennot [27] between permutations and two systems of path
diagrams.

It is convenient to start the discussion by introducing what V.I. Arnold [2] calls
snakes. Consider piecewise monotonic smooth functions from R to R, such that all
their critical values (i.e., the values of their maxima and minima) are different, and
take the equivalence classes up to orientation preserving maps of R×R. It is sufficient
to restrict attention to the two types,

(38)

(7 1 4 2 6 3 5) (5 1 6 3 4 2)



32 ERIC VAN FOSSEN CONRAD AND PHILIPPE FLAJOLET

2
4
6

8

6
4
2
0

Figure 11. The sweepline algorithm: a snake and its associated Dyck path.

respectively called the (−∞,−∞) and (−∞,+∞) types. Clearly an equivalence class
is an alternating permutation (see the second line of (38)). The exponential generat-
ing functions corresponding to the two types of (38) are by André’s classic theorem
respectively,

tan(z) =
sin(z)

cos(z)
, sec(z) =

1

cos(z)
,

size being measured by the number of critical points and equivalently the length of the
corresponding permutation.

A simple sweepline algorithm associates to a snake a Dyck path as follows. Consider
first the (−∞,−∞) case. Imagine moving a line from −∞ in the vertical direction
towards +∞. At ordinates that are a midpoint between two successive critical values,
associate a number which is the number of intersection points of the line with the
curve. For a snake with 2n + 1 critical points, this gives us a sequence of numbers
x = (x0, x1, . . . , x2n+2) such that xj+1 − xj = ±2, x0 = 2, and x2n+1 = 0. The rescaled
sequence

ξ = (ξ0, ξ1, . . . , ξ2n+1), ξj := (xj − 2)/2,

becomes a standard Dyck path (Figure 11), which obviously depends only on the un-
derlying alternating permutation.

Alternating permutations are far more numerous than Dyck paths, so that they must
be supplemented by additional information in order to obtain a proper encoding. To
this effect, introduce the system of path diagrams given by the possibility rule

(39) Πodd : Π(−∞,−∞) : αj = (j + 1), βj = (j + 1), γj = 0,

which, we claim, is now bijectively associated to odd-length alternating permutations,

−∞ < σ1 > σ2 < · · · < σ2m+1 > −∞ .

This is easily understood as follows. When executing the sweepline algorithm, there are
several places (possibilities) at which a local maximum (or peak) and a local minimum
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(or valley) can be attached by “capping” or “cupping”:

These possibilities, as a function of altitude (the ξj) are seen to correspond exactly to
the possibility set (39). (For instance, on the example, the rescaled Dyck path is at
altitude 2, there are three possibilities for cupping and three possibilities for capping.)

For the (−∞,+∞) case, that is, even-length alternating permutations, a similar
reasoning shows that the possibilities are

(40) Π(−∞,+∞) : αj = (j + 1), βj = j, γj = 0,

See:

By the continued fraction theorem, these two encodings yield two continued frac-
tion expansions originally discovered by Stieltjes (the Laplace transforms are taken as
“formal” here):

(41)



∫ ∞

0

tan(zt)e−t dt =
z

1−
1 · 2 z2

1−
2 · 3 z2

. . .

,

∫ ∞

0

sec(zt)e−t dt =
1

1−
12 z2

1−
22 z2

. . .

.

The previous two bijections can be modified so as to take into account all permu-
tations, not just alternating ones. What this corresponds to is spotted snakes, which
are snakes augmented with an arbitrary finite number of non-critical points that are
distinguished. (As usual, one operates up to topological equivalence and the spotted
points must have different altitudes.) It then suffices to encode nodes on upward and
downward slopes by level steps of the system of path diagrams in order to get Motzkin
paths [19, 27, 30]. The path diagrams so obtained have closely resembling possibility
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Figure 12. A figure suggesting that the Françon–Viennot correspon-
dence and the sweepline algorithms are one and the same thing.

rules: {
Π

(−∞,−∞)
: αj = (j + 1), βj = (j + 1), γj = 2j + 2

Π
(−∞,+∞)

: αj = (j + 1), βj = j, γj = 2j + 1.

(In the (−∞,+∞) case, one can never insert a cap or a descending node on the extreme
right, so that one possibility is suppressed for descents and level steps of the path
diagrams.) The resulting continued fractions are then

(42)



∞∑
n=0

(n+ 1)!zn+1 =
z

1− 2z −
1 · 2 z2

1− 4z −
2 · 3 z2

. . .

,

∞∑
n=0

n!zn =
1

1− z −
12 z2

1− 3z −
22 z2

. . .

.

These last two fractions are originally due to Euler. (The last four continued fraction
expansions were first established combinatorially by Flajolet in [19].)

Note 10. Snakes of bounded width. The usual enumeration of snakes up to deformation
is usually presented by the Russian School as resulting from the “Seidel-Entringer-Arnold
triangle”. The continued fraction connection exposed here gives access to new parameters,
and, in particular, the ones associated with convergents of a basic continued fraction. In this
context, it provides the ordinary generating function of odd snakes of bounded width, where
width is defined as the maximal cardinality of the image of any value:

width(s) := max
y∈R

card
{
x
∣∣ s(x) = y

}
.

(Width is a trivial variant of the clustering index introduced in [19, p. 159].) Take for definite-
ness snakes with boundary condition (−∞,+∞). Transfer matrix methods first imply that
the generating function W [h](z) of snakes having width at most 2h− 1 is a priori a rational
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function,

W [h](z) =
P h(z)
Qh(z)

,

the first few values being, for width at most 1, 3, 5, 7,

1
1
,

1
1− z2

,
1− 4z2

1− 5z2
,

1− 13z2

1− 14z2 + 9z4
.

(For instance, width ≤ 3 corresponds to the type (−∞, 2, 1, 4, 3, 6, 5 . . . , +∞).) Continued
fraction theory [19] further implies that W [h](z) is a convergent of the continued fraction
relative to sec(z) in (41), with the denominators Qh(z) being reciprocal polynomials of an
orthogonal polynomial system. Here, one finds

Qh(z) = zhQh(1/z), where Qh(z) = [th](1 + t2)−1/2 exp(z arctan t),

and the Qh are the Meixner polynomials [11]. (This can be verified via the generating function
of the Qh, which satisfies a differential equation of order 1; the method also adapts to the
determination of the associated Ph polynomials.) �

Note 11. On Françon-Viennot. The bijective encoding of permutations by path diagrams
as presented here is exactly the same as the one obtained from the original Françon-Viennot
correspondence—only our more geometric presentation differs. Indeed, one may think of the
Françon–Viennot11 correspondence given in [27] as the gradual construction of an increasing
binary tree, upon successively appending nodes at dangling links [19, 30]; see also Figure 12,
where both a snake and the underlying tree are represented. Use will made below of the
tree view of the Françon-Viennot correspondence. (Biane [6] discovered a related sweepline
algorithm, based on the decomposition of permutations into cycles.) �

5.3. The models of r–repeated permutations. The Françon-Viennot bijection and
the Continued Fraction Theorem provide:

Proposition 5. Let Rrn+1 be the number of r–repeated permutations of length rn+1 bor-
dered by (−∞,−∞), and let R?

rn be the number of r–repeated permutations of length rn
bordered by (−∞,+∞) The corresponding ordinary generating functions admit a con-
tinued fraction expansions of the Jacobi type,∑

ν≥0

Rrν+1z
rν+1 =

z

1− 2 · 1r zr −
1 · 22 · · · r2 · (r + 1) · z2r

1− 2 · (r + 1)r zr −
(r + 1) · (r + 2)2 · · · (2r)2 · (2r + 1) · z2r

. . .

,

11Viennot (private communication, February 2006) comments that, when the Françon-Viennot pa-
per was submitted, the formulation of the bijection between trees and path diagrams was very much
like our description, but an anonymous referee insisted that all references to binary trees be deleted and
be replaced by descriptions in terms of words. (Twenty years later, trees have become fully acceptable
objects in the combinatorial literature!) For a tree version of the correspondence, Viennot also refers
to his lecture notes: “Une théorie combinatoire des polynômes orthogonaux”, 221 pages, Publication
du LACIM (1983), UQAM, Montréal, of which an accessible summary is available [61].
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ν≥0

R?
rνz

rν =

1

1− (0r + 1r)zr −
12 · 22 · · · r2 · z2r

1− (rr + (r + 1)r)zr −
(r + 1)2 · (r + 2)2 · · · (2r)2 · z2r

. . .

,

where the numerators are of degree 2r and the denominators are of degree r in the depth
index.

Proof. In accordance with Note 11 and Figure 12, it is best to regard the Françon–
Viennot correspondence as the inductive construction of an increasing binary tree. If
at some stage there are ` dangling links, then there are several cases to be considered
for adding a node depending on its type. Here is a table giving: the types of elements
in a permutation; the types of nodes in the tree; the number of possibilities.

Perm.: peak valley double rise double fall

Tree: leaf double node left branching right branching

Poss.: ` ` ` `

`− 1 ` `− 1 `

The third line corresponds to allowing the largest (and last inserted) value rn+1 to fall
anywhere, the permutation being bordered by (−∞,−∞). The fourth line corresponds
to a permutation to be such that rn + 1 occurs at the end, that is, a permutation
bordered by (−∞,+∞). The history of the tree construction corresponds to Motzkin
paths that start at altitude 1, have steps that are grouped in batches of r, all of the same
type within a batch. This is converted into a standard Motzkin path by a succession of
two operations: (i) shift the path down by 1; (ii) then divide the altitude by r, so that
sequences of steps of a single type inherit weights multiplicatively. (This is essentially
the argument of [21].) The statement results. �

The close resemblance between the case r = 3 of Proposition 5 and Theorem 2 is
striking. Notice however that it is required to adjust the possibility function for level
steps, i.e., correct the denominators. This is achieved by means of “polarization”:

Definition 5. A 3-repeated permutation of length 3ν+1 is said to be polarized if some
(possibly none, possibly all) of the consecutive factors in the word representation of the
permutation that are of the form 3j+3, 3j+2, 3j+1 or of the form 3j+1, 3j+2, 3j+3
are marked.

We shall use a minus sign as a mark and write 3̄ ≡ −3. For instance, two polarized
3-repeated permutation of size 19 are

14 2 17 8 19 3 5 6 16 12 11 10 7 13 1 4 18 9 15
14 2 17 8 19 3 5 6 16 12 11 10 7 13 1 4 18 9 15

(Only one factor is amenable to marking here.) We state:
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Theorem 6. The exponential generating function of 3–repeated polarized permutations
bordered by (−∞,−∞) is

smh(z).

Proof. By Conrad’s fractions, Françon–Viennot, and the reasoning that underlies Propo-
sition 5. Polarization has been introduced on purpose in order to add to the number of
possibilities: it contributes 2(3`+ 1) further possibilities to the Motzkin path when we
are at altitude `, corresponding to a (polarized) sequence of three consecutive one-way
branching nodes of two possible types (left- or right-branching) attached to one of the
3`+ 1 dangling links. �

The notion of polarization can be similarly introduced to interpret the coefficients
of cmh(z) (details omitted). This theorem nicely completes the picture of the relation
between r-repeated permutations and special functions.

r = 1: We are dealing with unconstrained permutations. In this case, Proposition 5
reduces to the two continued fraction expansions relative to

∑
n! zn. Note that

marking, with an additional variable t, the number of rises (i.e., double rises
and valleys), leads to a continued fraction expansion of the bivariate ordinary
generating function of Eulerian numbers [19], which was found analytically by
Stieltjes [58].

r = 2: We are dealing with the doubled permutations of Flajolet-Françon [21]. The
permutations are enumerated by Euler numbers, and when rises are taken into
account, one obtains a bivariate ordinary generating function that is the Laplace
transform of the Jacobian elliptic functions sn(z, t), cn(z, t).

r = 3: The generating functions are related to sm, cm, the correspondence being exact
when polarization is introduced.

The Dixonian functions involve once more a third-order symmetry that is curiously
evocative of the fact that they parametrize the Fermat cubic. It would be of obvious
interest (but probably difficult) to identify which special functions are associated with
higher order symmetries corresponding to r ≥ 4.

6. Further connections

Our goal in this article has been to demonstrate that the Dixonian parametriza-
tion of the Fermat cubic has interesting ramifications in several different fields. The
way these functions have largely independently surfaced in various domains is strik-
ing: occurrences now known include the theory of continued fractions and orthogonal
polynomials, special functions (e.g, Lundberg’s hypergoniometric functions), combi-
natorial analysis (the elementary combinatorics of permutations), and a diversity of
stochastic processes (special urn models and branching processes, but also birth and
death processes). We now briefly discuss other works, some very recent, which confirm
that Dixonian functions should indeed be considered as part of the arsenal of special
functions.

6.1. Jacobi and Weierstraß forms. As it is well known, there are three major ways
of introducing elliptic functions [63], namely, by way of the Jacobian functions sn, cn, dn
(defined from inverses of an Abelian integral over a curve y2 = P4(x)), by their Weier-
straß form ℘ (associated to a curve y2 = P3(x)), and by theta functions. The reductions
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of sm, cm to normal form are no surprise since they are granted by general theorems.
What stands out, however, is the simplicity of the connections, which are accompanied
in one case by further combinatorial connections.

6.1.1. The Jacobian connection. This is the one observed by Cayley in his two page
note [8] and already alluded to in Section 1. Cayley finds the parametrization of Fer-
mat’s cubic x3 + y3 = 1 (locally near (−1, 21/3)) in the form (x, y) = (ξ(u), η(u)),
where

ξ(u) =
−1 + θscd

1 + θscd
, η(u) =

21/3(1 + θ2s2)2

1 + θscd
, θ := 3

1
4 e5iπ/12

and here s ≡ sn(u), c ≡ cn(u), d ≡ dn(u) are Jacobian elliptic functions for the modulus
k := e5iπ/6. (This corrects what seem to be minor errors in Cayley’s calculations.)
Cayley’s calculations imply an expression of sm, cm in terms of sn, cn, dn as simple
variants of ξ, η (with π3 as in (12)):

sm(z) = ξ

(
z + π3/6

21/3θ

)
, cm(z) = η

(
z + π3/6

21/3θ

)
.

For an alternative approach based on Lundberg’s hypergoniometric functions, see [42,
Sec. 5].

6.1.2. The Weierstraß connection. The relations appear to be more transparent than
with Jacobian functions. As a simple illustration, consider the function

P (z) := smh(z) · cmh(z).

From the basic differential equation framework, this function satisfies the ordinary
differential equations,

P ′′ = 6P 2, P ′2 = 4P 3 + 1.

Thus, up to a shift of the argument, P (z) is a Weierstraß ℘ with parameters g2 = 0,
g3 = −1 (corresponding to the usual hexagonal lattice). While ℘(0) = ∞, the initial
conditions are here P (z) = z +O(z2). In this way we find (see (12))

P (z) = P(z − ζ0; 0;−1), ζ0 =
2

3
π3 =

1

3π
Γ

(
1

3

)3

.

From these calculations, there results that P = smh · cmh is implicitly defined as the
solution of the equation

(43)

∫ Y

0

dw√
1 + 4w3

≡ Y · 2F1

[
1

3
,
1

2
;
4

3
;−4Y 3

]
= z.

Thus, the continued fraction expansion of sm · sm found in Section 2 can be re-expressed
as follows:

Proposition 6. The Laplace transform of the compositional inverse of the function
Y · 2F1

[
1
3
, 1

2
; 4

3
;−4Y 3

]
, equivalently of the special ℘(z; 0,−1) expanded near its real zero

ζ0 := 2
3
π3, admits a continued fraction expansion with sextic numerators and cubic

denominators.
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(The hypergeometric parameters differ from those of Proposition 1. This function
otherwise constitutes a good case of application of André’s method of Note 8.)

In passing, we remark that P (z) serves to express the fundamental function (the
ψ-function) of the urn model defined by the matrix

T23 =

(
−2 3

4 −3

)
.

This model (corresponding to case A in Figures 7 and 8) is of interest as it describes
the fringe behaviour of 2–3 trees and other locally balanced trees [22, 47]. The relation
is (see [22, p. 1223] for the definition of ψ)

ψ(z) = 22/3P (21/3z) = 22/3 smh(21/3z) cmh(21/3z),

as can be verified either from differential relations or from the available ℘ forms. Thus
yet another combinatorial model of Dixonian functions is available in terms of histories
of the T23 urn, corresponding to the rewrite rules

xx −→ yyy, yyy −→ xxxx.

In other words:

Proposition 7. The T23 urn model can be described in terms of Dixonian functions via
the product P (z) = sm(z) · cm(z). In particular, the number of histories of the T23 urn
initialized with xx such that at time 3ν + 1 all balls are of type y is

H3ν+1,3ν+3 = (3ν + 1)!2ν+1 [z3ν+1] smh(z) · cmh(z).

In an unpublished manuscript Dumont [17] also observes (by way of singularities)
that the function

Q(z) :=
sm(z)

3(1− cm(z))
,

which now has a double pole at 0 is none other than ℘(z; 0, 1
27

). From this and similar
considerations, Dumont then obtains in a simple way the identities

cm(z) =
3℘′(z) + 1

3℘′(z)− 1
, sm(z) =

6℘(z)

1− 3℘′(z)
, ℘(z) := ℘(z, 0,

1

27
).

6.2. Laplace transforms of elliptic functions. Transforms of elliptic functions are
only considered sporadically in the literature, usually in the context of continued frac-
tion theory. Some of them are explicitly known in the classical case of Jacobian elliptic
functions, which are somehow close to sm, cm given the developments of Section 6.1.1.

Stieltjes, followed by Rogers, was the first to determine continued fraction expansions
for the Laplace transforms of the three fundamental Jacobian functions, sn, cn, dn.
Some of these expansions were rediscovered by Ramanujan who made the Laplace
transforms explicit. For instance, following Perron’s account (pp. 134–135 and 219
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of [48]) and Berndt’s edition of Ramanujan’s Notebooks [5, p. 163], one has

(44)

∫ ∞

0

cn(tx; k)e−t dt =
2π

kK

∞∑
ν=0

qν+ 1
2

1 + q2ν+1

1

1 + x2
(

(2ν+1)π
2K

)2

=
1

1 +
12x2

1 +
22k2x2

1 +
32x2

1 +
. . .

.

(The numerators are of the alternating form 12, 22k2, 32, 42k2, 52x2, . . .; usual notations
from elliptic function theory are employed [63].) The calculation of the Laplace trans-
form is effected via the Fourier expansion of cn, which goes back to Jacobi and is
detailed in [63, §22.6]. It would be of obvious interest to carry out calculations and
determine in which class of special functions the Laplace transforms of the Dixonian
functions live.

Note otherwise that the Hankel determinant evaluations stemming from (44) lie at
the basis of Milne’s results [46] regarding sums of squares, while the continued fraction
expansion is related to several permutation models of Jacobian elliptic functions that
were briefly mentioned in Section 5.

6.3. Orthogonal polynomial systems. As it is well known each continued fraction
of type J is associated to an orthogonal polynomial system (OPS), which provides in
particular the denominators of the fraction’s convergents [11, 48, 62]. The OPS arising
from the Laplace transforms of Jacobian functions have a long tradition, starting with
Stieltjes who first found an explicit representation of the orthogonality measure. See
the study by Ismail, Valent, and Yoon [34] for a recent perspective and pointers to the
older literature as well as the book by Lomont and Brillhart [43] entirely dedicated to
“elliptic polynomials”.

It is a striking fact that the orthogonal polynomial systems related to the continued
fraction expansions of Section 2 have very recently surfaced in independent works of
Gilewicz, Leopold, Ruffing, and Valent [28, 29]. These authors are motivated by the
classification of (continuous-time) birth and death processes12, especially the ones whose
rates are polynomials in the size of the population. Here the birth and death rates are
cubic.

From the rather remarkable calculations of [28], one gets in particular [do c→ 0 and
µ0 = 0] the generating function of a family of polynomials,

(45)

∑
n≥0

Qn(z)
t3n

(3n)!
= (1− t3)−1/3E3,0

(
zθ(t)3

)
E3,0(y) :=

∑
n≥0

yn

(3n)!
, θ(t) :=

∫ t

0

dw

(1− w3)2/3
.

12Thanks to works of Karlin and McGregor in the 1950’s, many stochastic characteristics of a process
can be described in terms of a continued fraction, its OPS, and its orthogonality measure(s); see for
instance [23] for a recent review.
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(This OPS resembles a hybrid of the Meixner and Brenke classifications of orthogonal
polynomials [11, Ch. V].) The first few values, Q0, Q1, Q2, Q3, Q4, are

1, 2 + z, 160 + 100 z + z2, 62720 + 42960 z + 672 z2 + z3,

68992000 + 49755200 z + 963600 z2 + 2420 z3 + z4.

These polynomials are the monic versions of the denominators of the convergents in the
continued fraction

1

z + 2−
36

z + 98−
14400

z + 572− . . .

,

which, up to normalization, represents the Laplace transform of cm(z). The occurrence
in (45) of the fundamental Abelian integral from which sm, cm are defined is especially
striking. As shown in [28, 29], the moment problem is indeterminate; see also Ismail’s
recent book [32] for a perspective.

Conclusion. We have studied a class of continued fraction with sextic numerators
and cubic denominators and shown that, thanks to several converging works, these
are endowed with a rich set of properties. This suggests, regarding the Stieltjes-Apéry
fractions described in the introduction, that it would be of great interest to determine
whether these are similarly endowed with a rich structure as regards combinatorics,
special functions, and orthogonality relations. The question of investigating continued
fractions whose coefficients are polynomials of higher degrees is a tantalizing one, but
it is likely to be very difficult.
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Lotharingien de Combinatoire 37 (1996), Art. B37a, 21 pp. (electronic).
[19] Philippe Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics 32 (1980),

125–161.
[20] , On congruences and continued fractions for some classical combinatorial quantities, Dis-

crete Mathematics 41 (1982), 145–153.
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(Extended abstract in Discrete Mathematics and Theoretical Computer Science, 2005, in press).
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