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Abstract. Introduces the definition of rate of convergence for sequences and

applies this to fixed-point root-finding iterative methods. Concludes with the
development of a formula to estimate the rate of convergence for these methods

when the actual root is not known.

1. Rate of Convergence

Definition 1. If a sequence x1, x2, . . . , xn converges to a value r and if there exist
real numbers λ > 0 and α ≥ 1 such that

(1) lim
n→∞

|xn+1 − r|
|xn − r|α

= λ

then we say that α is the rate of convergence of the sequence.

When α = 1 we say the sequence converges linearly and when α = 2 we say
the sequence converges quadratically. If 1 < α < 2 then the sequence exhibits
superlinear convergence.

2. Fixed-Point Iterations

Many root-finding methods are fixed-point iterations. These iterations have this
name because the desired root r is a fixed-point of a function g(x), i.e., g(r)→ r.
To be useful for finding roots, a fixed-point iteration should have the property that,
for x in some neighborhood of r, g(x) is closer to r than x is. This leads to the
iteration

xn+1 = g(xn), n = 0, 1, 2, . . .

Newton’s method is an example of a fixed-point iteration since

(2) xn+1 = g(xn), g(x) = x− f(x)

f ′(x)

and clearly g(r) = r since f(r) = 0.

Theorem 1. Let r be a fixed-point of the iteration xn+1 = g(xn) and suppose that
g′(r) 6= 0. Then the iteration will have a linear rate of convergence.

Proof. Using Taylor’s Theorem for an expansion about fixed-point r we find

(3) g(x) = g(r) + g′(r)(x− r) +
g′′(ξ)

2
(x− r)2
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where ξ is some value between x and r. Evaluating at xn and noting that xn+1 =
g(xn) and g(r) = r we obtain

xn+1 = r + g′(r)(xn − r) +
g′′(ξ)

2
(xn − r)2.

Subtracting r from both sides and dividing by xn − r gives

xn+1 − r
xn − r

= g′(r) +
g′′(ξ)

2
(xn − r)

which, as n→∞, yields

(4) lim
n→∞

|xn+1 − r|
|xn − r|

= |g′(r)|.

Comparing this with Equation (1) we see that α = 1 and λ = |g′(r)|, indicating
that the method converges linearly. �

Next, consider the case when g′(r) = 0. This is important because it explains
why Newton’s method converges so quickly (when it converges at all).

Theorem 2. Let r be a fixed-point of the iteration xn+1 = g(xn) and suppose
that g′(r) = 0 but g′′(r) 6= 0. Then the iteration will have a quadratic rate of
convergence.

Proof. Using Taylor’s Theorem once again, but including one more term, we have

g(x) = g(r) + g′(r)(x− r) +
g′′(r)

2
(x− r)2 +

g′′′(ξ)

6
(x− r)3.

As before, we substitute xn for x and use the facts that xn+1 = g(xn), g(r) = r,
and g′(r) = 0 to obtain

xn+1 = r +
g′′(r)

2
(xn − r)2 +

g′′′(ξ)

6
(xn − r)3.

Subtracting r from both sides and dividing by (xn − r)2 gives

xn+1 − r
(xn − r)2

=
g′′(r)

2
+
g′′′(ξ)

6
(xn − r)

which, as n→∞, gives

(5) lim
n→∞

|xn+1 − r|
|xn − r|2

=
|g′′(r)|

2
.

Observe that α = 2, which shows the iteration will converge quadratically. �

In most instances this situation applies to Newton’s method. Computing g′(x)
from (2) we have

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

[f ′(x)]2
=
f(x)f ′′(x)

[f ′(x)]2
.

When this is evaluated at r, we find that g′(r) = 0 because f(r) = 0, provided
f ′(r) 6= 0, and so we expect Newton’s method will converge quadratically. It is
possible to show that

lim
x→r

g′(x) =
1

2
when f ′(r) = 0, so in this case Newton’s method exhibits only linear convergence.
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3. Estimating the Rate of Convergence

It is convenient to define the error after n steps of an iterative root-finding
algorithm as en = xn − r. As n→∞ we see from Equation (1) that

|en+1| ≈ λ|en|α and |en| ≈ λ|en−1|α

and so
|en+1|
|en|

≈ λ|en|α

λ|en−1|α
≈

∣∣∣∣ en
en−1

∣∣∣∣α .
Solving for α yields

(6) α ≈ log |en+1/en|
log |en/en−1|

=
log |(xn+1 − r)/(xn − r)|
log |(xn − r)/(xn−1 − r)|

.

To make use of this formula we need to know the ratios of consecutive errors. While
we cannot compute these ratios exactly (since we do not know the exact value of
the root r), we can approximate them with ratios of the differences of consecutive
estimates of the root. To see this, first substitute xn and xn−1 into Equation (3)
to obtain the two expansions

xn+1 = r + g′(r)(xn − r) +
g′′(ξ1)

2
(xn − r)2(7)

xn = r + g′(r)(xn−1 − r) +
g′′(ξ2)

2
(xn−1 − r)2.(8)

Subtracting (8) from (7), dividing by (xn − xn−1), and taking the limit as n→∞
we have

lim
n→∞

∣∣∣∣xn+1 − xn
xn − xn−1

∣∣∣∣ = lim
n→∞

∣∣∣∣g′(r) +
g′′(ξ1)

2

(xn − r)2

xn − xn−1
− g′′(ξ2)

2

(xn−1 − r)2

xn − xn−1

∣∣∣∣
= |g′(r)|

since both (xn − r)2 and (xn−1 − r)2 go to zero more quickly than xn − xn−1 as
the sequence {xn} converges to r. Comparing this result with Equation (4) we
conclude, for suitably large values of n, that

en+1

en
=
xn+1 − r
xn − r

≈ xn+1 − xn
xn − xn−1

which allows us to approximate α with

(9) α ≈ log |(xn+1 − xn)/(xn − xn−1)|
log |(xn − xn−1)/(xn−1 − xn−2)|

.

Even though this only gives an estimate of α, we note that in practice it agrees well
with the theoretical convergence rates of bisection and Newton’s method and gives
us a good measure of the efficiency of various forms of fixed-point algorithm.

E-mail address: jonathan.senning@gordon.edu

Department of Mathematics and Computer Science, Gordon College, 255 Grapevine
Road, Wenham MA, 01984-1899


