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Lecture 1

First Moduli Spaces: M0,n

1.1 A few generalities on moduli spaces

1.1.1 Moduli Problems

In order to pose a moduli problem we need the following ingredients:

1. A class of (geometric) objects P in some category C.

2. A notion of family of such objects.

3. The notion of equivalence of families. Families over one point are
precisely the objects of P, and hence we are in particular assigning the
notion of equivalence of objects.

Intuition. A moduli spaceMP for the above problem consists of a space in
the same category as the objects parameterized, such that:

• points are in bijective correspondence with equivalence classes of objects
in P.

• there is a natural bijection between families over a given base B and
functions B →MP .

We now define what a family is, in the familiar category of topological
spaces. We leave it as an exercise to generalize the definition to any case we
may be interested in.

Definition 1. Let P define a class of objects in the category C of topological
spaces. Then for any B ∈ C, a family of P-objects over B is a topological
space X together with a surjective continuous function

π ∶X → B

such that the fiber at each point (Xb ∶= π−1(b) for b ∈ B) is an object in P.
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Exercise 1. Formulate the notion of a family in the language of categories.
Note that you need to require your category C to have fiber products. Also,
the role of the point is played by a terminal object in C.

If we have a spaceMP whose points are in bijection with objects in P,
then a family naturally defines a set function ϕπ ∶ B →MP :

ϕπ(b) ∶= [Xb] (1.1)

The image of a point b is the point in the moduli space is the (equivalence
class of the) fiber of that point. In order to callMP a moduli space we like
the most (a fine moduli space) we make the following requirements:

1. That the set function ϕπ is continuous (a morphism in C).

2. That no two non-equivalent families give the same function.

3. That every continuous function from f ∶ B →MP arises as the function
associated to a family.

When the three conditions above are verified, there a fruitful dictionary
between the geometry of the moduli space and the geometry of families of
objects. Becoming fluent with using this dictionary and translating questions
back and forth is one of the main goals of this mini-course.

Intuition. If this whole dictionary with families seems a bit weird, let me
try to convince you that in fact it is quite natural. We would like the ge-
ometry of the moduli space to reflect the similarity of objects. For example,
if our objects had (a complete set of) metric invariants, then we would like
the moduli space to also have a metric, and objects with very close invari-
ants correspond to points that are very near each other in the moduli space.
Or, even better, that moving the invariants continuously would result in a
continuous path in the moduli space.

Of course the problem is making such statements general and precise.
The notion of a family achieves precisely that: it tells us that over a base B
objects are varying in an acceptable way if they fit together to form a larger
object still in the right category.

Exercise 2. Consider the moduli problem of isomorphism classes of unit
length plane segments up to rigid motion in the plane. Note that if such a
space exists it can have only one point. Construct two families of segments
over a circle that are not equivalent to each other. But they both must give
the constant function: hence 2 fails.

1.1.2 Moduli Functors

We now reformulate the discussion in our previous section in categorical lan-
guage. For the purposes of this mini-course this level of abstraction is hardly
necessary, but it is useful to be able to connect to this type of language.
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Definition 2. A moduli problem (or moduli functor) for a class P of
objects in a category C with fiber products is a contravariant functor:

FP ∶ C → Sets

defined by:

• for an object B ∈ C, FP(B) is the set of isomorphism classes of families
of P-objects.

• for a morphism f ∶ B′ → B, FP(f) is the set map sending a family
X → B to the pullback family f∗(X) → B′.

Definition 3. An objectMP ∈ C represents the functor FP if the functor of
points (HomC(−,MP)) of MP is isomorphic (as a functor) to the moduli
functor via a natural transformation T. If such an object exsits, it is called
a fine moduli space for the moduli problem.

Exercise 3. Meditate for a few minutes until you convince yourself that this
is equivalent to the above discussion about families and the natural bijection
with functions to the moduli space. In particular, note that evaluating the two
functors on the terminal object in your category recovers the invoked bijection
between points of the moduli space and (equivalence classes of) objects you
want to parameterize.

Intuition. If you are funked out by this idea of understanding a space by
thinking of its functor of points, think of it as a generalization of what we do
when we talk about abstract manifolds. We give up the idea of understanding
the manifold via a set of global coordinates, and rather focus on the local data.
A differentiable atlas is the notion of understanding a collection of (injective)
functions that cover the set of points of the manifold (the charts), plus the
transition functions on double overlaps. Here instead we want to understand
ALL possible functions intoMP , and all possible pullbacks. This is of course
not a proof (the formal proof is given by Yoneda’s lemma), but it should make
it fairly plausible that the knowledge of the functor of points should be enough
to recover the (scheme, manifold, etc) structure of the moduli space.

1.1.3 Universal Families

When a moduli functor is representable by a fine moduli space, there is a
very special object with a map to the moduli space, such that the fiber over
each point m ∈ MP is precisely the (an) object (in the equivalence class)
parameterized by the point m.

Definition 4. Given a fine moduli spaceMP , let T denote the natural trans-
formation identifying the functor of points of MP with the moduli functor.
The universal Family

π ∶ UP →MP
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is defined to be T(1MP
). The universal family has the property that for any

m ∈ MP corresponding to an (equivalence class of) object(s) [Xm] ∈ P,

[π−1(m)] = [Xm] (1.2)

Exercise 4. A nice consequence of the existence of a universal family is
that any other family of P-objects is obtained from the universal family by
pullback. Show that this is just a formal consequence of the categorical defi-
nitions.

Exercise 5. Any scheme X is a fine moduli space for the functor “families of
points of X”, the universal family being X itself. This is all a big tautology,
but make sure it makes perfect sense to you. It is a good exercise to unravel
the definitions and keep them straight.

1.2 Moduli of n Points on P1

We now introduce the moduli spaceM0,n of isomorphism classes of n ordered
distinct marked points pi ∈ P1. The subscript 0 denotes the genus of the curve
P1.Since this is our first meaningful class of moduli spaces, we spell out all
the ingredients.

We work in the category of algebraic varieties (or schemes if you prefer)
over C. The class of objects we consider is

P = {(p1, . . . , pn) ∣ pi ∈ P1, pi /= pj for i /= j}. (1.3)

The equivalence relation on objects is

(p1, . . . , pn) ∼ (q1, . . . , qn) if there is Φ ∈ Aut(P1) s.t., for all i,Φ(pi) = qi.
(1.4)

A family of n distinct points on P1 over a base B consists of the following
data:

• a (flat and proper) map π ∶ X → B, such that, for every point b ∈ B,
Xb = π−1(b) ≅ P1.

• n disjoint sections σi ∶ B →X.

A function s ∶ B → X is called a section of π ∶ X → B if π ○ s = 1B.
This means that for every b ∈ B, s(b) ∈ Xb, i.e. s picks exactly one point in
every fiber of the family. Two sections are called disjoint if their images are
disjoint.

Two families (X,Bπ,σ1, . . . , σn) and (X̃,B, π̃, σ̃1, . . . , σ̃n) are equivalent
if there exists an isomorphism Φ ∶ X → X̃ making the following diagram
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commute:
X

Φ //

π

��

X̃

π̃




B

σn

FF

⋰
σ1

PP

σ̃n

XX

⋱
σ̃1

NN (1.5)

Finally we introduce our moduli functor.

Definition 5. The moduli functor

M0,n ∶ Schemes→ Sets

assigns to any scheme B the set of equivalence classes of families of n distinct
points on P1, and to any morphism f ∶ B′ → B the set map induced by the
pullback of families.

Exercise 6. Show that the definitions of family of n distinct points on P1

and of equivalence of families specialise to the definitions of objects and equiv-
alence of objects when B = pt.

Exercise 7. For n ≤ 2 show that the set M0,n(pt.) consists of only one
point. Show that for some base space B, there exist non-equivalent families.
Conclude that a single point space does not represent the functorM0,n.

For n = 3, since the automorphism group Aut(P1) = PGL2(C) allows
us to move any three points on P1 to the ordered triple (0,1,∞) (see Ex-
ercise 11), the set M0,3(pt.) consists of a single point. Given any family
(X,B,π, σ1, σ2, σ3), consider the map T ∶X → B × P1 defined by:

T (x) = (π(x),CRXπ(x)(σ1(π(x)), σ2(π(x)), σ3(π(x)), x)) ,

where CRXπ(x) is the cross-ratio (as defined in Exercise 12) on the fiber
containing the point x (we know such fiber is isomorphic to P1 and that the
cross-ratio is independent of the choice of isomorphism one may choose to
define it, hence T is well defined). T realizes an isomorphism of families
between (X,B,π, σ1, σ2, σ3) and the family (B×P1,B, π1,0,1,∞), where π1

is projection on the first factor and the sections are constant sections.

Exercise 8. Show that the discussion in the previous paragraph proves that
the functorM0,3 is represented by the algebraic variety M0,3 = pt. Show that
a universal family is given by U3 = (P1, pt., π,0,1,∞).

Intuition. The fact that any triple of points can be moved into (0,1,∞) via
an automorphism means that there is one equivalence class of triples, and
so, if the functor is representable, it has to be represented by a one point
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space. The fact that there is exactly one automorphism moving a triple to
the distinguished triple we chose to represent our equivalence class causes the
fact that all families of triples can be trivialized. Equivalently, one can say
that the only automorphism of P1 that fixes (0,1,∞) is the identity. As a
general philosophy, when we parameterize objects which have no non-trivial
automorphisms, we are not able to “glue” locally trivial families in non trivial
ways. I.e., non-trivial automorphism of the objects we parameterize tend to
give obstructions to the representability of the functor.

Going one step up, the functorM0,4 is represented by the variety M0,4 =
P1 ∖{0,1,∞} : given a quadruple (p1, p2, p3, p4), we can always perform the
unique automorphism of P1 sending (p1, p2, p3) to (0,1,∞); the isomorphism
class of the quadruple is then determined by the image of the fourth point.

A universal family U4 is given by (M0,4 ×P1, pt, π1,0,1,∞, δ), where δ is
the diagonal section δ(p) = p. This family is represented in Figure 1.1.

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1.1: The universal family U4 →M0,4.

Exercise 9. By choosing to trivialize the first three sections, we have made
a choice of a global coordinate system on M0,4, or alternatively, we gave an
injective map from P1∖{0,1,∞} to the set of configurations of four points on
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P1 that meets each equivalence class exactly once. By trivializing a different
choice of sections we make a different choice of coordinates, and correspond-
ingly get a different universal family. Show explicitly (gotta do it once in
your life) one change of coordinates for M0,4, and write down the induced
isomorphism of universal families.

The general case is similar. Any n-tuple p = (p1, . . . , pn) is equivalent to
a n-tuple of the form (0,1,∞,Φcr(p4), . . . ,Φcr(pn)), where Φcr is the unique
automorphism of P1 sending (p1, p2, p3) to (0,1,∞). This shows

M0,n =
n−3 times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M0,4 × ... ×M0,4 ∖{all diagonals}.

If we define Un ∶=M0,n × P1, then the projection of Un onto the first factor
gives rise to a universal family

Un
π ↓↑ σi
M0,n

where the σi’s are the universal sections:

σi(p) = (p,Φcr(pi)) ∈ Un. (1.6)

This family is tautological since the fibre over a moduli point, which is the
class of a marked curve, is the marked curve itself.
With Un as its universal family, the affine varietyM0,n is a fine moduli space
for isomorphism classes of n ordered distinct marked points on P1.

1.3 Compactification: first steps.

We now understand quite well the moduli space M0,n. In particular, we
notice it is not compact for n ≥ 4. There are many reasons why compact-
ness (or properness) is an extremely desirable property for moduli spaces.
As an extremely practical reason, proper (and if possible projective) vari-
eties are better suited for an intersection theory, which then allows for using
our moduli spaces for enumerative geometric applications. Also, a compact
moduli space encodes information on how objects can degenerate in families.
A totally reasonable, if a bit naively phrased, question like

what happens when p1 → p2 in M0,4?

would find an answer if we find a “good” compactification for M0,4.
In general there are many ways to compactify a space. A “good” com-

pactificationM of a moduli spaceM should have the following properties:
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1. M should be itself a moduli space, parametrizing some natural gener-
alization of the objects ofM.

2. M should not be a horribly singular space.

3. the boundaryM∖M should be a normal crossing divisor.

4. it should be possible to describe boundary strata combinatorially in
terms of simpler objects. This point may appear mysterious, but it
will be clarified soon enough.

We discuss the simple example of M0,4, to provide intuition for the ideas
and techniques used to compactify the moduli spaces of n-pointed rational
curves for arbitrary n.

A natural first attempt is to just allow the points to come together, i.e.
enlarge the collection of objects P that we are considering from P1 with 4
ordered distinct marked points to P1 with 4 ordered, not necessarily distinct,
marked points. After all, as a set, P = (P1)4, which is pretty nice.

When we impose our equivalence relation, we notice two kinds of issues:

• We have equivalence classes corresponding to all points, three points,
or two pairs of points having come together. Such equivalence classes
behave like one or two-pointed curves; as we saw in Exercise 7 there
exist nontrivial families giving rise to constant maps, which prevents
representability of our functor.

• We have six equivalence classes corresponding to where exactly two
points have come together. These points “look like” M0,3’s, so they
may be allright.

But consider the families over B = C with coordinate t:

Ct = (0,1,∞, t) and Dt = (0, t−1,∞,1).

For each t /= 0, the automorphism of P1 φt(z) = z
t shows that Ct ∼ Dt,

thus corresponding to the same family in M0,4. But for t = 0, C0

has p1 = p4 whereas D0 has p2 = p3. These configurations are not
equivalent up to an automorphism of P1, hence are distinct points in
our compactification ofM0,4. Thus, we have a family with two distinct
limit points (the space is nonseparated).

Our failed attempt was not completely worthless though since it allowed us
to understand that:

1. we should not allow too many points to coincide; in particular, we
should always have at least three distinct marks on P1.

2. we want the condition p1 = p4 to coincide with p2 = p3, and likewise for
the other two possible disjoint pairs.
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On the one hand this is very promising: 3 is the number of points needed
to compactify P1 ∖ {0,1,∞} to P1. On the other hand, it is now mysterious
what modular interpretation to give to this compactification.

The strategy is to achieve the modular interpretation for the compactifi-
cation by compactifying simultaneoulsy the moduli space and the universal
family. Let us then turn to the universal family, illustrated in Figure 1.1,
and naively compactify the picture by filling in the three points on the base,
and completing U4 to P1 ×P1 where the sections are extended by continuity.

Intuition. We notice a bothersome asymmetry in this picture: the point p4 is
the only one allowed to come together with all the other points: yet common
sense, backed up by the explicit example just presented, suggests that there
should be democracy among the four points. One way to restore democracy
is to blow-up P1 × P1 at the three points (0,0), (1,1), (∞,∞). This makes
all the sections disjoint, and still preserve the smoothness and projectivity of
our universal family.

Exercise 10. Refer back to Exercise 9, consider the isomorphism ψ of the
two different universal families U4, U

′
4 obtained when different choices of

sections to be trivialized are made. Note that if the universal families are
“closed” to U4 (resp. U

′
4) ≅ P1 × P1, ψ extends to a rational function that

is indeterminate at the points (0,0), (1,1), (∞,∞), and contracts the fibers
over 0, 1, ∞. Show that blowing up such three points in both U4 and U

′
4

resolves the indeterminacies of ψ, which now extends to an isomorphism

ψ̂ ∶ Bl(U4) → Bl(U ′
4).

Exercise 10 shows that the candidate for a universal family Bl(U4) is
well behaved with respect to the change of coordinates induced by different
choices of three sections to trivialize. The fibres over the three exceptional
points are P1 ∪Ei: nodal rational curves. These are the new objects that we
have to allow in order to obtain a good compactification of M0,4. This leads
us to the notion of stable rational pointed curve, which we will expand
upon in the next lecture.

1.4 Further exercises

Exercise 11 (Automorphisms of P1). Depending on your favorite point of
view, we are parameterizing configurations of marked points on the complex
projective line P1 (algebraic geometry) or on the Riemann sphere Ŝ2 = C∪∞
(complex analysis). We are interested in the group of automorphisms of P1,
that can be described as:

PGL(2,C): equivalence classes of 2× 2 matrices with non-zero determinant,
up to simultaneous non-zero scaling of all the coefficients, acting on
points of P1 by matrix multiplication on the homogeneous coordinates.
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Moebius tranformations: Meromorphic functions of the form:

w = az + b
cz + d,

with ad − bc /= 0

If you are not familiar with these concepts, spend some time understanding
each of them and their equivalence. Show that there is a unique automor-
phism of P1 that maps any three distinct points of P1 to any other three
distinct points.

A slick way to do so is to show that for any (p1, p2, p3), with pi ∈ P1 and
pi /= pj when i /= j, there exists a unique automorpshism Φcr ∈ Aut(P1) such
that

Φcr(p1) = 0, Φcr(p2) = 1, Φcr(p3) = ∞. (1.7)

Exercise 12 (Cross-ratio). Given (p1, p2, p3, p4), 4 distinct points of P1,
their cross-ratio is defined to be:

CR(p1, p2, p3, p4) =
(p1 − p4)(p3 − p2)
(p1 − p2)(p3 − p4)

(1.8)

• With Φcr as in (1.7), show:

CR(p1, p2, p3, p4) = Φcr(p4).

• Show that the cross ratio is a projective invariant: i.e., if Φ is any
automorphism of P1

CR(p1, p2, p3, p4) = CR(Φ(p1),Φ(p2),Φ(p3),Φ(p4)).

Exercise 13 (A new perspective on a pencil of conics). Consider the pencil
of plane conics defined by the equation:

S ∶= {λx(z − y) + µz(y − x) = 0} ⊆ P2 × P1 (1.9)

1. Recognize that the total space of this pencil is the blow-up of P2 at
four points. For each i = 1, . . . ,4 denote Ei the exceptional divisor
corresponding to blowing up the i-th point.

2. Consider the commutative diagram:

U4 =M0,4 × P1

π

��

F // P2 × P1

π2
��

M0,4
λ↦(λ∶1) // P1

, (1.10)

where F is the function:

F (λ,w) = (w(w − 1) ∶ w(λ − 1) ∶ λ(w − 1)) . (1.11)
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(a) Show that the Zariski closure of Im(F ) in P2 × P1 is S.
(b) Show that for each i = 1, . . . ,4, F ○ σi gives a parameterization of

the exceptional divisor Ei.

Thus we have realized the compactified universal family π ∶ U4 →M0,4 as the
blow-up of P2 at 4 points, and identified the four tautological sections with
the exceptional divisors.

Exercise 14. Notice that M0,4 is equal to the universal family U0,3, where
the images of the three distinguished sections are the three points added to
compactify M0,4. Do you think this is a coincidence, or is there a reason for
this?
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Lecture 2

Stable Pointed Curves: M0,n

At the end of our last lecture we learned that in order to compactify M0,4 to
a moduli space, we had to “invite” to the moduli problem some degenerations
of the projective line: specifically, pairs of projective lines glued together at
one point. In fact allowing rational curves with nodal singularities is a way
to compactify M0,n for all n. We now make this precise.

Definition 6. A stable rational n-pointed curve is a tuple (C,p1, . . . , pn),
such that:

• C is a connected curve of arithmetic genus 0, whose only singularities
are nodes (i.e. locally analytically around a singular point p ∈ Sing(C),
C can be defined by the equation xy = 0.)

• (p1, . . . , pn) are distinct points of C ∖ Sing(C).

• The only automorphism of C that preserves the marked points is 1C .

For more combinatorially minded people, this is equivalent to the notion
of a stable tree of projective lines.

Definition 7. A stable n pointed tree of projective lines is a tuple
(C,p1, . . . , pn), such that:

• C is connected and each irreducible component of C is isomorphic to
P1. Irriducible components are called twigs.

• The points of intersection of the components are ordinary double points.

• There are no closed circuits in C, i.e., if any node is removed then the
curve becomes disconnected.

• p1, . . . , pn and the double points of C are all distinct and are called
special points.

• Every twig has at least three special points.

19
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Figure 2.1: Stable marked trees of projective lines. The points should be
labeled, but I got lazy...

We draw a marked tree as in Figure 2.1, where each line represents a
twig.

Exercise 15. Show that Definitions 6 and 7 are equivalent.

Exercise 16. Develop the natural definition of family of rational stable n-
pointed curves over a base B and of isomorphism of families; describe the
moduli functorM0,n for isomorphism classes of such families.

Intuition. Here’s an intuitive (albeit imprecise) picture about the compact-
ification to stable pointed curves. When points on a rational curve C want
to coincide, we don’t allow them as follows: at the moment of collision, we
create a new bubble attached to the point of collision and transfer the points
to the new bubble. At this point we are able to act via elements of PGL(2,C)
on each component of the curve, but such elements must be compatible in the
sense that they must preserve nodes. That is why nodes of C are considered
just like marked points.

With all these definitions in place, in Section 1.3 we proved the following
statement.

Lemma 1. M0,4 ≅ P1 represents the functor of isomorphism classes of fam-
ilies of n-pointed rational curves. The universal family U4 may be viewed as
the second projection Bl(0,0),(1,1),(∞,∞)(P1 × P1) → P1, or as the blow up of
a pencil of plane conics at its four base points.

This result generalizes to arbitrary n.
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Theorem 1 (Knudsen). There exists an irreducible, smooth, projective fine
moduli space M0,n for n-pointed rational stable curves, compactifying M0,n.
The universal family Un is obtained from Un via a finite sequence of blow-ups.

We discuss the proof of this theorem and a few constructions of M0,n in
Exercise 38. For references in the literature, you may see [KV07] or [Knu83],
[Knu12], [Kee92] or [Kap93b]. At this moment we turn our attention to
exploring the geometry of this family of moduli spaces.

2.1 The boundary

We define the boundary to be the complement of M0,n in M0,n. It consists
of all points parameterizing nodal stable curves. We begin by making some
purely set-theoretical considerations.

The boundary of M0,4 consists of three points parameterizing the nodal
pointed curves depicted in Figure 2.2.

The boundary ofM0,5 is represented in Figure 2.3: it consists of 15 points
parameterizing pointed curves with three irreducible components, and 10
copies of M0,4 parameterizing rational pointed curves with two irreducible
components.

In general the boundary of M0,n is stratified by locally closed subsets
parameterizing curves of a given topological type, together with a prescribed
assignment of the marks to the irreducible components of the curve. A
natural way to encode this data is via the dual graph to a pointed curve.

Definition 8. Given a rational, stable n-pointed curve (C,p1, . . . , pn), its
dual graph is defined to have:

• a vertex for each irreducible component of C;

• an edge for each node of C, joining the appropriate vertices;

• a labeled half edge for each mark, emanating from the appopriate vertex.
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Figure 2.4: Two boundary strata of M0,5 on the left, and their dual graphs
on the right.

Figure 2.4 gives an example of the dual graphs of some strata in M0,5.
Now we can say that a boundary stratum S is identified by the dual graph
ΓS of the general curve that it parameterizes.

Exercise 17. Show that the codimension of a boundary stratum S equals the
number of nodes that any curve parameterized by S has, or, equivalently, the
number of edges in its dual graph.

The closures of the codimension 1 boundary strata of M0,n are called
the irreducible boundary divisors; they are in one-to-one correspondence
with all ways of partitioning [n] = A∪Ac with the cardinality of both A and
Ac strictly greater than 1. We denote D(A) =D(Ac) the divisor correspond-
ing to the partition A, Ac.

Exercise 18. Describe the set theoretic intersection of two divisors D(A) ∩
D(A′). In particular describe combinatorial conditions for A and A′ that
characterize when the intersection is empty.

There is a natural partial order on the strata: S1 < S2 if the graph ΓS2

can be obtained from ΓS1 by contracting some edges. Geometrically, this
means that S1 is in the closure of S2.

Exercise 19. Describe explicitly the poset of boundary strata for M0,5.
Show that each codimension-two stratum is in the closure of exactly two
codimension-one strata.
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2.2 Natural morphisms

There is a wealth of natural morphisms among the various moduli spaces
M0,n. To be as intuitive as possible, we now describe them as set functions,
i.e. by describing how they act on the objects parameterized. There is a
fair amount of technical work shoved under the rug that shows that all of
these constructions work in families and are therefore honest morphisms of
the moduli spaces.

Intuition. Understanding these morphisms is a powerful tool in the study of
the geometry of these moduli spaces: it shows that the boundary of M0,n is
“built” out of smaller moduli spaces of pointed rational curves, and it opens
the way to an inductive study of any geometric question about M0,n that can
be “pushed to the boundary”.

2.2.1 Forgetful morphisms and universal families

The (n+1)-th forgetful morphism is the function that assignes to an (n+1)
pointed curve, the n pointed curve obtained by removing the last marked
point:

πn+1 ∶M0,n+1 →M0,n (2.1)

(C,p1, . . . , pn+1) ↦ (C,p1, . . . , pn)

The function πn+1 is defined if pn+1 does not belong to a twig with only
three special points, as the n-pointed curve obtained by forgetting pn+1 is
still stable. If it does belong to such a twig, then the resulting tree is no
longer stable. One obtains a stable curve again by contracting the unstable
twigs, as illustrated in Figure 2.5.

Intuition. Generically, the data of an (n + 1) pointed curve can be thought
as of the choice of a point - namely pn+1 - on an n pointed curve. Intuitively
this means that one should be able to identify the universal family of M0,n

with M0,n+1. This is indeed the case, and it is at the core of Knudsen’s
construction of the moduli space in [Knu83, Knu12].

The contraction morphism

c ∶M0,n+1 → U0,n (2.2)

assigns to (C,p1, . . . , pn+1):

• pn+1 ∈ (C,p1, . . . , pn) if (C,p1, . . . , pn) is stable;

• pk ∈ πn+1(C,p1, . . . , pn+1), if pn+1 is on a twig with three special points,
one of which is pk;
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Figure 2.5: Contracting twigs that become unstable after forgetting the pn+1.
In the second case the mark pk is placed where the node used to be.

• n ∈ πn+1(C,p1, . . . , pn+1), if pn+1 is on a twig with three special points,
the other two being nodes; n is the node which is formed after con-
tracting the twig that contained pn+1.

The stabilization morphism

s ∶ U0,n →M0,n+1 (2.3)

is defined by:

• s[p ∈ (C,p1, . . . , pn)] = (C,p1, . . . , pn, p) if p is a smooth point of C and
it is not a mark;

• s[pk ∈ (C,p1, . . . , pn)] is the curve defined by attaching a twig at the
position of the i-th mark, and putting pk and pn+1 on this twig, as in
Figure 2.6;

• if n is a node of C, then s[nk ∈ (C,p1, . . . , pn)] is the curve defined by
inserting a twig between the two shadows of the node n and placing
pn+1 on this twig, as in Figure 2.7.

Theorem 2 ([Knu83, Knu12]). The maps c, s are well defined morphisms,
they are inverses of each other, and they make the following diagram com-
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mute:

U0,n

π ""

s
--
M0,n+1

πn+1{{

c

ll

M0,n

This identifies (M0,n+1, πn+1) with the universal family of M0,n.

Exercise 20. Describe the image of s ○ σi in M0,n+1.

Remark. There is nothing special about forgetting the last mark. We have
forgetful morphisms πi that forget any mark we want (and therefore different
ways of viewing M0,n+1 as a universal family over M0,n). Also, we may
compose forgetful morphisms to forget more than one point at a time.

2.3 Gluing morphisms

There are also natural gluing morphisms; for [n] = I ∪ Ic a partition of the
set of indices, with ∣I ∣ and ∣Ic∣ ≥ 2,

glI ∶M0,I∪⋆ ×M0,Ic∪● →M0,n

takes a pair of pointed curves and identifies the points marked ⋆ and ●.
The resulting nodal curve is clearly stable. The map glI is an isomorphism
onto its image, which is the boundary divisor corresponding to the partition
[n] = I ∪ Ic. This shows that the closure of the codimension one boundary
strata are the irreducible components of the boundary.

One can realize the closure of any boundary stratum as the isomorphic
image of an appropriate gluing morphism. This statement makes precise the
earlier claim that the boundary of M0,n is “built out" of products of smaller
spaces of rational pointed stable curves.

2.4 Intersection Theory on M 0,n

2.4.1 A quick and dirty introduction to intersection theory

The main character here is the Chow ring, A∗(X), of a smooth algebraic
variety X. The ring A∗(X) is, in some loose sense, the algebraic counterpart
of the cohomology ringH∗(X), and it makes precise in the algebraic category
the intuitive concepts of oriented intersection in topology.

Elements of the group An(X) are formal finite sums of codimension n
closed subvarieties (cycles), modulo an equivalence relation called rational
equivalence. A∗(X) = ⊕dimX0 An(X) is a graded ring with product given by
intersection.
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Intersection is independent of the choice of representatives for the equivalence
classes.

In topology, if we are interested in the cup product of two cohomology
classes a and b, we can choose representatives a and b that are transverse to
each other. We can assume this since transversality is a generic condition:
if a and b are not transverse then we can perturb them ever so slightly and
make them transverse while not changing their classes. This being the case,
then a ∩ b represents the cup product class a ∪ b.

In algebraic geometry, even though this idea must remain the backbone
of our intuition, things are a bit trickier. Exceptional divisors in blow-ups
are examples of cycles that are rigid, in the sense that their representative
is unique, and hence “unwigglable”. Still, we can define an algebraic product
that reduces to the “geometric” one when transversality can be achieved
(see [Ful98]).

Example: the Chow Ring of Projective Space.

A∗(Pn) = C[H]
(Hn+1) ,

where H ∈ A1(Pn) is the class of a hyperplane H.

2.4.2 Chern Classes of Bundles

For every vector bundle there is a natural section s0 ∶ B → E defined by

s0(b) = (b,0) ∈ {b} ×Cn.

It is called the zero section, and it gives an embedding of B into E .
A natural question to ask is if there exists another section s ∶ B → E which

is disjoint form the zero section, i.e. s(b) /= s0(b) for all b ∈ B. The Euler
class of this vector bundle (e(E) ∈ An(B)) is defined to be the class of the
self-intersection of the zero section: it measures obstructions for the above
question to be answered affirmatively. This means that e(E) = 0 if and only
if a never vanishing section exists. It easily follows from the Poincaré-Hopf
theorem that for a manifold M , the following formula holds:

e(TM) ∩ [M] = χ(M).

That is, the degree of the Euler class of the tangent bundle is the Euler
characteristic.

The Euler class of a vector bundle is the first and most important example
of a whole family of “special” cohomology classes associated to a bundle,
called the Chern classes of E . The k-th Chern class of E , denoted ck(E),
lives in Ak(B). In the literature you can find a wealth of definitions for
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Chern classes, some more geometric, dealing with obstructions to finding a
certain number of linearly independent sections of the bundle, some purely
algebraic. Such formal definitions, as important as they are (because they
assure us that we are talking about something that actually exists!), are not
particularly illuminating. In concrete terms, what you really need to know
is that Chern classes are cohomology classes associated to a vector bundle
that satisfy a series of properties, which we now recall.

Let E be a vector bundle of rank n:

identity: by definition, c0(E) = 1.

normalization: the n-th Chern class of E is the Euler class:

cn(E) = e(E).

vanishing: for all k > n, ck(E) = 0.

pull-back: Chern classes commute with pull-backs:

f∗ck(E) = ck(f∗E).

tensor products: if L1 and L2 are line bundles,

c1(L1 ⊗L2) = c1(L1) + c1(L2).

Whitney formula: for every extension of bundles

0→ E ′ → E → E ′′ → 0,

the k-th Chern class of E can be computed in terms of the Chern classes
of E ′ and E ′′, by the following formula:

ck(E) = ∑
i+j=k

ci(E ′)cj(E ′′).

Using the above properties it is immediate to see:

1. all the Chern classes of a trivial bundle vanish (except the 0-th);

2. for a line bundle L, c1(L∗) = −c1(L).

To show how to use these properties to work with Chern classes, we calculate
the first Chern class of the tautological line bundle over P1. The tautological
line bundle is

S
π ↓

P1,
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where S = {(p, l) ∈ C2 × P1 ∣ p ∈ l}. It is called tautological because the fiber
over a point in P1 is the line that point represents.

Our tautological family fits into the short exact sequence of vector bun-
dles over P1

0 → S → C2 × P1 → Q → 0
↘ ↓ ↙

P1

where Q is the bundle whose fibre over a line l ∈ P1 is the quotient vector
space C2/l. Notice that Q is also a line bundle. From the above sequence,
we have that

0 = c1(C2 × P1) = c1(S) + c1(Q). (2.4)

Since P1 is topologically a sphere, which has Euler characteristic 2, then

2 = c1(TP1) = c1(S∗) + c1(Q) = −c1(S) + c1(Q). (2.5)

The second equality in 2.5 holds because TP1 is the line bundleHom(S,Q) =
S∗ ⊗Q. It now follows from (2.4) and (2.5) that c1(S) = −1.

2.4.3 The Chow ring of M0,n

In [Kee92], Keel constructs M0,n by a sequence of blow-ups along smooth,
disjoint, codimension 2 subvarieties starting from M0,n−1 × P1. This allows
him to give a presentation of the Chow ring.

Theorem 3 ([Kee92]).

A⋆(M0,n) = Z[{D(A)}A⊂[n],2≤∣A∣≤n−2]/IR,

where {D(A)} denotes the set of boundary divisors and the ideal of relations
IR is generated by:

symmetry D(A) =D(Ac);

disjointness D(A)D(B) = 0 if their set theoretic intersection is empty (in
Exercise 18 you were asked for the combinatorial condition character-
izing this);

WDVV f∗(0) = f∗(∞) where f is any forgetful morphism f ∶M0,n →M0,4,
and 0,∞ ∈M0,4 are two boundary points.

Exercise 21. Write down explicitly the combinatorial condition correspond-
ing to the WDVV relations.

Intuition. We should interpret Keel’s theorem as a statement that things just
went as well as possible. Boundary divisors generate the Chow ring, and the
relations are only the inevitable ones coming from set theoretic disjointness,
plus relations arising from the fact that any two points in P1 = M0,4 are
equivalent.
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On the one hand, Keel’s result is a complete and conclusive result about
the intersection theory of M0,n, especially if one is interested mainly in its
algebraic structure. If one is more directly interested in the geometry of
intersections, then such a presentation is still a bit cryptic. It is not imme-
diate that intersections of degree greater than the dimension ofM0,n vanish,
for example. Also, it takes some thought to deal with self intersections of
divisors. In the next few exercises we explore these issues.

Exercise 22. Show that for any collection of n−2 distinct divisors in M0,n,
their product vanishes.

Exercise 23. Show that all codimension two strata in M0,5 are equivalent.
However, show that for each such stratum there is a unique expression as
product of divisors which is true at the level of cycles.

Exercise 24. Compute the self intersection D({1,2})2 ∈ A2(M0,5) as fol-
lows: replace one copy of D({1,2}) using a WDVV relation, and reduce the
problem to a sequence of transverse intersections.

The last few exercises hopefully are convincing that one can indeed ex-
tract any geometric information from Keel’s presentation; however that the
process is somewhat laborious. This motivates us to introduce new Chow
classes, which help us getting a more direct handle on geometric intersections
of strata in M0,n.

2.5 Psi classes

For i = 1, . . . , n, we define the class ψi ∈ A1(M0,n). We give a couple pseudo-
definitions, which are good to develop intuition, before we give a formal
one.
Take 1. Let Li → M0,n be a line bundle whose fiber over each point
(C,p1, . . . , pn) is canonically identified with T ∗pi(C). The line bundle Li is
called the i-th cotangent (or tautological) line bundle. Then

ψi ∶= c1(Li). (2.6)

Take 2. Let (X,B,π, σ1, . . . , σn) be a family of rational stable n-pointed
curves, and assume X is smooth. Denote fπ the map to M0,n corresponding
to such a family. Then

f∗π (ψi) ∶= −c1(σ∗i Nσi/X). (2.7)

Intuition. These two pseudo-definitions can be made precise, and they both
reflect how one exploits the dictionary between geometry of a moduli space
and geometry of the objects parameterized. We now provide an bona fide
definition of psi classes.
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Take 3. Define the relative dualizing sheaf ωπ → U0,n to be

ωπ ∶= Ω1(U0,n)/π∗Ω1(M0,n). (2.8)

If we restrict ωπ to a fiber of π correspoding to a curve C, we obtain
the dualizing sheaf ω. This is a sheaf on C whose sections are meromorphic
differential forms on the normalization of C such that they only have poles
and at most of order one at the shadows of nodes of C, and the residues at
the two shadows of a node must match. The following exercise is the local
computation that is at the base of proving this fact.

Exercise 25. Consider the neighborhood of a node, i.e. the family C3 →
(C, t) given by the equation:

xy = t.
Show that the sections of the sheaf Ω1

C3/π∗Ω1
C indeed restrict to the central

fiber to meromorphic forms with at most one poles at the node and matching
residues there.

Definition 9. The class ψi ∈ A1(M0,n) is defined to be:

ψi ∶= c1(σ∗i ωπ)

As a warm-up, consider a divisor of the form D({i, j}) ⊂ M0,n, and let
us describe the class of its self-intersection. Recall that we can think ofM0,n

together with the morphism forgetting the j-th point as a universal family
for M0,n−1. Then the divisor D({i, j}) is the image of the section σi. Using
the second pseudo-definition, we obtain:

D({i, j})2 = σi∗ (e (σ∗i (Nσi/M0,n
))) = −σi∗(ψi).

Exercise 26. Show that on M0,3 all psi classes vanish (trivially) and on
M0,4, for any i we have ψi = [pt.].

2.5.1 Smoothing nodes and the normal bundle to a boundary
divisor

Consider the gluing morphism:

glI ∶M0,I∪⋆ ×M0,Ic∪● →M0,n

whose image is the divisor D(I). We describe (pull-back of) the normal
bundle ND(I)/M0,n

in terms of tautological bundles on the factors.

Intuition. The game is to relate the geometry of the moduli space with the
geometry of the objects parameterized. To describe the normal direction to
the divisor D(I) we consider an infinitesimal family of curves, where the
central fiber belongs to D(I) and the generic fiber doesn’t - which means that
the generic fiber is a smooth P1. We note that “moving out” of the divisor
corresponds to smoothing the node of the central fiber.
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Let Ct denote a one parameter family of rational stable n-pointed curves,
such that C0 ∈ D(I) and Ct ∈ M0,n for t /= 0. We can interpret t as a
coordinate in a direction normal to D(I) at C0. Since we are interested
in infinitesimal (first order) information, we can look at the local analytic
equation for Ct around the node of the central fiber, and notice that it has
the form xy = t. We observe that x and y can be identified with sections of
the tangent spaces of the two axes in C2. These are the tangent spaces at
the shadows of the node in the normalization of C0. Finally we observe that
once we give this interpretation, the relation provided by the local equation
xy = t gives a relation among sections of line bundles on D(I). This is an
impressionistic argument for the following statement.

Lemma 2. Consider the gluing morphism glI ∶ M0,I∪⋆ ×M0,Ic∪● → M0,n.
Then :

gl∗I (ND(I)/M0,n
) ≅ L∨⋆ ⊠ L∨● . (2.9)

Lemma 2 allows us to describe the self-intersection of a boundary divisor
in terms of psi classes.

Lemma 3. Consider the gluing morphism glI ∶ M0,I∪⋆ ×M0,Ic∪● → M0,n

and let π1 and π2 denote the two projections from M0,I∪⋆ ×M0,Ic∪● onto the
factors. Then:

D(I)2 = glI∗(−π∗1(ψ⋆) − π∗2(ψ●)). (2.10)

Exercise 27. Recompute the self intersection D({1,2})2 ∈ A2(M0,5) using
Lemma 3.

Exercise 28. Describe a combinatorial algorithm that determines the inter-
section of any two boundary strata in M0,n in terms of boundary strata and
psi classes.

2.5.2 Properties of psi classes

In Section 2.5.1 we showed that we can understand non-transversal intersec-
tion of boundary strata in terms of psi classes. This motivates us to seek for
a better understanding of these classes. Because of Keel’s presentation, we
know that psi classes must be equivalent to a linear combination of boundary
divisors, but is there a nice description for such a linear combination? Also,
what if we want to deal with a product of psi classes? In an extreme case,
suppose we are given a monomial in psi classes of degree n− 3, which is just
a multiple of the class of a point - is there a “quick” way to determine this
multiple? In this section we answer all these questions in the positive.

The first property of psi classes we explore is how they restrict to bound-
ary divisors (or strata in general). Informally, a boundary stratum is a prod-
uct of moduli spaces; the restriction of ψi to the stratum equals the class ψi
pulled back from the factor containing the i − th mark. More formally:
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Lemma 4. Consider the gluing morphism glI ∶ M0,I∪⋆ ×M0,Ic∪● → M0,n.
Assume that i ∈ I and denote by π1 ∶ M0,I∪⋆ ×M0,Ic∪● → M0,I∪⋆ the first
projection. Then:

gl∗(ψi) = π∗1(ψi).

Intuition. This lemma is obvious if one accepts our first pseudo-definition of
psi classes, as then the class ψi only knows what happens in an infinitesimal
neighborhood of the point pi. We leave it to the interested reader to convert
this idea into an actual proof.

Exercise 29. Prove that

ψi ⋅D({i, j}) = 0.

The next result is a comparison between a psi class on M0,n+1 and the
pull-back of the corresponding psi class on M0,n. This result is essential in
giving an inductive description of psi classes.

Lemma 5. Consider the forgetful morphism πn+1 ∶ M0,n+1 → M0,n. Then,
for every i = 1, . . . , n,

ψi = π∗n+1(ψi) +D({i, n + 1}).

In the spirit of this section, instead of a rigorous proof we provide a
couple of quasi-proofs that have the advantage of illustrating what is going
on.

Using the first “definition” of ψi we observe that the fibers of Li and
π∗n+1(Li) are canonically identified except along the divisor D({i, n + 1}).
Hence it must be that

Li ≅ π∗n+1(Li) ⊗O(kD({i, n + 1})),

for some integer k. Taking the first Chern class:

ψi = π∗n+1(ψi) + kD({i, n + 1}). (2.11)

We determine that k = 1 in the following exercise.

Exercise 30. Determine the value of k in two different ways:

1. Multiply relation (2.11) by D({i, n + 1});

2. Multiply relation (2.11) by the boundary stratum consisting of a chain
of projective lines, with the points 1, i and n+ 1 on the first twig of the
chain, and exactly three special points on each other twig.
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Using the second “definition” of ψi, we consider a one parameter family of
n pointed curves (X,B,π, σ1, . . . , σn). We now consider an arbitrary section
σn+1, not necessarily disjoint from the other sections (but let us assume
that the intersections σn+1 ∩ σi for all i are transversal). The family of
rational stable (n + 1) pointed curves (X̂,B, π̂, σ̂1, . . . , σ̂n, σ̂n+1) is obtained
by blowing up the intersection points of σn+1 with the other sections, and
taking the proper transforms of the sections. Denote fπ̂ ∶ B → M0,n+1 the
corresponding map to the moduli space.

Identifying B with σi(B) we have that

σi(B)2 = −f∗π̂ (π∗n+1(ψi)).

Identifying B with σ̂i(B),

σ̂i(B)2 = −f∗π̂ (ψi).

Finally, we use the fact that

σ = σ̂ +Ei,n+1,

where Ei,n+1 is the exceptional divisor correponding to copies of P1 mapping
to each of the intersection points of σi with σn+1. It follows that for any one
parameter family fπ̂,

f∗π̂ (ψi) = f∗π̂ (π∗n+1(ψi) +D({i, n + 1})). (2.12)

Lemma 5 allows a combinatorial description of cycles representing the
psi classes.

Exercise 31. Recover that on M0,4, ψi = [pt.] by using Lemma 5. Describe
cycles representing ψi in M0,5.

Once you have warmed up, you can then prove the following general
statement.

Lemma 6. For any choice of i, j, k distinct, we have the following equation
in A1(M0,n):

ψi = ∑
i∈I, j,k/∈I

D(I).

Show that any two such expressions for ψi are WDVV equivalent.

Exercise 32. Prove that for any k ≥ 1.

ψki = π∗n+1(ψi)k−1(π∗n+1(ψi) +D({i, n + 1})).

Now we investigate how a monomial in psi classes pushes forward with
respect to a forgetful morphism.
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Lemma 7 (String Equation). Consider the forgetful morphism πn+1 ∶M0,n+1 →
M0,n. Then

πn+1∗ (
n

∏
i=1

ψkii ) = ∑
j∣kj /=0

ψ
kj−1
j ∏

i/=j
ψkii .

Exercise 33. Prove Lemma 7, by rewriting each of the ψkii as in Exercise
32, and observing which terms in the expansion of such produce do not vanish
immediately, or after the push-forward.

Lemma 7 allows us to explicity evaluate all top degree monomials in psi
classes.

Exercise 34. Let ∑ki = n − 3. Then

∫
M0,n

n+1

∏
i=1

ψkii = ( n − 3

k1, . . . , kn+1
),

where the integral sign denotes push-forward to the class of a point.

Exercise 35. Consider the forgetful morphism πn+1 ∶M0,n+1 →M0,n. What
is πn+1⋆(ψn+1)?

2.6 Further exercises

Exercise 36. Consider the two models of M0,5 we have constructed:

Bl(0,0),(1,1),(∞,∞)(P1 × P1)

and
Bl(0∶0∶1),(0∶1∶0),(0∶0∶1),(1∶1∶1)(P2).

In each of the two cases identify all the boundary strata.

Exercise 37. The boundary complex is the cone complex naturally as-
sociated to the poset structure of the boundary strata in M0,n. For each
codimension i stratum you have a copy of (R≥0)i, and the poset structure
naturally indicates how to identify cones with faces of other cones. Make
this statement precise, and describe the boundary complex of M0,5. If you
are familiar with Peterson graph, recognize that it is the cone over the Pe-
terson graph.

Exercise 38 (Constructions ofM0,n). This exercise is not so much an exer-
cise, as it is a quick and dirty sketch of some constructions of M0,n, in hope
that it may help you read the relative literature if you decide to dig deeper
into it. Try to follow these constructions in the cases n = 4,5 and get a feel
of why they work in general.
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Knudsen [Knu83] Knudsen’s construction is inductive, and it relies essen-
tially on the identification of U0,n with M0,n+1 given by the contraction
and stabilization morphisms. Suppose we have realized M0,n as a fine
moduli space, which means in particular that we have constructed the
universal family U0,n. We then take M0,n+1 to be equal to U0,n, and we
must construct a universal family over it. First consider the fiber prod-
uct of M0,n+1 with itself over M0,n. This gives a family of n pointed
curves X. We can add one more section to this family by considering
the diagonal section ⋆ = ●. Then we stabilize this family, to obtain a
family of rational stable (n + 1)-pointed curves over M0,n+1. This is
the universal family.

U0,n+1

Blδ=σi

$$
X //

��

M0,n+●

��
M0,n+⋆ //

σi

VV

δ

ffδ̂

WW

σ̂i

NN

M0,n

σi

TT

Keel [Kee92] Keel’s construction is in a way similar to Knudsen, in that
it starts from a fiber product of M0,n+1 over M0,n to get a family of
n-pointed curves over M0,n+1. His fiber product is with M0,4 so that
now the n sections intersect wildly. Next he adds the n + 1-th section
just like Knudsen. Finally he resolves in steps the intersections of
the sections, by iteratively blowing up loci where the largest number of
sections intersect. By doing so he is insuring that he is always blowing
up along smooth codimension two centers.

U0,n+1 = Bn−2

&&. . .

$$
B1

//

��

M0,3+●

��
M0,n+⋆ //

σi

UU

δ

ff

M0,n

Kapranov [Kap93b] Kapranov’s construction identifiesM0,n with the fam-
ily R ⊂ M0,n × Pn−2 of rational normal curves in Pn−2 through n − 1
general points. Then he considers the closure of such family R ⊂
M0,n × Pn−2 to be the universal family over M0,n and, hence, M0,n+1.
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This construction constructs M0,n+1 as a sequence of blowups along
smooth centers: first one blows up the n − 1 points in general position,
then the proper transforms of the lines joining each pair of points, then
the proper transforms of the planes containing any three such points,
etc...

Exercise 39. Consider the forgetful morphism πn+1 ∶ M0,n+1 → M0,n. We
define:

πn+1⋆(ψi+1
n+1) ∶= κi.

Kappa classes are important in the theory of moduli spaces of higher genus
curves, as they give us interesting classes that exists on the moduli space of
unpointed curves, and that are not entirely supported on the boundary. In the
genus zero theory everything is boundary, and you need at least three points.
For this reason I am not aware of these classes playing a prominent role in
this theory. However a perfectly sensible question, whose answer I couldn’t
find with a quick literature search, is whether there is a good combinatorial
representation of kappa classes in terms of boundary strata (along the lines
of the description of psi classes in Lemma ??).



Lecture 3

Weighted Pointed Curves

3.1 Stability and Hasset spaces

Intuition. In our last lecture we introduced the notion of stability as a way
to compactify the moduli space M0,n. We allowed curves to acquire nodal
singularities, requested that there are no non-trivial automorphisms preserv-
ing the marks, and still mantained that we want all points to be distinct and
on the smooth locus of the curve. We now interpret the notion of stability
as a numerical condition on a divisor on the curve. This then allows us to
naturally generalize the notion of stability and obtain alternative compactifi-
cations of M0,n.

Lemma 8. A rational n-pointed curve (C,p1, . . . , pn) is stable if and only if
the twisted dualizing sheaf ωC(p1 + . . . + pn) is ample.

Recall that the dualizing sheaf of a nodal rational curve C restricts to an
irreducible component X of C to the line bundle associated to the divisor
KX + ∑nj + ∑pi, where the nj ’s are the nodes of C belonging to X, and
the second sum runs over the marks of C that are on X. Since on P1 the
degree of the canonical divisor is −2 and a divisor is ample if and only if it
has positive degree, it is evident that ampleness is met if and only if X has
at least three special points.

We can now tweak the condition of stability by assigning “weights” to the
marked points, and requiring the weighted twisted canonical to be an ample
divisor.

Definition 10. A weight data A = (a1, . . . , an) consists of an n-tuple of
positive rational numbers such that ∑ai > 2. A rational n-pointed curve
(C,p1, . . . , pn) is called A-stable if the following three conditions are met:

• the twisted dualizing sheaf ωC(a1p1 + . . . + anpn) is ample;

• the marked points are all on the smooth locus of C;

39



40

• if a subset of points coincide, then the sum of their weights is less than
or equal to 1.

This corresponds to the fact that on every irreducible component of C
the number of nodes plus the sum of the weights of the marks lying on the
component is strictly greater than 2.

Intuition. Going along with our physical metaphor, marked points now carry
a certain amount of “mass" (or energy if you prefer). When points collide,
such mass adds. If the total mass surpasses the critical value of 2, then a
new twig bubbles off and carries the colliding points. Note that the second
and third conditions are in a sense forced on us by the first one. When a
point collides with a node, no matter how light the point is, the node must
be split by a new component. Such component has now two nodes, which
together with the weight of the mark surpass critical mass and make the twig
stable. On the other hand, the third condition allows for limits of families
where light points want to collide.

Exercise 40. With this definition of weighted-stability on objects, formulate
the natural notion of weighted stability of families of rational pointed curves.
Then you can formulate the notion of the moduli functor for isomorphism
classes of A-stable families of rational n-pointed curves.

That such functor is representable is a result of Hassett.

Theorem 4 (Hassett, [Has03]). There exists a connected, smooth and pro-
jective variety M0,A representing the functor of isomorphism classes of A-
stable families of rational n-pointed curves. We denote by U0,A →M0,A the
universal family.

We note that when the weight data consists of all weights equal to 1,
then we recover the usual notion of stability (also called Deligne-Mumford
(DM) stability).

Exercise 41. An interesting variant of this moduli problem is obtained by
allowing marked points to have weight 0. A weight zero mark is allowed to
collide with a node (why?). Prove that if A = (0, . . . ,0, ak+1, . . . , an) and
A+ = (ak+1, . . . , an), where all the ai > 0, then

M0,A = U0,A+ ×M0,A
. . . ×M0,A

U0,A+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

. (3.1)

Show that these moduli spaces are singular by analyzing the local equation of
a node and checking what happens when fiber products are taken.

Moduli spaces of weighted stable curves admit natural forgetful mor-
phisms; as in the DM stable case, after forgetting some of the marks, twigs
that become unstable must be contracted. There are now also morphisms
among spaces with the same number of points, but with different weights.
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Definition 11. Given two weight data A,B, we say that B ≤ A if for every
i, bi ≤ ai. Then there exists a regular reduction morphism:

ρB,A ∶M0,A →M0,B (3.2)

s.t. r(C,p1, . . . , pn) is obtained by contracting twigs that become unstable
when the weights of the points is “lowered” from ai to bi.

Lemma 9. If C ≤ B ≤ A, then

ρC,A = ρC,A ○ ρB,A.

The polytope (with some faces removed) P obtained by intersecting the
hypercube (0,1]n with the half-space ∑ai > 2 parameterizes weight data
for n-pointed curves. The moduli functor remains constant in chambers
determined as the complement of the hyperplanes ∑i∈I ai = 1, for I any
subset of the set of indices. The moduli spaces are all birational, as they all
contain M0,n as a dense open set.

Exercise 42. Completely classify the moduli problems of 4-pointed weighted
stable curves. Note that for all weight data, the moduli space M0,A ≅ P1, but
the universal family changes in the various chambers.

Exercise 43. In the case of five pointed curves, what moduli spaces M0,A
are actual contractions of M0,5?

3.2 Relation to Kapranov’s Construction

In [Kap93b], M0,n is obtained from a sequence of blow-ups of Pn−3. In the
first step, n−1 points in general position, which can be taken to be the torus
fixed points plus the identity of the torus, are blown up; then all (proper
transforms of) lines spanned by pairs of these points are blown up; then
(proper transforms of) all planes spanned by triples of such points, and so
on until codimension two linear subspaces spanned by n−4 of the points are
blown up.

The space Pn−3 can be interpreted as a space of weighted stable curves
and the contraction map π ∶M0,n → Pn−3 as a reduction morphism. Consider
the weight data A0 = ( 1

n−2 , . . . ,
1
n−2 ,1), where any n − 2 of the first n − 1

marks are allowed to come together; the moduli space M0,A0 ≅ Pn−3 and
π = ρA0,(1n).

Exercise 44. Make friends with the above claim, by identifying each of the
torus orbits of Pn−3 with a locus of curves in M0,A0 where a certain subset
of the marks have come together.
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Now consider the weight data A1 = ( 1
n−3 , . . . ,

1
n−3 ,1); now any n−3 of the

first n − 1 marks are allowed to come together. The moduli space M0,A1 is
the blow up of Pn−3 at n−1 points, i.e. the first step in Kapranov’s sequence
of blow-ups.

In general, the weight data Ak = ( 1
n−2−k , . . . ,

1
n−2−k ,1) yields a moduli

space M0,Ak which is the blow-up along the (proper transforms of) the di-
mension k − 1 linear subspaces spanned by subsets of k of the n − 1 distin-
guished points. We have thus factored Kapranov’s construction as:

M0,n =M0,An−4 → . . .→M0,Ak → . . .→M0,A0 ≅ Pn−3. (3.3)

It is interesting to note that one can imagine varying the weight data con-
tinuously from A0 to An−4. This traces a segment in the parameter space of
moduli spaces of weighted stable rational n-pointed curves, and the factor-
ization above can be thought of as a wall-crossing phenomenon.

3.3 Psi classes on Hasset spaces

Moduli spaces of weighted stable rational curves also have psi classes, which
are defined in the same way as in M0,n. As the moduli problem changes
from one chamber to the next, so do the psi classes. It is important to notice
that what really matters is how the universal family changes. We illustrate
this by looking at the example of 4 pointed weighted stable curves. In this
case we know that all moduli spaces are isomorphic to P1. Recall that for
M0,4, ψi = [pt.] for all i.
Weight data A = (1,1,1/2,1/2) In this case the third and fourth points are
allowed to coincide. The universal family π1 ∶ U0,A ≅ Bl(0,0),(1,1)P1×P1 → P1,
with the sections s1, s2, s3 being the (proper transforms of the) constant
sections 0,1,∞ and s4 equal the diagonal section. We note immediately that
the local picture around the first two sections is identical to the case ofM0,4.
Therefore ψ1 = ψ2 = [pt.]. The third section is now the class of a horizontal
fiber; therefore s2

3 = 0, which implies ψ3 = 0. We can now argue that ψ4 = 0
as well by symmetry.

Exercise 45. Compute ψ4 = 0 directly, by computing the self intersection of
the fourth section.

Weight data A = (2/3,2/3,2/3,1/3) In this case the fourth point is allowed
to coincide with any one of the first three. The universal family π1 ∶ U0,A ≅
P1 × P1 → P1, with the sections s1, s2, s3 being the constant sections 0,1,∞
and s4 equal the diagonal section. The first three sections are in the class of
a horizontal fiber; therefore ψ1 = ψ2 = ψ3 = 0. The fourth section has class
(1,1). It follows that s2

4 = 2[pt.], which in turn implies ψ4 = −2[pt.].



43

Exercise 46. Compute the psi classes for the above weight data by using as a
model for the universal family a blow-up of P2, along the lines of Kapranov’s
construction.

The following two lemmas allow us to relate ψ classes on weighted stable
curve spaces on different spaces which are related by forgetful or reduction
morphisms.

Lemma 10. Consider the weight data A = (a1, . . . , an+1) and A′ = (a1, . . . , an)
and the forgetful morphism πn+1 ∶M0,A →M0,A′. For i = 1, . . . , n, we have:

ψi = { π∗n+1(ψi) if ai + an+1 ≤ 1
π∗n+1(ψi) +D({i, n + 1}) if ai + an+1 > 1.

(3.4)

The proof of this lemma boils down to the observation that when ai +
an+1 ≤ 1, the image of si in U0,A is pulled back from U0,A′ , essentially because
the n + 1-th section is allowed to intersect si. When ai + an+1 > 1, then the
situation is identical to the DM stable case.

Lemma 11. Consider the reduction morphism ρA,(1n) ∶M0,n →M0,A. For
i = 1, . . . , n, we have:

ψi = ρ∗A,(1n)(ψi) + ∑
I∋i,

∑j∈I aj≤1

D(I). (3.5)

Intuition. Informally, ψi is corrected by all boundary divisors where the i-th
mark sits on a twig that gets contracted by ρA,(1n).

The proof consists in noting that for every diagram of one parameter
families of curves

X

��

ρ // XA

}}
B

si

WW

s̃i

EE

X is obtained by blowing up XA at all points of intersections of sections
that are allowed to coincide for the weight data A. To compute ψi we are
interested only in points that are in the image of the section s̃i. We have the
equation

si = ρ∗(s̃i) −∑E(I), (3.6)

where E(I) denotes the exceptional P1’s coming from intersection of sections
in subsets I that contain i and are allowed to come together. The proof is
concluded by observing that (the pushforward of the) self intersection of a
section gives (minus) the corresponding psi class, and by relating the self
intersection of the section si and of the section s̃i via (3.6).

Given that we can relate psi classes on spaces of weighted stable curves to
psi classes on M0,n plus boundary corrections, and that we know everything



44

about intersections of psi classes and boundary strata in M0,n, we could ar-
gue that we know everything about intersection of psi classes on on spaces of
weighted stable curves. While this may be a true statement for a geometer,
it certainly it is not satisfactory for a combinatorialist. A systematic ex-
ploration of the combinatorial structure of psi class intersections in moduli
spaces of weighted stable curves has not yet been carried out. Here is an
example of one family of ψ-intersections which yields a nice formula.

Lemma 12 (Nate Zbacnik, 2015). Consider the weight data A = (1/2,1/2, . . . ,1/2).
Then if n ≥ 5 we have:

∫
M0,A

ψ̂n−3
1 = 2 − n.

We put a hat over the psi class on the weighted space and denote ψi the
psi class on M0,n. Then we have:

∫
M0,A

ψ̂n−3
1 = ∫

M0,n

⎛
⎝
ψ1 −

n

∑
j=2

D({1, j})
⎞
⎠

n−3

=

∫
M0,n

⎛
⎝
ψn−3

1 +
n

∑
j=2

(−1)(n−3)+(n−4)ψn−4
⋆ D({1, j})

⎞
⎠
= 1 −

n

∑
j=2

1 = 2 − n

Here, the first equality uses the formula in Lemma 11; in the second equality
we use the fact that all divisors D({1, j}) do not intersect each other and do
not intersect ψi.Then we iterate the self-intersection formula D({1, j})2 =
−ψ⋆D({1, j}), where ψ⋆ denotes the psi class at the node pulled back from
the (n−1)-pointed factor. Finally we evaluate the intersections of psi classes
and boundary divisors in M0,n.

3.4 Losev-Manin spaces

Among spaces of weighted stable curves, the following family was studied by
Losev and Manin in [LM00].

Definition 12. The Losev-Manin space Ln is the moduli space of rational
weighted stable corresponding to the weight data A = (1,1, ε, . . . , ε

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
n times

).

We already know that Ln is a smooth projective variety of dimension
n−1, which represents a moduli functor for families of weighted stable curves.
When Losev and Manin introduced this space, they gave a more explicit
geometric description of such a moduli functor.

• A LM-chain of projective lines of length k consists of T = T1 ∪ T2 ∪
. . .∪Tk, where each of the Ti is a parameterized P1 and for i = 2, . . . , n,
the point ∞i−1 ∈ Ti−1 is glued to the point 0i ∈ Ti. The group of
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automorpshisms Aut(T ) is the k-dimensional torus Gkm, where the i-th
factor acts naturally on Ti.

• A LM-configuration of n marks on an LM -chain consist of length
k of an n-tuple (p1, . . . , pn), where each marked point belongs to T ∖
⋃ki=1{0i,∞i}. We are not requiring the marked points to be distinct.

• Two LM -configurations (p1, . . . , pn) and (q1, . . . , qn) on T are isomor-
phic if there exists φ ∈ Aut(T ) such that (q1, . . . , qn) = (φ(p1), . . . , φ(pn)).

• An LM -configuration is stable (p1, . . . , pn) if the only automorphism
of T preserving the marked points is the identity. This is equivalent to
requiring that each component of T hosts at least one marked point.

With these definitions in place, we leave it to the reader to formulate the
natural notion of family of stable configurations of n marks on LM chains,
and of isomorphism of families.

Theorem 5 ([LM00]). The variety Ln represents the moduli functor for
isomorphism classes of families of stable configurations of n marks on LM
chains (of arbitrary length).

The stability condition ensures that Ln parameterizes configurations of
marks on chains of length at most n.

Exercise 47. Make friends with this functor being the same as the functor
for weighted stable curves corresponding to weight data A = (1,1, ε, . . . , ε

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
n times

).

The boundary of Ln has irreducible components indexed by partitions of
of set of marks S1 ∪ . . . ∪ Sk = [n] = {1, . . . , n}, together with an ordering of
the subset. This corresponds to having the marks in Si on the component
Ti of a chain of lenght k. A partition of [n] into k subsets corresponds to a
boundary stratum of codimension k − 1; the closure of such a

Exercise 48. Develop the appropriate combinatorial conditions on ordered
partitions that describe when (the closure of ) two boundary strata do not
intersect, when they intersect, and when one stratum is in the closure of
another.

Exercise 49. Study L3 as a blow-down of M0,5. Notice that L3 is a toric
variety, and the modular boundary coincides with the toric boundary. Identify
the torus orbits with boundary strata of L3.

All Losev-Manin spaces are toric varieties. Ln is obtained from Pn−1

by blowing up all torus fixed point, then the proper transforms of torus
invariant lines, then the proper transform of the closures of two dimensional
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torus orbits and so on...this is the first step in the refined factorization of
Kapranov’s construction in Exercise 51.

This description tells us that Ln is the toric variety associated to the
permutohedron (https://en.wikipedia.org/wiki/Permutohedron). In
fact, after identifying the boundary of Ln with ordered partitions of the set
[n], this statement is more or less tautological, given that the permutohedron
may be defined as the polytope associated to the poset of ordered partitions
of [n], which coincides with the boundary poset of Ln.

There is a natural combinatorial description for the fan of Ln. We have
N = (Zn/⟨(1,1, . . . ,1)⟩) ⊗ R, and we let e1, . . . , en denote the standard lat-
tice generators for Zn. For any two part ordered partition S1 ∪ S2, con-
sider the ray ρS1 spanned by the vector ∑i∈S1

[ei]. For any k-part parti-
tion S1 ∪ . . . ∪ Sk consider the k − 1 dimensional cone spanned by the rays
ρS1 , ρS1∪S2 , . . . , ρS1∪...∪Sk−1 .

Exercise 50. Check that indeed this construction yields the fan for Ln.

3.5 Further exercises

Exercise 51. There is a more refined factorization of Kapranov’s construc-
tion of M0,n, which singles out one point, let us say, pn, to play a special
role. We start with Pn−3 The sequence of blow-ups is as follows.

• Blow up the points p1, . . . , pn−1, then (the proper transforms of) all
lines spanned by any two of these points, then (the proper transforms
of) planes spanned by any three such points, and so on... (and from
now on we omit saying "proper transforms of")

• Blow up the point pn, then all lines spanned by pn and another point
pi /= pn−1, then all planes spanned by pn and two points pi, pj both
different from pn−1 and so on...

• Blow up the line spanned by pn and pn−1, then the planes spanned by
those two points plus a pi /= pn−2, and so on...

You continue with this pattern until at the last step you blow up the codi-
mension two linear subspace spanned by pn, pn−1, . . . , p3.

1. prove that this sequence of blow-ups is equivalent to the one described
in Section 3.2.

2. determine a possible weight data for the weighted moduli spaces at the
end of each group of blow ups as collected in the bulleted list above.

3. interpret this factorization in terms of pointed curves: which groups of
sections are you “separating" at each step?
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4. observe that after the first group of blow-ups, the resulting intermediate
space is Ln−2.

Exercise 52 (Psi Classes). Consider Ln, denote the two marks with weight
one p0 and p∞, and the n “light” marks p1, . . . , pn.

1. Prove that for i = 1, . . . , n, ψi = 0.

2. Compute

∫
Ln
ψk0ψ

n−1−k
∞ .
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Lecture 4

Tropical M0,n

4.1 Dirty introduction to tropical geometry

Intuition. Tropical geometry is a wild degeneration that turns classical algebro-
geometric objects (e.g. curves), into piecewise-linear, combinatorial objects
(e.g. graphs). One of the scopes of tropical geometry is to understand when
combinatorial invariants of the tropical objects contain information about
classical invariants of the original objects. When a correspondence theorem
is established, one gains a powerful tool towards the computation of classical
invariants.

We denote by K = C{{t}} the field of Puiseaux series; its elements have
form x(t) = t

p
q a(t1/q), where q is a positive integer, p an arbitrary integer and

a is an invertible power series. Informally, Puiseaux series are Laurent series
in some (formal) q-th root of the variable. This is not such an extravagant
choice of field: it is the algebraic closure of the quotient field of the ring of
power series. There is a natural valuation val ∶K → Q defined by:

val (t
p
q a(t1/q)) = p

q
.

Let Y ⊂ (C∗)n be a closed subvariety of the n-dimensional algebraic torus,
defined by an ideal I ⊆ C[x±1

1 , . . . , x±1
n ]. Then we look at theK∗-valued points

of the subvariety V (I), and obtain a closed subvariety YK ⊂ (K∗)n.

Definition 13. The tropicalization Trop(Y ) of Y is the closure (with
respect to the euclidean topology) in Rn of the image of the map Trop ∶ YK →
Qn defined by

Trop(x1(t), . . . , xn(t)) ∶= (val(x1(t)), . . . , val(xn(t))).

The set Trop(Y ) has the structure of a polyhedral fan in Rn.
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Intuition. If you are not familiar with this notion of tropicalization, let me
attempt to provide some inutition. The main idea is that we are going from
thinking of a geometric object as of something “static”, to thinking of it as
something “dynamic”: we introduce a time variable t, and we seek solutions of
system of equations given by the ideal I that are “motions”, i.e. functions of
the time variable t. We are in particular interested in studying these motions
as t → 0. As it is the case when studying limits, we are not concerned with
what happens at t = 0: this is why we work in a torus rather than affine space.
We want to allow motions that run to zero or infinity in some coordinate
directions. In fact, these are the most exciting solutions, because in this case
we can look at the order of magnitude with which these coordinates vanish or
diverge. The map Trop in fact does just that: for any motion in Y it tells us
the order of magnitude that each of the coordinates has when t approaches 0.

If you are familiar with the definition of tropicalization in terms of min-
plus semiring, the connection is quite simple. Given an equation f = 0,
a necessary condition for the existence of a “motion" solution of the form
(x1(t), . . . xn(t)) is that the lowest order of f(x1(t), . . . xn(t)) vanishes. This
amounts precisely to be on the corner locus of the piecewise linear func-
tion Trop(f) obtained by interpreting f in the min-plus semiring. Then the
equivalence of the definitions consists of the fact that Puiseaux series give
you enough flexibility that once you line up the lowest order term, you are
guaranteed to be able to actually find solutions.

Finally, motions which tropicalize to a point with integral coordinates
have the asymptotic behavior (as t → 0) of 1-parameter subgroups of the
torus. So a one parameter subgroup ρ belongs to Trop(Y ) if there is a motion
on Y with that asymptotic behavior. Recall that for a toric variety X a one
parameter subgroup ρ belongs to a cone in the fan of X when the limit as
t→ 0 of ρ is a point in X (and in particular, it is the distinguished point in
the torus orbit corresponding to the cone). With this in mind, the following
lemmas feel very natural.

Lemma 13 (Tevelev, [Tev07]). Identify Rn with NR, the vector space spanned
by the lattice of one-parameter subgroups of the n-dimensional torus T . Let
σ be a cone in NR, and Xσ the corresponding affine toric variety. Assume
Xσ is smooth. Then Trop(Y ) intersects σ if and only if the closure of Y in
Xσ intersects the closed orbit of Xσ.

Lemma 14 (Tevelev, [Tev07]). Let Σ ⊂ NR be a fan, and XΣ the corre-
sponding toric variety. Then Y ⊂ XΣ is proper if and only if Trop(Y ) is
contained in the support of Σ.

Exercise 53. Consider Y1 = V (⟨x + y + 1⟩) and Y2 = V (⟨x + y⟩). Describe
Trop(Y1) and Trop(Y2). Which is the minimal toric variety in which Yi
compactifies?
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Definition 14. Let Y be a closed subvariety of the torus T and XΣ a toric
variety whose dense torus is T . Then Y ⊂ XΣ is a schön tropical com-
pactification if Y is proper, and the multiplication map T×Y → Y is smooth
and faithfully flat.

4.2 Tropical M0,n

The tropicalization of a punctured curve embedded in an n-dimensional torus
is a graph embedded in Rn, with certain additional combinatorial decora-
tions/conditions. However, in our study of rational pointed curves we did
not pay particular attention to whether curves were embedded or not. Sim-
ilarly, one can make an definition of an abstract tropical curve, study the
combinatorial objects that parameterize abstract tropical curves, and then
wonder whether such combinatorial moduli spaces are related to the classical
ones by tropicalization.

Definition 15. A tropical rational stable n-pointed curve is a metric
tree with n marked ends, such that all (interior) vertices are at least trivalent.
Metric means that all compact edges of the tree are assigned a length in
R≥0∪∞. The marked ends are considered to be unbounded (hence length ∞).

The moduli spaceM trop
0,n is defined to be the parameter space for tropical

rational stable n-pointed curves. It naturally has the structure of a cone
complex, where cones are indexed by topological types of marked trees, and
inclusions of cones as faces are given by contraction of edges.

Exercise 54. Show that M trop
0,n can be in fact identified with the boundary

complex of M0,n.

Exercise 55. Show that M trop
0,4 can be identified with a tropical line.

The moduli spaces M0,n are in fact schön tropical compactifications:
there is an embedding of M0,n into a torus, and a toric variety XΣ (whose
fan is M trop

0,n ) such that the closure of M0,n in XΣ is M0,n. This result
first appears in [Tev07], who obtains it by “stitching together” results of
[SS04, Kap93a], and is then spelled out in greater detail in [GM10].

We start by observing thatM0,n can be viewed as the quotientGr(2, n)/Tn−1,
where the torus should be thought as the quotient of the n-dimensional torus
by the diagonal one-parameter subgroup. The action is defined in the nat-
ural way: the i-th coordinate of the torus Tn scales the i-th column of the
matrix representing a point in the Grassmannian.

Kapranov in [Kap93a] shows that M0,n is then obtained as the Chow
or Hilbert quotient Gr(2, n)//∗Tn−1, i.e. the closure of Gr(2, n)/Tn−1 in an
appropriate Chow variety or Hilbert scheme.
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The Grassmannian can be embedded in P(n
2
) via the Plücker embedding,

and the action of the torus Tn−1 can be naturally extended to P(n
2
) in such

a way that it preserves this embedding. Speyer and Sturmfels [SS04] show
that the tropicalization Trop(A) of the affine cone of the Plücker embedding
is a fan of dimension 2n − 3 in R(n

2
) with lineality space L of dimension n.

The tropicalization of M0,n = Gr(2, n)/Tn−1 is then shown to be the
quotient Trop(A)/L, a balanced fan in R( n

2−n
). Finally it is easy to see that

M trop
0,n is naturally identified with Trop(M0,n). The fan Trop(M0,n) defines

a toric variety that by Lemma 14 contains a compactification of M0,n. It
takes a little extra work to show that this compactification is indeed M0,n,
but essentially this boils down to the fact that M trop

0,n contains the data of
the toroidal boundary of M0,n.

Exercise 56. Try to fill in the details of the argument above in the case
n = 4.

4.3 Tropical Weighted stable curves

We conclude this quick incursion into tropical geometry by quickly mention-
ing the works [Uli15, CHMR16], where the authors asked the question of
whether Hassett spaces of weighted stable curves also are tropical compact-
ifications. The answer is somewhat surprising in that it is quite restrictive.
The only Hassett spaces which are tropical compactifications are spaces of ra-
tional pointed weighted stable curves with only heavy/light points, i.e. where
the weight data is of the form (1, . . . ,1, ε, . . . , ε). These spaces can be em-
bedded in a toric variety whose fan may be identified with the moduli space
of tropical weighted stable curves ( which is to be thought of as the space of
metrizations on dual graphs of weighted stable curves).
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