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Abstract

For an ordinal ε, I introduce a variant of the notion of subcompleteness of a forcing poset,
which I call ε-subcompleteness, and show that this class of forcings enjoys some closure
properties that the original class of subcomplete forcings does not seem to have: factors of
ε-subcomplete forcings are ε-subcomplete, and if P and Q are forcing-equivalent notions,
then P is ε-subcomplete iff Q is. I formulate a Two Step Theorem for ε-subcompleteness
and prove an RCS iteration theorem for ε-subcompleteness which is slightly less restrictive
than the original one, in that its formulation is more careful about the amount of collapsing
necessary. Finally, I show that an adequate degree of ε-subcompleteness follows from the
κ-distributivity of a forcing, for κ > ω1.

1 Introduction

Subcomplete forcing was introduced by Jensen in [Jen09], see also [Jen14]. It is a class of forcings
that don’t add reals but may change cofinalities to be countable (assuming CH, Namba forcing is
subcomplete, and Př́ıkrý forcing is subcomplete), and they can be iterated with revised countable
support. In order to define subcompleteness, as well as the variants I want to investigate here, I
need the following concepts.

Definition 1.1. A transitive set N (usually a model of ZFC−) is full if there is an ordinal γ
such that Lγ(N) |= ZFC− and N is regular in Lγ(N), meaning that if x ∈ N , f ∈ Lγ(N) and
f : x −→ N , then ran(f) ∈ N .

Definition 1.2. For a poset P, δ(P) is the minimal cardinality of a dense subset of P.

Definition 1.3. Let N = LAτ = 〈Lτ [A],∈, A ∩ Lτ [A]〉 be a ZFC− model, ε an ordinal and
X ∪ {ε} ⊆ N . Then CNε (X) is the smallest Y ≺ N such that X ∪ ε ⊆ Y .

Let me define the concept of ε-subcompleteness now, the focus of the present work. The
motivation for this form of subcompleteness arose during joint work with Kaethe Minden on
[Min17].

Definition 1.4. Let ε be an ordinal. A forcing P is ε-subcomplete if there is a cardinal θ > ε
which verifies the ε-subcompleteness of P, which means that P ∈ Hθ, and for any ZFC− model
N = LAτ with θ < τ and Hθ ⊆ N , any σ : N̄ −→Σω N such that N̄ is countable, transitive and
full and such that P, θ, ε ∈ ran(σ), any Ḡ ⊆ P̄ which is P̄-generic over N̄ , and any s ∈ ran(σ), the
following holds. Letting σ(s̄, θ̄, P̄) = s, θ,P, there is a condition p ∈ P such that whenever G ⊆ P
is P-generic over V with p ∈ G, there is in V[G] a σ′ such that

1. σ′ : N̄ ≺ N ,
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2. σ′(s̄, θ̄, P̄, ε̄) = s, θ,P, ε,

3. (σ′)“Ḡ ⊆ G,

4. CNε (ran(σ′)) = CNε (ran(σ)).

In this parlance, P is subcomplete iff it is δ(P)-subcomplete. It is easy to see that increasing
ε weakens the condition of being ε-subcomplete. However, as we shall see, if a forcing P is
ε-subcomplete, for an ε > δ(P), then P is forcing equivalent to a subcomplete forcing. The
proof given in [Jen14] that under CH, Namba forcing is subcomplete actually shows that it is
ω2-subcomplete, while the smallest size of a dense subset is 2ω2 . The following facts elucidate
the effect of clause 4. in the definition of ε-subcompleteness.

Fact 1.5. Suppose N̄ , N are transitive models of ZFC−, N = LAτ , let σ : N̄ ≺ N , ε̄ an ordinal
in N̄ and ε = σ(ε̄). Then CNε (ran(σ)) =

⋃
{σ(u) | u ∈ N̄ ∧ card(u)N̄ ≤ ε̄}.

Proof. From left to right, if x ∈ CNε (ran(σ)), then there is a formula ϕ, a v ∈ N̄ and there is a

finite tuple of ordinals ~ξ < ε such that in N , x is the unique y such that ϕ(y, σ(v), ~ξ) holds. In

N̄ , let f be the partial function defined by f(~ζ) = the unique y such that ϕ(y, v, ~ζ) holds, for
~ζ < ε̄, if there is a unique such y. Then u = ran(f) has cardinality at most ε̄ in N̄ , and x ∈ σ(u).
Vice versa, if x ∈ σ(u), for some u ∈ N̄ of N̄ -cardinality at most ε̄, then let f : ε̄ −→ u be a
surjection in N̄ . Then x = σ(f)(ξ), for some ξ < ε, so x ∈ CNε (ran(σ)).

Fact 1.6. Suppose N̄ , N are transitive models of ZFC−, N = LAτ , and let σ, σ′ : N̄ ≺ N

be elementary embeddings. Let ε̄, λ̄ ∈ N̄ be limit ordinals, with cfN̄ (λ̄) > ε̄. Suppose that
λ := σ(λ̄) = σ′(λ̄) and ε := σ(ε̄) = σ′(ε̄), and that CNε (ran(σ)) = CNε (ran(σ′)). Then supσ“λ̄ =
supσ′“λ̄.

Proof. By symmetry, it suffices to show that for ξ < λ̄, σ(ξ) < supσ′“λ̄. By assumption,
σ(ξ) ∈ CNε (ran(σ′)), so by Fact 1.5, there is a u ∈ N̄ of N̄ -cardinality at most ε̄, such that
σ(ξ) ∈ σ′(u). It follows that σ(ξ) ∈ σ′(u ∩ λ̄), since σ(ξ) < λ = σ′(λ̄). But u ∩ λ̄ is bounded in
λ̄, so σ(ξ) < σ′(ζ), for some ζ < λ̄ with u ∩ λ̄ ⊆ ζ.

The theme of these notes is the investigation of the notions of subcompleteness that result
from replacing δ(P) in the original definition with an ordinal ε, or from replacing the function
P 7→ δ(P) with another function (I consider two such functions, E(P) and F(P)). Throughout,
I’m interested in the interaction between the resulting classes of forcings and forcing equivalence.
In Section 2, I show that the class of ε-subcomplete forcings is closed under forcing equivalence
and that factors of ε-subcomplete forcings are ε-subcomplete. Subcompleteness itself does not
seem to have these closure properties. In Section 4, I introduce the functions E and F and I prove
a Two Step Theorem for ε-subcomplete forcings. Section 4 explores some closure properties of
the class of the E- and F-subcomplete forcings, most importantly, the F-subcomplete forcings
are closed under forcing equivalence, and both the E- and the F-subcomplete forcings satisfy
a two step theorem. Section 5 is devoted to a proof of an iteration theorem for ε-subcomplete
forcings which is less restrictive than the one for subcomplete forcings in that one is required to
collapse less than in the original iteration theorems for subcomplete forcings. Finally, in section
6, I show that one can get ε-subcompleteness from κ-distributivity, if κ > ω1 and ε is sufficiently
large.
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2 ε-subcompleteness and essential subcompleteness

As defined in the introduction, a forcing P is ε-subcomplete, for an ordinal ε, if it satisfies the
definition of subcompleteness, with δ(P) replaced by ε.

Obviously, if ε ≤ ε′ and P is ε-subcomplete, then it is also ε′-subcomplete.

Definition 2.1. Let ε ·P be the disjoint union of ε copies of P, with a weakest condition 1l. Let’s
say that two forcings P and Q are forcing equivalent if every forcing extension of V by P is equal
to some forcing extension of V by Q and vice versa.

Clearly, forcing equivalence is first order expressible. Note that ε · P is forcing equivalent to
P. This shows that it’s not the case that two forcings P and Q are forcing equivalent in this sense
iff their Boolean completions are isomorphic, which is a common misconception, see [Cum10,
p. 791], where this is claimed. In the literature, forcings P and Q are often defined to be forcing
equivalent if there are a dense subset D ⊆ P and a dense subset D′ ⊆ Q such that P�D and Q�D′

are isomorphic. This is a different notion of forcing equivalence than the one I am considering
here. Note that δ(ε · P) = εδ(P). So there are forcings Q forcing equivalent to a given P with
δ(Q) as large as wished.

It follows from all of this that if P is ε-subcomplete, then ε · P, which is forcing equivalent to
P, is subcomplete.

Definition 2.2. Let’s call a poset essentially subcomplete if it is ε-subcomplete, for some ε.

In the remainder of this section, a few closure properties of the classes of the ε-subcomplete
or essentially subcomplete forcings will be proven, showing that these classes are very natural.
The first type of closure property I want to consider is the closure under forcing equivalence.

Lemma 2.3. If P is ε-subcomplete and Q is forcing equivalent to P, then Q is ε-subcomplete. (In
particular, if P is essentially subcomplete and Q is forcing equivalent to P, then Q is essentially
subcomplete.)

Proof. Let θ be a cardinal that verifies the ε-subcompleteness of P, and let’s choose θ large
enough so that P(P ∪Q) ∈ Hθ.

Let σ : N̄ ≺ N = LAτ be countable and full, Hθ ⊆ N , N |= ZFC−, and s ∈ N . I want to assume
that P,Q, θ ∈ ran(σ) as well - this is harmless, by [Jen14, p. 116]. Let s̄, P̄, Q̄, θ̄ = σ−1(s,P,Q, θ).
Let H̄ be Q̄-generic over N̄ .

Since P̄ and Q̄ are forcing equivalent in N̄ , there is a P̄-generic filter Ḡ such that N̄ [Ḡ] = N̄ [H̄].
By ε-subcompleteness of P, there is a condition p ∈ P such that whenever G is P-generic, there
is in V[G] an elementary embedding σ′ : N̄ ≺ N such that σ′�{s̄, P̄, Q̄, θ̄} = σ�{s̄, P̄, Q̄, θ̄},
CNε (ran(σ′)) = CNε (ran(σ)) and σ′“Ḡ ⊆ G.

So let G be such a P-generic filter, and let σ′ be as described. Then σ′ lifts to an embedding
σ̃′ : N̄ [Ḡ] ≺ N [G] with σ̃′(Ḡ) = G. Since H̄ ∈ N̄ [Ḡ], it follows by elementarity of σ̃′ that
H = σ̃′(H̄) is Q-generic over N . But since N contains all subsets of Q, this implies that H is
Q-generic over V. Moreover, it’s true in N̄ [Ḡ] that Ḡ ∈ N̄ [H̄], so by elementarity, and since
σ̃′(Ḡ) = G, this implies that G ∈ N [H], and so, σ′ ∈ V[G] ⊆ V[H].

So, σ′ has all the desired properties, and since it exists in V[H], there is some condition q ∈ H
which forces the existence of an embedding with the required properties.

Observation 2.4. The class of the essentially subcomplete forcings is the closure of the class of
the subcomplete forcings under forcing equivalence.
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Proof. The class of essentially subcomplete forcings is closed under forcing equivalence, by
Lemma 2.3, and every subcomplete forcing is essentially subcomplete, so the closure of the
class of subcomplete forcings under forcing equivalence is contained in the class of essentially
subcomplete forcings. Vice versa, every essentially subcomplete forcing P is forcing equivalent
to a subcomplete forcing, namely, if P is ε-subcomplete, then P is forcing equivalent to the
subcomplete forcing ε · P.

Observation 2.5. If the forcing axiom holds for a notion of forcing P (that is, for every ω1-sized
collection D of dense subsets of P, there is a filter F in P that intersects each dense set in D),
and if forcing with P necessarily adds a Q-generic filter (in particular this is the case if P and Q
are forcing equivalent), then the forcing axiom holds for Q.

Proof. Let D be a collection of dense subsets of Q. For each D ∈ D, let AD ⊆ D be a maximal
antichain. Let A be an ω1-sized collection of maximal antichains in Q containing each AD, and
such that for every A,A′ ∈ A, there is a B ∈ A which refines A and A′, meaning that for each
b ∈ B, there are a ∈ A and a′ ∈ A′ such that b ≤ a and b ≤ a′. For every A ∈ A, let A≤ be the
downward closure of A, i.e., A≤ = {p | ∃a ∈ A p ≤ a}. Then D′ = {A≤ | A ∈ A} is a collection
of dense subsets of Q.

Let Γ′ be a P-name for a Q-generic filter. So, for every D ∈ D′, it is forced by P that Γ′

intersects Ď. This means that the set D̃ ⊆ P consisting of all p ∈ P such that for some q ∈ Q,
p 
P q̌ ∈ Γ′ ∩ Ď, is dense in P. By the forcing axiom for P, let F̃ be a filter in P such that
F̃ ∩ D̃ 6= ∅, for all D ∈ D′. Let

F = {q ∈ Q | ∃p ∈ F̃∃A ∈ A∃r ∈ A r ≤Q q ∧ p 
P ř ∈ Γ′}

F is then a filter in Q: if q ∈ F and q ≤Q q′, then q′ ∈ F , trivially. And if q, q′ ∈ F , then
there are p, p′ ∈ F̃ , A,A′ ∈ A, r ∈ A and r′ ∈ A′ such that r ≤ q, r′ ≤ q′ and p 
P ř ∈ Γ′

and p′ 
P ř′ ∈ Γ′. Let B ∈ A be a refinement of A and A′. Then D := B≤ ∈ D′, and so, F̃

intersects D̃. Let p̃ ∈ F̃ ∩D̃. Let q̃ ∈ D be such that p̃ forces with respect to P that ˇ̃q ∈ Γ′. Then
q̃ ≤ a, for some (unique) a ∈ B, since D = B≤. Hence, a ∈ F . And since a ∈ B and B refines
A,A′, it follows that a ≤ q, q′. This argument also shows that F ∩D 6= ∅, for all D ∈ D.

Lemma 2.6. The forcing axiom for the class of subcomplete forcings implies the forcing axiom
for the class of essentially subcomplete forcings.

Proof. By Observation 2.5, the forcing axiom for the class of subcomplete forcing implies the
forcing axiom for the closure of this class, which is the class of all essentially subcomplete forcings,
by Observation 2.4.

The next closure property says that factors of ε-subcomplete forcings are ε-subcomplete.

Theorem 2.7. Let P be a poset, and let Q̇ be a P-name for a poset, such that P ∗ Q̇ is ε-
subcomplete. Then P is ε-subcomplete.

Proof. Let θ verify that P∗Q̇ is ε-subcomplete. I claim that θ also verifies that P is ε-subcomplete.
Let N = Lτ [A], where τ > θ and Hθ ⊆ N . Let s be any given set, σ : N̄ ≺ N be countable and

full, P, Q̇, θ, s ∈ ran(σ), P̄, ˙̄Q, θ̄, s̄ = σ−1(P, Q̇, θ, s) (as before, it is harmless to assume that some
additional parameter, in this case Q̇, is in the range of σ). Let Ḡ ⊆ P̄ be P̄-generic over N̄ . We
have to show that there is a condition p ∈ P such that whenever G is P-generic over V with p ∈ G,

then in V[G], there is an elementary embedding σ′ : N̄ ≺ N with σ′�{P̄, ˙̄Q, θ̄, s̄} = σ�{P̄, ˙̄Q, θ̄, s̄},
σ′“Ḡ ⊆ G and CNε (ran(σ′)) = CNε (ran(σ)).
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Now let H̄ ⊆ ˙̄QḠ be ˙̄QḠ-generic over N̄ [Ḡ]. By the ε-subcompleteness of P∗Q̇, let 〈p, q̇〉 ∈ P∗Q̇
be such that whenever G ∗H is P ∗ Q̇-generic over V with 〈p, q̇〉 ∈ G ∗H, then in V[G ∗H], there

is an elementary embedding ρ : N̄ ≺ N with ρ�{P̄, ˙̄Q, θ̄, s̄} = σ�{P̄, ˙̄Q, θ̄, s̄}, ρ“(Ḡ ∗ H̄) ⊆ G ∗H
and CNε (ran(ρ)) = CNε (ran(σ)). Let G ∗H be P ∗ Q̇-generic over V with 〈p, q̇〉 ∈ G ∗H, and let
ρ be an embedding as described.

Let µ > θ be regular in V[G ∗H], and consider the structure

M = 〈HV[G]
µ ,∈, N, σ,P, Q̇, ε, θ, s,G〉

in V[G], and the infinitary theory L on M with constants x for each x ∈M , a constant symbol σ̇′

and the basic axioms,1 the ZFC−-axioms, and the axioms expressing that σ̇′ : N̄ ≺ N , σ̇′“Ḡ ⊆ G,

σ̇′�{P̄, ˙̄Q, θ̄, s̄} = σ�{P̄, ˙̄Q, θ̄, s̄} and C
N
ε (ran(σ)) = C

N
ε (σ̇′).

Then L is consistent, as witnessed by ρ in V[G ∗ H]. In V[G], let π : M̄ ≺ M , where M̄
is countable and transitive, and let L̄ be the infinitary theory on M̄ defined as L is defined
over M , with the constants moved by π−1. Then L̄ is consistent, and since M̄ is countable in
V[G], it has a solid model (that is, a model whose well-founded part is transitive) Ā in V[G].
Let k = (σ̇′)A. Note that since M sees that N̄ is countable, π−1(N̄) = N̄ and π�N̄ = id.

We have that k : N̄ ≺ π−1(N), k“Ḡ ⊆ π−1(G) and k�{P̄, ¯̇Q, θ̄, s̄} = π−1(σ)�{P̄, ¯̇Q, θ̄, s̄}, i.e.,
k(P̄) = π−1(σ(P̄)) etc.

Set σ′ = π ◦ k. It then follows that σ′ : N̄ ≺ N , because (σ̇′)Ā : N̄ −→ π−1(N), so that
if ~a ∈ N̄ and ϕ(~x) is a formula, then N̄ |= ϕ(~a) iff π−1(N) |= ϕ(k(~a)) iff N |= ϕ(π(k(~a))).

Similarly, σ′(P̄, ˙̄Q, ε̄, s̄) = P, Q̇, ε, s, because k(P̄, ˙̄Q, θ̄, s̄) = π−1(P, Q̇, θ, s), and also, σ′“Ḡ ⊆ G,
because k“Ḡ ⊆ π−1(G). Finally, a standard argument shows that CNε (ran(σ′)) = CNε (ran(σ)).
Here are the details, for the reader’s convenience.

The inclusion from left to right is clear because ran(k) ⊆ Cπ
−1(N)

π−1(ε) (ran(π−1(σ))), which implies

that ran(π ◦ k) ⊆ CNε (ran(σ)), which implies the desired inclusion.
For the opposite direction, let c ∈ CNε (ran(σ)). Writing fN for the canonical Skolem function

of N , there is an n < ω, an α < ε and an a ∈ N̄ such that

c = fN (n, 〈α, σ(a)〉)

We have that C
π−1(N)
π−1(ε) (ran(k)) = C

π−1(N)
π−1(ε) (ran(π−1(σ))), and π−1(σ)(a) belongs to the set on the

right hand side of this equation. Hence, it belongs to the left hand side as well, and this means
that there is an m < ω, and α̃ < π−1(ε) and a b ∈ N̄ such that π−1(σ)(a) = fπ

−1(N)(m, 〈α̃, k(b)〉).
So applying π to this fact gives

σ(a) = fN (m, 〈π(α̃), σ′(b)〉)

Substituting this into the equation above gives

c = fN (n, 〈α, fN (m, 〈π(α̃), σ′(b)〉)〉)

Since π(α̃) < ε, this is in CNε (ran(σ′)), as wished.

Corollary 2.8. If P ∗ Q̇ is subcomplete, then P is δ(P ∗ Q̇)-subcomplete.

1Following [Jen14], the basic axioms are the axioms of the form ∀z (z ∈ x ⇐⇒
∨
y∈x z = y), for every

x ∈ M . These axioms insure that any model of the resulting theory whose well-founded part is transitive will
interpret x as x.
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Note that δ(P) ≤ δ(P ∗ Q̇). So this corollary does not quite show that factors of subcomplete
forcings are subcomplete, but it does show that they are forcing equivalent to subcomplete
forcings (namely, δ(P∗ Q̇) ·P is subcomplete). The following summarizes what can be said about
factors and quotients of essentially subcomplete forcings.

Theorem 2.9. Let P be a poset, and let Q̇ be a P-name for a poset.

1. If P is (essentially) subcomplete and P forces that Q̇ is (essentially) subcomplete, then P∗Q̇
is (essentially) subcomplete.

2. If P ∗ Q̇ is (essentially) subcomplete, then

(a) P is essentially subcomplete, but

(b) it is not necessarily true that P forces that Q̇ is essentially subcomplete.

Proof. 1. is the two step iteration theorem for subcomplete forcing, see [Jen14, pp. 136]. I
will explore versions of this theorem for ε-subcomplete forcings further in Section 3. 2.(a) is
Theorem 2.7. 2.(b) was also observed in [Min17]. Consider the following situation. Let P be
the forcing from [Kun78] to add a homogeneous Souslin tree with countable conditions. P is
countably closed, and hence subcomplete. Let Q̇ be the P-name for the generic object (i.e., the
homogeneous Souslin tree added by P). Then P forces that Q̇ is not essentially subcomplete,
because subcomplete forcing preserves Souslin trees. But P∗Q̇ is forcing equivalent to Add(ω1, 1),
and is thus subcomplete.

3 Two step theorems, E(P) and F(P)
Next, I want to explore versions of the two step theorem for ε-subcompleteness. In the context
of subcomplete forcing, δ(P) plays a double role: on the one hand, it is an upper bound for the
possible sizes of maximal antichains in P, and on the other hand, it specifies how closely the
embedding σ′ in the definition of subcompleteness can be made to resemble the originally given
σ. By considering ε-subcompleteness, these two aspects get separated: the second role is played
by ε, and it turns out that there is a way to loosen the restriction given by δ(P), by replacing it
with another measurement of the “complexity” of P.

Definition 3.1. For a poset P, let E(P) = sup{card(A) | A is an antichain in P}.

Note that E(P) ≤ δ(P), and E(P) may be strictly smaller than δ(P) (for example, if P is Př́ıkrý
forcing with respect to a normal measure on κ, then E(P) = κ < 2κ = δ(P). Another example is
when P is a κ+-Souslin tree: in that case, E(P) = κ < κ+ = δ(P)). Note also that E(P) is closely
related to the saturation of P, or Sat(P), which is sometimes also denoted by c.c.(P), the least κ
such that P satisfies the κ-c.c.

Theorem 3.2. Suppose P is ε0-subcomplete, Q̇ ∈ VP, and 
P Q̇ is ε̌1-subcomplete. Let ε =
ε0 ∪ ε1 ∪ E(P). Then P ∗ Q̇ is ε-subcomplete.

Note: Another way to say this is that if ε ≥ E(P) is such that P is ε-subcomplete and 
P Q̇ is
ε̌-subcomplete, then P ∗ Q̇ is ε-subcomplete. This is the form in which I will prove the theorem.

Proof. The argument works mostly as the proof of [Jen14, Thm. 1, p.136 ff.], with a key modifi-
cation in the proofs of statements (A) and (B) below. Actually, that proof shows the statement
of the present lemma, with δ(P) in place of E(P).
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We have that P is ε-subcomplete and 
P Q̇ is ε̌-subcomplete, and that E(P) ≤ ε. To prove
the lemma, let θ be large enough that it verifies the ε-subcompleteness of P and so that 
P θ̌
verifies the ε̌-subcompleteness of Q̇. I claim that θ verifies the ε-subcompleteness of P ∗ Q̇.

To see this, let τ > θ, N = LAτ ⊇ Hθ, σ : N̄ ≺ N be countable and full, with S = 〈P, Q̇, θ, s〉 ∈
ran(σ) (where s is some fixed set). Let S̄ = 〈P̄, ¯̇Q, θ̄, s̄〉 = σ−1(S). Further, let Ḡ ∗ H̄ be P̄ ∗ ¯̇Q-
generic over N̄ . We have to show that there is a 〈p, q̇〉 ∈ P ∗ Q̇ such that whenever G ∗ H is
P ∗ Q̇-generic over V with 〈p, q̇〉 ∈ G ∗ H, then there is in V[G][H] an elementary embedding
σ′ : N̄ ≺ N such that σ′(S̄) = S, σ′“(Ḡ ∗ H̄) ⊆ G ∗H and

(0) CNε (ran(σ′)) = CNε (ran(σ))

Since P is ε-subcomplete, there is a p ∈ P such that, letting G be any filter that’s P-generic over
V with p ∈ G, there is a σ0 : N̄ ≺ N in V[G] such that σ0(S̄) = S, σ0“Ḡ ⊆ G and

(1) CNε (ran(σ0)) = CNε (ran(σ))

Then σ0 lifts to an embedding σ∗0 : N̄ [Ḡ] ≺ N [G] such that σ0(Ḡ) = G. N̄ [Ḡ] is then still full,
and since θ verifies the ε-subcompleteness of Q̇G in V[G], it follows that there is a q ∈ Q̇G such
that, letting H be any filter that’s Q̇G-generic over V[G] with q ∈ H, there is in V[G][H] a
σ1 : N̄ [Ḡ] ≺ N [G] such that σ1(S̄) = S, and in addition σ1(Ḡ) = G, σ1“H̄ ⊆ H and

(2) C
N [G]
ε (ran(σ1)) = C

N [G]
ε (ran(σ∗0))

Let σ′ = σ1�N̄ . I want to show that σ′ is as wished. Clearly, σ′ : N̄ ≺ N , σ′(S̄) = S and
σ′“Ḡ ∗ H̄ ⊆ G ∗ H. The crucial missing property is (0). To prove that (0) holds, it suffices to
show

(3) CNε (ran(σ′)) = CNε (ran(σ0))

because (3), together with (1), immediately implies (0). To show (3), in turn, it suffices to show
that the following hold:

(A) N ∩ CN [G]
ε (ran(σ1)) = CNε (ran(σ′))

(B) N ∩ CN [G]
ε (ran(σ∗0)) = CNε (ran(σ0))

For (2)+(A)+(B) implies (3).
To see that (A) holds, note that the direction from right to left is obvious, because N is

definable in N [G] using the predicate A. For the converse, let x ∈ N , and suppose that in N [G],
x is the unique z such that ϕ(z, σ1(a), α) holds, for some formula ϕ, where a ∈ N̄ [Ḡ], α < ε. Let
a = ȧḠ, so that σ1(a) = σ′(ȧ)G. Then there is a p′ ∈ G such that in N , p′ forces that x̌ is the
unique z such that ϕ(z, σ′(ȧ), α̌) holds. So, letting

C = {y ∈ N | ∃r ∈ P r 
P ∀z (z = y̌ ⇐⇒ ϕ(z, σ′(ȧ), α̌))}

it follows that x ∈ C. But note that the cardinality of C is at most E(P), because for each
y ∈ C, we can pick an ry ∈ P witnessing this, and clearly, for y0, y1 ∈ C with y0 6= y1, it follows
that ry0

⊥ ry1
, so that {ry | y ∈ C} is an antichain in P of the same cardinality as C. Let g

be the <LAτ -least surjection from card(C) to C. Then g is definable in N from the parameters

P, σ′(ȧ), α, and since x = g(γ) for some γ < card(C) ≤ E(P) ≤ ε, it follows that x ∈ CNε (ran(σ′)),
as wished. The proof of (B) is almost identical to the proof of (A).

So, we have found a σ′ in V[G][H] with the properties required by ε-subcompleteness of P∗Q̇,
and the existence of such an embedding is then forced by some condition in G ∗H, completing
the proof.
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The assumption in the previous theorem can still be weakened.

Definition 3.3. Let P be a partial order. For p ∈ P, let P≤p be the restriction of P to conditions
q ≤ p. Let F(P) be the least ε such that {p | E(P≤p) ≤ ε} is dense in P.

Clearly, F(P) ≤ E(P). It’s easy to construct examples where F(P) is much smaller than E(P),
for example, using the fact that F(P) = F(κ · P) while E(κ · P) ≥ κ. The point is that the
previous theorem goes through with F(P) in place of E(P).

Theorem 3.4. Suppose P is ε0-subcomplete, Q̇ ∈ VP, and 
P Q̇ is ε̌1-subcomplete. Let ε =
ε0 ∪ ε1 ∪ F(P). Then P ∗ Q̇ is ε-subcomplete.

Note: Again, this can be expressed by saying that if ε ≥ F(P) is such that P is ε-subcomplete
and 
P Q̇ is ε̌-subcomplete, then P ∗ Q̇ is ε-subcomplete. This is the form in which I will prove
the theorem.

Proof. Running the proof of Theorem 3.2 under the assumption that ε ≥ F(P) rather than
ε ≥ E(P), and using the same notation, the only places where changes have to be made are in
the proofs of the claims

(A) N ∩ CN [G]
ε (ran(σ1)) = CNε (ran(σ′))

(B) N ∩ CN [G]
ε (ran(σ∗0)) = CNε (ran(σ0))

As before, the direction from right to left is obvious in both cases. To see that the substantial
inclusion of (A) holds, let x ∈ N , and suppose that in N [G], x is the unique z such that
ϕ(z, σ1(a), α) holds, for some formula ϕ, where a ∈ N̄ [Ḡ], α < ε. Let a = ȧḠ, so that σ1(a) =
σ′(ȧ)G. In N̄ , the set of p̄ ∈ P̄ such that E(P̄≤p̄) ≤ F(P̄) is dense, so there is a p̄0 ∈ Ḡ belonging
to this set. By elementarity, then, p0 = σ′(p̄0) has E(P≤p0) ≤ F(P), and p0 ∈ G. There is now
a p′ ∈ G, with p′ ≤ p0, such that in N , p′ forces that x̌ is the unique z such that ϕ(z, σ′(ȧ), α̌)
holds. So, letting

C = {y ∈ N | ∃r ≤P p0 r 
P ∀z (z = y̌ ⇐⇒ ϕ(z, σ′(ȧ), α̌))}

it follows that x ∈ C. But note that the cardinality of C is at most E(P≤p0) ≤ F(P) ≤ ε,
because for each y ∈ C, we can pick an ry ∈ P≤p0

witnessing this, and if y0, y1 ∈ C are
distinct, then ry0

⊥ ry1
, so that {ry | y ∈ C} is an antichain in P≤p0

of the same cardinality
as C. Let g be the <LAτ -least surjection from card(C) to C. Then g is definable in N from the
parameters P, p0, σ

′(ȧ), α, and since x = g(γ) for some γ < card(C) ≤ E(P) ≤ ε, it follows that
x ∈ CNε (ran(σ′)) (noting that p0 ∈ ran(σ′)), as wished. The proof of (B) is almost identical to
the proof of (A), and the remainder of the proof goes through without modification.

4 Closure properties of E- and F-subcompleteness

The following lemma shows that F(P) is maybe a more natural measurement of a poset than
δ(P) or E(P).

Notation 4.1. If P is a forcing notion, then I write ĠP for the canonical name for the P-generic
filter.

Lemma 4.2. If P is forcing equivalent to Q, then F(P) = F(Q).

8



Proof. We show that if for every GQ which is Q-generic over V, there is a GP ∈ V[GQ] which is
P-generic over V, such that V[GP] = V[GQ], then F(Q) ≤ F(P).

Let κ = F(P), λ = F(Q), and assume (towards a contradiction) that κ < λ. It follows that
{q ∈ Q | E(Q≤q) ≤ κ} is not dense in Q. So there is a q0 ∈ Q such that for every q ≤ q0,
E(Q≤q) > κ. So, for every q ≤ q0, there is a maximal antichain Aq ⊆ Q≤q with card(Aq) > κ.

Let GQ 3 q0 be generic for Q over V. Let Ḣ be a Q-name for a P-generic filter such that if
we let H = ḢGQ , then V[GQ] = V[H]. In particular, GQ ∈ V[H], which means that there is a
P-name İ in V such that İH = GQ. Since H is P-generic and D = {p ∈ P | E(P≤p) ≤ κ} is dense
in P, we may fix a condition p0 ∈ D∩H. It follows that there is a condition q1 ≤ q0 in GQ which

forces that Ḣ is P̌-generic over V̌, that ˇ̇IḢ = ĠQ is Q-generic over V, and that p̌0 ∈ Ḣ. Now, for
every q ∈ Aq1 , let Gq be Q-generic with q ∈ Gq. Then, we have

İ(ḢGq ) = Gq

So, there is a pq ∈ (ḢGq ) such that pq 
P “İ ∩ Ǎq1 = {q̌} and İ is a filter in Q̌”. Since q ≤ q1,

we know that p0 ∈ ḢGq , and so, we may pick pq with the additional property that pq ≤ p0.

Of course, the function q 7→ pq may not exist in V, because it depends on (Ḣ
Gq
Q ). But still, in

V, there is a function f : Aq1 −→ P≤p0
such that f(q) 
P Ǎq1 ∩ İ = {q̌}. Then clearly, f has to

be injective, and ran(f) is an antichain in P≤p0
of greater size than κ = E(P≤p0

), a contradiction.
This shows that F(Q) ≤ F(P). The other direction follows by exchanging the roles of P and

Q in the above argument.

Definition 4.3. A forcing P is E-subcomplete if it is E(P)-subcomplete. It is F-subcomplete if
it is F(P)-subcomplete.

The following corollary shows the naturalness of F(P) as a measurement of a poset P, the
closure of the class of F-subcomplete forcings under forcing equivalence.

Corollary 4.4. Let P and Q be forcing equivalent posets. Then P is F-subcomplete iff Q is
F-subcomplete.

Proof. This follows from Lemma 4.2, which shows that ε := F(P) = F(Q), together with Lemma
2.3, which shows that P is ε-subcomplete iff Q is ε-subcomplete.

It was shown in [Jen14, §4, Thm. 1] that if P is subcomplete and P forces that Q̇ is subcom-
plete, then P∗Q̇ is subcomplete. The next corollary says that the classes of E- and F-subcomplete
forcings enjoy the corresponding closure properties as well.

Lemma 4.5. Let P be a notion of forcing and Q̇ a P-name for a forcing.

1. If P is E-subcomplete and 
P Q̇ is E-subcomplete, then P ∗ Q̇ is E-subcomplete.

2. If P is F-subcomplete and 
P Q̇ is F-subcomplete, then P ∗ Q̇ is F-subcomplete.

Proof. For 1, let ε = E(P ∗ Q̇). Then E(P) ≤ ε, so P is ε-subcomplete. Moreover, 
P E(Q̇) ≤
card(ε̌): suppose otherwise. Let G be P-generic such that in V[G], E(Q̇G) ≥ ε+. Note that P
satisfies the ε+-c.c., so ε+ is the same in V and in V[G]. Since ε+ is a successor cardinal, there is
in V[G] an antichain in Q̇G of size ε+. In V[G], let f : ε+ −→ Q̇G be an (injective) enumeration
of such an antichain. Let ḟ be a name for f , and let p ∈ G force that it behaves as described.
Then, for every α < ε+, p 
P ḟ(α̌) ∈ Q̇, and thus, there is a τα such that p 
P ḟ(α̌) = τα and
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〈p, τα〉 ∈ P ∗ Q̇. Then {〈p, τα〉 | α < ε+} is an antichain in P ∗ Q̇ of size ε+, contradicting that
ε = E(P ∗ Q̇).

Hence, P is ε-subcomplete and 
P Q̇ is ε̌-subcomplete, and ε ≥ E(P), which implies, by
Theorem 3.2, that P ∗ Q̇ is ε-subcomplete, as claimed.

For 2, let ε = F(P ∗ Q̇). Then F(P) ≤ ε, because if ξ < F(P), then there is a p ∈ P such that
for every p′ ≤ p, E(P≤p′) > ξ. It follows then that for every 〈p′, q̇〉 ∈ P ∗ Q̇ with 〈p′, q̇〉 ≤ 〈p, 1lQ〉,
E((P ∗ Q̇)≤〈p′,q̇〉) > ξ). This is because there is an an antichain A in P≤p′ with card(A) > ξ, and

then, A× {q̇} is an antichain in (P ∗ Q̇)≤〈p′,q̇〉 of the same size. So P is ε-subcomplete.

Similarly, 
P F(Q̇) ≤ card(ε̌): suppose otherwise. Let G be P-generic such that in V[G],
letting Q = Q̇G, F(Q) ≥ ε+. Since the set of p ∈ P such that P≤p satisfies the ε+-c.c. is dense
in P, forcing with P preserves ε+ as a cardinal. Since in V[G], F(Q) ≥ ε+, there is a q ∈ Q
such that for all q′ ≤ q, E(Q≤q′) > card(ε)V[G], i.e., E(Q≤q′) ≥ ε+. Let p ∈ G force this, and

let p force that q̇ is a witness, i.e., p 
P q̇ ∈ Q̇ and for all q′ ≤Q̇, E(Q̇≤Q̇q
′) ≥ ε+. Choose q̇

in so that 〈p, q̇〉 ∈ P ∗ Q̇. Let q = q̇G. The set D = {〈r, ṡ〉 ∈ P ∗ Q̇ | E((P ∗ Q̇)≤〈r,ṡ〉) ≤ ε} is

dense and open in P ∗ Q̇. Let q ∈ H, H being Q-generic over V[G], with q ∈ H. Then G ∗H is
P ∗ Q̇-generic over V, and so, there is a condition 〈p1, q̇1〉 ∈ D ∩ G ∗H, where we may assume
that p1 ≤ p and p1 
P q̇1 ≤ q̇. Let q1 = q̇G1 . So in V[G], E(Q≤q1) ≥ ε+. So let f : ε+ −→ Q≤q1
be a one-to-one enumeration of an antichain in Q≤q1 , f ∈ V[G]. Let ḟ be a P-name for f , and let

p2 ∈ G, p2 ≤ p1, be such that p2 forces that ḟ is as described. For each α < ε+, let τα be such
that 〈p2, τα〉 ∈ P ∗ Q̇ and p2 
 τα = ḟ(α̌). Then {〈p2, τα〉 | α < ε+} is an antichain of size ε+ in
(P ∗ Q̇)≤〈p1,q̇1〉, while 〈p1, q̇1〉 ∈ D, which means that E((P ∗ Q̇)≤〈p1,q̇1〉) ≤ ε, a contradiction.

The claim now follows from Theorem 3.4, because P is ε-subcomplete, 
P Q̇ is ε-subcomplete,
and ε ≥ F(P).

As mentioned, assuming CH, Namba forcing N is ω2-subcomplete, which implies that it is
F-subcomplete, since it necessarily collapses ω2, and so, F(N) ≥ ω2.

5 Iterating ε-subcomplete forcings

The next goal is to establish an iteration theorem for ε-subcomplete forcings that generalizes the
one for subcomplete forcings (see [Jen14, Thm. 3, pp. 142ff.]), which says that if an RCS iteration
〈Bi | i < α〉 satisfies that whenever i+1 < α, 
Bi B̌i+1/ĠBi is subcomplete and 
Bi+1

δ(B̌i) ≤ ω1,
then every Bi is subcomplete. The value δ(Bi) plays a double role here - on the one hand, Bi
is subcomplete if it is δ(Bi)-subcomplete, i.e., it can be viewed as a measure of the closeness
required between an originally given full elementary embedding and its subcomplete lift, and on
the other hand, δ(Bi) is an upper bound on the size of maximal antichains in Bi, which is required
to be collapsed in iterations so that it is insured that at limit stages of cofinality greater than
ω1, direct limits are formed. The iteration theorem for ε-subcomplete forcings separates these
two roles: the first role will be taken over by the parameter εi such that Bi is εi-subcomplete,
and δ(Bi) will be taken over by F(Bi).

Some technical facts will be needed. The following is a corollary of the proof of Lemma 4.5.

Corollary 5.1. E(P) ≤ E(P ∗ Q̇) and F(P) ≤ F(P ∗ Q̇). Moreover, if ε = E(P ∗ Q̇), then

P E(Q̇) ≤ card(ε̌), and if ε′ = F(P ∗ Q̇), then 
P F(Q̇) ≤ card(ε̌′).

Following Jensen, I will employ complete Boolean algebras when iterating, which is why it’s
worth noting a version of the previous corollary for this context.
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Corollary 5.2. If A and B are complete Boolean algebras such that A ⊆ B, i.e., A is completely
contained in B, then E(A) ≤ E(B) and F(A) ≤ F(B). Of course, for a Boolean algebra C, E(C)
is defined to be E(〈C \ {0},≤C〉), and similarly for F(C).

Moreover, if G is A-generic, then EV[G](B/G) ≤ E(B) and FV[G](B/G) ≤ F(B).

Let’s relate the measurements E(·) and F(·) of a poset and its Boolean completion.

Observation 5.3. Let P be separative, and let B be the complete Boolean algebra of P. Then
E(P) = E(B) and F(P) = F(B).

Proof. Sice P and B are forcing equivalent, it follows from Lemma 4.2 that F(P) = F(B). To see
that E(P) = E(B), let i : P −→ B be the dense embedding.
≤: if A ⊆ P is an antichain, then i“A ⊆ Q is an antichain.
≥: let A ⊆ B be an antichain. For each a ∈ A, pick ā ∈ P with i(ā) ≤ a. Then {ā | a ∈ A} ⊆ P

is an antichain in P of the same size as A.

Towards proving a general iteration theorem for parametric subcompleteness, let’s isolate a
technical corollary from the proofs of Theorems 3.2 and 3.4. If B is a complete Boolean algebra
and A ⊆ B is a complete subalgebra of B, then the retraction hB,A : B −→ A is defined by

hB,A(b) =
∧
{a ∈ A | b ≤B a}

Corollary 5.4. Let B be a complete Boolean algebra, and let A ⊆ B be a complete subalgebra
of B such that 
A“ B̌/ĠA is ε̌-subcomplete, as verified by θ̌,” where B ∈ Hθ and ε ≥ F(A).
Let N = LAτ be a ZFC− model with Hθ ⊆ N and θ < τ , and let N̄ be countable and full. Let
s ∈ N and θ̄, Ā, B̄, s̄ ∈ N̄ , where B̄ is a complete Boolean algebra in N̄ and Ā ⊆ B̄ is a complete
subalgebra. Let Ī be B̄-generic over N̄ , and let Ḡ = Ī∩Ā. Set S̄ = 〈θ̄, Ā, B̄, s̄〉 and S = 〈θ,A,B, s〉.
Let σ̇0 and ṫ be A-names, and let a ∈ A be a condition that forces: σ̇0 : ˇ̄N ≺ Ň , σ̇0( ˇ̄S) = Š,

σ̇0“ ˇ̄G ⊆ ĠA and ṫ ∈ ˇ̄N . Let h = hA : B −→ A be the retraction, defined above.
Then there is a condition b ∈ B such that h(b) = a and a B-name σ̇′ such that whenever I is

B-generic with b ∈ I, letting σ′ = (σ̇′)I , G = I ∩ A and σ0 = σ̇G0 , then σ′ : N̄ ≺ N , σ′(S̄) = S,
σ′“Ī ⊆ I, σ′(ṫG) = σ0(ṫG), and CNε (ran(σ′)) = CNε (ran(σ0)).

Proof. I will follow the proof (including the notation) of Theorem 3.2. The argument is as
outlined in [Jen14, p. 138-140]. In the situation described, let G∗ be any A-generic filter with
a ∈ G∗. Then in V[G∗], B/G∗ is ε-subcomplete, as verified by θ. let t = ṫG

∗
and σ0 = σ̇G

∗

0 . Then
t ∈ N̄ σ0 : N̄ ≺ N and σ0“Ḡ ⊆ G∗, which means that σ0 extends to an elementary embedding
σ∗0 : N̄ [Ḡ] ≺ N [G∗]. Moreover, σ0(S̄) = S.

Let H̄ = Ī/Ḡ. We have that H
V [G∗]
θ = Hθ[G

∗] ⊆ N [G∗], so, since B/G∗ is ε-subcomplete in
V[G∗], there is a condition b ∈ B/G∗ such that whenever H is generic for B/G∗ over V[G∗], then
in V[G∗][H], there is an elementary embedding σ1 : N̄ [Ḡ] ≺ N [G∗] with σ1(S̄) = S, σ1(t) = σ0(t),

σ1“(H̄) ⊆ H and C
N [G]
ε (ran(σ1)) = C

N [G]
ε (ran(σ∗0)).

Let σ′ = σ1�N̄ . It then follows as in the proof of Theorem 3.4 that CNε (ran(σ′)) = CNε (σ′),
by proving the statements (A) and (B) of that proof, using that ε ≥ F(A). So there is a name

σ̇′ in V[G∗]B/G
∗

with σ′ = σ̇′
H

, and such that b forces that σ̇′ has the properties listed.
Now, all of this is true in V[G∗] whenever G∗ is A-generic over V, with a ∈ G∗, and so, there

are names ḃ, π ∈ VA such that b = ḃG
∗

and σ̇′ = πG
∗
, and a forces the situation described.

We may choose the name ḃ in such a way that 
A ḃ ∈ B̌/ĠA and a = Jḃ 6= 0KA. Namely,
given the original ḃ such that a forces that ḃ ∈ B̌/ĠA and all the other statements listed above,
there are two cases: if a = 1lA, then since a ≤ Jḃ 6= 0K, it already follows that a = Jḃ 6= 0K and
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A ḃ ∈ B̌/ĠA. If a < 1lA, then let ḋ ∈ VA be a name such that 
A ḋ = 0B̌/ĠA
, and mix the names

ḃ and ḋ to get a name ċ such that a 
A ċ = ḃ and ¬a 
A ċ = ḋ. Then ċ is as desired. Clearly,

A ċ ∈ B̌/ĠA, since a 
A ċ = ḃ, it follows that a ≤ Jċ 6= 0K, and since ¬a 
A ċ = ḋ, it follows
that ¬a ≤ Jċ = 0K = ¬Jċ 6= 0K, so Jċ 6= 0K ≤ a. So we could replace ḃ with ċ.

Then, by [Jen14, §0, Fact 4],2 there is a unique b ∈ B such that 
A b̌/ĠA = ḃ, and it follows
by [Jen14, §0, Fact 3] that

h(b) = Jb̌/ĠA 6= 0KA = Jḃ 6= 0KA = a

as wished.

The import of the retraction function hB,A is that it occurs in the formation of revised
countable support limits of iterations. In Jensen’s treatment of forcing iterations, an iteration
of length α is a sequence 〈Bi | i < α〉 of complete Boolean algebras such that for i ≤ j < α,
Bi is completely contained in Bj , meaning that the of suprema and infima of subsets of Bi are
the same as computed in Bi and in Bj , and such that if λ < α is a limit ordinal, then Bλ is
generated by

⋃
i<λ Bi, meaning that Bλ is the completion of the collection of all infima and

suprema of subsets of
⋃
i<λ Bi. In this setting, ~b = 〈bi | i < λ〉 is a thread in ~B�λ if for every

i ≤ j < α, bi = hBj ,Bi(bj) and bj 6= 0. Bλ is an inverse limit of ~B�λ if for every thread ~b in
~B�λ, b∗ :=

∧Bλ
i<λ bi 6= 0, and if the set of such b∗ is dense in Bλ. This characterizes Bλ up to

isomorphism. Following Donder, the RCS limit is defined as the inverse limit, except that only
RCS threads ~b are used: ~b = 〈bi | i < λ〉 is an RCS thread in ~B�λ if it is a thread in ~B�λ and

there is an i < λ such that either, for all j < λ with i ≤ j, bi = bj , or bi 
Bi cf(λ̌) = ω̌. ~B is then

an RCS iteration if for every limit λ, Bλ is the RCS limit of ~B�λ.
In the context of a given iteration ~B as above, if i < α and b ∈ Bj , for some j < α, I’ll just

write hi(b) for hBj ,Bi(b). I’ll write lh(~B) = α, the length of the iteration. I’ll use the following
fact in the proof of the next theorem.

Fact 5.5 ([Jen14, P. 142]). Let ~B = 〈Bi | i < α〉 be an RCS iteration.

1. If λ < α and cf(λ) = ω, then Bλ is the inverse limit of ~B�λ.

2. If λ < α and for every i < λ, 
Bi cf(λ̌) > ω, then
⋃
i<λ Bi is dense in Bλ (that is, Bλ is

formed using only eventually constant threads, making it the direct limit).

3. If i < λ and G is Bi-generic, then the above are true in V[G] about the iteration 〈Bi+j/G |
j < α− i〉.

Theorem 5.6. Let 〈Bi | i < α〉 be a revised countable support iteration of complete Boolean
algebras, and let 〈εi | i < α〉 be a sequence of ordinals such that

1. B0 = 2, ε0 ≥ 1,

2. for i+ 1 < lh(~B), 
Bi B̌i+1/ĠBi is ε̌i+1-subcomplete,

3. for i+ 1 < lh(~B), 
Bi+1
card(ε̌i) ≤ ω1,

4. for i+ 1 < lh(~B), εi+1 ≥ F(Bi),
2There is a slightly confusing misprint in the statement of that fact. It should read: “Let A ⊆ B, and let


A ḃ ∈ B̌/ĠA, where ḃ ∈ VA. There is a unique b ∈ B such that 
A ḃ = b̌/ĠA.” That’s what the proof given there
shows.
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5. for i ≤ j < lh(~B), εi ≤ εj.

Then each Bi is εi-subcomplete.

Note: I want to emphasize that the proof of this theorem is due to Jensen, and that the theorem
is more or less the expected translation of the original iteration theorem for subcomplete forcing
to the context of ε-subcompleteness, with the new ingredient of the function F . Most of the
changes made to the proof are straightforward modifications necessary for the setting of ε-
subcompleteness, given the Two Step Theorem. The main reason why I describe the argument
in some detail is that I want to show why it is required that F(Bi) ≤ εi+1 and εi+1 is collapsed
to ω1 by Bi+2 - in the original setting of subcompleteness, there was just δ(Bi). In the present
setting, these two roles are separated more clearly.

Proof. (Jensen) I follow the proof of [Jen14, Thm. 3, p. 142ff.]. Most of the steps go through,
using Theorem 3.4/Corollary 5.4 in place of [Jen14, Thm. 1, p. 136ff./Lemma 1.1, p. 140f.].

Before delving into the proof, let me make a simple yet crucial observation.

(+) Suppose h < α and Gh is Bh-generic over V. In V[Gh], define, for h+ i < α,

B′i = Bh+i/Gh and ε′i = εh+i

Then, in V[Gh], ~B′ is an RCS iteration, and ~B′, ~ε′ satisfies 1.-5. of the statement of the
theorem.

Proof of (+). 1. is true because Bh/Gh = 2 and ε′0 = εh ≥ ε0 ≥ 1. For 2., we have to show that
if i+1 < α−h and Hi is B′i-generic over V[Gh], then in V[Gh][Hi], B′i+1/Hi is ε′i+1-subcomplete.
This is because Gh+i := Gh ∗Hi is Bh+i-generic, Bh+i+1/Gh+i is εh+i+1-subcomplete in V[Gh+i]

(since ~B, ~ε satisfies 2.), and since Bh+i+1/Gh+i is isomorphic to B′i+1/G̃, V[Gh+i] = V[Gh][Hi]
and εh+i+1 = ε′i+1. 3. is obvious, because again, if h + i + 1 < α and if Hi is B′i-generic over

V[Gh], then Gh ∗Hi is Bh+i-generic over V, so since ~B, ~ε satisfies 3., it follows that in V[Gh][Hi],

card(εh+i) ≤ ω1, and εh+i = ε′i. For 4., suppose h + i < α. Since ~B, ~ε satisfies 4., and by
Corollary 5.2, it follows that

FV[Gh](B′i) = FV[Gh](Bh+i/Gh) ≤ F(Bh+i+1) ≤ εh+i+1 = ε′i+1

and 5. is trivial. 2(+)

In the following, if i < α, I will write Ġi for ĠBi (see Notation 4.1), and I’ll use similar
abbreviations throughout. The following claim will be proven by induction on λ < α:

(∗)λ For every h < λ, if Gh is generic for Bh over V, then in V[Gh], Bλ/Gh is ελ-subcomplete.

This is trivial if λ = 0.
Case 0: λ = j + 1 is a successor.

Let h < λ be given, and let Gh be Bh-generic over V. Inductively, we know that V[Gh] |=
Bj/Gh is εj-subcomplete, and since εj ≤ ελ, by 5., it follows that

(1) V[Gh] |= Bj/Gh is ελ-subcomplete.

Moreover, by 2., 
Bj B̌j+1/Ġj is λ̌-subcomplete, so if we let G̃ be Bj/Gh-generic over V[Gh], then

since Gh ∗ G̃ is Bj-generic over V and (Bλ/Gh)/G̃ ∼= Bλ/(Gh ∗ G̃), the latter is ελ-subcomplete

in V[Gh][G̃]. Since G̃ was arbitrary, this shows that
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(2) V[Gh] |= (
Bj/Gh ( ˇBλ/Gh)/Ġ ˇBj/Gh is ε̌λ-subcomplete)

It follows from Corollary 5.2 and conditions 4. and 5. that F(Bj/Gh)V[Gh] ≤ F(Bj) ≤ εj+1 ≤ ελ.
But then, Theorem 3.4, applied in V[Gh], shows that (1) and (2), taken together, imply

(3) V[Gh] |= (Bj/Gh) ∗ ( ˇBλ/Gh)/Ġ ˇBj/Gh is ε̌λ-subcomplete

Since in V[Gh], (Bj/Gh) ∗ ( ˇBλ/Gh)/Ġ ˇBj/Gh
∼= Bλ/Gh, this means that in V[Gh], Bλ/Gh is

ελ-subcomplete, as wished.

Case 1: λ is a limit ordinal.
I’ll distinguish two subcases.

Case 1.1: cf(λ) ≤ εi, for some i < λ.
Then, if i < λ is such that cf(λ) ≤ εi, it follows that for every h with i < h < λ, whenever Gh

is Bh-generic over V, then in V[Gh], the cofinality of λ is at most ω1. It suffices to prove (∗)λ for
such h, because we can then use the Two Step Theorem together with the induction hypothesis
in order to prove it for h ≤ i, just as in the successor case. We could now argue in V[Gh], using

that cfV[Gh](λ) ≤ ω1, to prove (∗)λ for h, and by (+), if we argue in V[Gh], we’re essentially
in the same situation as in V, so to simplify notation a little bit, we’ll pretend V = V[Gh], and
show:

(4) If cf(λ) ≤ ω1, then Bλ is ελ-subcomplete.

Let f : ω1 −→ λ be cofinal, with f(0) = 0, and let θ > λ be large enough that for every
i < j < λ,


Bi θ̌ verifies the ε̌j-subcompleteness of B̌j/ĠBi

It will be shown that θ verifies the ελ-subcompleteness of Bλ. As usual, let N = LAτ ⊇ Hθ

be a ZFC−-model, let σ : N̄ ≺ N countable and full, let S = 〈θ,B, λ, f, s, ~ε〉 ∈ ran(σ), let
S̄ = 〈θ̄, B̄, λ̄, f̄ , s̄, ~̄ε〉 = σ−1(S), and let Ḡ be B̄λ̄-generic over N̄ . We have to find a condition
b ∈ Bλ such that whenever G 3 b is Bλ-generic over V, then in V[G], there is an elementary
embedding σ′ : N̄ ≺ N with σ′(S̄) = σ(S̄) = S, CNελ(ran(σ′)) = CNελ(ran(σ)) and σ′“Ḡ ⊆ G.

Let λ̃ = supσ“λ̄, and let 〈νi | i < ω〉 be a sequence of ordinals less than ωN̄1 such that if
we let ξ̄i = f̄(νi), then ξ̄0 = 0 and 〈ξ̄i | i < ω〉 is monotone and cofinal in λ̄. Let ξi = f(νi).
Then 〈ξi | i < ω〉 is monotone and cofinal in λ̃, and whenever σ′ : N̄ ≺ N with σ′(f̄) = f , then
σ′(ξ̄i) = σ′(f̄(νi)) = σ′(f̄)(σ′(νi)) = f(νi) = ξi, for all i < ω. Fix an enumeration 〈xl | l < ω〉 of
N̄ .

Now construct a sequence 〈〈bi, σ̇i〉 | i < ω〉 such that bi ∈ Bξi , with the property that for

every i < ω, whenever Gξi 3 bi is generic for Bξi over V, then in V[Gξi ], if we let σi = σ̇
Gξi
i ,

then we have that (a) σi : N̄ ≺ N , (b) σi(S̄) = S, (c) CNεξi
(ran(σi)) = CNεξi

(ran(σ)) and (d)

σi“(Ḡ ∩ B̄ξ̄i) ⊆ Gξi . Moreover, we maintain that

(5) for h ≤ i, σi(xh) = σh(xh), where σh = σ̇
Gξi∩Bξh
h

If (c) above is satisfied at i, then it follows by Fact 1.5 that for every x ∈ N̄ , there is a u ∈ N̄
such that card(u)N̄ ≤ ε̄ξ̄i and σ(x) ∈ σi(u), because

σ(x) ∈ CNεξi (ran(σ)) = CNεξi
(ran(σi)) =

⋃
{σ′(u) | u ∈ N̄ ∧ card(u)N̄ ≤ ε̄ξ̄i}

So we may define ui = the N̄ -least u with σ(xi) ∈ σi(u) and card(u)N̄ ≤ ε̄ξ̄i , and require that
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(6) for h ≤ i, σi(uh) = σh(uh)

and that

(7) hξi(bi+1) = bi, for all i < ω.

Following Jensen’s setup, the natural injection from VBξh to VBξi is the identity, and so, σh =

σ̇
Gξi∩Bξh
h = σ̇

Gξi
h . We set σ̇0 = σ̌ and b0 = 1. Given σ̇i and bi, Corollary 5.4 can be applied

to Bξi ⊆ Bξi+1 , σ̇i, bi and a Bξi-name t such that 
Bξi t = 〈x̌0, x̌1, . . . , x̌i, u̇0, u̇1, . . . , u̇n〉. We
use the inductive assumption here, and we use that F(Bξi) ≤ εξi+1 . Then all the conditions are

satisfied, and ~b is a thread through 〈Bξi | i < ω〉, by (7). So b =
∧
i<ω bi ∈ Bλ̃ \ {0}.

Now let G 3 b be Bλ-generic. Let Gξi = G ∩ Bξi , and let σi = σ̇
Gξi
i = σ̇Gi , for i < ω. Then

(a)-(d), (5) and (6) hold for σi, for all i. By (5), the function σ′ : N̄ −→ N defined by

σ′(xh) = σh(xh)

is elementary. Moreover, it’s obvious that σ′(S̄) = S. Two more properties of σ′ have to be
shown now.

First, CNελ(ran(σ′)) = CNελ(ran(σ)). For the inclusion from left to right, it suffices to show
that ran(σ′) ⊆ CNελ(ran(σ)). But σ′(xi) = σi(xi) ∈ CNεξi (ran(σ)) ⊆ CNελ(ran(σ)), by (c). For the

inclusion from right to left, it suffices to show that ran(σ) ⊆ CNελ(ran(σ′)). To see this, let i < ω.

Then σ(xi) ∈ σi(ui) = σ′(ui) ⊆
⋃
{σ′(u) | card(u)N̄ ≤ ε̄ξ̄i} = CNεξi

(ran(σ′)) ⊆ CNελ(ran(σ′)), by

(6) and Fact 1.5.
Finally, we have to show that σ′“Ḡ ⊆ G. To this end, note that

(8) for every i < ω, σi“Ḡξ̄i ⊆ G

because for x ∈ Ḡξ̄i , there is some j ≥ i such that σ′(x) = σj(x), and for such a j, it follows that
x ∈ Ḡξ̄j , and by (d), σ′(x) = σj(x) ∈ Gξj ⊆ G. Given (8), there are now two cases to consider.
The first case is that cf(λ) = ω1. In this case, Bλ is the direct limit of

⋃
i<λ Bi, because it is

formed using RCS threads, and no RCS thread f can have an i < λ with f(i) 
Bi cf(λ) = ω,
since inductively, Bi is εi-subcomplete and hence cannot add reals. So every RCS thread is
eventually constant. The same reasoning applies to B̄λ̄ in N̄ . We have that Ḡ ∩ B̄λ̄ is generated
by

⋃
n<ω(Ḡξ̄n), and so, (8) implies that σ′“Ḡ ⊆ G. The second case is that cf(λ) = ω. In this

case, B̄λ̄ is the inverse limit of 〈B̄i | i < λ̄〉 in N̄ , since in N̄ , cf(λ̄) = ω. Let ā ∈ Ḡ. Let ā′ ≤B̄λ̄ ā

be the infimum of a thread. We can then write ā′ as ā′ =
∧
i<ω ai, where ~a ∈ N̄ , and each ai

is in B̄ζi , for some increasing sequence ~ζ ∈ N̄ ∩ ωλ̄. Clearly, each ai is weaker than ā′, which is
in Ḡ, so each ai belongs to some Ḡξ̄j , and so, σ′(ai) ∈ G. Since G is V-generic, it follows that
σ′(ā′) =

∧
i<n σ

′(ai) ∈ G, and since σ′(ā′) ≤ σ′(ā), it follows that σ′(ā) ∈ G. This completes the
proof in case 1.1.

Case 1.2: For all i < λ, cf(λ) > εi.

Let h < λ, and let Gh be Bh-generic over V. If cfV[Gh](λ) ≤ ω1, then we can argue in V[Gh]

as in case 1.1. So let’s assume that cfV[Gh](λ) > ω1. Since F(Bh) ≤ εh+1 < cf(λ), it follows that

cfV[Gh](λ) = cfV(λ), because forcing with Bh is like forcing with a poset that has the F(Bh)+-c.c.

We have that in V[Gh], for every i < λ with h ≤ i, F(Bi/Gh) ≤ εi+1 < cfV[Gh](λ), so by (+), we

may pretend V = V[Gh]. It follows that Bλ is the direct limit of ~B�λ. Namely, by definition, Bλ is

the RCS limit of ~B�λ. An RCS thread f ∈
∏
i<α Bi either is eventually constant, or there is some

i < λ such that f(i) 
Bi cf(λ̌) = ω. But the latter is impossible, again because F(Bi) < cf(λ).
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So every RCS thread is eventually constant, and this means that Bλ is the direct limit of ~B�λ.
It was crucial in this step that F(Bi) < εi+1 ≤ ελ.

Let θ > λ be large enough that for every i < j < λ,


Bi θ̌ verifies the ε̌j-subcompleteness of B̌j/ĠBi

Again, the claim is that θ verifies that Bλ is ελ-subcomplete. So let N = LAτ ⊇ Hθ be a
ZFC−-model, let σ : N̄ ≺ N be countable and full, let S = 〈θ,B, λ, s, ~ε〉 ∈ ran(σ), and let
S̄ = 〈θ̄, B̄, λ̄, s̄, ~̄ε〉 = σ−1(S), and let Ḡ be B̄λ̄-generic over N̄ . We have to find a condition c ∈ Bλ
such that

(9) whenever G 3 c is Bλ-generic over V, then in V[G], there is an elementary embedding
σ′ : N̄ ≺ N with σ′(S̄) = σ(S̄) = S, CNελ(ran(σ′)) = CNελ(ran(σ)) and σ′“Ḡ ⊆ G.

Let λ̃ = supσ“λ̄, and let 〈ξ̄i | i < ω〉 be increasing and cofinal in λ̄. Let ξi = σ(ξ̄i). Then 〈ξi |
i < ω〉 is monotone and cofinal in λ̃. Fix an enumeration 〈xl | l < ω〉 of N̄ . We will construct
sequences 〈ci | i < ω〉 and 〈σ̇i | i < ω〉 with ci ∈ Bξi and σ̇i ∈ VBξi such that the following
conditions are satisfied for each i:

(I) c0 = 1l, and hξi−1(ci) = ci−1 if i > 0.

(II) Let G 3 ξ̄i be Bξi-generic over V. For η ≤ ξi, let Gη = G ∩ Bη, and for η ≤ ξ̄i, let

Ḡη = Ḡ ∩ B̄η, and set, for h ≤ i, σh = σ̇
Gξh
h = σ̇Gh . Then

(a) σi : N̄ ≺ N ,

(b) σi(S̄) = S,

(c) CNεξi
(ran(σi)) = CNεξi

(ran(σ)),

(d) if σi(ξ̄m) ≤ ξi < σi(ξ̄m+1), then σi“Ḡξ̄m ⊆ G,

(e) if h < i, then σi(xh) = σh(xh),

(f) if h < i, then σi(uh) = σh(uh), where uh is the minimal u such that the N̄ -cardinality
of u is at most εξ̄h and σ(xh) ∈ σh(u).

(g) if σh(ξ̄m) ≤ ξh < ξi < σh(ξ̄m+1), then σh = σi.

Note that (a),(b),(c) imply that supσi“λ̄ = supσ“λ̄ = λ̃ (by Fact 1.6), and that (f) makes

sense, by (c). Once we have constructed ~c and ~̇σ, then we can set c =
∧
i<ω ci. Since ~c is

a thread, c 6= 0. If G 3 c, then let σi = σ̇Gi , and define σ′(xh) = σh(xh). Then (9) is
satisfied: it’s obvious that σ′ : N̄ ≺ N and σ′(S̄) = S. Letting ε̃ = supi<λ̃ εi, it then follows

that CNε̃ (ran(σ′)) = CNε̃ (ran(σ)). For the inclusion from left to right, it suffices to show that
ran(σ′) ⊆ CNε̃ (ran(σ)). But σ′(xi) = σi(xi) ∈ CNεξi

(ran(σ)) ⊆ CNε̃ (ran(σ)), by (c). For the

inclusion from right to left, it suffices to show that ran(σ) ⊆ CNε̃ (ran(σ′)). To see this, let i < ω.

Then σ(xi) ∈ σi(ui) = σ′(ui) ⊆
⋃
{σ′(u) | card(u)N̄ ≤ ε̄ξ̄i} = CNεξi

(ran(σ′)) ⊆ CNελ(ran(σ′)).

Finally, we have to show that σ′“Ḡ ⊆ G. Since B̄λ̄ is the direct limit of 〈B̄i | i < λ̄〉, it suffices
to show that σ′“Ḡξ̄i ⊆ G, for every i < ω.

(10) for every i < ω and all sufficiently large natural numbers j ≥ i,

(∗) there is an m ≥ i such that σj(ξ̄m) ≤ ξj < σj(ξ̄m+1).
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Proof of (10). To see this, fix i < ω. Note that for any j < ω, since supσj“λ̄ = λ̃ (see the

remark after (I) and (II)) and ξj < λ̃, there is a unique m = mj with σj(ξ̄m) ≤ ξj < σj(ξ̄m+1).
What (10) says is that for all sufficiently large j, mj ≥ i. Clearly, this is trivial if i = 0. Suppose
now that i > 0, and assume (10) fails for i. This means that for arbitrarily large j, mj < i,
and in particular, ξj < σj(ξ̄i). But for sufficiently large j, σ′(ξi) = σj(ξi), so we’d get that for

arbitrarily large j, ξj < σ′(ξ̄i). So λ̃ = supj<ω ξj ≤ σ′(ξ̄i), which is impossible, because then

we’d get that for sufficiently large j < ω, λ̃ ≤ σ′(ξ̄i) = σj(ξ̄i) < σj(ξ̄i+1) ≤ supσj“λ̄ = λ̃. 2(10)

Note that it was crucial for the argument for (10) that supσj“λ̄ = λ̃, and for this, (c) is
instrumental, together with the fact that for i < λ, εi < cf(λ). This is why we required that
Bi+1 collapse εi to ω1.

With (10) in hand, it is now not hard to prove that σ′“Ḡξi ⊆ G, for every i < ω. For let
a ∈ Ḡξi be given. Let j be sufficiently large that the unique m with σj(ξ̄m) ≤ ξj < σj(ξ̄m+1) is
at least i, and such that σ′(a) = σj(a). Then, by (d), σj“Ḡξ̄m ⊆ G, but a ∈ Ḡξi ⊆ Ḡξm because
i ≤ m.

Thus, once we have constructed sequences ~c and ~̇σ satisfying properties (I) and (II), the proof
is complete. This is a rather lengthy construction, and most of the details work exactly as in
Jensen’s original proof. This is why I will omit the proofs in the following, and just describe the
construction, to provide a more or less complete account.

The construction of ~c and ~̇σ proceeds by induction. c0 is given. If σ̇i−1 and ci−1 have been
defined already, we will define σ̇i and a condition bi with the properties listed below, and then
ci will be defined. We require:

(III) (a) b0 = 1, σ̇0 = σ̌,

(b) hξi−1
(bi) = ci−1, for i > 0,

(c) (II)(a)-(g) hold whenever bi ∈ G.

There is one more condition bi has to satisfy. Namely, given ν < λ̃, let i be least such that ν ≤ ξi,
and let ξi < µ < λ̃. For j < ω, set

ajνµi = ajνµ = bi ∧ Jσ̇i( ˇ̄ξj) = ν̌ ∧ σ̇i( ˇ̄ξj+1) = µ̌KBξi

It follows that if 〈j, ν, µ〉 6= 〈j′, ν′, µ′〉, then ajνµ and aj
′ν′µ′ are incompatible. We demand:

(IV) If suph<i ξh < ν ≤ ξi < µ < λ̃, then for all x and y, ajνµi ∧ Jσ̇i(x̌) = y̌K ∈ Bν .

Define
A = Ai = {ajνµ 6= 0 | sup

h<i
ξh < ν ≤ ξi < µ < λ̃}

It follows from (IV) that for each a = ajνµ ∈ A, there is a σ̇a ∈ VBν such that if G 3 a is
Bξi-generic, then σ̇Gνa = σ̇Gi , where Gν = G ∩ Bν . But if G 3 a is Bν-generic, then G extends to

a Bξi-generic filter G′ and it follows that σ̇Ga = σ̇G
′

a = σ̇G
′

i . It follows then that (II) holds with

σa = σ̇Ga in place of σi and σh = σ̇Gh = σ̇
G∩Bξh
h , for h < i. Using Corollary 5.4, one obtains:

(11) Fix a ∈ Ai, a = ajνµ = ajνµi . There are ã ∈ Bµ and σ̇′a ∈ VBµ such that hν(ã) = a and
such that whenever G 3 ã is Bµ-generic, σa = σ̇Ga and σ′a = (σ̇′)Ga , then

(a) σ′a : N̄ ≺ N ,

(b) σ′a(s̄) = s,

(c) CNεξj+1
(ran(σ′a)) = CNεξj+1

(ran(σa)),
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(d) σ′“Ḡξ̄j+1
⊆ G,

(e) if r is least such that µ ≤ ξr, then for all h < r, σ′a(xh) = σa(xh) and σ′a(uah) = σ′a(uah),

where uah is the N̄ -least u ∈ N̄ with card(u)N̄ < ε̄ξ̄j+1
,

(f) for all l ≤ j + 1, σ′a(ξ̄l) = σa(ξ̄l).

Fixing such objects ã and σ̇′a for each a ∈ Ai, and assuming bi is defined so that (III) and
(IV) are satisfied, define ci by setting

ci = (bi −
∨
Ai) ∨

∨
a∈Ai

hξi(ã)

Now one can repeat the inductive argument from [Jen14, p. 148 ff]: assuming (I)-(IV) holds
below i and (III)-(IV) holds at at i, this definition of ci yields (I)-(II) at i.

Thus, it remains to show that if i = j + 1 and (I)-(IV) hold up to j, then one can define bi
and σ̇i so that (III)-(IV) are satisfied. Letting

Âj = {a = ahνµ ∈
⋃
l<i

Al | ξj < µ}

one shows that if 〈hνµ〉 6= 〈h′ν′µ′〉, then ahνµ ∧ ah′ν′µ′ = 0 and defines

bi =
∨
{hξi(ã) | a ∈ Âj}

It remains to define σ̇i. To do this, let

Ã = {aiνµ ∈ Aj | µ ≤ ξi}

Then define σ̇i to be a Bξi-name such that for a ∈ Ã, Jσ̇i = σ̇′aK = ã, and such that Jσ̇j =

σ̇iK ∧ bi = bi −
∨
Ã. The verification that these definitions ensure that (III) and (IV) hold at i

is as in [Jen14, p. 149 ff].

6 ε-subcompleteness from distributivity

As an application of the concept of ε-subcompleteness, I show in this section that, for example,
every ω2-distributive forcing is essentially subcomplete. To make this more precise, I need a
definition.

Definition 6.1. Let P be a notion of forcing. A cardinal ε captures P-genericity if there is a
cardinal θ such that the following holds: whenever N = Lτ [A], X, N0 and k0 are such that
Hθ ∈ N , ε ∪ {P} ⊆ X, N |X ≺ N and k0 : N0 −→ N |X is the inverse of the Mostowski-
isomorphism, then whenever G0 is k−1

0 (P)-generic over N0, then k0“G0 generates a filter G =
{p ∈ P | ∃q ∈ G0 k0(q) ≤P p} which is P-generic over V.

It is easy to see that 2card(P) captures P-genericity, but there may be smaller cardinals that
do this. Also, if ε captures P-genericity and ε′ ≥ ε, then ε′ captures P-genericity as well.

Recall that a forcing P is subcomplete above a cardinal ζ if whenever σ : N̄ −→ N is as
usual, with ζ ∈ ran(σ), then there is a subcompleteness embedding σ′ : N̄ −→ N in VP such
that, letting ζ̄ = σ−1(ζ), it follows that σ�ζ̄ = σ′�ζ̄. Let’s say that P is ε-subcomplete above ζ
if P satisfies the definition of subcompleteness above ζ, with δ(P) replaced by ε, and with the
assumption that ε ∈ ran(σ).
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Theorem 6.2. Suppose P is a κ-distributive notion of forcing, where κ > ω1 is a cardinal. Let
ε ≥ κ be a cardinal that captures P-genericity. Then P is ε-subcomplete. Moreover, if η is such
that ηω < κ, then P is ε-subcomplete above η.

Note: In particular, every ω2-distributive notion of forcing is essentially subcomplete.

Proof. Let θ = 2ε+κ+ω, and let σ : N̄ ≺ N = LAτ 3 Hθ be as usual, Ḡ ⊆ P̄ generic over P̄, let s
be a set in ran(σ), and let κ, η ∈ ran(σ). Let P̄, κ̄, η̄ = σ−1(P, κ, η).

Let k0 : N0 −→ C := CNε (ran(σ)) be an isomorphism, N0 transitive, σ0 : N̄ ≺ N0 defined by
σ0 = k−1

0 ◦ σ. Let P0 = k−1
0 (P), κ0 = k−1

0 (κ), etc. Let

σ1 : N̄ −→σ0�(Hκ̄)N̄ N1

be the liftup, and let k1 : N1 ≺ N0 be such that k1 ◦ σ1 = σ0. So, we have that N1 is transitive,
σ1�(Hκ̄)N̄ = σ0�(Hκ̄)N̄ , and σ1 is κ̄-cofinal (i.e., for every b ∈ N1, there is an a ∈ N̄ such that
card(a)N̄ < κ̄ and b ∈ σ1(a)). See [Jen14], [Fuc16] for basic facts and notations around liftups.

Let P1 = σ1(P̄), κ1 = σ1(κ̄), etc. Let

G1 = {q ∈ P1 | ∃p ∈ Ḡ σ1(p) ≤P1
q}

Claim: G1 is P1-generic over N1.

Proof of claim. It’s obvious that G1 is a filter in P1. To see genericity, let D ⊆ P1 be dense
and open. Since σ1 is κ̄-cofinal, there is a set D ∈ N̄ of dense and open subsets of P̄ such that
card(D)N̄ < κ̄ and D ∈ σ1(D). Since P̄ is κ̄-distributive in N̄ , D∗ =

⋂
D is a dense and open

subset of P̄. Since Ḡ is P̄-generic over N̄ , there is p̄ ∈ Ḡ∩D∗. Then σ1(p̄) ∈ σ1(D∗) =
⋂
σ1(D) ⊆

D, because D ∈ σ1(D). 2Claim

Note that σ�η̄ ∈ N1: by elementarity, since ηω < κ, it follows that (η̄ω)N̄ < κ̄, so {(ω η̄)N̄} ∈
HN̄
κ̄ , and hence, σ1((ω η̄)N̄ ) ∈ H̃ =

⋃
σ1“(HN̄

κ̄ ). Since k1�H̃ = id (see [Fuc16, Lemma 2.10]), it
follows that σ1((ω η̄)N̄ ) = σ0((ω η̄)N̄ ). But since k0 is the inverse of the Mostowski collapse of
CNε (ran(σ)) and ε ≥ κ, it follows that σ0((ω η̄)N̄ ) = σ((ω η̄)N̄ ). And since Hθ ⊆ N , and θ > κ, it
follows that σ((ω η̄)N̄ ) = ωη. Thus, ωη ∈ N1, so σ“η̄ ∈ N1, and hence, σ�η̄ ∈ N1.

As a result, we can use σ�η̄ as a constant in the infinitary theory L1 over Lα(N1)(N1) defined

as follows.3 It contains constants x for every x ∈ N1 and extra constant symbols σ̇, Ġ, and
consists of the ZFC− axioms, plus the sentences expressing:

1. σ̇ : N̄ ≺ N1 κ̄-cofinally,

2. σ̇“Ḡ ⊆ Ġ,

3. σ̇�η̄ = σ�η̄,

4. Ġ is P1-generic over N1.

Clearly, L1 is consistent, as witnessed by σ1 and G1.
Since k1 : N1 ≺ N0 is cofinal, the infinitary theory L0 over Lα(N0)(N0) which is defined like L1,

with the parameters moved by k1, and with N0 in place of N1, is also consistent, since L1 is. Note
that k1 doesn’t move N̄ or elements of it, and k1(σ�η̄) = σ�η̄, since σ“η̄ < supσ1“κ̄ = crit(k1).

Let F be Col(ω, θ′)-generic, for some sufficiently large θ′, so that the theory L0 is countable
in V[F ]. Then there is a solid model A for L0 in V[F ]. In V[F ], let σ̃0 = σ̇A and G0 = ĠA

witness this, so that

3I will use Barwise theory, as outlined in [Fuc16], where the notation α(N1) for the least ordinal γ such that
Lγ(N) is a model of KPω is used. A more detailed account of this theory can be found in [Jen14].
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1. σ̃0 : N̄ ≺ N0 κ̄-cofinally

2. σ̃0“Ḡ ⊆ G0

3. σ̃0�η̄ = σ�η̄

4. G0 is P0-generic over N0.

Let σ̃ = k0 ◦ σ̃0, and let G = {p ∈ P | ∃q ∈ G0 k0(q) ≤P p}. Then:

1. σ̃ : N̄ ≺ N

2. σ̃(P̄) = P, etc.

3. CNε (ran(σ̃)) = CNε (ran(σ))

4. σ̃�η̄ = σ�η̄

5. σ̃“Ḡ ⊆ G

6. G is P-generic over V.

The first two points here are obvious. Point 4. is because k0�κ = id. Point 3 follows as in the
proof of [Jen14, p. 131 (9)(d)]. First, note that N0 = CN0

ε (ran(σ̃0)), because σ̃0 is κ̄-cofinal and
ε ≥ κ = σ̃0(κ̄). It then follows that

CNε (ran(σ)) = k0“N0 = CNε (ran(k0 ◦ σ̃0)))

Point 5. is again obvious, and point 6. follows because ε captures P-genericity.
Finally, a standard argument shows that there is an embedding σ′ in V[G] satisfying the points

1.-6. above. Working in V[G], let µ be regular with N ∈ Hµ. Let M = 〈Hµ,∈, N,G, θ,P, s, σ, ε〉.
Let L2 be the infinitary theory on M with constants σ̇ and x for x ∈M and predicate symbol ∈,
consisting of ZFC− and the basic axioms, together with the axioms expressing that σ̇ : N̄ ≺ N ,

σ̇(P̄) = P etc., C
N
ε (ran(σ̇)) = C

N
ε (ran(σ)), σ̇�η̄ = σ�η̄ and σ̇“Ḡ ⊆ G. By the points 1.-6. above,

L2 is consistent, as witnessed by 〈M, σ̃〉 in V[G].
Now let π : M̃ ≺M where M̃ is countable and transitive. Let L̃2 be the infinitary theory on

M̃ with the same definition as L2, and the parameters moved by π−1. Since M̃ is countable, it

has a solid model Ã (even in V - note that M̃ ∈ V, as P is κ-distributive). Let σ′ = π ◦ σ̇Ã. It
follows that σ′ has all the properties listed in 1-6. The verifications can be done as in the end of
the proof of Theorem 2.7.

Lemma 6.3. If κ > ω1 is a cardinal and T is a κ-Souslin tree, then T , viewed as a notion of
forcing (with the order reversed), is subcomplete. Moreover, if ηω < κ, then T is subcomplete
above η.

Proof. T is κ-distributive and κ-c.c., and as a result, it is well-known that any cofinal branch
through T is T -generic. It is then clear that κ captures T -genericity, in the sense of Definition 6.1.
So by Theorem 6.2, T is κ-subcomplete, which, since δ(T ) = κ, means that T is subcomplete.

Thus, for example, if 2ω = ω1 and T is an ω2-Souslin tree, then T is subcomplete above every
η < ω2, and in particular, ω2-Souslin trees are not preserved by such subcomplete forcings, even if
they are cardinal preserving. This is in contrast to the situation at ω1, where every subcomplete
forcing preserves ω1-Souslin trees. Note also that it is consistent that 2ω ≥ ω2 and that there is
an ω2-Souslin tree T . It’s easy to see that in this situation, forcing with T is not equivalent to a
countably closed forcing, in fact, no countably closed forcing can add a cofinal branch to T . But
by the previous result, it is nevertheless subcomplete.
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