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Abstract

I develop a translation procedure between A-structures, which correspond to premice
in the Friedman-Jensen indexing convention on the one hand and s-structures, which are
essentially the same as premice in the Mitchell-Steel indexing scheme.

1 Introduction

In the course of the nineteen-nineties, two approaches for constructing extender models became
accepted as the most fruitful ones. They are known under the terms “s-indexing” and “\-
indexing”. The former was created by William Mitchell and John Steel ([MS94]), the latter by
Sy Friedman and Ronald Jensen ([Jen97]).

Both approaches aim at constructing fine structural models that approximate the set theoretic
universe V very well, in the sense that as many large cardinals of V as possible remain large
cardinals in the model. Since the isolation of the question about the existence of 0 as a crucial
dichotomy, large cardinal axioms concerning the existence of elementary embeddings of (segments
of) the universe were focal. These can be coded by extenders, which makes possible a formulation
of these concepts within ZFC ([Mit79]). There are many different ways of coding such embeddings,
and consequently, there are many ways of defining an extender. This is one respect in which the
A and the s approach differ.

These structures are of the form JZ where E codes a sequence of extenders. In s-indexing, the
index « of an extender on the sequence is the cardinal successor of the support in the extender
ultrapower of the structure cut back to a. In A-indexing, « is the cardinal successor of the
image of the critical point under the extender ultrapower embedding, again computed within the
extender ultrapower. So the index of an extender in an s-indexed structure will be less than or
equal to the index of the “corresponding” extender in a A-indexed structure. What can happen
is that certain extenders appearing on the sequence of a A structure have no corresponding
extender on the sequence of the corresponding s-structure. But those extenders will be coded by
the extenders on the sequence of the corresponding s-indexed structure and appear after applying
the right extenders of the s-structure.

Up to now I was mainly talking about the extender sequences, and it was indicated that
there is a canonical way in which one can produce from a A indexed sequence a corresponding
one in s indexing and vice versa. If one doesn’t demand of an extender sequence more than
the right indexing, some form of an initial segment condition (which is needed to show that the
comparison process terminates) and some level of coherence of the sequence, then this is not too
hard to see and also not new (albeit unpublished, but see [Ste00, remark before def. 2.6]).



But I want a correspondence between the entire structures (J£ F) that are referred to as
premice both in the s- and the A-approach. Taken literally, such a correspondence doesn’t exist,
but mainly for reasons of different tastes of the creators of the two theories - e.g., Mitchell-Steel
demand that proper initial segments of premice be solid, while Jensen omits this requirement.
Iterable premice are solid in both approaches, so that this difference vanishes if one looks at
the structures of real interest. So in order for a significant correspondence to exist, I will define
new structures. If possible, the requirements I make are weaker than the original ones, but still
sufficient to get the theory going. I call these structures A- and s-structures.

The main problem when analyzing the structures is a property that one could call pre-
soundness: Proper segments of a A\- or s-structure have to be sound. So this property must be
preserved by the translation function. In order to prove this, one has to analyze definability in
the corresponding structures very closely; for instance, it is highly relevant which parameters are
necessary for the definition of a Xy set (in Section 8.3 I deal solely with the problem that in the
case that the heights of the structures considered are successor ordinals, an additional parameter
is needed in the translation of a 3; formula).

The aim of being less restrictive when defining A- and s-structures cannot be realized in three
respects: Firstly, I demand that proper segments of A-structures which are not of type III be
not only sound but also 1-solid (i.e., solid above the first projectum) — without this additional
assumption, it is not clear that the standard parameters of corresponding structures coincide,
which is crucial for our proof that soundness is preserved. I demand the same of s-structures,
and in this context, this is less than the usual requirement, namely full soundness and solidity.

Secondly, all active segments of s-structures have to be extendible. This means that applying
the top extender to such a structure, truncated at the cardinal successor of its critical point, has
to yield a well-founded model. In the original Mitchell-Steel approach, it is only demanded that
the height of the structure +1 be contained in the well founded part of the ultrapower of the full
structure. If the stronger requirement is violated, there obviously cannot be a corresponding A
structure, since these are long coherent well founded structures. So this is a natural requirement.!
Since iterable premice in the sense of Mitchell-Steel (iterable even in the weakest possible sense)
obviously have this property, this is harmless, since, after all, iterable premice are the creatures
I care about most.

Thirdly, the A-structures are equipped with an additional predicate which essentially makes
it possible to define the corresponding s structure within the A structure, which is used for
translating 3, formulae. Section 3.3 deals with the fine structure of enhanced structures. Note
that this change of the definition only refers to the A side, as does the first point.

The choice of the form of the initial segment condition for the structures at hand is somewhat
difficult. Both original approaches suffered initially of an erroneous formulation of this condition;
see [SSZ02] for the problems in the s approach, and [Jen99, §I] for a corrected formulation with
A indexing. By now, there is a whole variety of different versions of the ISC, and for the current
paper, I came up with yet another one. The reason for this will become clear in the second part
of this paper, where it is shown that the translation functions map iterable structures to iterable
structures, with respect to appropriate notions of iterability. The philosophy is that I tried to
impose as few restrictions on the structures as possible.

I will also investigate classes of weaker structures (on both sides) between which there is
a one-to-one correspondence. Roughly, a “p” in the beginning (which stands for “potential”)
means that instead of “pre-soundness” and “pre-solidity” it is only required that proper segments

1The property of hereditary extendibility has another advantage: It enables us to give a simplified treatment
of iterations of s-structures: When forming an ultrapower of a type III structure I don’t have to deal with the
squash of the structure. Instead, I always pass over to the maximal extension. That these procedures yield the
same result is shown in the follow-up article to this paper.



have a very good parameter (this guarantees that the structures are at least acceptable), and a
“P” (for “Pseudo-”) means that no ISC is required.

In section 8.2 it is shown that the translation functions manifest a correspondence between
pPA- and pPs-structures, as well as between pA- and ps-structures. The basic ingredients for
the proofs are developed in Section 6. In order to prove the corresponding result for PA and
Ps, or finally for A- and s-structures, a lot more work has to be done. The problems have to do
with the additional parameters appearing in the translations of ¥; formulae. The main obstacle
is to show that the standard parameters of corresponding structures (or, more precisely, their
(pseudo) Xg-codes) coincide. This problem is solved in the rest of Section 8, and the desired
result is finally proved in Section 8.7. In the second part of this paper, I show that iterable
structures are mapped to iterable structures as well.

The reader should be familiar with X* fine structure, which can be applied to arbitrary
acceptable J-structures. In [MS94], a fine structure theory is used which is tailor-made for the
structures studied there. But the fine structural notions do not coincide, in general, with the
ones defined in the ¥* approach.? The form of extender-ultrapowers chosen suits the L*-fine
structure best, namely the x-extender-ultrapowers ([Jen97],[Zem02],[Zem97]). In [MS94], so-
called k-extender-ultrapowers are used, which could be imitated in the »*-context but without
any particular gain. Since the Mitchell-Steel-premice, as defined in [Ste00] (as opposed to the
exhibition in [MS94]), are amenable, the ¥* theory is applicable, so there is no reason not to
apply it. It allows for a simpler and more uniform description of the process of a fine structural
iteration.

A word on notation: The terminology used is quite standard and follows [Jec03] or [Kan94].
Small Greek letters denote ordinals, that is, members of the class On. The least upper bound of
a set A of ordinals, lub A, is the least ordinal that’s strictly greater than all members of A. M
and N are reserved for models, |M| and |N| are their universes, ¢ and 1 usually are formulae,
V is the set theoretical universe and « is always a cardinal, at least in a context-specific model.
Functions are identified with their graphs, where here, the second component of a pair in the
graph of f is in the domain, and the first component is the corresponding value from the range of
f. If z is a set, then & is usually a predicate symbol which is interpreted by = (in a context-specific

model, in which z may be a proper class). I use lists quite frequently. Thus, & = g, ..., Z,—1 iS
an abbreviation, and doesn’t really denote a mathematical object. E.g., (Z) = (xg,...,&p_1) is
the ordered n-tuple. Sometimes I will just write a N & for the list aNzg,...,aNz,_1, etc. I set:

Ih(Z) = n. Ishould also define: A J-structure is an amenable model of the form M = (J4, B) (i.e.,
B C |M|). Note that J& = (|J4|, An [JA]). Hence, M = (|J4|, An [JA|, B). I set: ht(M) = o

I would like to point out that there is an index at the end of the paper, for the reader’s
convenience. Instead of describing how the paper is organized, I also added a table of contents.

This paper is based on a part of my PhD Thesis which I wrote under the supervision of
Prof. Dr. Ronald Jensen. He stated the problem, advised me very well whenever I had questions,
and made doubts about the project that I had from time to time disappear. I am very grateful
for this.

2The structures studied in [MS94] are not amenable, hence the general fine structure theory is not applicable
to them. Instead of analyzing ¥; definability in these structures, the authors introduce the class of r¥1-formulae,
and investigate 31 definability. In a remark on p. 13, though, an alternative coding of the top extender is given
which yields amenable structures. 31 definability over these structures corresponds to r¥;-definability over the
original structures; in [Ste00] the amenable coding is used. So the first projectum corresponds to the classical
one. In the appendix to §2 (p.24ff) of [MS94] it is shown that the n + 1st projectum in the sense of Mitchell-Steel
coincides with the n+ 1st classical projectum if the structure is n-sound. Whenever in the Mitchell-Steel approach
fine structural extender-ultrapowers are formed, then the amount of soundness demanded is sufficient to ensure
that the projecta which are relevant for the ultrapower construction coincide with the classical ones. So the
differences in the fine structure are not of high relevance.
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2 Basics on extenders

In this section, I will fix notions and notations concerning extenders. I assume familiarity with
the concept of an extender, though. As references, one can consult [Zem02, P. 47-56] (here, the
focus is on extenders in the functional representation), [Kan94, 352-358] (for the hypermeasure
representation), [MS94, §1] (hypermeasure representation in a fine structural context), [Mit79]
(from here the concept originates).



2.1 Extenders

The next definition captures the characteristic quantities of extenders used in the Jensen approach
to inner model theory.

Definition 2.1. Let F be an extender in the functional representation on M at (k,~). Then
(a) crit(F) = k.

(b) h(F) =~
() MF) = m(k), where 7 : M —p N is the ¥y extender embedding.?
(d) 7(F) = ().

I need notations for the switch from an extender in hypermeasure representation to the
corresponding extender in the functional representation, and vice versa.

Definition 2.2. Let F be an extender in functional representation at (k,~y), where ~ is primitive
recursively closed (p.r. closed, for short). Then the extender in hypermeasure representation
derived from F' is

F*":={{(a,7) | In<w a€[]"AxC[k|"Aa€c F(x)}.

Iregard F' as a function whose domain is contained in P(x). Since y was required to be p.r. closed,
F can be canonically extended to a function whose domain is a subset of |J,, ., P(s™), so that
the above definition makes sense — see [Zem02, P. 48].

FE is an extender in hypermeasure representation, if there is an extender F' in functional
representation s.t. £ = F®. For such an extender E, set:

crit(F) = crit(F), Ih(E) = Ih(F),
AE) = AF),  7(E)=7(F),
(E)o :={z Ccrit(E)]" | a € F(z)} for a € [Ih(E)]™.
Finally, the extender in functional representation derived from E, Ef, is
Ef(z) ={a <1h(E) |z € (E)a}.

Here, z € dom(E) := U, cyp(p) (E)a U{crit(E) \ y |y € (E)a}). I identified [k]* with x here.

a<lh

Definition 2.3. Let F be an extender in functional representation and « an ordinal. Then F|a,
the truncation of F' to «, is the function with domain dom(F'), defined by

(Fla)(xz) = F(z) Na.
If F' is given in hypermeasure representation, then set:
Fla:={{a,z) | {a,z) € F ANa C a}.

Definition 2.4. Let F' be an extender on M at (k,7). Let # : M —p N be the extender-
embedding. An ordinal 6 € N is a generator of F iff there is no function f € M with f : k" — &k
and there are no ordinals «,...,a, < § such that 7(f)(@) = 6. I denote the set of generators
of F' by geny, and define the support of F' to be

$(F) :=lub(7(F) U genp);

this quantity is also called the natural length of F. Further, let sT(F) := (s(F)*)¥; so in the
terminology of Mitchell-Steel, s*(F) is the length of the trivial completion of F.

3For extenders appearing in weak j-pre-premice (see Definition 3.6), this is equivalent to the definition A(F) =
F(k), since these extenders are whole (in the sense of [Jen97, Chapter 1, p. 14]).



2.2 Extender Ultrapowers

Again, the following definition’s main purpose is the introduction of some notation. For an
introduction to the formation of extender ultrapowers, the reader may consult the references
given above.

Definition 2.5. Let F be an extender at (k,A) on M. The the Yy-extender ultrapower of M
by F is defined as follows. Set:

PRy = Ma (M),
new
D(M,k,\) = {{a,f)|fel(M,k)AIn<w dom(f)=r"ANdec"}.

If F is given in functional representation, an equivalence relation ~y on D(M, x, ) is defined by:

(@, f) ~0 (B,9) <= <@,B~e F({<7,0= <r|f(7)=g(d)});

it should be clear how one proceeds if one uses extenders in hypermeasure representation. Denote
the equivalence class of (&, f) as [@, f]. Then let

D(M, F) = {[a@, f] [ {@, f) € D(M, 5, A)}-
Further, define binary relations I and F on ID(M, F) by setting:

@ flI[B.g] <= (a.f) ~ (B.9)
@ flE[B,g] <= <& p¢€ F({=7.0= <x|f(7)€g@d)}).

Then Ult(M, F) is isomorphic to (ID(M, F), I, E), and its well founded part is transitive. Hence,
Ult(M, F) is uniquely determined if (ID(M, F),I, E) is well founded. I write 7 : M — ¢ N to
express that N = Ult(M, F) and 7 is the extender embedding.

The construction of the x-extender ultrapower is completely analogous. For details, the reader
is referred to [Zem02, Chapter 3] and [Jen97, §2].

Definition 2.6. Let F be an extender at (k,A) on the J-structure M. Then the x-extender
ultrapower of M by F' (or the fine structural extender ultrapower) is defined as follows. Let
I'*(M, ) to be the set of functions f from ™ to |M| (for some m < w), so that either f € |M|,
or f is a good Egn)(M) function, for an n < w with wp ' > k. Now D*(M, K, \), ~*, ID*(M, F)
are defined like D(M, k,\), ~, ID(M, F'), respectively, where T'(M, ) has to be replaced by
I'*(M, k) always. I write Ult™(M, F) for the x-extender ultrapower. The notation 7 : M —7% N
then says: N = Ult"(M, F), and 7 is the corresponding embedding.

3 The structures

3.1 Extender structures

Definition 3.1. A model M = (JA, B, F) is an extender structure iff (J§7§> is acceptable and
amenable, and either F is a pre-extender 4 in functional or hypermeasure representation on M
so that (crit(F)*T)M exists, or if F = (). If F is a pre-extender, M is active, otherwise it is
passive. In the active case, F is called the top extender of M (in short: E} ). Let x = crit(F)
and 7 = (k7). Further, for ¢ € [r,s(F)], define m¢ = 7réw and [M]e, as follows:

4 A pre-extender F satisfies all requirements an extender has to fulfill, except that the extender product of M
by F doesn’t have to be well founded. But lh(F) has to be contained in the well founded part of the extender
product. See [MS94, §1].



o T (JA, BN |JA]) —pie M,
o [M]e = (M',mc[P(k)),

if this structure is well founded. Otherwise, [M]¢ is undefined. For &,( € [, s(F)] with £ < ¢,
so that [M]e and [M]; are defined, there is a canonical embedding

oec = 04% : [M]e — [M]¢, defined by o¢ ¢ (me(f)(@)) = mc(f)(d),

for (a, f) € D(J§M7n,£). Now the mazimal continuation M of M is:

e M if M is passive,
M= [Mlyr) if this structure is defined,
undefined otherwise.

M is called continuable, if M is defined. Tf M is active and continuable, and M= (M’ F'), then

F’ is the magzimal continuation of Ely . 1 write E}L for that extender. I also write MP2sive for

the structure (Jé,é ,0). Finally, given an active extender structure M, set:

M) = NELL), (M) = ().
(M) =7(Eigp),  w(M) = crit(Eg,),
and if M is continuable, then let st (M) = (S(M)+)]‘7[, where, as usual, this is the height of M
if there is no cardinal above s(M) in M. Call s(M) the natural length of M.

Remark 3.2. Tt follows from an observation of Sy Friedman that [M]¢ is always amenable; see
the proof of [Jen97, §1, Lemma 4].

Definition 3.3. Let M = <Jé,§,F> be an active extender structure, where F' is given in
hypermeasure representation. Then the amenable coding F¢ = FY  .iv. of I is defined to be

the set of quadruples (v, &, a,z) € | M| with the following properties:
1. v > s(F).

[\

. erit(F) < € < erit(F) M.
3. F(ls]< x JE") e 38",
4. (a,z) € F O ([y]< x JEY).

I also define ()¢ := 0.

3.2 pPs-structures

Definition 3.4. Let E = (Ej3 | § < wa) be a sequence s.t. for § < wa either E, =0, or E, is
a pre-extender in hypermeasure representation. Set:

A=Ag :={(B,2) | z € Eg}.

If M is a structure of the form (J?E,é), then let EM := E14.
N is a potential Pseudo-s-structure (pPs-structure), if the following conditions are satisfied,
for a suitable sequence as above:



1. For v < a let N||y := (J?E”,(EWV)EAEFJ be the truncation of N to 4. Then N = N||a.

Moreover, the structure N||y := (Jf;‘ #17 E,) is a continuable extender structure. I will

Ny _Nllv
5

write [N|[9]s, 75 "', 05, ', N||v to denote the corresponding objects defined with respect

to ]/\f_ﬂfy Using this convention, I can define: (7)Y = X(N||y), 7(7)N = 7(N||v), etc. If
EA/ 7é (Z), then v = wy, and E[fy — EUlt(NH%E"/) [(W + 1)

2. If N||v is active, then E, is a pre-extender of length v in hypermeasure representation,
and v = (s(E,) )N

3. Fory <o, Ry, # 0, if N||y is acceptable.

Remark 3.5. N||v is amenable, for all v < wa, as shown in [MS94, p. 13, Remark| or [Ste00,
p. 13-14].

From 3. it follows by induction on v < «, that N||y is acceptable. The proof that L is
acceptable and sound (see [Zem02, Lemma 1.10.1-2]) can be used for this — soundness is more
than needed as induction hypothesis for the proof to go through. Since the general fine structure
theory presupposes acceptability of the structures, so does the notion of a very good parameter
in 3.

3.3 Enhancement Functions

It turned out that the desired correspondence between the Friedman-Jensen and the Mitchell-
Steel style premice does not hold literally. The Friedman-Jensen type premice have to be en-
hanced by an additional predicate. So one has to pass to an expansion of these structures. Such
an expansion alters in general the whole definability analysis of the model, in particular, the
projecta, the reducts, hence the entire fine structure. In this section, a general criterion for when
such an enhancement yields fine structural structures is developed, before defining the concrete
enhancement to work with in the next section.

Definition 3.6. Let E = (E, | v < wa) be a sequence s.t. for v < wa either E, is an extender
in functional representation, or E., = (). If E, is an extender, then let v = w7y. Set:

E={{¢§X)|[{<vwanfeE (X))}

Then M = (JE E,,) is a weak Jensen-pre-premouse (weak j-ppm), if the following conditions
are satisfied:

(a) For y < alet M|y := (JE E,,) Ee\the truncation of M to . Then M]||vy is a continuable
extender structure, and M ||y = M]||y.
(b) For v < a, Ry, # 0, if M||~y is acceptable.®
Set EM = EOnyy. 1 also write s(7)M, st ()M, etc. for s(M||y), st(M]||y), etc., if M||vy is
active.

Lemma 3.7. Let M be an active, weak j-ppm. Then |M| = hi,(s(M)), in particular wpl; <
s(M). Moreover, if u < v < ht(M), then st (u)M # st ()M,

5See the remark concerning item 3 in definition 3.4.



Proof. Using the top extender of M, it is possible to define without parameters a X;-surjection
from D(M,k(M),s(M)) C |M||s(M)| onto |M|: (@, f) — M (f)(&). Since this result is well
known, I omit the exact analysis of the complexity of this definition — see [Jen97, §1, S. 13]. In
order to see the second part of the claim, note that it follows that (s(u)™, u] N Card™/” = ¢.
But st ()M e CardM!l”. So st ()M is either < s(u)™, or > p, while st ()™ € (s(u)™,p]. O

What has to be done in the following is not just to look at an expansion of one particular
model. Instead, every weak j-ppm has to be assigned its additional predicate. I will in the
following describe a class of functions which I call enhancement functions. It is rich enough for
my purposes, and contains only functions that behave nicely. What matters is that the functions
in question “commute with the formation of fine structural extender ultrapowers”.

Definition 3.8. An enhancement is a function of the form 2 = (Ay; | M is a weak j-ppm )
with the following properties:

(a) (Closure) Apy C{A € M| Xis a limit ordinal V A = 0} and Ay is closed in Onyy.
(b) ( Iy—definability) Let M = (J¥ E,,). Then Ay is uniformly T, (JZ).
(c) (Coherency) If w3 € Apy, then Ay Nwf = Apg .
Let M = (JE E,,) be a weak j-ppm. The enhancement associated to M via 2 is the structure
M* =M = (J¥ Eyu, Au).
In the following, fix an enhancement 2.

Lemma 3.9. Let M be a weak j-ppm. Then My is amenable.

Proof. Let w € M. It must be shown that Ay Nu € M. Let 8 = sup{v | wv € Ay Nu}. Then
Ay Nu = ApgNu € M, since wf € Ay (by (a)), and since Ay is I1; (M]|3) by (b) — the first
identity follows from (c). O

Lemma 3.10. Let 7 : (M, Ap) —r (N, A), N transitive. Then A = Ay.
Proof. (1) AC An.
Proof of (1). This is because 7, being an extender-ultrapower embedding, is ;-preserving.

More precisely, let ¢ be the uniform IT; (M)—definition of A, and let A be a unary predicate
symbol, which is interpreted in M* as Ap;. Then:

M E Vo (A(x) — o).

This statement is IT; (M™). So it is preserved by 7, and hence it holds in N* := (N, A). Since ¢
is a definition of 2 uniform for weak j-ppm, this means that A C Ay. Oy

(2) Let o € Apr. Then ANw(a) = Ay Nw(a).
Proof of (2). This is an immediate consequence of part (c) of definition 3.8. Letting o = wa,
ANnn(a) =7(Ay Nwa) = m(Aprja) = AN|ix@a) = An N 7(a)

by (1), as 7(a) € A C Ap. O(2)

If Ay is cofinal in Onyy, then A is cofinal in Ony, by (2), since 7 is cofinal. So in this
case, the lemma is clear. So let Ap; be bounded in Onys. By Definition 3.8, part (a), I can
set: o = max Ay;. The statement “a = max A” is II; (M*), so this formula holds in N of m(a).
Because AN = A, this shows that m(a) = max A. Using (1) and (2), it follows that

T(Ay N(a+1)) =An N (7(a) +1).
Moreover, m(Apy N (a4 1)) =m(Ap) = A. So A= Ay N (7(a) +1). Thus, it suffices to show:



(3) AN - 7T(CY) + 1.
Proof of (3). Assume the contrary. Let § be minimal s.t. 7(«) < wf € An. Set:
Z ={¢| (&) < B}and B :=supZ.

(3.1) =n(B) > 8.
Proof of (3.1). First, I am going to show that 7(3) # 3. To see this, assume that 7(3) = 3.
Then 7(wB) = wB € An, i.e. N |= plwf], and this implies by the preservation properties of 7
that M = ¢[wf], hence wf € Aps. But then wf < a, i.e. w3 = 7(wfh) < (), contradicting our
choice of 3.

Now assume that 7(3) < 3, hence, by the above, 7(3) < 3. Then (3 +1) = 7(3) +1 < B,
so B4+1€ Z. But §=supZ, hence 8+ 1 < 3, a contradiction. 0.1

Proof of (3.2). This is trivial, as ¢ is a uniform IT;-definition of A which doesn’t use the top
extender predicate. Hence, II; —reflection can be applied. - O(3.2)

Now, wf < wr(B) and wB € An. So, wB € An Nwn(B) € Anjjrp), by (3.2). Since
m(a) <wP € Ay ir(p) it follows that

NGy >m(a) (), gemy:

This formula is 3¢ in 7(a) and W(JgM). Hence, it follows that
ME (3>« w(w))ng

So let @ < v € Ay - It then follows that m(y) € Ay x5, and that m(a) < 7(y). Since
J[I;JN C Jf(%y I can again apply II; reflection to see that w@ N ANHﬂ(B) C Anjp- But since
wB € Ap, it follows that Ayn|g = Ay NwB. Now, v € AMIIB' So « is a limit ordinal. Let
v =wy'. Then v/ < 3. So m(7') < 3, because 3 = sup Z. But m(y') # f3, since wy’ = v > a, so
that wy' ¢ Ay, but wB € An. Hence, it follows that 7(v') < 3, and hence, 7(7) = w(wy’) < wp.
So we get: w(a) < 7(v) < wBN Ayjxa S Anjp = wB N Ay. But this contradicts the
minimality of w( with the property that 7(a) < w@ € Ay, because 7(7) has this property too,
and () < wp. O
Note that the proof used only that 7 is cofinal and Xg-preserving.

Lemma 3.11. Let M be a weak j-ppm, and let w: (M, Ap) — 5 (N, Ay or m: (M, Ay) —F
(N,A). Let N be transitive. Then A= Ay.

Proof. If 7 is a Yp-extender embedding, then lemma 3.10 gives the claim. Otherwise, 7 is even
Ys-preserving, because wpl, > crit(F) (now [Zem02, Lemma 3.1.11] can be applied). So the
claim is a consequence of the uniform II; definability of Ay,. O

Lemma 3.12. Let N be a weak j-ppm. Let w: (M, A) —yx, (N, An), M transitive. Then M
is a weak j-ppm, and A = Ayps.

Proof. Tt suffices to show that A = A);; that M is a weak j-ppm is well known. For this, two
directions have to be shown: If a € A, then 7(a) € Ay, i.e., N |= pla], where ¢ is a uniform IIy
definition of Ax. Hence, it follows that M = ¢[a], and this means by uniformity of the definition
that a € Ap. Vice versa, if a € Ay, then M = ¢[a], hence N = ¢[n(a)]. By uniformity of ¢
it follows that 7(a) € Ay, i.e.: (N, Ay) | A(n(a)), where A is a symbol for Ay. Since 7 is an
embedding, (M, A) = A(a), and this means a € A. O
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3.4 pPA-structures

In this section I will describe the enhancement function which will yield the expanded weak
j-ppm corresponding to s-structures. I will also derive some of its basic properties.

Definition 3.13. Let M be a weak j-ppm. Then let Dj; be the set defined by:

Dy :={reM | (Lim(r)VT =0)A
-(FveM EM £onstw)M <7 <)}

For v,y < ht(M), say that v hides v in M iff M||v is active and st (v)M < v < v. So Dy
consists of 0 and those limit ordinals of M that are not hidden by any v < ht(M).

Lemma 3.14. The function (Dy; | M is a weak j-ppm ) is an enhancement.

Proof. Letting M be a weak j-ppm, let’s verify properties (a)-(c) of Definition 3.8:
Closure: Let 7 € M be a limit point of Djy;. Assume 7 not to be an element of Dy;. Then let
v € M have the property that st (v)™ < 7 < v. As 7 is a limit point of Dj;, we can choose
7 in such a way that st (v)M < 7 € Dy N7. But then sT(v)™ < 7 < v, hence 7 ¢ Dy, a
contradiction.
11, — definability: By definition, 7 belongs to D, iff the following formula holds in M:

(Lim(7) VT =0) AVv Va(x = (JEM,Eivﬂ is active — ((1 <sT(v))* VT ¢ 1)).
Since ,z = (JE"' | EM)« is ¥, (M), this definition is clearly II;.
Coherency: Let wB € Dy. It has to be shown that w3MN Dy = Dy - The direction from left to
right is trivially satisfied: One just has to apply II; —reflection, since the uniform IT; —definition
of Djy; makes no use of the top extender predicate. Suppose the other direction of this inclusion
fails. Pick 7 € Dy g \ Da. Since 7 ¢ Dy, v can now be chosen so that s™ ()M <7 < wv. It
follows that v > wf3, because otherwise we would get that s*(v)™ = st (v)MII# which implies
that 7 is not an element of D ;3. But then sT()M < wB < v, s0wf ¢ Dy, a contradiction. [

Definition 3.15. A potential Pseudo-A-structure (pPA-structure) is a structure of the form
(M, Dys), where M is a weak j-ppm, and for every o < ht(M), R?MH%DMHW # (. For a pP\-
structure P = (M, Dyy) let P~ := M, and for a < ht(M) let P|la = (M||a, Dpg)ja). Finally,
I use the notations ht(P), EL, A(P), etc. for ht(P~), Ef_, A(P~), etc. In connection with
pFI‘D/\—stglctures I will use a language with an additional predicate symbol D, and interpret it by
DY = P.

Lemma 3.16. Let M be a pPA-structure, & € Onyy a limit ordinal and o ¢ Dpy. Then there is a
mazimal v € M such that sT (V)™ < a < wv. This v has the additional property that v+w € Dy,
ifv+we M.

Proof. By definition of D), there is a v € M which hides «. To see that there is a maximal v
with this property, note that if v < v/ and both hide «, it follows that

st < st )M,

since st()M € an Card™" and (s(v)™,v] N Card™”" = @, because Wy < S(M||v); see
Lemma 3.7. So an increasing w-sequence of ordinals hiding o would yield a descending w-sequence
of ordinals. So let v € M be maximal hiding a. Suppose v + w ¢ Djy;. Then let v/ hide v + w.
Then v’ hides « too, for the above reason. This contradicts the maximality of v. O
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Lemma 3.17. Let M be a pPA-structure s.t. ht(M) is a limit ordinal. Then Dy is closed and
unbounded in Onpy.

Proof. This is an immediate consequence of Lemma 3.16. O

Definition 3.18. For a pPA-structure M, let <77é‘/[ | € < otp(Dyr)) be the monotone enumeration
of DM 7

Lemma 3.19. Let M be a pP\-structure and £ + 1 < otp(Dp). Then:
(a) Ifné‘/f = st ()M, for some v € M, then né‘j[rl =v+w.
(b) Ifr]é‘/f £ st ()M for allv € M, then né\il = né\/[ +w.

Proof. Set o := 77?4. First let @ = s*(v)M for a (unique) ordinal v € M. Then obviously,
(o, ] N Dy = (), as all elements of this interval are hidden by v. I show now:

() v is the mazimal ordinal hiding o + w.

Proof of (¥). Suppose v/ > v and v/ hides a + w. Then st ()M < s@)M < a < v/, as
(s(v)™ v N Card™"" = 0. So « is hidden by V/, i.e., a ¢ Dyy. mP

So by Lemma 3.16, v + w € Dy, and hence né‘il =v+w. Nowlet a # st ()M for all
v € M. Again, (o, +w) N Dy = 0. It remains to be shown that o + w € Djs. Assume the
contrary. Then let v hide a + w. Since s*(v)M is a cardinal in M||v and st (v)M < a + w, it
follows that s™(v)™ < «. But by assumption, s™(v)™ # «, so s*(v) < . But then v hides
a, contradicting that o € Djy. O]

Lemma 3.20. Let M be a pPA-structure and st = sT(y)M € Dy (y < ht(M)). Then st is a
limit point of Dyy.

Proof. Otherwise it would be the case that s™ = 77?11 for some €. Since s is a cardinal in M]||y,
st # a+w (st > w). But by Lemma 3.19, every né‘il is of the form a + w for some «. Hence,

st # Wé\ir O
Lemma 3.21. Let M be a pP\-structure. Then the sequence <77é\4 | € <otp(Dyr)) is a Xq(M)-
function.

Proof. The idea is of course to define n™ by: v = né‘/[ <~ ME3f @W(f)ANy=[(€)), where

¥ = (“fis a function” A dom(f) € On A
Va € dom(f) (D(f())

(Vo <a  fla) > f(5))
(Vu < f(@Fv <a (D(p) = p=f1))).

Obviously then, ¢ is a Yg—formula, and hence the formula defining ™ is ¥, as wished. I
show by induction on x that there are arbitrarily long proper initial segments of n™!I* in M e,
finishing the proof. If this holds for p, this means in particular that n™/I* is ¥;(M||x) (even
without using the top extender predicate). In the successor step this is easy to see, since

A
A

™I U {{wp, dom (M Ik))} If M||w is passive,

M]|p If M||p is active and

Mt = st(WM = p,
Ml totp(Day) If M||p is active and

sT()™ < p.

12



We know that n™II# € M||uu+ 1, because it is definable in M]||u.
At limit stages A, by Lemma 3.17, D), is unbounded in Ony;, and hence it follows from
coherency of Dy that

= M|\ _ M
Duia= |J Dasjps and hence p™IX = | ] pMIln,
wpeD wpED

Again, the inductive hypothesis gives: n™!l € M||(u+ 1) € M||X for u < A by definability. [
Definition 3.22. Let M = (JZ F) be a weak j-ppm. Set:
be .| Du it F=9,
M= D\ (sT (@)™, a) otherwise.
Soif N = (JE | 0) and M = N||a, then D}, = Dy Nwa.

Definition 3.23. For two pPA-structures (or j-ppm) M and N let the relation <g be defined
by:
M <o N <= M = NP £ Nv3Ig<ht(N) M =N|}p.
Obviously, <q is well founded, since M <9 N <g N' = M € N'.

Lemma 3.24. For every weak pP\-structure (or j-ppm) M, M = hl,;(D3%,).

Proof. I prove the lemma by <g-induction on M. Let D}, C X and M|X <y, M. I must show
that X = M. The base case M = (0,0, 0) (this triple stands for (|M|, EM, E} ) is clear.

Case 1: M is a <g-successor.

Case 1.1: M = (J5.,,0).

Then D3, = Dy and DTWIIQ = Dy Nwa.
Case 1.1.1: M]||a is active.
Then wa = a. We have: DXJHO[ C Dy CX.
(1) aeX.
Proof of (1).

Case 1: st (o)™ = a.

Then Dy = Dy = Dy U {wa}, hence obviously o € D, € X.

Case 2: st (o)™ < a.

Then st (a)M = max(Dy ), and Dy = Dy = Dy, Hence s := st ()M € Dy, C X.
We have:

ME33u o= Mpn(s=s()"

This statement is 37 in s, hence valid in M|X as well. Let  and p be elements of X witnessing
this. Then z = M||u, hence s = sT(u)™ = sT(a)™, and hence p = o € X. I used Lemma 3.7
here. )

(2) (M[la)|X < M|e.

This is an immediate consequence of the fact that a € X. Firstly, it follows that M||«, being X;-
definable from «, is an element of X. In order to show that (M||a)|X < M||«, I verify Tarski’s
criterion. So let M|la = (Jy  ¢)[aq, ..., a,], where ¢ is some formula and @ € X N|M||a|. Then

ME 3y ye[MllalnpMio)a.
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Since “(y € M|ja A M) (y)[@]” is a Lo—formula in the parameters M||a, a1, ...,a, € X and
M|X <x, M, it follows that there is a b € X so that

M E (b€ [M[Ja A ™19, ar, ..., a,).

Hence b € X N |M]||a|, and since the above formula is Xy and M is transitive, it follows that
Ml|la = ¢lb,aq,. .., ay], so that b verifies the Tarski criterion. 02
Since Dy, © Du = Dy, € X, it follows inductively that [M|la| € X. But since Mlja € X
as well, it follows that M C X C M, because |M| = rud gjwa,EB,, (|M]), and because every
function rudimentary in Flwa, E, is Yo in Elwa, Eue.

Case 1.1.2: M||a is passive.

Then wa € Dy, since there can be no v € M with sT(v)M < wa < v, because if there
were, then it would have to be the case that v = «, but « indexes no extender in M. Hence
wa € D3, € X, and one can argue as in case 1.1.1.

Case 1.2: M = (JE F), F # .

Then D3, = Dy \ (sT (@)™, ). So if st(a) = a, then D}, = Dy = D} paseive © X
Obviously, MPa¥Ve| X <5 MP2V¢ and it follows in this case inductively that X = |MPassve| =

Now let st (a)™ < a. Then s ()™ € D3, C X. So the proof of (2) shows:

(M[[s*(a)™)[X < M||s* ()™,

By coherency, Dy s+(ayn = DaNsT(a)M = Dj,Ns™ (o)™, Hence it follows that D s+ (a)m C
X, and the induction hypothesis can be applied in order to deduce that |M||s*(a)™| C X. In
particular, s*(a)™ C X. But M = h},(s*(a)™) — in fact, we even know that M = h},(s(a)M);
see Lemma 3.7. Hence |[M]| C X.

Case 2: M is a limit point of <.

Then M = (J¥,0), where X is a limit. For wa € Dy = D3,

DMHa = D(Jf,@) = DM Nwa
and wa € X, hence (M||a)|X < M| (see (2)), where D3y, € Darjja € X, hence by induction
hypothesis, |M||a] € X. This holds whenever wa € Dys. But by Lemma 3.17, D)/ is unbounded
in Onjz, and hence |[M| C X, which is what was to be shown. O

Corollary 3.25. Let M be a pPA-structure. Then p}; < otp(D3;).

Proof. By Lemma 3.21, the monotone enumeration of Dy is a X1 (M)-function, so this is true
in particular for the monotone enumeration of D3}, since this is an initial segment of Djs. So
D3, C ki, (otpD3,). But by Lemma 3.24, hl,(D3,) = |M]| (this is even true for M ™), hence the
claim follows because hi;(D3,) C hl (otp(D3,)), since then we have a X (M )-surjection from
w - otp(D},) onto |M]. O

Corollary 3.26. Let M be a pPX-structure. Then hl,;(otp(D%,)) = |M|. If M is active, then
has(Uotp(Dyy)) = [M].

Proof. That hl;(otp(D3,)) = |M| follows from the identity h},(D%;) = |M|, using the fact that
nM is X1 (M) — see the proof of Lemma 3.25. Now let M be active. If s*(M) = ht(M), then
D%, = Dy is unbounded in M. So since MPas1V¢ is a ZF~-model, it follows that otp(D3,) =
ht(M), hence a limit ordinal. So in this case, otp(D},) = Uotp(D3,), and we're done.

So let’s suppose that sT (M) < ht(M). Then s™ (M) = max(D3},), because sT (M) € Dy (as
sT(M) is a cardinal in M). Hence by Lemma 3.20, s* (M) is a limit point of Dy;, and hence of
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27~ Now let & € D3, be chosen in such a way that s(M) < § < sT(M). Then s™ (M) is the
least cardinal in M greater than &. As s™(M) < ht(M), it follows that st (M) < A(M), and X is
a cardinal of M that surely is an element of hy, (D}, Ns*(M)) (because A = EXL (crit(E[))).

top
Using A and &, we can now define s in a ¥; way: It is the least cardinal of JEM greater than €.
Hence s*(M) € hi;(D3, \ {sT(M)}). This means that hl,(D3,) = ki, (D3, \ {sT(M)}) = |M]|,
and this yields the second part of the claim immediately, again using the fact that the monotone
enumeration of Dy is 31 (M). O

3.5 The s'-initial segment condition

Because the extenders appearing in pPA- and pPs-structures are indexed differently, and because
the index is essential for the choice of the extenders applied in coiterations, it follows that if one
translates coiterations of pPs-structures into coiterations of pPA-structures, the outcome will be
iterations which are not necessarily normal in the sense of A indexing. So a modified notion of
normality will be used on the A-side, which imitates the way normal iterations on the s-side are
formed. Such a notion has been developed by Jensen already, and these iterations are called
s-iterations. The idea is that every extender appearing in the sequence of a Jensen-premouse is
assigned an additional iteration index which determines to which model in an iteration tree the
extender must be applied. These s-iterations call for an appropriate initial segment condition
which is preserved by them, which guarantees that coiterations terminate, and which is not
unduly restrictive.

This condition has to satisfy two requirements that are tightly connected to the notion of
a normal iteration. Firstly, it must guarantee that the coiteration (which is normal) of two
coiterable structures terminates. The second requirement is really contained in the first one: As
the argument showing that coiterations terminate is applied to normal iterates of the premice
involved, the initial segment condition must be preserved under normal iterations.

I am first aiming at finding a tailor-made minimal initial segment condition. It is a slight
modification of the variant given in [Jen01].% First, a definition is needed, though.

Definition 3.27. Let F' be a pre-extender in functional representation. Then £ is a cutpoint of
Fiff £ = s(F|¢)."
Definition 3.28. Let M be an active extender structure. M satisfies the minimal s’-initial
segment condition (s'-MISC), iff, letting F := EJ\, for every cutpoint £ € [7(F),s(F)) of F,
(EMM # (€F)Me.

If M satisfies the s'-MISC, then obviously, (¢T)M > (¢+)IMle. Modulo the modification of

the minimal s-ISC, the s-ISC itself remains practically unchanged, compared to [Jen01, Chapter
1, p. 4] — only the broader context of pPs-structures leads to a more general formulation:

Definition 3.29. Let M be a potential Pseudo-A- or s-structure. The s’-initial segment con-
dition (s'-ISC) for M says that for every a@ < ht(M) with F = EM = () and each cutpoint
£ [7(F),s(F)) of F,

(a) If [M]|c]e satisfies the s'-MISC, then [M||a]e € ]\7H\a.

(b) If [M||a]¢ satisfies the s'-MISC and &' € [7(F), &) is such that [M||a]e satisfies the s'-MISC,
then [M||ale € [M]]ale.

6The modification was necessary since I was looking for an ISC which is a consequence of the present version
of Steel’s ISC from [Ste00, Def.2.4., item 3].

7In order to avoid possible confusions, I maybe should have referred to these ordinals as s-cutpoints. But since
only this kind of cutpoints will play a role, I opted for a somewhat slicker terminology.
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Definition 3.30. Let M be an active extender structure. Set:

Cu =A{& | 7 <& < s(M), €is a cutpoint of B

and [M]¢ satisfies the s’-MISC }.

3.6 Potential \- and s-structures

Definition 3.31. A potential A-structure (pA-structure) is a potential Pseudo-A-structure, that
satisfies the s’-ISC. Analogously, a potential s-structure (ps-structure) is a potential Pseudo-s-
structure that satisfies the s’-ISC.

Now I will introduce the different types of structures, which are most important in connection
with pPs-structures.

Definition 3.32. Let M be an active pPs- or pPA-structure. Then M is of...

Ltype I iff s(M) =7(M),
Ltype II iff  s(M) =€ + 1 for some &,
Ltype IIT iff 7(M) < s(M) is a limit ordinal.

3.7 Y,-codes

In the following, the Xg-codes of the structures involved will be introduced. I follow [Ste00, Def.
2.11], but will need several variants of the codes defined there. First, I am going to define the
Pseudo-Yy-codes of pPs- and pPA-structures.

Definition 3.33. Let £ be the language of set theory with additional symbols E, F, i and s.
Let N = (JE F) be a pPs-structure. Then its Pseudo-Yo-code, Co(N), is an L-structure, which
is defined as follows:

1. If N is passive, then (fo(N) has the universe [JZ|, £Co(N) = 5Co(N) — 0, ECo(N) — Ela and
FCo(N) — 0.

2. If N is active of type I or II, then Co(N) has the universe |[JE| again, but in that case,
CoN) = crit(F), 500N = 5(F), E€WN) = Elwa and FOWN) =

3. If N is active of type III, then the universe of Co(N) is |N|, £Co®¥) = crit(F), $0o() = 0,

ECo0N) = ENht(N) and FON) = EN .

In addition, I define (fo(N)Sq, the squashed-Pseudo-Yo-code of N, as follows: If N is passive
or active of type I or II, then Co(IN)*® = Co(N). If, on the other hand, N is active of type
ITI, then let s = s(F). The universe of Co(N)* is then |JZ|, LN — crit(F), GNP —
ECMN™ = Brg and FOWMN™ = Fhis = {(o, X) | o € (FE(X)) N s}.8

Analogously, T define CNQ(N ) as follows.

1. If N is passive, then Co(N) = Co(N).

81n accordance with [Ste00] one really would have to define:
[N {g,X)|In<w a€s"AXC [/'iéﬂ(N)Sq]" ANa € FE(X)}.

But the above coding doesn’t contain less information and is easier to work with.
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2. If N is active of type I or II, then Cy(N) has universe |N|, and I set: o) = crit(F),
§0 W) = g(F), ESW) = EN 1ht(N) and FCWN) = phews,

3. If N is active of type III, then éo(ﬁ) =Co(N).

Here are the corresponding codes for (Pseudo)-A-structures:

Definition 3.34. Let £ be the language of set theory with additional symbols D, E.N, F, i and
5. Let M = (JE F, D)) be a pPA-structure. Then its Pseudo-Yg-code, Co(M) is the L-structure

a?

defined as follows. The universe of Co(M) is [Co(M)| = |JZ| and D) — Dy and
1. If M is passive, then #Co() = 3Co(M) — o ECo(M) — Flua and FCM) = (),

2. If M is active of type I or II, then fCo(M) — crit(F), §Co(M) — s(F), ECo(M) — Elwa and
Féo(M) = F.

3. If M is active of type III, then fCo(M) — crit(F), §Co(M) — 0, EC(M) — Flwa and
Féo(M) — F.

It is shown in the second part of this paper that for every pPA-structure M of type II, the
set Cps has a maximum. With the proofs given there it follows that the same is true for pPs-
structures. Alternatively, one may apply Lemma 4.16 in order to prove this for every ps-structure
which has a A-image. Finally one shows that every pPs-structure has an image. So I can define:

Definition 3.35. For a pPA- or pPs-structure M of type I, let qps := F|max Cyy.
Remark 3.36. For a pA-structure M of type II, gpy € M, as M satisfies the s'-ISC, which implies
that even [M]maxc,, € M. Correspondingly, for a ps-structure N of type II, g € N.

In order to make sure that transitivized ¥;-elementary submodels of pA-structures satisfy the
§'-ISC, in the case of an active type II pA-structure M, I have to demand that gps be an element
of the submodel. For this reason, it is frequently convenient to work with structures equipped
in this case with the constant ¢ = ¢;. This way, one arrives at the Yy-code of potential
A-structures. In the case of active s-structures N of type II, the additional complication arises
that ¢y may be an element of |N|\ |N|. In order to deal with this problem, I follow [Ste00,
p. 14-15] in a form suitable for the present context.

Definition 3.37. Let M be an acceptable, amenable J-structure and F' an extender on M. Let
k = crit(F) and 7 = (k7)™ Let
M
(M F) = [ ) | f (8" — M| A feIF | Aae ()"}
n<w

Define a well order < on I'V(M, F') as follows:

<a7f> =M <bv.g> — f <Mg\/(f:g/\a<lex b)
Here, <js is the canonical X1-well order of M.

Definition 3.38. Let £* be the language of set theory with additional symbols E, F, &, § and

G. Let N = (JEN,F> be a potential s-structure. Then its ¥g-code, Co(N), is the L*-structure
defined as follows:

1. If N is passive or active of type I or III, then Co (V) is defined like éO(N), where, in addition,
iCo(N) —
q .
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2. If N is active of type II, then, again, Co(NV) is defined like Co (N), with the addition that
¢ is defined as follows.
¢ V) .= the <y-minimal pair (a, f) € I'(N) with the property that

Wé\(fN)(f)(a) = Ef, In, where n = max(Cy).

The squashed ¥o-Code Co(IN)*? is defined correspondingly, as follows: If N is passive or active
of type Lor IT, then Co(N)*? = Co(NN). If, on the other hand, N is active of type III, then Co(N)**
is defined like Co(IN)*9, with the addition that ¢¢o(N)™ = ¢

Analogously, I define Co(]\Af ) as follows:

1. If N is passive or active of type I or III, then Co(]v) is defined like éo(ﬁ), with the addition
that ¢Co@) = (.

2. If N is active of type II, then C (N) is defined like (70(K7)7 with the addition that

:Co(N)

q =45 = gp‘Th Wheren:maXCN.

Again, the corresponding codes for potential A-structures are needed.

Definition 3.39. Let £* be the language of set theory with additional symbols D, E’, F, f, $ and
g. Let M = (JEM,F> be a potential A-structure. Then its Xo-code, Co(M), is the L*-structure
defined as follows:

1. If M is passive or active of type I or ITI, then Co(M) is defined like Co(M ), with the addition
that (M) = (.

2. If M is active of type I, then Cy(M) is defined like C~'0(M), with the addition that ¢Co(M) .=
qm -

3.8 (Pseudo-)A- and (Pseudo-)s-structures
Now I can finally define the structures that will be the protagonists.

Definition 3.40. A Pseudo-\-structure (PA-structure) is a potential Pseudo-A-structure M
with the property that for every o < ht(M), the structure Co(M||e) is sound and I-solid.?
Analogously, a Pseudo-s-structure (Ps-structure) is a potential Pseudo-s-structure N with the
property that for every a < ht(M), the structure Co(N||a) is sound and 1-solid. The definition
of s- and A-structures is like that of Ps- and PA-structures, with Cy replaced by Cy, and with the
addition that the s’-ISC must be satisfied.!”

4 The Translation Functions

In this section, I am going to define the functions S and A that map potential Pseudo-A-structures
to potential Pseudo-s-structures and vice versa.

91n the literature, this property is often referred to as solid above wp}w. For a definition, see 8.15.

10If Q is an active pA- or ps-structure of type III that is sound, then @ is 1-solid, because in this case,
PQ,1 = pOQ = (). This is shown in the second part of this paper. So one wouldn’t have to explicitly demand
1-solidity of active type III-segments of A- or s-structures. The s’-ISC is essential for this argument, though. The
corresponding statement need not be true for PA- or Ps-structures.
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4.1 From pPA-structures to pPs-structures...

Definition 4.1. S(M) is defined for potential Pseudo-A-structures M by <o —recursion (see
Definition 3.23) as follows:

Case 1: M = {0,0,0,0).

Then S(M) = (0,0, 0).

Case 2: M = (JE_,,0,D).

Assume S(M||o) = (JE E’ ). Let F be the pre-extender in hypermeasure-representation
with the property that E/ , = F€, if E,, # 0. Otherwise, let ' = (. Now let E=FEU {(F,a')}
and set S(M) = (JF ,,0), if this is a pPs-structure.'*In the future, I shall write for this:
S(M) = 8$(M||a) + 1. If (JE |, 0) is not a pPs-structure, then S(M) remains undefined.

Case 3: M = (JE F, Dy;), where F # ().

Then S(M) is defined if

(a) S((JE,0,Dy)) = (JE,0) for some E, o.

(b) [JE'| = |JZ| (in particular, o = o).

(c) Let k = crit(F) and 7 = (7)™, Then Ult(JZ', F) = JZ | and By =0
If these conditions are satisfied, then, letting s := s*(a)™, I define

S(M) = (I (ayrs (FlsT))5er ),

B!
JSJr

otherwise S(M) remains undefined.
Case 4: M = (JEZ . D,0), where a is a limit ordinal.
Then S(M) is defined if the following hold:

(a) For 8 < ht(M), S(M||B) is defined and a potential Pseudo-s-structure.

(b) For wf,wf’ € Dy with 8 < 3, it follows that S(M||5) <’ S(M]|F’), that is, ht(S(M]|3)) <
ht(S(M||3')) and ESMIS) [Ong pp 5y = ESMIB) [0Ong 0 ).

If these conditions are satisfied, set S(M) := U,zep,, S(M||B°**¥°) in the obvious sense, i.e.,
A ! o .

E' = U,peny, ESMIIB) o = Uwsen,, RE(S(M][B)), and S(M) = (J.,*",0); for the definition of

Apgy, see Definition 3.4. Otherwise, S(M) remains undefined.

Remark 4.2.

1. Let M be active, o = ht(M), and S(M) be defined. In the notation of Definition 4.1, case
3, we then have |S(M)| = |JZ/| = |JE| = |M| because of (b) and (c).

2. If N =8(M) is defined, then N is a pPs-structure. In case 2 of the above definition, this
was explicitly demanded. It follows that this is true in case 4 as well, and in case 3 the
only additional condition that must be satisfied is coherency. But this follows, using (b)
and (c), from case 3 — see Def. 3.4.

3. If M is a passive pP\-structure of limit height, so that for all M <o M, S(M) is defined,
then the conditions (a) and (b) from case 4 are met, i.e. S(M) is defined.

111n order to make the definition more readable, I don’t distinguish between E and Ag here.
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Proof of 3. Condition (a) follows from observation 2. It remains to verify weak monotonicity
(b). Firstly, it is easy to see that ht(S(M)) < ht(M), if S(M) is defined. Now it suffices to show
for an arbitrary pPA-structure M:

If S(M) is defined, then for § < 8" with wB,wB" € Dys: S(M]|B) <’ S(M||5").

Assume the contrary. Then let M be a <p-minimal counterexample. Obviously M #
(0,0,0,0). Let M = (J, F, D).

Case 1: p=p+ 1.

Let 3 < 3, wB,wB' € D, and set M = M||ji.

Case 1.1: M is active and sT := st(M) < ji.

In this case, D = Dj; N (st +1). Hence wB3,wf’ € Dy;. Le., by minimality of M, S(M||3) =
S(M||8) <" s(M]|p’) = S(M]|3"), so M was not a counterexample after all.

Case 1.2: Case 1.1 fails.

Then D = Dy U{wi}. If w@' < wfi, then one can again use minimality of M as in Case 1.1.
So let wfl' =wpi. As wf < wf, it follows that wB € Dy;. Now two subcases are needed in order
to capture every possibility of the definition of S(M) = S(M||j):

Case 1.2.1: p=p+ 1.

If wii € Dy, then

S(M||B) <" s(M||fz) <" 8(M||p) = S(M]||5"),

as is immediate from the definition of 8. So let wiit & D). Then st (@)™ < fand Dy =
Dygja N (st ()M +1). As st ()M € Dyy)j5» and since wfB € Dy, it follows that

S(M||B) <" s(M]|s™ (m)™).

So it suffices to show that S(M||s* (1)) <’ S(M]||iz). Using the notation introduced in case 2 of
the definition of S, we get:

() S(M]|m) = S(M||i) + 1
= ((S(MA"™) [ (3) )3, (EY s+ () M)P)S gy i) + 1

here, let ()2 be the projection onto the first coordinate. But

S<M| |ﬂpassive) — U S(MH’Y)paSSive,
w'yGDMHﬁ

and s* (@) € Dy Hence, S(M|[s* (i) <’ S((MHﬂ)paSSive). But, as noted in the beginning,
ht(S(M||s* (7)) < s*(@)™. So

S(M||s* (1)) < S((M|@)P*)||s* ()™ <’ s(M]|p),

as wished; I used (%) in the last step.

Case 1.2.2: [i is a limit ordinal and M is passive.

As wB € Dy, it follows from the limit case of the definition of S(M) that S(M||3) <’ S(M).

Case 1.2.3: [i is a limit ordinal and M is active. ‘

Since Case 1.1 was excluded in Case 1.2, it follows that s ()™ = fi. Then (S(M))"**"" =
S(MPassive) and by Case 1.2.2 S(M||3) <’ S(MP»siv¢). Hence S(M||3) <’ S(M).

Case 2: y is a limit ordinal.

Case 2.1: M is passive.

Let 3 < 3 be s.t. wB,wd € D. As D is unbounded in Onyy, wy € D can be chosen in such
a way that §’ <. Then Dy, = D Nwy, hence wB,wf’ € Dyyy. Since M|y <o M, it follows
by minimality of M that this case cannot occur.
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Case 2.2: M is active.

Then let M := MP*sVe, Let 3 < 8" and wfB,wf’ € Dy We have that Dy, = Dy;, and
hence, S(M||3) = S(M||3) <’ S(M]||3') = S(M]||B") by minimality of M, and thus this case is
excluded as a possibility as well. O

Lemma 4.3. Let M be a pPA-structure for which N = S(M) exists. Let o < ht(M). Then the
following are equivalent:

1. There is no pu < ht(M) such that M||p is active and sT(M||p) < a < p.
2. S(M||a) is a segment of N.
In particular, this is true if M||a is active and s*(M||a) € Dyy.

Proof. For the direction from 1. to 2. one shows by induction on 8 € («, ht(M)] that S(M]|«) is
a segment of S(M||3). The other direction is obvious. O

Lemma 4.4. If M is a pPA\-structure with S(M) defined, then ht(m) = otp(Dyy).

Proof. The claim is proven by <y —induction on M.

Case A: M = (0,0,0,0).

This case is trivial.

Case B: M = (JE, |0, D).

Case B.1: M||« is passive.

Then otp(D) = otp(Dasja) + 1 = ht(S(M][a)) + 1 = ht(S(M)) = ht(S(M)).

Case B.2: M||« is active.

Let s = st (a)™. By definition of S(M) it follows that S(M) = @\7) and ht(S(M)) = s+ 1.
I distinguish two subcases.

Case B.2.1: s < a.

Then D = Dyyjjo \ (8, ). By Lemma 3.17, D)y, is unbounded in Onpys. As s < « and s is
a successor cardinal in M||a, it follows easily that otp(Dys) = s. Moreover, s € Dy, (for the
same reason), hence it follows from coherency that Dy s = Do Ns. We get: D = Dy, U{s},
ie,otp(D)=s+1= ht(m).

Case B.2.2: s = a. . .

Then Dpsjja+1 = DarjjaU{wa}, so otp(Dar) = otp(Dajja)+1 = ht(S(M||a))+1 = ht(S(M)).

Case C: M is active.

Let M = (JE F, D). Further, let M = (JE (), D) (note that D = Dy = D). Remark 4.2

S

and case 3 of Definition 4.1 entail that |[M| = |S(M)| = [S(M)|. In particular, it follows that
a = ht(M) = ht(S(M)) = ht(S(M)). Since M <o M, it follows by our inductive hypothesis that

—

ht(S(M)) = ht(S(M)) = otp(Dy7) = otp(Dar).

Case D: M is passive, and ht(M) is a limit.
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o —

Then M is a limit of <g. We have: S(M) = S(M) =U,,.cp,, S(M||P**5¥). Hence, due to
property (b) of case 4 of the definition of S, the height of S(M) is a limit ordinal, and

U )

wp€D g

= U otp(Dar)

wpe€D M

= U otp(Dar Nwpe)

wp€D s
= otp(Dum).

he(S(M))

So, inductively, ht(S(M]||”***¥*)) = otp(Das),)- O
Corollary 4.5. Let M be a pPA-structure for which N = S(M) exists. Then

| otp(Dn) if M is passive,
ht(N) = { Uotp(D3,) otherwise.

Thus, by Corollary 3.26, h},(ht(N)) = |M].

Proof. If M is passive, then N is passive as well, and the corollary follows from Lemma 4.4:
otp(Dyr) = ht(N) = ht(N).

So assume now that M is active. Then ht(N) = s*(M), by definition of S. If sT (M) < Onyy,
then Dy, = Do+ ) U {sT(M)}. Further, Dy||s* (M) is unbounded in s* (M), and one can
deduce that otp(D s+ (ar)) = sT(M). Hence st (M) = Uotp(D},) = ht(N), as wished. On the
other hand, if s*(M) = Onyy, then D}, = Dy, and sT (M) = ht(S(M)) = ht(S(MP*sive)) =
otp(D pppassive) = otp(Dar) = otp(Di;) = Uotp(Diy)- O

4.2 ...and back to pP\-structures

In this section, the inverse function A of S is introduced. It will be defined by recursion on the
following relation.

Definition 4.6. For two potential Pseudo-s-structures M and N, let M <; N iff
(3¢ <ht(N) M = N||¢) V (N is active and M = ]/\}P“Si"e),

Remark 4.7. Let My, My and My be potential Pseudo-s-structures.

— passive

(a) If My is active and My <1 My, then M; is either a segment of My, or My = My
(b) If My is passive and My <1 My, then M; is a segment of Mj.
(¢) If My and M, are passive and My <1 My <1 My, then My <1 My and My < M, aMy.t?

Lemma 4.8. The relation <y is well founded and set-like.

12M < N means that M is a proper initial segment of N.
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Proof. Assuming <; to be ill founded, let (M; | i < w) be descending in <;. Let A = {i | M; is active }.
By Remark 4.7(b), A is unbounded in w, since otherwise, if j were s.t. A C j < w, then (M4, |

i < w) would be descending in €. So let a : w — A be the monotone enumeration of A. It is

now easy to see that m E) ]\m), for all i < w:

If a(i+ 1) = a(i) + 1, then by Remark 4.7 (a), M,(;11) is a segment of M,;), since obviously,

Me(it1) # mpasswe; M, (i4+1) 1s active. By coherency, M, ;1) is a segment as well, and hence
an element of mpasswe. But the latter structure is a model of ZFC™, and so it follows by

replacement that ]\fa(\m) € mpasswe as well.

Otherwise, a(i) + 1 < a(i +1). For j € [a(i) + 1,a(i + 1)), M; is passive, hence it follows
from part (c) of Remark 4.7 that M,y >1 Myy41 >1 Ma(iv1). Again, as M, ;)41 is passive, the
fact that M i1y <1 Mg(i)41 entails that M 41 is a proper segment of M, ;1. Now there are
two cases: If My(;)41 is a proper segment of M), then My;11) is a proper segment of M),
and it follows as before that ]\m) € m Otherwise, mpasswe = My@iy+1 2 My(it1), and
from this, it follows also that ]\m) € Ma(\i), as claimed. Thus, <m | i < w) is a descending
€-sequence again, a contradiction.

This shows that <; is well founded. To see that it is set-like, note that if P <; M, then

P € Up<neany(Mlla U{M]|[a}). O
Definition 4.9. The function A is defined by <i-recursion as follows.

Case 1: N = (0,0,0).

Then A(N) :=(0,0,0,0).

Case 2: N = (JE_,0).

Let A(N||a) = (JE/, F, D). Then set

E:=F"(d,F)=FEUu{{d,3,X)| B e F(X)},

and let M’ := (JE_ |, 0). Define A(N) := (M’, Dyy) if this is a pPA-structure. Otherwise, A(N)
remains undefined.

Case 3: N = (JE F), where F # ().

Then let N = (JE | F’) and N = NPassive. Then A(N) is defined if A(N) is defined, and if
the following conditions are satisfied:

(a) [N|=[AN)].

—

(b) (A(N), F) = (A(N), F").

In this case, letting A(N) = (Jf,@,D), define A(N) := (Jg,F’,D).
Case 4: N = (JE (), where « is a limit ordinal.
Then A(N) is defined, provided the following conditions are met:

(a) For all v < a, A(N||y) is defined and a potential Pseudo-A-structure.
(b) For v < d < a, A(N||) is a segment of A(N||0).

If this is the case, let M’ := |, _, A(N||7), in the obvious sense, ie., [M'| = J AN,

EM =, o BANIM Jand M7= (|M'|, EM'). Set: A(N) := (M',0, Darr g))-
Remark 4.10. If A(N) = M is defined, then M is a pPA-structure.

<o

23



Lemma 4.11. Let M be a pPA-structure for which S(M) is defined. Then A(S(M)) is defined,
too, and A(S(M)) = M. In particular, S is injective.

Proof. The proof is by <¢-induction on M.
Case 1: M = (0,0,0,0).
Then S(M) = (0,0, 0), and by definition of A, A((0,0,0)) = M.
Case 2: M = (J u+17® D).

Then let M := M||u. Since S(M) is defined, so is S(M). Moreover, by definition of S,
S(M) = S(M) + 1. Inductively, A(S(M)) = M. Hence, A(S(M)) = A(S(M) +1) =M +1= M,
since this clearly is a pPA-structure.

Case 3: M = <J#EHF7 Dyy), where F # ().

Let M := MPasive < M. Since S(M) is defined, so is S(M). Noting that ht(M) = ht( (M ))
it follows inductively that A(S(M)) = M. By Definition 4.1, Case 3, (c), S /(\) (8(M), F). S
according to the definition of A, A(S(M)) is defined, and

passive

A = AGAD ) ESOD Dy sany) = (M, F, Dys) = M.

Case 4: M = (Jf,@,DM>, where 4 is a limit.
Then S(M]||«) is defined for every a < ht(M). Set:
D:={¢<Ony | (¢=0VLm())A
(35 <ht(M) EM #£OAsTO)M <¢<6)}

Let (7 | € < otp(D)) be the monotone enumeration of D. For £ < otp(D), define ¢ by wije = je.
Then it follows by <g-induction on M that:

e ht(S(M)) = otp(D).

o For & < otp(D), S(M)||¢ = S(M|l7e).

e D is cofinal in Ony (like the proof of Lemma 3.17

|€) = A(S(M||7¢)) = M||7e is defined.

)-
So by induction hypothesis, for all £ < ht(S(M)), A(S(M)
S(M)|I€) = Ugcotp(py Ml =M. O

Hence A(S(M)) is defined, and A(S(M)) = U§<Otp(D) A(
Towards formulating the converse of this, let’s define:

|
(M
Definition 4.12. For a pP\- or pPs-structure M, set Ip; := {v | EM # 0}.

Lemma 4.13. Let N be a pPs-structure for which A(N) is defined. Then S(A(N)) is defined as
well, and S(A(N)) = N. In particular, A is injective.

Proof. The proof is by <j-induction on NV, analogous to 4.11. The base and successor cases are
as unproblematic as before, so I restrict attention to the limit case. Let N = (J£ (), where « is
a limit. Using a slightly sloppy notation, we then have A(N) = U, ., A(N||v). Let M = A(N).

(*) If w € Wt(N) \ Iy, then w - ht(A(N||p)) € Das.

Proof of (x). A(N||p) = M||p for some p/ < ht(M) by Case 4(b) of definition 4.9. By induction
hypothesis, S(M||u') = N||u is a segment of N. Hence, by Lemma 4.3, there is no v < ht(M)
with sT(M||v) < wy’ < v. But as ¢/ & Iy, it follows that wy’ € Dy Otherwise there would
be a v/ € Iy with sT(M||v) < wp’ < v/, that is, sT(M||v') < wy’ < v/, and such a v/ doesn’t
exist, as was pointed out. U

Hence S(A(N)) = 8(M) = U, .ep,, S(MIIE") = U, ensan iy SAAWN]) = N. H
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Definition 4.14. Let S(M) be defined. Then
So(M) := ht(S(M)) and 8§o(M) := ht(S(M)).
Lemma 4.15. Let S(M) be defined. Then the following hold:
(a) If Ing Nt (M) is unbounded in Wt (M), or if M is active, then

1

M — M
SOM)] = 13E |, and [SQD)| = 13EY, | = |M].
(b) If M is passive and Ip; is bounded in ht(M), then either Iny = 0O and |M| = [S(M)| =
[S(M)], or, letting v = sup I,

_ _ M
S(M|[7)] = [S(M)][So(M||7)| = I, (s -

(c) If M is a model of KP, then |[S(M)| = |M]|.

(d) If S(M) is a model of KP, then M is X1 (S(M)).*® Moreover, A| <1“{S(M)} is (uniformly)
L1(s(M)).

Proof. The proof is by <g-induction on M again. Let N = S(M).

If M satisfies (a)-(c), then it is fairly easy to see that (d) holds as well: If N = S(M) is a
model of KP then N is passive, and ht(N) is a limit (or equal to 1, in which case there is nothing
to show). That die the restriction of A to the set of <;-predecessors of N can be defined over N
in a ¥; way follows from the observation that the map = — (<1“{z}) is a 31 (V) function, and
from the fact that the recursion in Definition 4.9 is X1 (N), too. I use the recursion theorem for
KP as stated in [Bar75].

Thus, A(N)~ is £1(N), too, which is obvious from Definition 4.1, Case 4. In order to define
Dy in N in a ¥y way, note that for @ < ht(N) the structure A(N|[[aP***"°) is a segment of
M, so that wht(A(N]|aP***"¢)) € Dy;. Hence, using the coherency of enhancements, we get the
following 1 definition:

€Dy < Ja <ht(N) &€ Dy yjgpassive.

I now prove that M satisfies (a)-(c) as well, inductively assuming that all <;-predecessors of M
satisfy (a)-(d).

Case 1: M = (0,0, 0).

Trivial.

Case 2: M = <J§fl,®,DM>.

Inductively, the claims hold for M||7 already. As I is bounded in ht(M) and M is passive,
and since M is not a model of ZF~, (a) and (c) are vacuously true. So let 7 =sup Ip;. If 7 =0,
and hence Ip; = (), then the claim is obvious again. So let 7 > 0. Now Iyg)5 is unbounded in
v, or M||7 is active, and I can make use of the inductive hypothesis that (a) holds for M||p. If
M||7 is passive, then

—

S(M[|7)] = [s(M[[7)| = [M]||7[, and So(M[[7) = ».
If M||V is active, then

S(M||7)] = [M]|s™(M][7)], and So(M||7) = sT(M|[D).

13 This is to say that |M|, EM, Etj\gp, Dy are 31(S(M)).
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So I have to show that [S(M)||So(M]|7)| = [S(M]|)|. But this is clear, since by Lemma 4.3,
S(M]||p) is a segment of S(M).

Case 3: M = (JE" |F,Dy;), where F # ().

Then the second part of (a) follows by Remark 4.2, part 1. But the first part follows as well,
because |S(M)| = |S(M)||s™(M)], hence So(M) = $*(M). Let s := s*(M). Since 5" is a
cardinal in M, this is true in m too. It follows that [S(M )||s+| Ss( ) = HY = |M||s*].
Claims (b) and (c) are vacuously true for M.

Case 4: M = (JF" 0, Dys), where v is a limit ordinal.

If I)s is bounded in v, (b) is shown just as in Case 2, and for (a), nothing is to be shown. I
prove (c). If Iy = 0, the claim is trivially true. So let Ips # @ and U = sup Ipy. If & < ht(M),
then by (b),

S(M]|7)] = [M]|So(M]|7)].

Since in M there are no extender indices above 7, it’s easy to see that for 1 < § < v — 1,
~ E'
S(MI|(@ +6)) = s, (ar)19)+50 0)

where Tlet S(M||7) = (JE' 111159 Elas, (a1

( ) |JSO (M||D) +6| c |Ju+6| - |Ju+6+1|

Proof of (). The first inclusion follows from the fact that [S(M]||vy)| C |M]||v| (see the proof of
Lemma 5.15). For the second inclusion, I distinguish two cases:

If o ¢ I, then by (a), -

[S(M[[7)] = [s(M[|7)| = [M]|7],

ie., EM C [s(M||p)| and ESM) C |M||#|. By (d ) EM is even 1 (S(M||D)), hence EM € N||p+1.
In fact it follows by induction on § < v that |JZ 5| = |JV+5|

Now let 7 € Ips. Tt has to be checked that EM € |N||7|. To this end, let 3 = 7(M||D)*
Then |M||8] = [S(M]|B)| = [S(M[[#)]|], as B < s*(M[|7). So M||r € |N||7|. By coherency of
M]||7, this means that M||7P***" = Ult(M||r, EM) € N||7 + 1, since Et( 17 codes EM and is
an element of |N||7|. The rest of the claim follows by 1nduct10n on . O

Now let M be a model of KP. Then v — 7 = v and So(M||P) + v = v. Hence, So(M) =
ht(M) = v, since

s = |J IsMllp+6)l= U PIE syl = 1L

1<d<v—v 1<é<v—v

+M]|z

So it follows from (x) that |[M|= S(M)| = |§]\7)\, which proves (c).
Now let Ip; be unbounded in ht(M). I have to prove (a) and (c ) In the current case it

suffices to prove (a), though, because M is passive, and so S(M) = S( ) = |M]| follows from
(a). So I have to show [S(M)| = |M|. To this end, I show that for every o < v there exists an
o <vst. a<a and |M|ld| =[8(M)||¢/]. Solet @ < v be given. By Lemma 3.17, Dj; is
unbounded in v, so let wB € Dy \ a. It follows that

(+) VyelIy\(B+1) st(MM >wp,

as otherwise s*(v)™ < w3 < v for some +y, and hence wf3 is not in Dyy.
Now let v € Ins \ (8 + 1) be the unique v with

st =min{s" ()M [ € Inr \ (B+ 1)}
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Then s*(y) € Dy by choice of 7, and by (+), a < wB < sT(vy). Now sT(y)M is a successor
cardinal in the ZF~ model M := <J,}Y3M,(Z), Dy;), and hence M|[s* (7)™ is a ZF~ model as well, if
sT (7)™ < 7. Hence in this case, as (c) is true for M||s* ()M, and sT(v)™ € Dy,

[M[[s* (™M) = [s(M][|sT(1)™)] = [s(M)]|sT(M)M].

On the other hand, if s*(y) = =, then the above follows from (a) and from the fact that in this
case v € Dy, since then |S(M||y)| = [S(M]|v)] = |M||y| (the last identity holds by (a)). O

Lemma 4.16. Let M be a pP\-structure, for which N = S(M) exists. If M is active, then
Cy = Cx = Cn. Moreover, N and N satisfy the s'-ISC iff M does.

Proof. Let’s turn to the first part. So let M be active.
(1) For a < s(M), |[M]a| = |[N]a| = [[N]al.

Proof of (1). Let 7 = 7(M). Then = 7(N) = 7(N), and as Nl = S(MHT) it follows by
Lemma 4.15 that [N||7] = [S(M||7)| = [M||7]. Since moreover E = E}, the first identity is
immediate, as for the definition of [M], and [N], only ¥p-extender ultrapowers were used. But
(B = E{Xp|s+ (M), hence the second identity follows as well. O

Now I can show directly that Cy; = Cg: Let § € Cy. Then 7 < § < s(M), £ is a cutpoint

of B}, and [M]¢ satisfies the s'-MISC. As Et”gp E{Zp, ¢ is a cutpoint of Eggp, too. It remains

to be shown that [N]E satisfies the s’-MISC. To this end, let ¢ € [T([N]E),f) be a cutpoint of
Wk _ E,Ei\gf. Since [M]¢ satisfies the s'-MISC, it follows that (¢T)Mle < (¢*)™. But since

top
|M| = |N|, keeping (1) in mind, it follows that

()M = ()M < ()M = ()Y

The inclusion Cy € Cyy is proven entirely analogously, and that Cy = C5 can be shown in the

same way, making use of acceptability of N. R

I'm left to show that the s’-ISC carries over from M to N and N, and vice versa. Since both
directions can be treated in the same way, I just prove the direction from M to N and N. To see
that it carries over to IV, assume the contrary. Let M be a counterexample of minimal height.
Obviously then M is active. Let N = S(M). All proper segments of N are S-images of proper
segments of M, and thus satisfy the s’-ISC. Tt suffices therefore to verify those parts of the s’-ISC
which refer to N. So let & € Cy be given. Then by the first part, £ € C)y, too. And as M satisfies
the s’-ISC, it follows that [M]¢ € |M|. Hence EtJXp|§ = ElL|¢ € [M| = |N|. But in Npassive,
[N]g is definable from F Op|§, and hence, [N ]5 € |N|. Further, I have to show that [N]gz €N ]§|,
given that 7 < ¢ < & and [N ]5/ satisfy the s'-MISC. From (1) it follows that in this case, [M]¢
satisfies the s'-MISC as well. Thus, [M]g € |[M]¢], i.e. Eop|§’ = B¢ e |[M]e| = |[]\7]§\ (the

latter again by (1)), and this means that [N ]g € |[N]e], as before. Hence, N satisfies the s/-ISC.
That N does too can be shown analogously. Hence, M was no counterexample after all, so there
are none. O

5 Translating >;-formulae

In order to be able to accurately analyze the relationship between projecta and standard param-
eters in a pP\ structure and its S-image (if existent), a deep understanding of ¥;-definability
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in these structures is essential. Such an analysis has to be undertaken in order to derive one of
the main results of this work, namely that the (Pseudo)-A-structure has an S-image, which is
a (Pseudo)-s-structure, and vice versa. I shall develop a method for translating ¥;-formulae in
this section.

5.1 Successor levels of premice

If M is a pPA- or pPs-structure of height o + 1, then the first step for translating >;-formulae
will be to express that formula over the structure M||a; the translation procedure will then be
defined by recursion. So names for the members of M||(« + 1) are needed:

Definition 5.1. Let A = A;,..., A; be a list of predicate symbols. Since I shall be working
with transitive structures that are closed under ordered pairs, one may restrict to unary predicate

symbols. The set Q(A) of codes for functions rudimentary in A is defined by the following clauses.
(a) For all n € w\ {0} and k,! < n, the following symbols are codes for an n-ary function
rudimentary in A: F]?,pz,l, 51?,[-
(b) The symbol f; is a code for a l-ary function rudimentary in AQQ<k<l).
(¢) If f is a code for an n-ary function rudimentary in A, then so is u”[f].

(d) If h is a code for an m-ary function rudimentary in A and ho, ..., hym_1 are codes for
n-ary functions rudimentary in A, then ho (ho,...,hm—1) is a code for an n-ary function

rudimentary in A (m,n > 1).

Let’s turn to the interpretation of such codes. Fix sets (or classes) A := Ay,..., A;. Given a

code t for an n-ary function in €(A), I define its interpretation, val4d [t] : V" — V by recursion
on t as follows.

(a) Let n e w\ {0}, k,1 < n.
(1) val?[x}](ao, ..., an-1) = ar.
(2) valA[pzyl](ao, coyan—1) = {ag, a;}.

(3) vald[dy J(ao, ... an—1) = ax \ a.
(b) vald[f; |(a) = AxNa (1 <k <1).

(¢) Let f be a code for an n-ary function rudimentary in A for which va14 [f] has been defined
already. Then val®[u"[f]](ao,...,an_1) = U val?[f](b,ai,...,an_1).

b€ao
(d) Let h be a code for an m-ary function rudimentary in A, and let hg, ..., hy—1 be codes
for n-ary functions rudimentary in A, such that va14 [h] and val4d [ho), ..., val®[h,,] have
already been defined. Then, for @ = ag,...,a,_1,

vald[ho (ho, ..., hm-1)](@) = val[h](vali[ho) (@), .. ., valA[hm_1)(@)).
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In order to avoid a possible confusion, since there are conflicting definitions in the literature,
it should be pointed out that by rud 4(X) I mean the closure of X U{X} under functions
rudimentary in A. That’s what I refer to as the ff—rudimentary closure of X. So every element
of rud 4(X) is of the form f(a@, X), where f is a function rudimentary in Aand @ € X. This is

the motivation for the following two definitions which basically introduce names for the members
of rud 4(X).

Definition 5.2. Fix predicate symbols A. The set T(A) of terms rudimentary in A is defined to

consist of pairs t = (¢, (Z)), where ¢ € €(A) is a code for an n-ary function and & = (zg, ..., T,_1)
is an n-tuple, such that, for i < n, either z; is a variable, or x; = ® for a fixed new constant
symbol ®. The set of free variables of ¢, Fr(t) is defined to be {z; | z; # ®}.

Evaluations of rudimentary terms are now computed relative to a given interpretation of the
predicate symbols and a given interpretation of a universe.

Definition 5.3. T evaluate a rudimentary term ¢ = (¢, (xo,...,2,_1)) € T(A) in a structure

M = (X, ff) as follows. Let a be an assignment in X whose domain contains the free variables
of t. Define an extension a of a by setting:

v alx) if x# @,z € dom(a),
“(x)_{x if z=2.

Then valM[t](a) := (valA[ c)(@a(zo), ..., a(zn-1)). If M = (M, B) is a structure enhanced by
additional predicates, then val}[t](a) = val™[t](a).

The following Lemma is from [Fuc09]. It applies almost immediately if M ||« is passive, since
in that case, EM C |M]||a|.14

Lemma 5.4. Fiz two lists of predicate symbols, A and B. Then there is a recursive function
T= TA?JE?; with the following property:

Let A and B be interpretations ofA and B. Let X be a transitive set closed under functions
rudimentary in A and let A,B C X. Set X' = rud x(X), and define M := (X, A, E), M =
(X', A, B). Let g be a Xo-formula with free variables vo,. . ., vo_1. Let a = {ig, ... im_1} € [n]™
For each j <m, let t; € ‘I(/T), such that no free variable of t; occurs as a bound variable in .

Then 1 := T (@, Vig,t0y - -« Vip_1stm—1) 1S @ Xy -formula with the following property: If & =
W, -« -, Winr—1 8 an enumeration of {vy | k € n\a}, then the set of free variables of v is contained
in {W} U Uj<m Fr (t;) (here, repetitions may occur). Further, for any assignment b of the free
variables of ¢ with values in X,

M' = olt] <= M = y[b],
where b" = b[("0 [ya10(10)(b))s - - 5 ("1 [yar e, 1 v))]- Hence, one might very well write:

= @((wo /to)a ) (vimfl /tmfl))'

If o indexes an extender in M, a more specialized translation function, which I shall develop
later, is called for. In preparation of a version which is suitable for pPA-structures, I note the
following.

MFor pPA-structures M, the predicate Dj; deserves extra attention, though.
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Lemma 5.5. Let M = JZ | be a pPA-structure, so that F := E, # 0. Then |M| is the closure
of |M||a|U{|M||a|} under rudimentary functions, the function fgo and the function fp. Here,
fz denotes the function x — Z N x.

Proof. Let A be the closure of |JE| U {|JZ|} under rudimentary functions and the function fg.
Hence A = |M|. Let B =the closure of |JZ| U {|JZ|} under rudimentary functions, the function
fE1o and the function fr. It has to be shown that A = B.

Obviously it suffices to show that B is closed under fg. I show that E € B, from
which this follows. We have:
E=FElaU{{a,d,z)|0€ F(z)}.
F/
Since Ela C |M||al, it follows that Ela = fro(]J¥]) € B. So it suffices to show that F’ € B.

In order to see this, I will define a series of obviously rudimentary functions, which I will use to
get a rud function, which, when applied to the right elements of B, takes the value F'. Set

_ J {6,y,2)} if 6eyAn(y.x)€c,
fo(a, 0y, ¢) = { 0 otherwise.

This is a definition by cases, and the relation determining the case is rud, hence so is the function
- see [Jen72, p. 234, Properties 1.2.(e) and 1.1.(c),(d)]. Note that a is but a “dummy”-argument.
Now set

fila,c) == U fola,d,y,x,c).

d,y,z€a
Again, f is rud by the last scheme in [Jen72, P. 233, Definition in §1]. The function

F2(2) = ()5 (2)3)

is rud by [Jen72, P.234, Properties 1.3.(a) & 1.1.(d)]. Now we have in general that if g is rud,
then so is the function z — g“z: g“x =, {9(y)}. Hence, I can define:

f3(z) = fo'w,

in order to get yet another rud function. Now set f; = f3 o fi. Then:

fIELF) = fs(A(35]F))
= LAIEF)
= R U oUIE6y 2 F)
3,y,x€|JF|
= foY6y,x)|d €y ly )€ F}
o {(6,y,2) [0 €y =F(x)}
G:={{5,z) | € F(x)}.

Hence G € B and Ela € B, and hence, E = ({a} x G) U Ela € B, which was to be shown.
For this direction, I am going to show that A is closed under fg;, and fr. The

former is trivial, as ElaNz = EN|[JE|Nz € A for z € A. In order to see the latter, I will show
that F' € A. Again, I define some functions which are rud in FE.

0 otherwise.

go(7, 0, x,u) == { {7} if (§,v,z) € fr(u),
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Further:
((s’u"]j Ugofy,éxu)

YEU
Hence () ¢ defined
F(z if define
E _ )
gl ol z) = { 0 otherwise.
Now set:
926, u, ) := {{g1(8, u, z), z)} and g3(d, u,v) := U 92(0,u, x)
rEv
Then g3 is rud in E, and obviously, g3(a, [JE|,|JE|) = F € A, as was to be shown. O

Lemma 5.6. The function x — On Nz is rud. Fiz a rudimentary code coy for this function.

Proof. The function g, defined by

g(z) == { {z} if z€On

] otherwise.

is rud, since it is defined by cases, and the relation determining the case is ¥y. But then
OnNz = J,c, 9(2), which shows that this function is rud. O

Lemma 5.7. There is a recursive function Ty with the following property: Let M’ = (J¥ o1, 0, Dagr)
be a pPA-structure. Set D = Dyprjjo. Let M = M'||a, and set M= a+17(2) D> Let ¢ be a

Yo-formula in the language of set theory with additional predicate symbols E, F and D. Let
V0, ..., Un—1 be the free variables of p. Let a = {ig,...,im—1} be an m-element subset of n.
J

For each j < m, let ¢; be a code for an n;-ary functzon rud in E,F, and xo,...,xnj_l a

list of symbols so that each l’k is either a variable symbol or a fixed constant symbol ®. Let
¥ = Ta(p,vig, o, (F°), .. vi, 1y Cme1, (T™71)). Then v is a X,-formula s.t. the following
holds:

If W = wy, ..., Wy _1 18 an enumeration of {vk | k € n\ a}, then the set of free variables of
Y is contained in {w} U{zl |j<mAk<njAx] #®} (here, repetitions are allowed).

Let b be an assignment of the free variables of 1 with values from |M|. Define V' : Fr (¢) U
{®} — |[M|U{|M|} by: V :=bU{{|M|,®)}. Then

M ): (p[(vio /valEra,F[CO](bl(i:O))), ey (v m—1 /ValE[a Flem_1](b (Fm—1) ) ( /b )]

<
M = 1pb].
Moreover
M= (Fvi, Q)" fvareror @) - - (" fvaretonr e )@ 1)) (7 o))
e

Jee ¢(EB,F) (c is a code for a 2-ary function A
M ': (32 T)\(QO,’U%, = <Z7 (I)>’Ui1rcm—1’ <'fl>a <y Um—1,Cm—1, <fm71>))[b}>v

where z s a new variable.
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Proof. The starting point is a So-formula ¢ in the language of M’. But as FM' = () (the height
of M’ is a successor ordinal), it is obvious how to transform ¢ into an equivalent ¥o-formula ¢’
in which ' does not occur anymore - just replace “F(v)” with “v # v”.

Now I define a preliminary transformation 7'(¢)) by induction on formulae ¢ in which F' does
not occur, as follows (I want to express ¢, where E is interpreted as F := Elwa and F as
F:=E,.):

Fix new variables z and z’. Later z will be replaced by |JZ| and 2’ by wa.

If ¢ = E(v), then set:

T(p) =BV 36,z,ycz v={8z)ANF(y,z) A €y).

The other atomic formulae remain unchanged — Note that F does not occur. The inductive steps
are as usual; this atomic case is the only true change that is made. So far, we have for @ € |M|:

ME¢[("/a)] < Mg
= (JZ,,B,F,D) ET()("/a), % Jwa), C/isz))-

Now let co, € € be the code from Lemma 5.6. Let a, vy, - -+, Vi, Coy «+ 5 Cn1y T0y ooy 7L,
W, b and b’ as in the statement of the Lemma. Then
M E el fvarrew@on)s - (7 v B e, jw@m-1)s

- B ,(w/p(w))]
= (a1 E,F.D) B T(@)(0 /187 (o) b (0)))s - - 5

(q;m_l /ValE‘F[Cm*l](b/(im/_l)) 3

Clraermqien)s C lvare oo, (a2 ))s
_ (*/o(a))]
— <|J5|7E7F3D> ': TE,F;D(T(QO/)aviovCOv<fo>7"'7vmflycmflv<fm71>a

2,7, ®, 2, con, <I>) 0]

The last equivalence follows from Lemma 5.4. It is applicable, since |JZ| is closed under functions
which are rud in £ and F, and because by Lemma 5.5, [JZ, | is precisely the closure of |J¥|U
{|JE|} under all functions that are rud in F and F. In the third line, note that 7} is a rudimentary
code for the identity.

The second part of the Lemma now follows from the first, making use of the fact that every
element of |[JZ | is of the form g(a, |[JE]), for a function g which is rud in E and F. This
traces back to lemma 5.5 and the fact that a list of arguments ag,...,a,_1 € |J¥| can be
coded by one, namely (ag,...,a,—1) € |JZ|, so that it can be rudimentarily decoded by the
component functions (). Moreover, |JZ| is needed as an argument at most once, since if
b e |JE, || is of the form ¢'(a, |JF|,...,|JE]), where ¢’ is rud (in E, F), then the function defined
by g(x,y) = ¢'(x,v,...,y) is rud too, and g(a,|JZ|) = b. If, on the other hand, [JZ| does not
occur as an argument at all, then one can always add “dummy”-arguments. O

Corollary 5.8. There is a recursive function T with the following property:

Let M = (JE_H,@} be a weak j-ppm. Let D = Dyy)jq. Set F':= E,qo and E := Elwa. Let p()
be a 3, -formula. Then Tx(p) is again a X, -formula with two additional free variables, so that
for arbitrary elements @ of | M|,

(M, D) [ ¢ld] <= (IM|,E,F,D) E Ta(¢)[d,wa, |J7[]-

(In fact, one could replace D by an arbitrary predicate contained in M||c.)
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Proof. The definition of the transformations T)(p) = T(¢’) from the previous proof can be
expanded to arbitrary formulae. O
Similar constructions yield the corresponding results for pPs-structures.

Lemma 5.9. There is a recursive function Ty with the following property: Let N' := (JQEH,@)
be a pPs-structure. Let N = N'|la. Let ¢ be a Xo-formula in the language of set theory
with additional predicate symbols E and F. Let vg,...,vn_1 be the free variables of ¢. Let
a={io,...,im—1} be an m element subset of n. For each j < m, let ¢; be a code for an n;-ary
function rud in E'7 F, and :1:6, e ,xij_l a list s.t. each xfc is either a variable symbol or a fized
constant symbol ®. Let 1 := Ts(p, iy, Co, (T°), .., vi, 1y Cm—1, (T™71)).

Then v is a X, -formula s.t. the following holds:

If 0 = wo, ..., wn—1 is an enumeration of {vy | k € n\ a}, then the set of free variables of
Y is contained in {W} U{x] | j <mAk<njAx| #P}.

Let b be an assignment of the free variables of 1 with values from |N|. Define b’ : Fr (¢) U
{®} — [N|U{|N|} by: ¥ :=bU{(|N|,®)}. Then

N’ |= @[(" [ yareta.F (oo b (20)) )5 - - - » (71 [varetanr e, i @m-1)))s (% /uea)]
—

N = ¢[o].

Moreover,

N'|= (v, O Jvarttorle@r @) - - (U fvarEtaF e, 1)@ @n-1))) (“ /o))
<

Jee ¢(EB, F) (c is a code for a 2-ary function A
NE (32 To(p,vig, ¢, (2, @), viy s Cn1, (F1), -+ o, U1, Cm—1, <fm71>))[b]),

where z s a new variable.

Proof. The proof bears no new ideas. O

Corollary 5.10. There is a recursive function Ty with the following property:

Let N = (JZ,,,0) be a pPs-structure. Let F:= FOWI®) and F := Elwa. Let () be a
Y, -formula. Then Ty(p) is again a X, -formula with two additional free variables so that for
arbitrary elements @ of |N|,

N = ¢ld] <= (IN|.E.F) |= Tu(¢)[@, wa, |17

Proof. As before. O

5.2 Yi-definability in pPs-structures and their maximal continuations

For the rest of this section, fix an active pPs-structure N = (Jﬂ,Fc) (where F be an extender
of length s™(F) in the functional representation) and set:

T = T(F) Kk = K(F)

s = s(F) A= A(F)

T = v N = (JEF)
D = D(N||1,k,sT) D = D(N|,F)

33



Hence F = F|s*. For the definitions of D(N||r, s, s%) and ID(N||r, F), see Section 2.5.
In order to see the rough approach for translating formulae between N and N, let ¢ = (%)

be a ¥;-formula, and 5 <As+. The idea is to make use of the Los theorem, in order to express
over N that ¢ is true in N of &:

NEoll] < 38<r (5 Fnily) k¢l
= NE3I<7Ii,taeD (ti]=nJ5)A[t]=Fnr(JE)
AD [ ((t1,t2) = 9[€5])),

where £* = (£,id). I used the notation of Definition 2.5 here, as well as the fact that Xy-extender
product embeddings are cofinal. I deal with the problem of expressing “[t] = F N7 (J g )” over N
first.

(1) Let B < 7. Let then c = c” be the <z -minimal surjection from k onto P (k)N Jg, and for
reP(r)NIE, let
fo =,z ny) |y < k).
Further, define Z = Z° : k — |N||7| by:

Z(v) = Z2°(v) = {fu(v) | n < v}.

Then m(Z)(k) = F N (J5).

Proof of (1). It is obvious that Z € |N||r|. In the course of the proof, several functions are
going to be defined, for which this is just as obvious. There, like here, a more explicit argument
showing this is omitted.

Two directions have to be verified. For the inclusion from left to right, let 7(g)(¥) € n(Z)(k),
where (¥,g) € D. Let ¥ € (s7)™. Then

(¥, r) € F({{ii,v) | 9(ii) € Z(v)}).
A

Define a function 6 : k"t — (k + 1) by:

if (fi,v) € A and ¥ is minimal with g(fi) = fez)(v),
otherwise.

EAN|

o) = {

Then A = {<ﬁa V> | 6(ﬁ7 V) < KA g(ﬁ) = fc(5(ﬂ7l/))(y)}; hence, Setting h(57£v 9) = fc((s(&g))(a)a
A= {(,v) | 6(,v) < 5 A g(7) = h(ji,v, )}
As (¥, k) € F(A), it follows that:
NPsve o (8)(F, 1) < AAT(9)(F) = m(B) (7, K, ).

We have:
JE Eviv <k §(i,v) <k — 6(id,v) <,

hence o~
[y passive ': v‘a" V<A ﬁ(é)(ﬂ, l/) <A — W((S)(ﬁa V) <.
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Because () (7, k) < A, we know that 7(0)(¥, k) < k. Now let ¢ = 7()(¥, ). Then

ﬁpassive ': ﬂ-(g)(’?) = 7T(f)7r(c)(§) (K)

Obviously 7(c¢) is a surjection from A onto P(\) N Jf(,ﬁ), and for 6 < k:

7w(c)(0) = mw(c)(w(0)) = w(c(F)), and hence, w(c)(0) Nk = c(0) = 7(c(d)) N .

~

50, 1()7) = (o) = (T, WA M) = (r(el@)),e©)) = (Fle(c))yel). Thus,
m(g)(¥) € F, and because /

V(S,G <A F(f)w(c)((;)(e) S Jf(ﬁ)a
it follows that 7(g)(y) € Jf(lﬁ) as well.

For the other direction, let {a,b) € F NJ f(l g)- Then

(a) a=m(b).
(b) be JF NP(k)
(because a = 7(b) € 7(J§ NP(k))).

Hence (a,b) = m(fy)(x). Now let v < & be minimal such that b = ¢(v). For v < v < &, it follows
by definition of Z that

fc('y)(l/) € Z(V)
Hence
(v.r) SV | fey(v) € Z(v)},

{7} x (v, 5) SLB,v) | fep) (V) € Z(v)},

and correspondingly,
F({y} x (v,r) S F{{B,v) | fe(s)(v) € Z(1)}).
—_——
={rix(v:N)

Hence (v,r) € F({(B,v) | fe(3)(v) € Z(v)}). This means that 7(f)x)y) (k) € T(Z)(k). But

(o)) () = (w(e)(v), 7()(7) N k) = (w(c(7)), (7)) = (w(b), b) = (a, ).
Hence (a,b) € 7(Z)(k), as claimed. O

(2) Let tP = (k,ZP), where ZP is defined as in (1). Then the function B+ t° is ¥ (JE).
According to (1), [tP] = F N Jf(/ﬁ).
Proof of (2). Obvious. O(2)
The next step that has to be done is to express over N the Xi-satisfaction relation of the
term model ID. So let ¢1,...t, € D be terms, and let a 3; formula ¢ with n free variables be

—

given. Let t; = (77, ¢;). Then by the Lo theorem for extender products:

-

(D olil) = (7)€ PHG i) [ IE b lar () gn ()] -

(3) The relation {{d,b) | In<w de (st)"AbeP(")NNAde F(b)} is X1(N).
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Proof of (3). Clearly, d € F(b) <= 3y3¢ (v,&,d,b) € F*; see Definition 3.3. Ogs)
Since the parameters 7 and & are definable over N (using the predicate F¢) by a ¥;-formula,
(1) can be transformed into a X-formula. One arrives at:

Lemma 5.11. There are recursive functions d and d s.t. the following holds for every active
pPs-structure N :

(a) Let p(v1,...,v,) be a X1-formula in the language of N. Then d(p) is a ¥1-formula in the
same language, s.t. for arbitrary & € Ony,

— —

N E ¢[é] =  NEdy)d.

op and 7 = 7(F). Let 7 : JEN — 5 JBY be the canonical embedding, and let
o(v1,...,v,) be a Xq1-formula in the language of N. Then for arbitrary (&', fi) s.t. f* € D
and @ < s (i=1,...,n):

(b) Let F = EY

N E ¢lr(f(@), ..., x(f")@)] <= N Ed@a', f),.... @, ml.

(c) Let p(vy,...,v,) be a Xi-formula in the language £ of Co(N). Then d(p) is a X1 -formula
in the same language, s.t. for arbitrary & € Ony,

—

N Eeldl <  CN) Edy)d.

(d) If N is a ps-structure and @(vi,...,v,) is a Si-formula in the language L* of Co(N)1®,
then d(p) is a X1-formula in the same language s.t. for arbitrary £ € Ony,

Co(N) = ¢lé] = Co(N) = d(p)[E]-

Proof. Part (a) follows from (1)-(3) and the remark preceding them. For part (b), one just has
to change the beginning of the above argument:

N = olr(fH(@h), ..., a(fm) @)
= 3B<T (B Fnily) Eelr(fH@h),. .. x(f)@m)
<= NE3IB<7IH,t2€D (ti]=nJ5)A[t2] = Fnr(J5)
AD = ((t1,t2) = ol(@, f1), .., @ ™)),

:Co(N) Co(N)

Part (c) follows from (a), since one can just use § =3 as an additional parameter
on both sides. For part (d), one makes use of the fact that in the case of a ps-structure N with
iN = (a, f) we have that ¢°°N) = 7(f)(a), where 7 is defined as in (b). Then it’s clear, using
(b), how to define d(p) for ¥1-formulae in the language L£*. O

Now I turn to the translation in the opposite direction.

Lemma 5.12. There is a recursive function c, taking X1 -formulae of L* to ¥q1-formulae of L*,
with the following properties:

1. If p € L, then c(p) € L.

15For the definition of £ and £*, see Def. 3.33 and 3.38
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2. Let (%) be a 3q-formula in L, N a pPs-structure and @ arbitrary. Then
Co(N) [ ¢ld] <= Co(N) = c(e)lal.

3. The corresponding statement holds for L*-formulae. Le., letting (&) be a 3X1-formula in
L*, N a ps-structure and @ arbitrary,

Co(N) | pla] <= Co(N) k= cly)[a).

If N is a model of some language, ©(Z) a formula of this language and @ ¢ |N|, then I let
—(N E ¢ld]) here.

Proof. If N is passive or active of type III, then nothing has to be shown, since then éo(N) =
CNO(N). Le., in this case, one could set ¢(y) = ¢. But this definition by cases must be incorporated
in one uniform definition of ¢ which works uniformly for all pPs-structures. This will be done
at the end of the proof. I first construct the restriction of ¢ to L-formulae. L£*-formulae will be
treated at the end of the proof. So let N = (JEN, (F|a)¢) be active of type I or II, where F' be
the top extender of N. So a = st (a)N. T am going to derive a transformation of ¢ that behaves
as desired in this case. R
Let k = crit(F), A = F(x) and 7 = (k*). Then

Co(N) | pld] «= 36 <adF F = (Fla)*n|IE"|AQGEY F k, s) = oldl.

Due to the coherency of N with N = (JE,N , F'), obviously, JEN = JaEN. But it must be expressed

over éo(ﬁ ) that £ < o (and this will not be difficult, since in Co(N), the constant s is available,

and a = s7V), and we have to express “F = (F|a)¢ N |J5EN |”, of course.
One remark is due here: From the proof of the fact that a coherent structure in the sense

of Jensen is always amenable, it can be seen that for £ < 7 necessarily FHJ?N| € |N\ — see the
proof of [Jen97, chapter 1, p. 11, Lemma 4].

Now let F” be the hypermeasure representation of F|a. Keeping definition 3.3, items 3. and
4., in mind, I first define a Xp-formula @ (w, f, z), such that for all u,v € \]\7|,

uw=F N ([s]< xv) < Co(N) = @¢1[u, Flc, v,
for some superset ¢ of v with F[c € [N| (and then for every such superset). Set:

¢1 = (wWCV*AVYDy)cw (be[s]|S“AyeczAbeE f(y) A
AV(b,y) € [s]5% x 2 (b€ fly) — (by) € w)).

Obviously, @1 has the desired properties.
In order to be able to express item 3. of Definition 3.3 rigorously, I introduce the following
function from [MS94, P. 9, 2"¢ Remark]: For £ < 7, 7¢ is the least ordinal 7 s.t.

N N
F'a([s]< x [JF7]) € |35

At the place cited above, it is shown that (vy¢ | £ < 7) is cofinal in sT := ht(V).
I now want to define a ¥o-formula @z (f, g,v1,v2) with the following property: Let £, € Ong

and G = JZ" [\, Then

5:’}/5 <~ é()(ﬁ) ': @2[FrG(£)7G75a§]
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If such a formula is true, it follows in particular that £ < 7. It will be defined by:

Pa(f g, v1,02) == Fw € g(v1)  (Gr(w, f,g(v2)) AV <8 w ¢ [g(d)]).

Thus, one finally sees that for F' € [N|, F = (F|a)° N |JEN\ € |N| iff

Co(N) E 30 36 3f 3g
Yo = wp, SO =JEYIAA £ = Fllg(0)|A
o (9= 1nn 1 = Fllgo)
knows enough A > wp A pa(f,g,6,0) A
about F. ro=5

AW eF3ngazeuly) (y=0.6amn
Ay > sAcrit(F) <& <TA
(2) FC(Fla)n|Ie"]. Aw € lg(v)]  @rlw, f,9(€) A
= —_———
w=F'([s]<*xJEV)

N €< Az elg§)lNae f(ﬂ?)))

AY(7, €, a,2) € [g(p)]
((’y>é/\crit(F) <ELSTA

3) (Fla)cn|J2"|C F. Aw € |g(7)] @1 (w, £, g(€))A
A €Y< ANz € g(é) Na€ F(z)) —

—><7,§,a,m>€F>>.

I leave the verification that this formula works to the reader. Call it ¢)(F, ), and set:

op(@) = (G0N G A, o (@)
V(E =0 A p(@).

The question whether $ = @ decides here whether Co(N) = (fo(]/\} ). If this formula is true in
éo(ﬁ ), any p making it true will automatically be less than «. But instead of verifying this,
it would do no harm to demand in addition: 3h  Funk (k) A dom(h) = § Aran(h) = u. It is
obvious that this definition of ¢ behaves as wished for pPs-structures.

In the following, I show how to expand c to ¥; formulae in the language £*. Corresponding
to the case of pPs-structures, for an active ps-structure N of type II (this is the only case in
which Co(N) differs substantially from Cy(N)) of height «, and a % formula ¢ in £*, we have:

Co(N) Egld] <= 3b<aIFIg F=FMN A JEY|pg=q%@ A
N ' —
ANIF L F ok, 5,9) = eldl.

Co(N)»

If it is clear how to express “z = ¢ uniformly by a ¥; formula over Co(ﬁ ), it is obvious

how to define c.
For (a, f), (b, g) € T'(N) let

Aa,f),(bg) = 1€ € [K]" | fa,aub(c) = gbpuc(c)},
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where fq qub and gy puc arise from adding the right “dummy”-variables to f and g; see [Ste00, S.
4f]. Let n be the cardinality of a Ub. Then (in the terminology from definition 3.37):
(a) Let {(a,f) € I'(N), and let 0 be minimal s.t. f € |J§N| (hence 8 < 7(N)). Let (b,g) <n
EN
(a, f). Then aiq, 5y, b,g) € Iy l-
Proof of (a). As (b,g) <n (a, f), g <n f, and hence g € \JENL For the definition of a4 1y, (5,9)

no exact knowledge of a and b is necessary, it suffices to know how a lies in b. There are only
finitely many possibilities for this. Hence a(,, 7y (3,4 are definable from f and g, and so they are

clements of J£. O(a)
(b) Let q'CO(N) be the (-th element of |]\7| with respect to <pn. Then ¢ < A.
Let f : v — \JEN| be defined by:

f(y) = the 7 -th element of |JEN wrt. <jpv .
Then 3\ (£)(¢) = ¢%™).

Proof of (b). @) can be coded as an element of P(P(£)), where £ = max Cg. But P(P(£)) N
IN| C |Jf++|N. Since ¢ < s(N) < A, and X is a limit cardinal in N, it follows that ¢°(™) € |N||A|,
from which we can deduce that { < .

The second part of the claim is obvious. f € |N||7|, since it is definable in N||x. Ow)

Hence (g, b) is the < -minimal element of IV(N) s.t. 72 (g)(b) = GCo@ (i.e.: {g,b) = ¢C M)
iff &, H, R, f,s" and ( exist in |N|, so that the conjunction of the following statements is true in
CO (N)

1. st = (écﬂ(m))"’ﬁ and ¢, f are defined as in (b).

2. There is an n < w, s.t. g : [k]" — |N||7| and b € [s+]".
3. € <rand f.g €[N

4. H = FCOMN||€ + 2.

5 R :<JE1‘\7.

6. bU{CH € H(ag,g).(c).0)-

7. for all functions h € |N||7| with dom(h) = [k]" for some n < w, and for all ¢ € [sT]<, we
have:
((h =g Ac <lex b) V th) —scUb ¢ H(a<c,h>,<b7g>).

This corresponds to a 3 formula in £*. Thus it is clear how to expand ¢ to ¥ formulae in £*,
and the proof is complete. O

Remark 5.13. The proof made extensive use of the fact that in the active type I- or II-case the

constant s(EY,) is available in Co(NV).
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5.3 Yj-definability from N to A(N)

Definition 5.14. For an ordinal o, we set:

1= a ifa=a+1,
TV o0 if o is a limit or oo = 0.

Lemma 5.15. There are X1 formulae oy (x,y), or(z,y), or(z) such that for every pPA-structure
= (JE F, D) with o > 1, for which S(M) is defined, we have:

(a) [SQD)| = {z | M |= py[z0-1]}.
(b) 50D = (2| M |= gple,a-1)}.
() ESCD = (5| M = ppls]).

Here, let S(M) = <\s( )|, ESOD, gDy
Moreover, <ES(M”’Y) | v <ht(M)) and <|Smy)| :y < ht(M)) are uniformly X1 (M).

Proof. Define for g < a: -
F(B) := s(M||B).
Let F(8) = (|[F(3)], EF @), BLY)).
(1) There are 1 formulae x(z,w.y) and b(z,w.x.y), so that for § < o and F(5) € [J§ ],
(a) |[F(B+1)| = {z| IE,, E ¢[zB,|F(B), EFO]}.
(b) BFED = {z | If,, k= X[z, 8, BT @)}

Proof of (1). T will just present formulae that work. The verifications are standard.

Y = InIsTIeTedf
(e=FEowh((e£DANsT =5sT((JE e))) Vv (e—(Z)/\er—ht( ) A
ANe=yU{(sT ba) | In<w bClerit(e)]” Aa € [sT]" A E({ww,a,b))}

Af is a function Adom(f) =s"+n+1Af(0)=0A
AVy+1edom(f) fly+1)=S(f(7)) A

AVA € dom(f) (Lim(A) — f(A) = | £(©) A

E<A
Az € f(sT +n)).

X = z€yV(@st3e (e=Fouhe#DAsT =sT((JE e)) A
In<wIbIa bClerit(e)]" Aae[sT]" Aaeelb)Az= (st ba)))
(2) EF®) and |F(B)| are elements of |M||8+ 1|, and there are X1 formulae ¥’ and X', so that

(a) In JE, (|F(v)| : v < p) is defined by ¢’
(b) In JE, (EFO) | v < B) is defined by X'
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Proof of (2). For v < 3,

u=|F(y)| <= J5E3If @) Ax(9) Au= f(y)) and
P’ (u,y)
t=E"" «— J5E3fI @) AR At=g(y)),

X' (t,7)

where 1) and ¥ are the following formulae:

Y(f) = (fisafunction A
Adom(f) € On A f(0) =0 A
Ay +1edom(f) (fv+1)={z|J 1 Ev(zv, f(v).g0)}) A
AVA € dom(f) (Lim(A) — f) = |J  f(©))
w&eDUE)@)
(g is a function A
Adom(g) € On A g(0) =0 A
AV +1edom(g) (v +1) = {2] IZ,, b= x(z v, 90)}) A

AVA€dom(g) (Lim(\) — g = |J  g(&)).
wéeD

=1
—~
)
=
1l

(18.0)

The proof that these formulae behave as desired proceeds by induction on 3. For the successor
step, one uses (1), and the limit step is obvious. O2)

Now the formulae ¢y, pr and ¢p can be defined. Built into these formulae is a distinction
between the case that « is a limit and the case that it is a successor. This can be seen from the
parameter a—1 which equals 0 precisely when « is a limit - note that o > 1. This parameter
is substituted for the free variable y. Again, I will just present the formulae. It is obvious that
they are as wished.

pv = (y=0AF3u (D(wy) AP (u,y) Az €u))V

Vo (y#0A3eIu x'(e,y) AP (uy) Ap(z,y,u,€)),
op = (y=0AFy3e (DY) AX(e,7)NzEe)V

Vo (y# DA e xX'(e;y) Ax(z,y.€)),

O

Lemma 5.16. There are functions § and g with the following property: If M = (J¥ F, D)
(o > 1) is a pPA-structure for which N = S(M) is defined, and if ¢ is a X1 formula, then §(p)
and g(p) are 31 formulae such that for arbitrary Z, the following holds:

(a) If ¢ is a formula in the language of N, then §(p) is a formula in the language of M, and

N ¢ld] <= M §(o)[F a-1].
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(b) If ¢ is a formula in the language oféo(ﬁ), then §(y) is a formula in the language of Co(M),
and
Co(N) F ¢l7] <= Co(M) [ 4(p)[7, a—1].

(c) If M is a pA-structure, and ¢ is a formula in the language ofCO(JV), then §(p) is a formula
in the language of Co(M), and

Co(N) = ¢li] <= Co(M) = §(p)[F, a-1].

(d) If ¢ is a formula in the language of Co(N), then g(¢) is a formula in the language of Co(M),
and
Co(N) F ¢l7] <= Co(M) [ g(¢)[7, a—1].

(e) If M is a pA-structure and ¢ is a formula in the language of Co(N), then g() is a formula
in the language of Co(M), and

Co(N) | pla] <= Co(M) = g(p)[7, a—1].

Proof. T will first deduce how to define g() in the case that ¢ is a X;-formula in the language
of N. If ht(M) is a limit, then

NEoli] < Ze|N|IA
waeD (s(M]ja)], BT F is(M]la))) = o),

and if & = @ + 1 is a successor ordinal, then ES(Mll®) = ps(Mlle) — gs(Mlla) ¢ ps(M]la) ¢ | 3B
and so in this case,
NEolf] < Ze|N|AJu,eée|M| ue|N|Auis transitive A

—

Ne=ESMID Ao =enun (u,e ) = o[

Using the formulae ¢v, x’ and ¢’ from the previous lemma 5.15, this is expressible over M, as
desired — again, I use the parameter a—1, to decide whether « is a limit or not:

NEoli] < ME(a-1=0A3eITfFudy
(D(wa) ANy (u,0) AX'(6,0) A f=FNuhe=¢éNu
(u,e, ) = l7])
V(a=1# 0 A JeJeTu
X' (,a—1) A oy (u,a—1) Au is transitive

e=¢e¢NuA (u,eB) = pT]).
The definition of §(¢) can be read off this formula.
The additional constants in the languages of the structures Co(M) and Co(N), or Co(M) and
Co(N), are interpreted in these structures in the same way, so that they can be treated like

additional parameters. It is obvious how to expand ¢ to act on the larger class of formulae.
Now the function ¢ from lemma 5.12 can be used:

g:=goec.

The so-defined function g does what we asked for. Note that c always yields formulae in the
language of Co(IN) or Co(N). O

42



5.4 Y;-Definability from M to S(M)

The formulation of the following is a bit technical, in order to set up everything for its proof.
What is applied later on for the most part are the Corollaries 5.18, 5.19 and 5.20.

Lemma 5.17. Let M = (JE E_,, Dy) be a pPA-structure, for which S(M) is defined. For
a<vlet

00 = ht(S(M||a)) and 6, = ht(S(M|]a)).
Then there are sequences (e” | (u,a) € S) and (¢" | (u,a) € S) with the following properties:

(a) S={{p,a) | p<vAa<o,} and S = {{pa) | p<vAa< Ou}. In order to simplify the
notation, I shall write, for p < v:

e = (h]a<o,) e = (@h]a<s,)
et = etlo, et = erlo,
dy = e o = &

sMIlp)* = (s(MIlp),er) | sl = (M), &),

(b) et et € w, if defined. Identifying natural numbers with recursive functions, and presup-
posing a recurswe coding of formulae by natural numbers, for every formula ¢ with free
variables x1,...,x, in the language of M, and for all p < v, £ <w - oy,

(MH/’[’) |: @[6177671] <~ S(M||M)+ ’: egop((p)[gla" '7§napu]a

andforg< w - Oq,

—

(M|) E gt . &) = SO0 = eop(@)E1, -, &npuly

where, p, = o,—1. In particular, e, (p) is a formula in the language of S(M||u)*, and
the corresponding applies to ét. Also, éé‘op and effop map X1 -formulae to X1 -formulae.

(¢) For p+1 <ht(M), ett! = et = " and ert! = é#+t. For limits p < ht(M),

et = U eY, and &' = U e”.
“’O‘EDR/IHM wa€D |
(d) e*, and & are X1(S(M||p)), and X1(S(M||p)), respectively. ef,, and é,, are uniformly

o —

S (S(M|[p)), Tu(8(M|p)), respectively.
Before beginning the proof of this lemma, let’s note a useful consequence:

Corollary 5.18. Let M be a pPA-structure, whose N = S(M) exists. Then there is a sequence
FN = <f/i\' | p < ht(N)) of functions from w to w with the following properties (in the following,
we write f,, for fﬁv)

() A(N|p) = ¢l€] = Nllu = ful(@)E p1], where € < wp.
(b) fulp) is a i-formula, if @ is.
(c) fu is uniformly X, (N||p).
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(d) F={(n,m,y)|n=fy(m) Ay <ht(N)} is uniformly X,(N).

Analogously, there ezists a sequence FN = (f/iv | p < ht(Z\A7)> of functions from w to w with
the properties

() AN||1) | ¢ld] == Nl = fu(0)€ p=1], where € < One
(b)) If ¢ is a Sy -formula, then so is f,().

(") f, is uniformly Su(N||u).

(@) F = {(n.m.~) [ n = fy(m) Ay < be(N)} is uniformly £ ().
Here, f, stands for fL.

Proof. 1 construct the sequence FV; the construction of FN s analogous. Let p < ht(N), and
let N||p = S(M||5). In the notation of the previous Lemma 5.17, define f,(¢), by replacing
every occurrence of eg (v < p) in the formula etﬁop(go) by its ¥;-definition over N||v. This yields
a Xi-formula by Lemma 5.17(d), from which the uniform definability of f, follows as well. So
(a)-(c) are obviously satisfied. Note that pg = p—1.

Now let x be the uniform definition from (c), i.e., for g < ht(N) and m,n € w,

n = fu.(m) « Nl|u = x[n,m].

In order to see (d), note that the above means:

N |= (Nl|p = x[n, m)),

i.e. N = xnjjuln, m], and this means that the relation F is ¥1(V). O
Proof of Lemma 5.17. 1 construct the sequences e and é* by recursion on p.

Case 0: u=0.

This case is trivial, and the definition of €J, &J is irrelevant.

Case 1: p=1.

In this case, Dy = {0}, and it suffices to define e = &' by setting:

ey (p(2)) = ¢*(2),

where ¢* results from replacing every occurrence of D(v) in ¢ with v = §; thus, the constant el
does not occur in €/ ().

Case 2: p=p+ 1.

According to (c), in this case é* = e/ and e* = e”. So one merely has to define e”*!, and
this means one has to define 6504;17 because 0, = oy + 1. For then the domain of e is o, + 1,
as demanded; et = e#.

Case 2.A: M||ji is active and sT (@)™ < fi.

Let F = E;, E = Elwji. First, let ¢ be a ¥y —formula. Then Dy, = Do \ (sT (7)™, 7).
For the sake of readability, I carry out the following construction only for formulae with but one
free variable z, i.e., ¢ = @(x); the general case is not more complicated in principle, writing it
down explicitly causes some additional trouble, though. Solet ¢ < wo,, = w(oz+1) = s* ()M +w.
Setting M := (JE,0, Dagyja)s

(Mlln) E 9] <= M E¢[(°/¢), (/)]
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where
¢ =F (v=sT(@))uma A P)
and ¢ results from replacing every occurrence of ,, D(¢)“ in ¢ with ,,(D({) A ¢ < v)*. Obviously
then ¢’ is still a X1—formula, albeit in the parameter fi. To be precise, ¢’ still has to be
transformed into prenex normal form, but this can be done effectively.
In the case that £ € [st(M]||@), sT(M]|R) +w), I introduce a new variable as follows:

©* =" (*/y4w)-

Le., every occurrence of z in ¢’ is replaced with v+ w, where w is a new variable. More precisely,
p* is a ¥j-formula which is equivalent to this substitution. It is clear that this transformation
can be carried out effectively. The purpose of this transformation is that now, setting & =
sT(M||i) +n,

MluE elé] = ME ¢ [(“/a), (/)]

this is only true in case & > s™(M]||fi), though.
Now let
o' =3z ¢, and @x=3z ¢,

where ¢} and ¢ are Yg-formulae. Using Lemma 5.7, we get:

Mllp = lE] i
. (€ <sT(M[lp) AM E¢'[("/e), ("/n)])
V(€= s MIIR) +n AN E 1), (Y a)))
— (& <sT(Mlp) AM =3z 0h[("/e)s (“varB.r ol a)))
Vo E=st MR +nAM =Tz 0 (Y garmr e anan)s (/)

= Je € €(E,F) (ccodes a 2-ary function A
((€ < s*(Ml[m) A M| Fzo Talgp, 2. ¢ (xo, ©), s con, B)[("/e)])
Vo (E=sT(M||p)+nAM||EEJxe Ta(ps, 2, ¢ (To, @), Y, con, ®)[(“/n)]))-

But this is equivalent to:

I Jc e ¢(E, F) (c codes a 2-ary function A

(€ <oaA i
W = Ta(¢ 2, ¢, (0, ), Y, con, ) AS(MIE) " = efop,(Fzo - ¥)[("/)]) V
E=oa+nA

b =Tx(#5, 2, ¢, (T0, B), y, con, ) AS(M||1)T = e, Gz ©)[(“/n)]))),
which can be written as

S(M||w)™ E I 3Ice (B F) (c codes a 2-ary function A
((E<oaN
P = Th(¢h, 2, ¢, (0, ®), Y, cOn, ®) A
(S(M[[)* llog) F= etop(Fzo V) /e)]) V
(5 > op A
W =Tx(g, 2, ¢, (xo, P),y, cOn, ) A
(S(M|[) " llog) F= etop(3ro V)(*/e=0a)]))-
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As e{‘?op = e}, this formula can now be used as the definition of €top for ¥j—formulae. The
model S(M||p)T||oz is to be understood as (Jfﬁ,,ELOﬁ,e“ lon), if S(M||n) = (Jf;,@). Hence,
S(M 1) [log = S(M]|)*. _

Note that no parameters are used in efop(x), since in the current case, i is a limit — see
the definition of p, in (b). Moreover, S(M||u)"||o; obviously is 31 (S(M||u)") in op, as is the
definition of the satisfaction relation for elements of S(M||n). The reason why S(M||w)™||og =
S(M||@)t € S(M||p) is that e is 31(S(M]||i)), by (d). This way, it follows that S(M||g)™ is
amenable. This is because e* is X1 (S(M]|a)), for o < p. Hence ef‘op(x) is a 3;-formula if y is.
Note also that p,, = op, so that the right parameter is used in the formula efop(go).

Now let’s turn to the general case that ¢ (&) is a X,-formula, for n > 1. Let ¢ have the form

V(@) = Quyr - Quynp(€,9),
where ¢ is 31 and every @Q); is either V or 3. Then
(M) = ¥[¢] Quar € |M||u]... Quan € |M|lu|  (M||n) | @[, )
Qi¢' < otp(Dag)))Q1p1 < w. ..
QM < otp(Das) () @npn < w
(M||p) = @[5—; h}\4|\u(§1ap1)a""h}\4|\u(5napn)]
<= Qléﬂl <0,Qipr <w... Q,[” < 0,Qnpn <w
(M|1) b= 9l€. ¢,
<— ng?l <o0,Qip1 <w... an” < 0,Qnpn <w
S(M||u)* | el (P)IEC. 701
= SM|lptEQC <op+1Qip <w...
o @ul" < 0+ 1Qupn < w0 ela(PE (705
S(M||u) " | el (W)€, 0.

Here, Lemma 4.5 was essential. The map eé‘op is then recursive. Now define ¢y € w by

—
—

def
<

———
Co = etop,

where I again identify recursive functions with natural numbers, so ¢y € w.

Case 2.B: M||ii is active and s* (i)™ = ji(= o), or M||ji is passive and oz = wji.

Again, let F' = E; and E = E|wji. In this case, Dy = D U{wii} and o, = oz + 1. Let
¢ < woy, and let (x) be a ¥y-formula. Let M := (JE,0,Dagyj)- Then

(M||p) k= @] <= M £ ¢'[¢,whl,

where ¢’ results from replacing every occurrence of ,D(v)“ in ¢ with ,D(v) Vv = wi“. Note
that in the current case, wo; = oz = ji = val®¥[co,](|M]|ji]). The rest of the construction
works as in case 2.A. Set:
1= €fop-
Case 2.C: M]||fi is passive and o < wil.
Just as in case 2.B, we have Dy, = Dz U {wii}. Again, let ¢(x) be a X;-formula, and
let £ < wo, = wop +w. Then

(M||p) E ¢lé] <= (17,0, D) E '€, wil,
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where ¢ is defined as in case 2.B. But now, wo, = val® ¥ [r{](woz). The rest of the construction
works as in case 2.A. Set:
co = €l

Case 3: 1 is a limit.

Then the definition of e and ¢ is prescribed by (c). It remains to define ef,, and éf,,.
In the definition of ef, (¢), T will stick to the case that ¢ is a ¥;-formula. The expansion to
arbitrary formulae is as in case 2.A. It is essential here that |M||u| = h}mlu( Ml

Case 3.A: M||p is passive.

Then Dy = Djyy, @nd 0y = otp(Dagyjp). In this case, S(M||p) = Sm), and one

B

top ‘= €top- I concentrate on the definition of ef,,. Let ¢(#) be a ¥;-formula and

can set: é
5< wo,,. Since, by Lemma 3.17, Dy is unbounded in Onyy,, one can argue as follows (I will
give additional explanations below):

(M|lp) = ¢lé]

(
3¢ < otp(Dagy)30 wd =l A (S(MII)TIIC+1) el ()€, C)
S(MIn)* I (3¢ S(MIIW*FIIC+1) k= el (9)IE )

etop ()

= 3 <otp(Dyr)30 wd = nl A (M][w)(1M11]) | @lé]
= 3 <otp(Dar)36 ws =t A (M18) E ¢ld]

= 3 <otp(Day)I0 wd =y AS(MIIO)T | by (9)[E, o]
= 30 <otp(Dag)I0 wd =y AS(MIIO)T | el ()€ C]
<

<

Moving from the second line to the third line, note that by coherency, D, Nwd = D)5, where

Ilet wo := nMH“. Moreover, M||d is passive, for otherwise it would follow that § = wd = né\illu

and sT(6)M = § (or else § ¢ Dyy)),), which cannot be, by Lemma 3.20, as then § would have
to be a limit point of Dy, When moving from line four to line five, I used that e’ZH = efop,

Ml|p

where, again, wd = 7., }". To see this, note a property of (e®* | @ < ), which can be verified by

induction:

(x) Let u < v and e" already defined, so that conditions (a)-(d) are satisfied. Let wa,wf €
Djp- Then e C e C et.

Since by Lemma 3.20, wd # s ()M, for all ¥ < wy, it follows by Lemma 3.19 that né\ig” = wé+w,

hence that w(0 + 1) € Dyyy,. Thus by (x):

25—&-1 C et

But by (c), eT! = €%, and hence,
5
€C+1 €top>
5
top 057

05 = otp(Dy)15) = otp(Dpsyju Nwd) = ¢+ 1;
note that n™Il# ¢ + 1 is the monotone enumeration of Dy N Net1 Mile - For the same reason,

ps = os_1 = (; it is obvious that ¢ is a successor ordinal, as 0therw1se o5 = ¢ + 1 would have to
be a limit ordinal.

as wished, because e and, due to Corollary 4.5,
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Finally, let me justify the transition from the fifth to the sixth line. Firstly,
(S(MI)IC +1) = (S(M[|p)lI¢ + 1, " [¢ +1).

That this structure is the same as S(M||¢ + 1)T is a consequence of (). Since the expansion of
efop to arbitrary ¥, -formulae is unproblematic, this case is complete. Set:

o
C3 ‘= 6t0p,

S0 3 € w.
Case 3.B: M || is active.
In this case, e” and é* have to defined one by one. I start with é*. Let F = Efy. The

definition of é" is determined by (c). It remains to define éf,,. Let S((M|| )Py = (Jf/ﬂ)}.

Then by definition 4.1, case 3, (a) and (c), S(M||p) = <JE/,F>. By (b), |S(M||p)] = |M]||p|- Let
©(Z) be a Yy-formula. Then, letting N := S@),

Miuk old
— Nk 3Ja3f3d3Q
(N||ais passive A “Q = A(N||a)” 7 Af=Fn|Q|A
Ad = Do A (QP*, f,d) = [i])
&£ NE A

since {ht(A(N||e)) | o < ht(N)} is unbounded in y. Moreover, for o < p, if N||a is passive, then

Dy (¥|ja)- = Pm Nwa. By Lemma 4.15 (part d), “Q = A(N||a)” is £1(N), hence ¢’ X1 (N).
Hence define:
Elop(p) = ¢

This defines éf,,[{X1 — formulae }.

For formulae of arbitrary complexity, I now define inductively a preliminary function ¢ that
has all the desired properties, except the preservation of ¥;-formulae. Finally, it is only applied
to formulae of higher complexity, in order to complete the definition of éé‘op. The definition of
t(p) for the case that ¢ is atomic:

D(x

t(D(z)
(E(z)
(F'(z)

= 3Ja  (N|ais passive /\DA(NHQ)(JJ)),
= Ja  (EANIe)(g)),

= F(x),

= xRy for R € {=,€}.

~+

t(F
t(zRy

T

)
)
)
)

The expansion of ¢ to Boolean combinations of and quantifications over formulae whose t-images
are defined already, is standard. This defines ¢t. Now define:

éélop(so) = t(SD), lfQD is not Zl .

Note that in the current case, the structure N+ is not needed at all, and that the translation
doesn’t only work for ordinal parameters. L.e.,

—

Ml|p = pla] <= S(M]|n) = éfo, ()]l
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Now e# has to be defined, which, by (c), reduces to defining ef,,,. Let N := S(M||u), F = [Co(N)
and k£ = crit(F). First, I am going to define ef,, only for ¥-formulae. To this end, I use the
function d from Lemma 5.11, and make use of the fact there is a transformation of ¥;-formulae

~ — +
from M]||u to N already (the fact that the additional predicate of A(M||u) is not used simplifies
the construction to follow). So

—

Ml E el

= AM|p) Fe ()]
= AM|lp) E(doel)(¢)E]
——

J—
'_etop

for £ < sT(M||p). Let m : N||r —pe NP> T define another function d, transforming
¥ ~formulae into ¥,,-formulae (but not 3;-formulae into ¥;-formulae), so that

N Felr(fi)(ar),. .., m(fa)(an)]
<~ N ':d(@)Kflaal)a"'?<fnvan>]'

A definition that does this will be arrived at in the following. First, define for (a, f), (b,g) €
I'(N, F):

a(:a,f>,<b,g) = A{c| N|IT E fa,aus(c) = gbaun(c)}
“(ea,f>,<b,g> = {c| NI & fa,aub(c) € gb,aun(c)}-

Moreover, for z € P(k) N |N||7| define a function z* € I'V(N, F) by:

*

¥ = ({x,xNa) | a < k).

Here I use (as at several places before) a somewhat sloppy notation, by identifying a function
f € (%IN||7|) N |N||7| with the function f’: [k]' — |N||7| which takes {a} to f(c).
(+) For (a,f) € T'(N,F), N | F(x(f)(a)) iff there is an * C k such that a U {x} €
f =
FH00y.2) (0
Proof of (+). Note that
m(z") (k) = (7(z), x) = (F(z), )
for € P(k). The claim follows immediately, applying Lo$’s theorem. O

This observation enables us to define &(cp) by induction on ¢ as follows. If ¢ is atomic: Let
¢ = F(x). Then set:

d(p)(v) = 3FfJaIc3z3x
(v=Aa, AT CRAZ=T"Nc=ai s ((n}m

Ay F((v,€,aU{K},c))).

Note that FN = (ﬁ|s+ (J/\}'))c By observation (+), this definition works. For the other atomic
formulae, the definition is analogous. Let ¢(z,y) = zRy, where R € {=, €}. Then set:

d(p)(z,y) = 3fIadg3b3c
(x=Aa,f) Ny=(bg) Nc= aﬁ,f},(b,g) A
AFyIE F((7,€,aUb,c))).
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It is obvious how to treat Boolean combinations. I deal with quantifications as follows:
dGv @) =5t e I'(N,F) d(p)(*/0).

This finishes the definition of d. Finally, define €top(¥), in the case that ¢ is not a ¥;-formula,
by:

Chop(P()) =37 (/\ "z = 27" A d(p)("/2))-

“ o”

Here, “z; = 2% is supposed to mean: z; is an ordinal and z; = (xj,id[K). Set:

M
Cy = etop.

This defines (e | 4 < v). It remains to verify that the construction doesn’t terminate prema-
turely, i.e., that condition (d) is always satisfied. It is easy to check that for o < p and £ < 0q,

co if ¢ = ¢ + 1 and S(M||a)||€ is active and & < )\(EE(MHO‘)) ,
¢ if ¢ = ¢ + 1 and S(M||a)||€ is active and A(EE(MHQ)) <£,
e = or S(M||e)|[€ is passive and o = wE , B

) if { =&+ 1, S(M||a)|[§ is passive and og < W,

3 if £ is a limit and S(M||«)||€ is passive,

Cy if £ is a limit and S(M||«)||€ is active.

In order to see that e* is uniformly ¥;(S(M]|«a)), one has to make sure that it can be decided
in S(M||la) by a Xi-formula whether of = w¢ for £ +1 < o0,. The other conditions that

must be checked in order to decide which case we're in, are obviously ¥ (S(M||a)) - e.g., £ <

)\(Eg(MHO‘)) iff s := s(Eg(MHa)) < )\(EE(MHO‘)), and the latter is the case iff WE(MHO‘)HE(id)(s) <

WE(MHQ)"g(crit(Eg(MHa))), which can be expressed easily, using Lo$’s theorem, over S(M||a).
Firstly, note that it suffices to decide whether o = ¢, for:

(1) Let w§ = o0¢. Then og =§.
Proof of (1). w =0¢ <& <wE. Oy Sowl =0 <= (§ =0 NE=wE). The following claim
yields a criterion which enables us to decide whether or not o = &.

(2) 0g =& — [s(M][)| = [(M]|¢)].

Proof of (2). The direction from right to left is trivial. So let o = £. If M||¢ is active, then
o¢ = sT(§)M = ¢, and it is obvious that the claim is true. So let Ij; be the set of extender
indices of M. If Ip; N is unbounded in &, then the claim is true, by Lemma 4.15. So let
d:=sup(Ipy NE) <&, and let M||¢ be passive. It is easy to see:

M /
1Ter 1= 15; 1,

05

where I let S(M||¢) = (JE',0).
Case 1: 0 ¢ Ipr.
Then o5 = d, and by induction on o < £ — § it follows that:
M ’
[M||(6+ a)| = [I5ral = 1I5al = [S(M]|6 + )],

which yields the claim.
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Case 2: 6 € Iy.
Then o5 = sT(6)™. So we're done if s7(§)M = § (see case 1). So let o5 < §. Then for
a <& —os,
O5+a = 05 + @,

as there are no extender indices between § and £. Hence, for ag := & — 6,
Os+ap = 05 + g = § = 0¢.
So ag =& — 0s5. Now let B < 0 — 05(= & — 05 = ap). Then
|‘]05+ﬁ| C 5 a8l € IE-
On the other hand, for 8 < ¢ — § = ),
354 al € I5sl € o |
as 0 + [ < £ = o¢. This shows that |Jf| = |Jf/|. O
(3) There is a 1-formula @(x), so that for every & < o,
S(M||p) = ¢l¢] <= & =woe.

Proof of (8). The formula ¢ expresses: ¢ is a limit ordinal, { = w¢, and there is an x, so that x
is a pPA-structure, |z| = |J€ | and (JF', E/, ¢) = S(z). The last part can be expressed by:

Jf(“f is a function” A f = S| <o “{z} A (Jg L ELe) U f(z||a)).
wa€D,

That S[z is definable in x (even X;-definable) was shown already, and that this z, if existent,
is precisely M]||¢, follows since S is injective. The above definition of eg by cases hence yields a

1-definition in S(M||«), as desired. Os)
The same definition, carried out in S(M||a), defines é*. In order to define ef,, éf,,, a similar
definition is used, which doesn’t have to be 37, though. More information on this can be found
in the following Corollary 5.19. O

The proof of the previous lemma yields another corollary, which will be of importance later:

Corollary 5.19. For every pPs-structure N, for which M = A(N ) exists, let FN and FN be

the sequences from Corollary 5.18. Then fyn = f}i\{(N) and fN = fht(N) are uniformly 31(N)
and 21(1/\7'), respectively, for pPs-structures to which the same case of the definition applies.
Le,, there are Xy -formulae g, ...,p4 and Qo, ..., P4 with two free variables, so that for every

pPs-structure N with ht(N) = u, whose A-image ezists, do we have:

(0) If u ZA,H + 1, N||@ is active and i < )\(Elév), @o defines fx over N, and ¢o defines fn
over N.

(1) If p = i+ 1 and either N||i is active and N(EY) < fi, or N||ii is passive and ji = wii,
then o1 defines fn over N, and ¢1 defines fN over N.

(2) If u =p+1, N||ji is passive and i < wii, then oo defines fn over N, and ¢y defines fy
over N.
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(8) If 1 is a limit ordinal and N||p is passive, then s defines fx over N, and ¢s defines fy
over N.

(4) If N||p is active, then o, defines fx over N, and p4 defines fn over N.

The entire constructions of the translations of X;-formulae from M to S(M) can be carried
out for the (Pseudo-)Xg-Codes of the structures involved as well.

Corollary 5.20. For every pPs-structure N whose A-image M exists, there is a sequence FP =
(ff | 1 < ht(Co(N))), so that for u < ht(N), the following holds:

(a) Let o be a formula in the language of Co(M). Then fE(p) is a formula in the language of
Co(N) such that

ColANIIw) = ld] <= Co(NlIn) F fR(P)IE 1],

where §< W

(b) Let N||u, A(N||u) be Ps, PA-structures, respectively. Let ¢ be a formula in the language
of Co(M). Then fh(p) is a formula in the language of Co(N) such that

Co(AN|Im) E vl <= Co(N|lu) b= fR(9)IE n1,

where §< W
(c) If ¢ is a 31 formula, then so is fh(p).
(c) fE is uniformly S (N|).
(d) The relation RP = {{n,m,~) | n = f5(m) Ay < ht(N)} is uniformly %1 (N).

(e) The function f¥ = ff:t(N) is uniformly $1(Co(N)) for structures N, that are of the same
type (0)-(4) of Corollary 5.19.

Proof. As the structures Co(N) and Co(N) (and, analogously, Co(M) and Co(M)) only differ
substantially from N (analogously, M) if they are active, this is the only case in which there is
something to be shown. So I am going to derive a suitable definition of ff in case N = N||u is
active. Let M = A(N).

I will first define a transformation ¢, of formulaeA, which translates ¥;-formulae in the language
of Co(M) into X;-formulae in the language of Co(N) in such a way that

o~

Co(M) [ ¢la] <= Co(N) = ia(p)(a)-

To this end, let’s recapitulate an argument from the proof of Lemma 5.17 (see the definition of
étop in case 3.B):

Co(M) = [d]
— Co(N)E 3a3f3d3Q
(Kf||a is passive A “Q = A(ﬁ|\a)” Af=Fn|QIA
A = Do A (@7 f.d,3) - ola)

&L NE )
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This works precisely for the reasons stated before, and because §Co(N) = 5Co(AD)

Analogously, in case M and N are potential A- and s-structures, respectively, and ¢ is a
3i-formula in the language associated to Co(M) in which the symbol ¢ occurs (I demand the
latter in order to insure the unambiguity of the definition of ¢;):

Co(]\?) = oldl
— Cy(N)E 3a3f3d3Q
(Kf||a is passive A “Q = A(ﬁHCV)” ANf= Fn QI A
Ad = Dg A (QP*°, f,d, 3,4) |= ¢[T))
& Ne bl

This works, since by Lemma 4.16, Cy; = C, and thus q%(ﬁ) = €M) (this Lemma is only
relevant in case M is of type II, as otherwise, N is not of type II either, and thus, by definition,
o) = Co(M) — ), - ~

Now one has to move from Co(NN) and Co(N) to Co(N) and Co(N), respectively.

If M is of type III, then so is N, and this means that Co(N) = Co(N) (see Def. 3.33).
Moreover, Co(N) = Co(N), by Def. 3.38. Hence, in this case, one can set: fF(p) = t1(¢), for
¥-formulae . Note that in Co(/V) it can be decided very easily whether or not N is of type III,
as this is the case iff N is active and §€0(N) £ (). This is essential for condition (e).

Now consider the case that M is not of type III. Then I make use of the function d from
Lemma 5.11 and define f5(p) = d(t1(¢)), for ¥1-formulae ¢ in the language of Co(N).

Thus far, fP was defined for ¥;-formulae. In order to expand the definition to arbitrary
Y,-formulae, I first define an auxiliary function ¢ as in the proof of Lemma 5.17, Case 3.B., and
get:

o~

Co(M) [ vld] <= Co(N) F t()]al,

and the corresponding for Co(M) and Co(N). One can use as definition of ¢ exactly the one
made in the proof quoted above, augmented by the following trivial clauses in the case of atomic
formulae:

t(xRs) = zR$ for Re {=,€}
tq(x)) = q(=z).

Again, this works because the constants involved are interpreted the same way in the structures
involved. R R

In order to get from Co(N) or Co(N) to Co(N) and Co(N), resp., one can proceed as before
in the proof of 5.17, case 3.B. The function d is expanded in the obvious way, and finally, one

can define: fi(p(7)) == 32 (A “zj =23 A d(¢)(¥/5)) for formulae ¢ which are not ¥, as
j=1
before. 0

6 Projecta

The aim of this chapter is to show that for 1 < n < w, the n-th projecta of M and S(M)
(and those of their corresponding »o-codes) are the same. Not surprisingly, the proof proceeds
by induction on n. The next section is the base case of the induction. Before beginning, as a
reminder, and to fix the notation, let’s quote the following definition from [Zem02, P. 34].
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Definition 6.1. Let <* be the well-ordering of [On]<*“ defined by:
a<*b <= a#bAmax(aAd) € b,
where aAb is the symmetric difference (a \ b) U (b \ a).
Let M be an acceptable J-model. Then set, for a € [Onp|<* and i < w:

at = an [wltt, wply);

I suppress any mention of M in the notation when it’s clear from context which M is meant.
The standard parameter of M, pas, is defined by:

puy i=<* —min(Pj; N [On]<¥),
and for n < w let pys,p, the standard parameter above wply,, is defined by:

Prn =<' —min(Py; N [On]<Y).

6.1 The first projecta of M and S(M)

Lemma 6.2. Let M be a pPA-structure s.t. N = S(M) exists. Then Py N [ht(N)]<¥ £ 0. In
particular, pary C ht(N). The same is true for pY, (note: pS; = par \ wplhy)

Proof. By Lemma 4.5, h},(ht(N)) = |M], so there is a p € Ppr N [ht(N)]<¥. As pprq is <*-
minimal in Py, it follows that pys1 C ht(N). To see that p, C ht(N), note that if p € P}, is
such that p’ := p® \ ht(IN) # 0, then I can set p := (pNht(N)) U s, where s € [ht(N)]<“ is such
that every v € p’ has the form h},((i,r)), where i, r are s.t. {i}Ur C s. Then p € P;;, and
obviously, p <* p. As pys is <*-minimal in Pj;, it follows that pyps, and hence pY;, is contained
in ht(N). O
Remark 6.3. Let M be a pPA-structure for which S(M) is defined. Then p}, < ht(S(M)).

Proof. By Lemma 3.25, p},; < otp(D3,), and by Lemma 4.5,

[ otp(Dwm) if M is passive,
ht(S(M)) = { Uotp(D3/) otherwise.

So if M is passive, we're done. Otherwise, either st (M) = ht(M) = ht(S(M)), or sT(M) <
ht(M) and otp(D3,) is a successor ordinal, and hence p},; < Uotp(D%,). O
Lemma 6.4. Let S(M) be defined. Then:

(a) wpiy = WP;/(-M\) = Wpé(My

(b) Zo(M) NP(Hy) = Ba(S(M)) N P(His) = Bu(S(M)) NP (Hy(yyy)-

— . ~

Hen/ceiup}v, and X1 (N) OP(H}V)/,a\Te the same for N € {M, S(M), S(M), Co(M), Co(S(M)),
éO(S(M))f CO(M): CO(S(M)); CO(S(M))}

54



Proof. First of all, we may assume that otp(Dys) > w, since if this is not the case, S(M) =

-

S(M) = M, so that the lemma trivializes in this case, because then Dy, being a finite set, can
be treated as a parameter.
So let’s show the first identity in claim (a). Two directions must be verified.

wph, > wp;/(m,wpé( M) I start by showing the first part. Assume the contrary, i.e., that

wph, < wp;/(—M\). Then let A be $1(M) in par s.t. ANwpl; € M. Let p be a $1-formula defining
A, so that for arbitrary = € M:

r€A = MEylx,pmil

I want to use Corollary 5.18 in order to transfer this to m To be able to do that, note that

pm1 C ht(S(M)), by Lemma 6.2. Moreover, uph, < otp(Dpr) = ht(S(M)): If pi, > 1, then

wpl; = ph; <otp(D3y) < otp(Dyy), and if pi, = 1, then wpl, = w < otp(Dys) by assumption.
So for v < wpl,,

M = oy, pai] < S(M) = F(9)[, abs, bt(S(M) 1]

where ]? = f:t((JZT)J\T)) is defined as in 5.18 — the above equivalence in fact holds for arbitrary
v < Onm. So ANupl, is 21(m), hence, since it was assumed that wp}, < wp;/(M\), it follows

that ANuwpl, € S(M) C M, a contradiction.
In order to show that wpl, > wpé( M) I use the same argument. By Lemma 6.2, ¢}, C

ht(S(M)), and instead of 7 I now use fst((]\s/f()M)) from Corollary 5.18.

wphy <upt—, wpé( ary | Here, make essential use of Lemma 5.16. Suppose the contrary. Then

(M)
let A be a set that’s defined over /(J\T) in the parameter ¢ by a ¥;-formula ¢(z,y), s.t. AN
wpl— ¢ S(M). So,

s(M)
€A — S(M) | olr,q)

Now it follows from part (a) of the abovementioned Lemma, that the set Z = {(a,b) | S(M) E
olz,y]} is £1(M) in ht(M)—1. In particular, A = {z | (x,q) € Z} is £1(M) in the parameter

qU {ht(M);l}. Hence, A=A mwp;/(M\) € M, since, by assumption, wp}w > WP;/(J\T)' By

acceptability of M, this entails that A € J flM, since p}; is a cardinal of M. For the same reason,
M

Y — o —

pis € Das. Now if M is active, then [M| = |S(M)|, and so A € |S(M)], a contradiction. If, on the
other hand, M is passive, then, by Lemma 4.3, the fact that p}, € Dy implies that S(M||p},) is

—

a segment of LS(M). Hence, |S(M||p},)| C [S(M)|. But by Lemma 4.15, |M||p},| = |S(M]|pi,)]-

Hence |M]||p};] C |§J\T)|, and this means that A € S(M), which contradicts the choice of A.
To see that wpl, < wpé(M), again assume the contrary. So let A be X1(Co(S(M))) s.t.

AN wpé(M) ¢ |S(M)|. By part (d) of Lemma 5.16, it then follows that A is 3,(Co(M)) in the

same parameters and ht(M)—1. Hence, A is £1(M). The contradiction is now reached as before
— only in order to see that |S(M||p},)| C [S(M)], an additional argument is needed:

If M is passive, then S(M||p},) even is a segment of S(M): By Lemma 4.3, it suffices to see
that wpl, ¢ [s*(M||u), 1), for every p which indexes an extender in M. As wpl, is a cardinal in
M, it even follows that wpl, ¢ (s(M||u), ], for every such u (it is essential here that u < ht(M),
as M is passive).
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But if M is active, then p}, < st (M) = Uotp(D3,), and
S(MIlpps)l = [M]lpp] € [M]]s*(M)] = [S(M]|s™(M)| = [S(M)].

The rest of the argument works as before. O(a)

Let’s turn to the proof of (b): From the proof of (a) it follows that H}, = H;/(m To see

that 31 (M) N P(wpl,) = E1(S(M)) N P(wpl,), the arguments from the proof of (a) work. One
only has to check that one can work with parameters from |S(M)|. But this follows from the
fact that |[M| = hl;(ht(S(M))). It’s now easy to see how to get the desired claim by working
with a surjection from wpl, onto Hi, that’s ¥;-definable over H}i, = Hé( M) and re-using the
arguments from the proof of (a); this is only necessary for the direction from left to right. The

o —

other direction is immediate, by Lemma 5.16. The part of the claim concerning S(M) is shown
analogously. Ow)

The consequence of (a) and (b) that’s drawn in the statement of the Lemma follows, because
the additional constants that are available in the Yg-codes of the structures involved can be
viewed as additional parameter. O

7.2 The n-th projecta of M and S(M)
From the results of the previous section, I want to deduce:

Lemma 7.5. Let S(M) be defined. Then for n > 1:

(a) wplly = b,

(v) SV AN N P(HY) = 21V (S(M) N P(HY ).
A/ga\in, it even follows that w,ﬁglgn_l)(N) NP(HY) are ﬁe\same for every N € {M, S(M),
S(M), Co(M), Co(S(M)), Co(S(M)), Co(M), Co(S(M)), Co(S(M))}.

But before proving this, I need some fine structural basics. First, let’s quote the following
fundamental Lemma on El(n)—relations that can be found in [Zem97, 1.1.25] or [Zem02, 1.6.3].

Lemma 7.6. Let M be an acceptable J-model. Let n,l < w. R(@E"*Y,...,70) is
Zl(nﬂ)(M) iff the relation Rz := {(#"T1) | R(Z"t1, %)} (here, T = 7",...,2°) is uniformly
SI((HG QL. ..,QM)), where every Q% (i = 1,...,m) is of the form
Qz ={(z"") | Q=" D)},
and Q1 (271, %) 2 (M).
I will use this lemma in order to show the following;:

Lemma 7.7. Let M be an acceptable J-model, and let B(y™, 7", ...,%°) be Eg")(M). Then there

is some 1 < w with the following property:

For all "' and all ¥ = 7",...,7°,

B ) = Ay ).
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Proof. Induction on n.
In this case, B is ¥1(M). So let

B({°,7°) <= M E @il(7%), (@°)).
We now have, for all 7 and §* (¢ € Hi,):
Y i _;
A7) = M E el ()] < B ),

by definition of A}\};FO>. Hence, i is as wished.

Let B(gnti,zntt # ... 7°) be Z(n+1)(M). By lemma 7.6, Bgn o is uni-

formly ¥ ((Hy, Qw z0re-, QT o)) for suitable relations Q7 (z" !, Z™, ..., "), that are
E(")(M) (for 1 < j < m). We can substitute the variables z"*! in @’ by 2", in order to get
relations Q7 (2", Z", ..., i°), so that Q7 is a specialization of the Egn)(M) relation Q7.

Now the inductive hypothesis can be applied to the Qj(é’”, Z",...,2Y%). We get i; such that
for all 2"t and all ¥ = 27,..., 29,

QI 7)) = QL E) = ANV (i, ().

Now let ¢ be a ¥; formula in the language with additional predicate symbols Ql, ...,Q™, so
that

vttt g © (B, @t L 1)
— <Hn+17Qz" v, @O 0t '7Q7:1:I7;1,...,j’0> ': @[gﬂ+17‘i.m+1])'

Let ¢ denote the formula that results from ¢ by replacing every occurrence of Q7 (w) with

A(ij,w). Then ¢ is a ¥ formula in the language of (H"*!, Ayl’@n"”j())% and it follows that

for all g+t gntl gn . 20,
(Hy Qo gore o Q| 0) g™ "
PN (H™ 1, An+1,<£"7...,f°>> = g7t 7Y
= ML =l Y,

Here, i is the number of ¢ in some canonical enumeration of the X; formulae of the language
with additional constant symbol A with two free variables.

Hence, the above holds, in particular, for 7?12 instead of ™ *!. Lettmg =z" Z0

yoeeey 5

B2, &)
. Mn—i—l,(f") ): 4,01‘[:17”+2,56’”+1]

s An+2 gntl TA)(i <gn+2>)
hence setting 7 = (#"*1, ﬁ>
= +2, .
B(gfn+2’7,) — A;\L/I (7*)(2’ <g’ﬂ+2>),

so 4 has the desired properties. O

Instead of proceeding directly to a proof of Lemma 7.5, I am going to attack a more general
result — mainly so in order to emphasize that no special properties of pPA-structures or S are
needed here.
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Lemma 7.8. Let M and N be acceptable J-models with:
(i) (M) 1 P(HY,) = 4 (N) N P(HY).
(ii) for a € Card™ N Card™ HM = HYN.
Then for everyn > 1:
(a) wply = woiy,
() BN NP = 5"V () 0 PR,

Proof. Induction on n.

For n = 1, what has to be shown is just the assumption (that wp}, = wp} follows immedi-
ately). So let n > 1, and assume (a) and (b) hold. First I am going to show that (a) holds for
n+ 1 as well:

Really there are two directions to prove, but since the roles played by M and IV are completely
symmetric, it suffices to show that, e.g., wpﬁjl < wp}{,H. To this end, let B be X1 (N™1?) in some
parameter 7 € [wp]<“, for a ¢ € P¥, so that BNuwpi'' ¢ |N|. Now N™7 = (HR, A%7), and

A=At e V(N NPHEE) == (M) N P(HY,)

by the inductive assumption (b). So let A be Egnfl)(M) in p € ', (for an explanation of the
notation, I refer to [Zem02, p. 18]). Then by Lemma 7.7:

vyn yn c A — A”]\I;IP(Z"yn)’
for an adequate i < w. Let B be defined over N™? by the 3;-formula ¢, i.e., let
x € B < (Hy,A) E ¢[z,7].

Let ¢ be the X;-formula obtained by replacing every occurrence of A(j, z) in ¢ with A(i, (4, 2))-
Then

(HR, A)  pla,r] < (Hy, AY) | @z,

This shows that B is 31 (M™P). So if it were the case that wpv"' < wp/ !, then it would follow
that BN cup’]ifr1 € M. But by acceptability of M, this would mean that B ﬂwp’ﬁrl € Hy, = HY,
a contradiction.

This shows (a) for n + 1.

To see that (b) holds as well, first note that it follows from the fact that the (n + 1)-st
projecta of M and N coincide that the (n 4 1)-st reducts coincide as well. This is because either
wp" T < wpl, in which case wp™t! is a cardinal both in M and in N, so that (ii) can be applied,
or wp™t! = wp!, and then, according to (i), H}CIH = H), = H} = H]’\L,Jrl (I wrote wp™ for
wpy = wplf here, when m < n + 1).

Every B € z§”> (N)NP(Hp) can be rendered as in the proof of (a), i.e., as the intersection
of an element of B in 31 (N™?) with H?]‘H, for some ¢ € I'};. But H}\”,H = H]T\?'l, and the proof
of (a) then yields that B = B’ N H};" for some B’ € £;(M™P) and a suitable p € T'%,. This

means precisely that B € E:(Ln)(M) NP(H™).

Again, due to symmetry, it suffices to prove this inclusion. O
Proof of Lemma 7.5. The claim follows in an obvious way from Lemma 6.4 and Lemma 7.8 —
here, set N = S(M). The preconditions are then obviously satisfied. O
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8 Soundness and Solidity

In this section, I am going to show that soundness and 1-solidity carry over from M to S(M).

8.1 Iterated Standard Parameters

Since up to now the focus was on Xi-definability, it is advantageous to work with a slightly
modified version of the usual standard parameters that I call iterated standard parameters.

Definition 8.1. Let M be an acceptable J-structure. Define a sequence (¢}, | n < w) by recur-
sion on n by:
gy = the <* -minimal member of Py, o0, n-1,.

Set: qarn i=q8, U---Ugi .
Lemma 8.2. Let 1 <n <w with qp,n € Pyy. Then qurn = pun-

Proof. Fix n € w\ 1.
M <F qun | By assumption, gy € Py, But par, is the <*-minimal member of Py,

hence QUKD S* qM,n-
Assume the contrary. Then let m < n be minimal so that g3y = ¢}y ,, > iy .-
Sor:=(d%,. ...du ") = T ,p’ﬁ,;}); if m = 0, then r = (. By assumption, r € PJ? (or,

if m =0, then r =0 € P, = {0}). But (p};,,, ... ,le[nl) € P, so

p%,nGPMm, 01/
But this is a contradiction, since by definition, ¢} is the <*-minimal member of Pysm.~, hence
Ay <" P [

Lemma 8.3. Let M be an acceptable J-structure whose good parameters can be lengthened (see
[Zem02, p. 86]). Then for 1 <n < w, qmn = PMn-

Proof. Induction on n > 1.
In this case, the definitions of qas,, and pas,, coincide.

Assume the claim is proven for n. Since the good parameters of M can be
lengthened, by [Zem02, Lemma 1.9.7]:

qM,n = PM,n = DMn+1]1.
It remains to show that ¢y, = phiy 4 1-
v < Dhrnst | Phrngr € Pynwarniaim = Pymoavn . But gfy is the <*-minimal element of
Pyrann, hence gy < ply g
We know that garn = Py € Pyy. Since ¢}y € Pymoam,n, it follows that

dMn+1 € P]\L/[H. But parn41 is the <*-least member of P]\L/[H, hence parnt+1 <* qmn+1- As
PM 410 = PMn = QM = M n+1[n, it follows that pf, 1 < qf. O

Corollary 8.4. Let M be sound. Then forn < w, gy = phy-

Proof. By [Zem02, Lemma 1.9.4], the good parameters of M can be lengthened, so Lemma 8.3
can be applied. O
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Lemma 8.5. Let M be an acceptable J-structure such that for every n € w,
q]'f/[ S RM"qul,n.

Then for every such n,
dMn = PM,n-

Moreover, M 1is then sound.

Proof. 1 show by induction on n > 1 that qa,, € RY;.
by assumption ¢%; € Ry.
by our inductive hypothesis, qr ., € RY;. By [Zem02, Lemma 1.9.3], g n

can be lengthened by some ¢’ in such a way that ¢u ., "¢ € P]\}H. This means that for every
q¢ € Pymamm, qun"¢q € P]TVLIH. In particular, this is true for q¢j,. Hence, qan+1 € Pﬁﬁl.
By assumption, ¢}; € Rpmam,», and by inductive hypothesis, g, € R}, hence qyrni1 =
g "y € Ry

This concludes the inductive proof.

Now in particular, for every 1 < n < w, qun € Pj;. So Lemma 8.2 can be applied, which
gives us that gas,n, = Pam,n. That M is sound now follows from [Zem02, Lemma 1.9.6], since it
was shown that gar,n, = par,n € R}y for every n € w\ 1. O

Lemma 8.6. Let M be a pPA-structure. Then ¢3; C Dyy.

Proof. T use the following characterization of ¢%,:
% = {10,...,vn_1}, where for i < n, v; is the least ordinal o with the following property:

(); There are a u € [a+ 1]<% and a set A which is X1(M) in the parameter {v,, | m < i} Uu,
so that ANuwpl, & M.

So n is minimal so that no « fulfilling (*),, exists.

Proof. 1 want to show that ¢§; C Djs. Assume the contrary. Let i < n be least such that
v; ¢ Dps. One then can choose some p € M, so that

M
s (1) <vi < pe
Let x = crit(E)), 7 = (x)MI* and s = sM (), st = st (u). Finally, let

m=alle s 3B par (M| p)Pe

Obviously 7 is $31 (M) in the parameter sT, because y is uniquely determined by s and definable
from st in a ¥; way, as are the parameters &, 7 and s. Now I show:

v; is X1 (M) in the parameters 3o, ..., 051 < s*.

Case 1: v; = p.
Then v; = sup m“7, and hence v; is ¥1 (M) in the parameter s*, because this is true of 7 and

Case 2: v; < p.
Since s is the support of Eﬁ/[, there are a function f : k™ — M]||r, f € M||r and ordinals
Y0y -+« s Ym—1 < S, so that

v, = ﬂ.(f)(’y()a v 77777,71)-
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Now let h be a X;(M||r) surjection from 7 onto M]||r, and let h(¢) = f. Then v; =
7(h(¢)) (Y0, - - -, Ym—1), and hence, v; is X1-definable over M in the parameters ¢, Yo, - -, Ym—1,5 ",
which all are < st.

This proves the claim, which in turn leads to a contradiction: According to the above char-

acterization of ¢3;, choose u C v; + 1 and a set A, so that A is ¥1(M) in w U {vp,...,v;_1} and
Anuwpl; & M. Set @ = (u\{v;})U{Bo, ..., Bi—1}. Then A is obviously ¥1 (M) in aU{vy,...,vi—1},
but @ C v;, contradicting the minimality of v; satisfying (x);. O

Lemma 8.7. Let M and N be acceptable J-models with:
(i) M is sound.
(i) For allq € Hyy, {a ] ais El(ng/I) ing}={a|ais El(Nq?V) in ¢}.
(iii) £1(M)NP(Hi) =1 (N)NP(HE).
(iv) For o € Card™ N Card™, HM = HY.
(v) 43y = d¥ € Rn-
Then N is sound as well. For the definition of q}i;, see definition 8.1.

Proof. By Lemma 7.8, it’s clear that (iii) and (iv) together entail the following for arbitrary
n>1:

(a) wply = woiy,
(b) =V (M) N P(HY) =BTV (N) N PHE).

So in the following I'll write H" for Hy, = H}y and wp™ for wply, = wp}y — thus the asymmetry
in (ii) vanishes.

By Corollary 8.4 we have for n > 1: pyrn = qun-

First, I am going to prove by induction on n > 1:

(a) For all g € H",
{a|ais Sy(M™@Beai ) in g} = {a | ais Dy (N™@Ra% D) in g}

(b) ¢y =ad¥ €R

N (e ay

Part (a) holds by assumption (ii).

For (b): It obviously follows from (a) that P g, = Pyag» as Hi, = HY and wp3; = wp% .
Hence, both sets have the same <*-least member, which shows that ¢}, = ¢}, which is the first
part of (b). In order to see that g} € RNQS’W note that by Lemma 8.4, ¢}, = ¢}, = plz\/L? € RML‘?S’W
since M is sound. Hence, there is a surjection from wp?, onto H}, that is X1 (M%) in ¢}, and
by (&1)7 this surjection is also El(Nl*q?V) in ¢}, = q&. Hence, g} € R 1.4, and (b) is proven for
n=1.

Let A be El(M"‘*'l’(q?Vf"“’qXI)) in ¢ € H""L. Let ¢ be a ¥; formula defining A

0 n .
over M th{an-din) e, for a € H"1,

a€A <« M TL@0ai) E ¢la, q]
= (EhaAn ) Eelad.



Set

A= {(i.b) | Mrabe G = ilb, gy ).
Hence Aﬁfn,wm = AN H". Obviously A is El(M”’<q?VI""’qxf_l>) in ¢}, hence A is, by our
inductive assumption (a) for n, also El(N"’<q?V""’qz_l>) in ¢}y = qi%. So let an index i < w be
chosen in such a way that for a € H"*1,

aed e N Lo, gy

— A
N

(aprs-apn

Thus, for a € H"*1:

AT e () e AT (G a)).

M"a(q]u »»»»» QXI

Hence for a € H™1:

where ¢ results from substituting each occurrence of A((j,z)) in ¢ by A((i, (j,z))). ¢’ is then
also a X1 formula. The latter means:

NTL+17<Q?\IV""Q;\L]> ): Qol[aa q]a

n+1 _

since by (b), (q%,...,q%) € RH™, in particular pitt = p n1,. So A is

El(N”"‘MqON"'”qm) in ¢. Since I didn’t use that M is sound, one can argue in the same way for
the opposite direction of (a). So this shows (a) in the inductive step from n to n + 1.
since H;\’j'l = H}fﬂ_l. So,

For (b): It follows from (a) that P ntiayagy = Pynttadeaiy s
both sets have the same <*-least member, which shows that q?jl = qﬁ,"'l, which is the first part
of (b). In order to see that ¢i'" € R, w1048z » DOte that by Lemma 8.4, gttt =gt =

n+1 fa @ fa 1yt : n+2 n+1
Py € RM”*W%{ ,,,,, any» as M is sound. Hence, there is a surjection from wpy,~ onto Hy;,™,

which is X1 (M thamn+1) in q}\ljl, and by (a), this surjection is X; (N T1aN.n+1) in q}ljl = q;’v+1,
too. So ¢t € R niaiayayy > and (b) is proven for n + 1.

So this concludes the inductive proof of (a) and (b).

But the rest follows immediately, since (b) allows us to apply Lemma 8.5 to N. This gives
for 1 < n < w that ¢% = p%. Hence, again by (b), (p%,... ,pﬁfl) € R%,. And since this holds
for each n > 1, N is sound. O

8.2 The domains of S and A, part 1

Now one of the main results on the functions S and A can be given. The following definition
facilitates its statement:

Definition 8.8.

pPA := The class of pPA-structures.
pPs := The class of pPs-structures.
PA = The class of pA-structures.
pPs := The class of ps-structures.
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Lemma 8.9. S is a bijection between pPA and pPs, and A is the inverse of S, hence a bijection
between pPs and pPA.

Proof. By the remarks 4.2 and 4.10, it suffices to show that S(M) is defined for every pPA-
structure M defined, and that A(N) is defined for every pPs-structure N. This is because by
the Lemmata 4.11 and 4.13, S and A are mutually inverse.

So assume that M is a pPA-structure, for which S(M) is undefined. Let M be a <o-least
such structure. By remark 4.2, item 3, it is clear that M cannot be a limit in <, and of course,
M £ (0,0,0,0). There are two successor cases:

Case 1: ht(M) = p+ 1.

Then let M = (JF,1,0,D). Let M = M||ju = (JE", F, Dagy,.). By minimality of M, N =
S(M) exists. Let N = (JE' ((F|v)*)¢). I have to show that N := (JE_1,0) is a pPs-structure,
where E = E'~ (v, ((F,)?)¢). So properties 1.-3. of Definition 3.4 have to be checked. As N is a
pPs-structure, 1. and 2. only have to be shown for v = v+1. But since N = “N||v + 1” is passive,
this is trivial. So it remains to check 3. for v = v. So I have to show that R}‘VHV = Ry # 0.
For this, I will show inductively that for 1 < n < w, R} # (), by constructing sequences
(p1,p2,--.) and (q1,q2, .. .), so that for every n < w, (p1,...,pn) € R, (q1,-..,qn) € R}, and
21(M<p1,.~,pn>) — 21(N<q1>m,qn>).

Since R}, # 0, Corollary 4.5 yields a py € R}, so that p; € N. By Lemma 5.18 then,
p1U{r—1} € Ry (I could show at this point that p; € R}, but this is not needed here — see
Lemma 8.13). Set ¢ = p; U{v—1}. Using Lemma 5.16 and Corollary 5.18, it is now easy to see
that, setting py := p1 U {u—1}, it follows that X;(MP1) = Z;(N©).

From the proof of Lemma 8.7, claims (a) and (b), it follows that we can now
choose some p,4+1 € RMm 11111 pny that can be lengthened, and then set: ¢,4+1 = ppy1. It follows
from that proof that then Xy (M (PrPrt1)) = 33 (N{91-4+1)) From this, it obviously follows

that ¢,4+1 € RN<q1 YYYYY oy - But then (q1,...,¢ny1) € R%H, as (p',...,p"*t1) € R’ZC—IH, and so,
. n+1 __ n+1
pr<q1 ,,,,, Ant1) T pM<P1 ----- o) — WPy T WPx -

So case 1 cannot occur.

Case 2: M is active.

Then M := MP»sv¢ <, M, so, by minimality of M, the structure N := S(M) exists. Let
V= (JE'0), F:= EM and s := s(F), st = sT(F). Set: N := (JE, (F|s*)¢). T want to show
that N = S(M).

According to the definition of S (Def. 4.1), it first has to be shown that |S(M)| = |M|. This
follows from Lemma 4.15(c).

Secondly, I have to show that, setting N’ := (JZ'| F), it follows that N’ = N. Let 7 = 7(F).
So N||T =8(M||r). Let

T Jf/ —pr N.
We know that |N||7| = |S(M]|7)| = |M||7]. Since 7 is a Yg-extender ultrapower embedding, it
follows that

7w M|t —Fr M
and |N| = |M| = [S(M)|. So it remains to show that EN = EN'. To this end, let 15 be a
¥ -formula as in Lemma 5.15. It follows that for (a, f) € T'(N||7, crit(F)):

<@ € F({<f= | BS™ID(£(3))}
=d@- € F({F | Ml = velf ()]}
M = ¢p(n(f)(a))

ESOD (n(f)(a)).

E¥ (n(f)(d))

(R A
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Note that M and M]||r are passive, from which it follows that S(M) = S(M) and S(M||7) =

—

S(M||7). That’s why ¥ can be used as above. Also, I applied Los$ Theorem in moving from
the second to the third line, to a X;-formula, which is legitimate because 7 is ¥ -preserving.
Since every element of | N| is of the form 7(f)(&) as above, we have thus shown that N = S(M).
But as [k = F, it follows immediately that N =N , as claimed.

Finally, I have to show that N is a pPs-structure. The crucial property of Definition 3.4 here

is the coherency condition. Obviously, it is enough to concentrate on the top extender. Since

assive S Dassi oo ULt(N,E[Y
NPassIve g a segment of NP?5V¢ = N it suffices to show that Es+t( Fion) _ (). There are two

cases:

If sT < v, then it is enough to show that E’, = (). If not, then N|[sT = S(M||g) for some
i < ht(M) with s*(2)™ = st = s7 (M), a contradiction.

If st = v, then let 7/ : N — N’. Then 7 C 7/, Npassive — Npassive ang 7'(1) = v, as
standard arguments show. But 7 is a cardinal in N, and so, 7 indexes no extender in N. Hence,
EN =EN | =0.

w(r) ~
Hence, S(M) = N is defined after all, and this case is impossible as well. The converse is
shown analogously. O

Lemma 8.10. S is a bijection between pA and ps, and A is the inverse of S, hence a bijection
between ps and pA.

Proof. This follows from the previous Lemma 8.9, together with Lemma 4.16. O

8.3 Eliminating the additional parameters

Lemma 8.11. Let M = (JE,,,0,Dy) be a pPA-structure for which N = S(M) = (Jgj_vl,@
exists. Let p € [Ongp|<* have the property that {wp} is £1(M) in p. Then wv is £1(N) in
the same parameter p.

Proof. Case 1: wii € Dy — Le., M|| is passive, or M||a is active, but s™(M||g) = f.
In this case, Dy = Dyyyp U{wpi}. Let o(x,9) be a ¥y formula and p = {n1,...,9,}, so that
for every v € | M|,

y=wi = ME (")), (/7).

By replacing every occurrence of “D(v)” in ¢ with “(D(v) Vv = 2)”, for some new variable z,
one gets a formula @(x, 7, z) with the property:

M E ¢l(*/4), /9] <= (IM|,EM.0, Dagja) E L /+)s (/5), )l

Set: E:= Elwfi, F := E.p and D := Dy Corollary 5.8 gives

M = @l(*/+), (7/7)]

= (|M], EM.0, D) = Bl(* /), Oa), Cup)]
= (M|, E, F, D) = TA@IC /) (i) Clam)s sz s (fop)]
= Ju € |M]| (u is transitive, and

(w, ENu, F 0w, D) | TR /2), (Oa), Clan)s (O, (% Lon))
= Im < w3u (u=S% p(IM][[a| U{|IM]||z]}) A

(u, B, F, D) E TN /1) (/) Clan), Caz s (“fwn)]).
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For m < w, let fm be a code for a function rudimentary in E. F, so that for arbitrary e, f, a,
val®f [fm](a) = S7"(aU{a})' — it’s obvious that such codes exist. Let fn, = val®F[f,.], and
fix m < w large enough so that

(g p (M|l U{IM]|E}), B, F, D) E Tx(@)(* /), ("), CJwn)s /32 )), (“ o))

if (and hence only if) v = wfi. Note that |J#+1| is the closure of [JZ| U {|JF|} under functions
rud in E, F and D. Only functions rud in E and F are needed, as was shown in Lemma 5.5.

But using fp,,, one does not get more, as D, being definable in J , is an element of |J#+1|.
We have:

M = oy, 1] )
<= (IM|E,F,D) ETNRI/):O/a), Clon), () 1az), (" /i)l
= (IM|.E,F,D) | T\(@) s, qnall), 5,5 Day ) [(7/2): O )s C o),
C o ()]
g})

(M|, E,F.D) =9/ rqaaian)s (" /6): (/). (" / ),
(/) i)y Clap)s (CF1az s (% wp))-

Here, ©(y,z,y,-y denotes the relativization of ¢ to (w,z,y, z). ¢ is a formula in the language with

additional symbols D,E and F , which are replaced in the relativized formula with z,y and z,
respectively. Thus, a 3o formula in the language without additional symbols is produced.
So the above formula holds in (|M]|, E, F, D) iff v = wji. So one can continue as follows:

<= (IM,E,F,D) E9I("/vazrop, qaman)s (" lvarsropr,0092 )
(* fvarzr (102 ) (% Lvarern a2 )5
(% /var2r0(eon (32> /i)y G L)y (U132 )5 (f o))
= M|l ):TD’E"F(’w,’UQ,fm,(b,’tJl,fE'v,‘I),Ug,fF,‘I),Ug,,fD,(b,
x, con, ®, w, con, ®)[(V/7)]

def.
<~

M|n = X/ ).

Here, I made use of the function T, ;  that was introduced in Lemma 5.4; see also Lemma 5.6
for the meaning of coy,.

(2) i is the least ordinal § such that ws € Dy and (M||0) = x[(Y/#7)]. (So fi is the only ordinal
with that property, as wii is the largest limit ordinal of M ).

Proof of (2). Tt is clear that § = i has this property. So we are left to show its minimality.
So suppose § < [i is also such that wé € Dy and (M]|0) = x[7]. By definition of x, setting

165;”f is the m-fold composition of the function Se ¢, i.e., the function S of [Jen72], relativized by e, f.
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E = Elwé, F:=FE, and D := D5, one gets that:

M) |
— (MH(S) ':TD,E"F(Q/),'UO,fyn,(b,’Ul,fE',(I),’UQ,fF,(I),’U:g,fD,(I)
:C,Con,q),’w,COn,q))[(g/ﬁ)]
= (Mg +1L.B.F,D) =9I [ezroig,1qmon)> (" fvars 20,0002 )
(*/varz 200020 (v b g 12 )
st oteog 0 ) /) s, Ciag s ()]
= (M|6+1,E,F,D) | TAP) s, ariio))..5.0)[(“ws)s (O 15)s G uos)s
(“/13z )y (Y ws)l-
Hence B
(IM|6+1], E, F, D) = TN@)(*/ws)s (7 i)s Cuws)s (/132 ))s () ws)];
and that means: ~ B
(IM[|6 + 1], ETw(d + 1), D) = G[("/ws)s (Y/7)s (7] ws)]-

Remark: As wd € Dy, it follows that D541 = Dagjjs U{wd} = DU {wd}. For otherwise, §
would index an extender in M, so that s™(M]||§) < wd. But then it would follow that wé ¢ Dyy.
So the last line says:

(MI|6+1) F= @l(* /ws), (7).

But with u = [M|[0 + 1|, it follows that M|[0 +1 = M|u, since wd € Dy, hence Dy s =
Dy Nwé, and Dyyjjs41 = Dagis U {wd}, hence Dysjjs41 = Dy Nw(d + 1). So it follows that
M = ¢[wd, 7], too, since ¢, being a 3¢ formula, is persistent. By assumption, though, this means
that § = f1, and hence that it was not the case that § < i after all. O(2)

In the following, I use the sequence ( fév | ¥ < ht(N)) of functions coming from Corollary

5.18. Let N = (Jff:l,@). We get:
(3) 7 is the least ordinal § satisfying:
(a) N||d is passive, or: N||0 is active and On
(b) (N119) f= f3 0O, 6-1.

So there is a X1 formula X, so that for all v,

s = Onwjs-

v=7 < N xbi
Proof of (8). As to the minimality: (N||8) | N (x)[i7,0—1] just means that
A(NT[0) = xl]-
Let A(N||§) = M]||¢" for some §' < fi. In order to be able to use (2), I am going to show that

wd' € Dyy:
As S(M]|6") is a segment of S(M), Lemma 4.3 can be used:

(x) There is no u < ht(M), so that sT(M||p) < wd’ < p.

Now suppose wd’ ¢ Dpy. Let then wp € |M] be such that
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(x5) s*(M]|pr) < w8’ < p.

Then wd’ # u, for otherwise, by (a), M||6’ would be active and sT(M]||6") = wd’, contradicting
(xx). So sT(M]||pu) < wd’" < p, contradicting (x). So wd’ € Dy, as claimed.

By (2), this means that §' = i, which in turn means that § = .

In order to express this minimality characterization by a ¥; formula, I use for one thing the
fact that (f | v < ht(N)), viewed as a 3-ary relation, is ¥, (N) — see 5.18(d). As a second step,

it is easy to verify that the statement On — Nls C Onyyjs can be expressed by a ¥, formula over
N||§. For basically, this means (setting F' = EX%):

-

N||§ | Vf € ) (F)Wa < s(F))3B <8, d- € F'({=€,6> < crit(F') | € = f(8)}).

U
Hence v is 37 definable over N from 77, and hence so is wD, which is what I wanted to shoizv).
Case 2: wii ¢ Dyy. This means that M]||j is active and st (M||j1) < fi.
The main difference to the first case is that the relationship between Dy and Dy is
different. Namely, it is easy to check that:

(%) Let M|l be active and wy ¢ Dys. Then Dagjjy41 = Darjly N (sT(M|ly) +1) = Dy -

Let E = Elwji, F = E,pz and D = Dy,.

In the following, I write s™(«y) for st (M]||y). T argue as in case 1, but can avoid the de-tour
via ¢ in order to define y, for now D = Dj;. Hence, I don’t have to introduce the additional
variable z. If I denote the resulting formula in the current case x’, the reflections from case 1,
modulo the these changes, yield:

M E plwp,il = {(M||al, B, F,D) E X[("/7))-

In order to express this over M||fi (note that D = Dy;), every occurrence of “D(v)” in x’ has

to be replaced with “D(v) A v < 27, where this time, st (7i) must be substituted for the new
variable z. Denote the resulting formula by ¥’. Hence:

M [ plwp, il = MllakE X1/, Cle @)
So instead of (2), we get:
(2’) [ is the least § such that
(a) M]||0 is active and § > s*(§) € Dyy.
(b) MI|6 = X[, 7 (9)]-

Proof. As in the proof of (2), it is obvious that § = f has these properties. Turmng to the
minimality, suppose, § < fi had the same properties. Then, setting E := E|wé, F := E,s5 and
D:= D541, we'd get

(MII9)  ERTst)]
= (M|l EF.D) =il
= MPP+1 Eeledd]

as before — here I use that by (), Dasjjs31 = Dagys N (sT(9) +1).
Again, letting u := |M]||0 + 1], it follows that M||6 +1 = M|u:
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By assumption, s1(§) € Djps. So Lemma 3.19 says that w(d+ 1) € Djy; it even says that this
is the next element of Dy, after s(§). So by coherency,

Dy ﬂw(é + 1) = DMH5+17

and that’s what was needed.
Since ¢ is a ¥ formula, it follows by persistence that M = ¢[wd, 7], i.e., we get the contra-
diction 0 = g > 4. O2)
Correspondingly, we get:

(3’) U is the least ordinal § such that
(a) N||9 is active and OHW5 # Ony5-
(v) (N116) = f5 (X)) § 1)

0

So there is a X1 formula x*, so that for all 7,
V=7 < NE X"

O

Lemma 8.12. Let N = (J£_|,0) be a pPs-structure, for which M = A(N) = <J5f17 0, D) exists.
Let p € [Onn|<¥ be such that {wp} is X1(N) in p. Then {wi} is X1(M) in the same parameter
p.

Proof. Let ¢ be a ¥ formula and p = {n1,...,9,}, so that for every v € |N|,
Y=wi <= N ol
We have:

N k= ¢l 1]
<= Ju € |N| (uis transitive and (u, E Nu, D) = [y, 7))

<= Im<wu (u= S e, (NIPIULNZ}) A (u, E0u,0) = e[y, ).
Now, for every m < w, fix a code fm for a function that’s rud in E, F, so that for all a and

arbitrary sets e, f, Si"¢(a) = val®/[f,](a).
Choose m € w large enough so that

(SErwp, ., INIZNULINIZR), BN S s b, (NP ULINTZ]), 0) = elwr, 7).
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Then, setting F := E|wp, F := E,; and v = wr,
N = v, 7]
(INLE,F) [T, |37 |,wp]
INLEF) = (N7, . F) = (@) IE i)
(INLE,F) E (Tu(e )(fm(|N||p\),E,F>[%77a|Jg|awﬂ)
Bl (IN171), B, P i I ]
= (NLEF) EU(" wmery, gz " lvazrigaqen) (2 lvasrgaqe)),
(" fvar2r ez ) (/i) (¢ RN
= (Nllg) = Tp p (.00, fr, @, 01, fr, @, 02, fr, ®,v3, COn, ©,
U477TOa @)[(* /77)]
(Nll?) B X/

Ty is the function from Corollary 5.10, and T ‘o j» is the one from Lemma 5.4. The latter Lemma
is also used in going from the fifth to the sixth line.

111

def
<~

(2) v is the least ordinal 6 such that (N||9) E x[7].

Proof of (2). Tt’s clear that 6 = [ has this property. It remains to show its minimality. So
suppose 0 < ji had the same property. By passing through the above chain of equivalences
backwards, setting F := E|§ and F := E,, one arrives at:

) = x[7] . . .
= (N1[6) E Ty (¥ v, fm, @,01, fE, @, v2, fr, @, 03, con, P,
va, w5, @)[(7/7)]
= (INISHLLEF) E(*) cmrrgqry) (s e g 0se))
(" a7 (110 )s (Va2 P 0,102 )5
(/2 (" yar a2 )]
= (IN|S+1,E.F) ETdo) . qniw).5m W i, |35 |, wd].

Hence, N||6 + 1 | plwd, 7). But with w = |[N||6 + 1|, N||6 + 1 = N|u, and hence it follows that
N | ¢[wd, 7], as ¢ is a ¥y formula. By assumption, this means that § = 7, contradicting the
assumption that ¢ < . O(2)

(3) [ is the least ordinal § with:

(a) Co(M]||6) = g(Xéo(MH&))[ﬁ’é;l]' (For the definition of g, see Lemma 5.16.)
(b) wd € Dy, or: M||6 is active and sT(M]||6) € Dyy.

This can be formulated as M = x[v,7]], where x is a X1 formula.

Proof of (3). This follows from (2). Condition (b) says that S(M||d) is a segment of N. O3,
Hence i (and thus also wji) is 3;-definable over M from the parameters 7, as was to be
shown. O
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8.4 Very good parameters in M and N

Lemma 8.13. Let M be a pP\ structure for which N = S(M) exists. Let p € R}, be such that
p € [Ony]<. Then also p € RY,. The analogous statement remains true if one replaces M, N
with éO(M), éO(N), respectively. If M is a p\ structure, then the analogous statement remains
true if one replaces M, N with Co(M), Co(N), respectively.

Proof. 1 prove the Lemma for M and N, indicating the changes necessary to prove the variants.
As p € R}, there is a function f which is definable over M by a ¥; formula ¢, so that

y=f(z) «— M E ¢ly,z,pl,

and so that ran(fup},) = Onp.

By Corollary 5.18, there is a ¥ formula ¢’ = fy(¢) (here I use the notation from Corollary
5.19), defining f N On% over N (maybe using ht(N)—1 as an additional parameter). So, for
€,¢ < Ony,

(= [ = NEICE D],

where ¢ = ) if the height of N is a limit, and ¢ = ht(N) — 1 otherwise; in order to prove the
claim for the (pseudo) ¥o-codes, one has to use ¢’ = fX(¢) here; see 5.20. Hence, Ony C
hi (wpk U {p%;} U {qg}). But ht(M)-1 € hi,(wpl, Up), as p € Ry. Now, by Lemma 8.11,
q="ht(N)=1 € hi (wpl; U{p}). This means:

Ony C hy(wphs Up).

But already since Lemma 6.4 we know that p}, = p}; (and the corresponding is true of the
pseudo Yp-codes of these structures). Hence, it has been shown that Ony C kL (wpk U p), i.e.,
p € RY. O

The converse of the part of the previous Lemma 8.13 concerning the pseudo ¥y-codes is shown
entirely analogously:

Lemma 8.14. Let N be a pPs structure, for which M = A(N) exists. Let p € RéO(N), Then
1
pe Réo(M)'

So, together with Lemma 8.13 this yields:

Ré‘o n [Onc"o(N)]<w = Ré‘o M [ODC”O(N)]<w.

(M) (N)

If N is a ps structure, then the analogous statement remains true if one replaces éo(M) with

Co(M) and Co(N) with Co(N).

Proof. Like the proof of Lemma 8.13; instead of f¥ one has to use the function g from Lemma
5.16. 0

8.5 Soundness and Solidity from N to M

Here and in the following sections, M always denotes a pPs-structure, and N is supposed to
be S(M). Before beginning the proof that 1-solidity carries over from Co(N) to Co(M), I clarify
some terminology I use — I follow [Zem02, p. 43].

Definition 8.15. For an acceptable J-structure M, if v € Ony; and p € [Ony <, W*P denotes
the transitive collapse of M|X, where X is the 2(1")—hu11 of vU(p\ (v+1))in M; n € w here
is chosen so that wpﬁfl < v < wpfy;. This structure is called the witness w.r.t. v,p in M. The

inverse of the collapsing map is called the witness map.
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M is solid above o € Onyy, if for every v € py \ «, the witness WP is an element of |M]|.
M is solid if M is solid above 0. M is n-solid (for some n € w), if M is solid above wph;.

Lemma 8.16. Let N be a pPs structure, so that Co(N) is 1-solid. Let M = A(N). Then for
0

every y € p%O(N), the corresponding witness on the M -side, Wg’fﬁ’;m, is an element of |M]|.

0
Proof. First, assume N is not of type III. At the end of the proof, I will sketch how to argue in
the type III case. So [N| = [Co(N)|. Let N = (JZ", EN)) and M = (JZ"', EM,). Further, let ~

0
0 TPeg () .
be an element of Péy(ny- I have to show that Wéo(M) € |M]|. Set:

q:=Pg, )\ (Y+1) and X :=hg ) (vUq).

Let o : N <= N|X be the transitive collapse of N|X, let § := 0~ 1(¢), and let N = (JZ" F).
Obviously, N is a pPs-structure of the same type as N: If N is passive, then so is N, and it’s
clear that N is a pPs-structure. Now let N be active. As N is not of type III, s := s(N) is
available as a constant in Co(N), and consequently is in the range of 0. Let 5 = o~ 1(s). If N is
of type I, then so is N, for if there were a generator of F' other than crit(F), then its image under
o would be a generator of F different from crit(F'), so that N wouldn’t be type I. Moreover,
letting 7 = 7(F), o(7) = 7(F) = s (as o takes cardinals in the sense of N to cardinals in the
sense of N), hence 7 = 5 = s(F). If N is of type II, then an analogous argument shows that
o(3) = s (and thus, that N is of type II). I use here that being a generator is II;: Let s =y + 1,
4 = 0~ !(y). Then 7 is a generator of F', and there can be no larger generator § of F, for the
image of such a larger generator would have to be a generator of F' which is greater than s.
Hence 5 = s(F) in this case as well.

The property of being continuable carries over from N to N. Of course, this is only of interest
if the structures are active. In this case, the embedding o extends canonically to an embedding
from ID(N||7,F) into N, proving its well-foundedness.

We have Co(N) = Wgo’q ) € |N|, because Cy(N) is 1-solid. By Lemma 8.9, M := A(N) :=

e (v
(JE", BIL, D) exists. Obviously, |[N| = h VD
Claim: Co(M) = W24

Co(M)’
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Co(N) Co(M)

Proof of Claim.

Case 1: v="1v"+1.

Then p is of the form p/ + 1 as well, and N is passive.

Case 1.1: v =7 + 1.

Then i = ji’ + 1 as well, and N and N are in the same case of Lemma 5.19 (in the current
case, N = Co(N) and N = Cy(N) in the sense that the additional constants in both structures
are interpreted by 0. So I am not going to distinguish between these structures and their codes
for the rest of the treatment of this case). I will make use of this in the following.

(1) Let o(Z,y) be a X1 formula, and let & < ~. Then:
M = ¢ld,q) <= M = ¢ld,q].

Proof of (1). We have that o(a,7') = a,v/, and as ¢ is Xj-preserving, Corollary 5.19 tells
us that fy = fy (we use the notation of that Corollary), because in the current case, both
structures have successor height, and which of the possible cases listed in the Corollary applies
to N and N is uniformly ¥;(N) in the parameter N||v/, and 3;(N) in the parameter N||¥/',
respectively. But since o(N||7') = N||v/, this is decided in N and in N in the same way. So we
can conclude:

M = ¢[d, q]

1111

==
T

=

O

o

Il

.il\

By
(2) 3] = B, (70 ).
Proof of (2).

— 1 —
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Proof of (2.1). We know that |[N| = héo(N) (yU§G). So 7' is X1(N) in U {a} for a finite set
{@} C 7. Now Lemma 8.12 can be applied, showing i’ is ¥1(M) in g U {@}, and this yields the
claim. - B O2.1)

Since Corollary 3.26, it’s clear that hi (otp(Dyr)) = |M]. Since N is passive, we also already
know that ht(N) = otp(Dj;) (see Lemma 4.5). So, for (2), it suffices to prove that ht(N) C

hl, (v U q). This can be seen as follows: Ony C h~ (-)('y U q), so it follows from Lemma 5.16
that Ong C h~ (vu gu{i'}). But by (2.1), @’ € h

() (v U q), which obviously gives the
claim. e)

Now define o’ : M — M by o’ (h},(i,(5,))) := h}, (i, (F,q)) (for i <w and § < 7).
(3) o/ : M —x, M, o'ly=id]y and X' :=ran(o’) = h},;(yUq).

Proof of (3). Obvious. O(s)

But this shows that M = W};?, hence the claim is proven in case 1.1. In the other cases, I
shall try to repeat this argument as closely as possible. The difficulty is that N and N may not
be of the same type in the sense of 5.19.

Case 1.2: v is a limit ordinal.

Then let A be the largest limit ordinal below v, and let n € w be such that v = A+ n (hence
n > 0). Obviously, A +m ¢ X for m <n, orelse A+ (n—1) = Ve X, making 7 a successor
ordinal. Set: N := (N|[A)P***"® and M := A(N) - again, the A-image of N exists by Lemma
8.9. Further, let X’ be the largest limit ordinal below pu. We have:

(¥) Co(N)IX =5, Co(IV).

This is obvious, as X C |N |. Note that in the current case, N is passive, and so, the constants
in Cy(N) are interpreted by 0. The same applies to CO( ), being passive as well.

1 TP Y1 9 :
So, X = hc (N)('qu) because: For every a € X, the statement “a = h(i, (5, ¢))” holds in

C~0( ) of some ﬁ < v and i <w. But this is a ¥; statement in parameters from X, so because
Co(N)|X <5, Co(N), it holds in Co(N)| X as well, and due to ( ) also in Cy(N). For the converse,

»

one can argue in the same way: If the statement “a = h(i, <ﬁ, q))” is true in Co(N), for some
g < v and ¢ < w, then, in particular, the statement “there is some x, so that x = h(i, (ﬁ, q))”
holds in Cy(N). The same holds then in Co(N)|X, as well. The witness for the truth of the
statement has to be a, so that a € X.

Hence Co(N) = Wg(;((IN)' We get the equivalents of (1)-(3) from case 1.1, where N and M

have to be replaced by N and M, respectively. The point is that now the heights of N and N
are limit ordinals, so that N and N are of the same type, in the sense of the distinction made in
Corollary 5.19, namely of type (3) — note that N is passive, since N is. So it follows by almost
the same proofs:

(1) Let o(Z,y) be a £ formula, and let & < . Then:
M = ¢ld.q) <= M = ¢[d@,q).
(2) M =hy(vUq).
(3) o' : M —5, M, o'y =id]y and X’ := ran(o ") =hy(yUa),
where o’ : M — M is defined by o' (kY (i, (B.9))) := h}\;l(z‘, (B.q)) (for i <w and 3 < 7).

To prove (2), the equivalent of (2.1) in case 1.1. is obsolete, since the additional parameter
doesn’t show up in the case of limit height.
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I pl
4) X' =hg (YU Q)

Proof of (4). LetY := hé})(M)(V Uq).

(41) NN 41, N+ (n—1) &Y.

Proof of (4.1). We know that u’ ¢ Y, as otherwise it would follow by Lemma 8.12 that v/ € X,
which is not the case. But if there were some m < n such that X' +m € Y, then it would follow
that p’ € Y as well, a contradiction. O

(4.2) Y C |M]|.

ssive

Proof of (4.2). From the definition of A, it is easy to see that X' = ht(A(]VH\)\pa ). If N\ is
passive, then the claim follows immediately from (4.1), for then N = ht(M). If N||X is active,
then an additional argument is needed. Then M||N = A(N]|A) is active and A = s+ (M]|N).
Moreover, ht(M) = ht(N) = \.

If M = sT(M]|\), then A = X, and it follows by (4.1) that Y N On C X = \, which entails
the claim.

So let X > sT(M]||N). As X ¢ Y, it follows that A ¢ Y: Otherwise, N € Y as well, since
A =the unique £ such that s™(M]|£) = A, and this is a ¥ definition of A’ from A.

But then YN On C A: Suppose § € Y\ . By (4.1), YNOn C X, and I have just shown that
A¢Y. Hence, A < 8 < X. But (\,N]N Dy =0 and X € Dys. So A =the unique ¢ such that

M | D(3) A (VB < B(6 < § — =D(9))),

since A = max(Dys N 3). So A € Y, which is, as we have already seen, not the case.

So Y NOn C XA =On,;, and the claim follows. Oyo

M (4.2)

(4.3) Co(M)[Y =5, Co(M).
Proof of (4.3). This follows from the definition of Y. O(a.3)
(4.4) Co(M) = Co(M)|(|M]).
Proof of (4.4). M and M both are passive, so E,fgp = E,f\gp =,
of Co(M) and Co(M) are interpreted in both structures by (.

Finally, Dy, = Dy 0 |M]:

If N||\ is passive, then N = N||\ is a segment of N = §(M). Then M = A(N) is a segment
of M, and all these structures are passive. Hence ht(M) = X € Dy, and the claim follows from
the coherency of enhancements. R

If NJ[X is active, then A(N[|A) = M|\ and A = s*(M]||\) € Dy. Moreover, M =
(M]IN)P*Y (1 have to write (M||A)P***™ here, for it could be that A = X). Hence,
D]\?[:DMH)\:DMQOHM D(4.4)

and the constants in the languages

(4.5) Co(M)|Y <35, Co(M).
Proof of (4.5). This follows immediately from (4.2)-(4.4), since Co(M)|Y = Co(M)|Y . U4.5)

(4.6) Co(M)|Y <5, Co(M).
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Proof of (4.6). T have to show that for every ¥ formula ¢(Z) and every tuple @ € Y,
Co(M)|Y = pla] <= Co(M) = [a).

The direction from left to right:

Let ¢ = 3y 9, where (y, %) is a ¥o formula. Suppose Co(M)|Y = p[@). Then let b € Y
be such that Co(M)|Y |= ¢[b,d]. By (4.5), it follows that Co(M) = t[b,@]. But ¢ is Xg. Co(M)
and Co(M) = Co(M)|(|M]) are transitive, hence we have Co(M) = 9[b, @] (clearly, b € Y C | M|
by (4.2)).

For the converse, we have:

Co(M) E pld] = C:O(A?) E ¢ld (persistence and (4.4))
= Co(M)|Y |= ¢ld] by (4.5).

Ua.6)
4.7) X' CY.
Proof of (4.7). X' is minimal with v U ¢ C X’ and the property that Co(M)| X' <x, Co(M). Y
has both of these properties, by (4.6) and by definition of Y. Oa.7)
(4.8) Y C X'.

Proof of (4.8). Let b €Y. Then there are @ € yUq and a X1 formula ¢(Z), so that b is the unique

¢ such that Co(M) = p[c,d]. By (4.5), it follows that (Co(M)|Y) k= ¢[b,@]. So by (4.6), one can

deduce that Co(M) |= @[b,d). But b is also uniquely determined by that property, for if there

were some b’ # b with Co(M) = [V, d], this would imply the contradiction Co(M) = o[b', d]

(by (4.4) and persistence). Hence b € X', which was to be shown. Oas)
(4.7) and (4.8) together prove the claim. O
So, from (4), (4.5) and (1)-(3) it follows that:

(1) Let ¢(&,y) be a ¥; formula, and let & < v. Then we have:
M | ¢ld,q) < M = ¢[d,q).

(2) M = hy(yUQ).
(3) 0/ : M —x, M, o'l =id]y and ran(o’) = hi,;(yUq).
But from (1')-(3’) it follows that Co(M) = Wgo’?M), and that ¢’ is the associated witness map.
Case 2: v is a limit ordinal.
Then 7 is a limit as well. Moreover, N is active iff N is. So either both N and N are of type
(3) or both are of type (4) in the sense of the distinction made in the statement of Corollary
5.19. So one can argue in the current case as we did in case 1.1, with the simplification that the
parameters v’ and 7' don’t show up.
This concludes the proof of the claim. Ociaim
Let me now show the analogous claim in the case that IV is active of type III:
Then “Co(N) = N” and “Co(M) = M” in the sense, that the additional constants available
in the Pseudo-Xo-Codes are easily definable in the reduced structures. Now form N := W%f’q.

It is obvious that there is a pPs structure N so that N = N (whether or not this structure is
of type III, does not matter for the rest of the argument). Let M = A(N). As in case 1.1., it
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follows that M = W% instead of fy and f%;, one can now use the function fN from Corollary
5.19.

So, Wit ) = Co(A(N)), and N € |N|. But |[N| C |M]|, i.e., N € |M]|.

In order to finish the proof of the Lemma, it remains to show that A(N) € |M], as well. This
can be seen as follows: |[N| = hi(yUg), and so, N can be reconstructed from A := A% N (y xw).
Let x = crit(¢). Then x > v, and o(k) is a cardinal in N. Obviously, o(k) > k > 7. A can be
coded as a subset A’ of s, which is an element of N. As N is acceptable, A" € [N|[o(k)|. But
N’ := (N||o(k))P****® is a ZFC™ model, so N € |N’|, and |A(N’)| = |N’|. Hence, N € |A(N')|.
And M’ := A(N’) is a ZFC™ model as well, which implies that A[|M’| can be defined in M’, so
that A(N) € |M’|. But obviously, |M’| C |M]|, so, putting all of this together, A(N) € |[M|. O

Lemma 8.17. Let Co(N) be a pPs-structure that’s 1-solid and sound. Let M := A(N). Then
Co(M) is 1-solid and sound, too.

Proof. 1 want to use Lemma 8.7 in order to prove that (fo(M ) is sound (there, M now plays the
role of Co(N) and N that of Co(M)). So the points (i)-(v) need verification. Of these, only (ii)
and (v) are not obvious.

For (v): I have to show that ng(N) =q4 € Réo

Co (M) - Since Co(N) is sound,

(M

C RL

1
€ R Co(M)

0 _ .0
Qo (ny = Pey(ny © Feo vy

by Corollary 8.4 and Lemma 8.14. By Lemma 8.16,

o Vg ()
V’yEqéo(N) Wéo(]v“[) € |M|.

But this means, by [Zem02, Cor. 1.12.4]:
0 o _ 0
eg(vy = Peo(any1 = e ()

This shows (v).

For (ii): Let’s write ¢° for qu(M) = ng(N) in the following. I have to show that for all
1._ g1 _ g1
qe H = HCO(M) = HéO(N)’

{a]ais £, (Co(M)?)in ¢} = {a | ais S1(Co(N)?") in g}

For the left-to-right direction, let A be Zl(éo(M)l’qo) in the parameter ¢ € H'. Let ¢ be a
% -formula defining A over Co(M)Y4". So, for a € H*,
acA < Co(M) " = pla,q

1 4q°

Now I would like to define the first standard-code of Co(M) over Co(N), which is possible in
principle, because it is 3;. But there is the subtlety that Lemma 5.17 only applies to sets of
(n-tuples of) ordinals. So I have to code the standard-code by such a set first. To this end, let
f:Onps < | M| the canonical ¥ (M)-bijection. Set:

A= {(i,7) | C(M) @il f(7).4"))-
Then A is a set of pairs of ordinals which is $1(Co(M)) in ¢°.
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By Lemma 5.17, AN |N|is £1(Co(N)) in ¢° U {ht(N)-1}. Consider now the case that the
height of M (and hence also that of N) is a successor.

Let p=fi+1="ht(M) and v =7+ 1 = ht(N). As Co(N) is sound, 7 = héO(N)(j,q0 u{ay})
for some @ € (wp1)<w. Let & be 1exicographically minimal so that a j with that property exists,
and let j be minimal with respect to a.

Let i be the Godel-number of the ¥;-formula defining A, after substituting hc (N)( 7, ¢°u{al).

So for all a € |N|, ~ -
a€A < Cy(N) E ¢il(a, @), ¢".

Claim: {@} is X (Co(N )qo)—deﬁnable without parameters.
Proof of Claim. The point is that {wr} is II;(N) (without parameters), for it is the largest
limit ordinal of N. Write 7(z) for this II;-formula. Now {7} can be defined from wv without
additional parameters by a ¥;-formula. Hence & is <jex-minimal with the property that wv =

hé ) (j,q% U {@}). So @ is the <y-minimal finite sequence of ordinals 3 such that

N = wlhn (5, (B, a3))))-
Since héo(N) is a good Xp-function, it can be substituted in ¥;-formulae. So one can argue:

Co(N) [ mlhe, x) (. (B, )] ~(Co(N) = 2l () (3, (. 4D

o

~(Co(N) [ alhe, ) (s (B )]
~(Co(N) = 51A.4"))
~A% (k, B),

[

where k is the Godel-number of the Y¥;-formula 6. So 5 =a iff

-

Co(N)T |= Ak, (B) AVT <n B Ak, (7)),

which is even a ¥y-formula. OClaim
Write 1 for the ¥;-formula defining &. Then for a € H!,

acd — AZ(N)( {a,d))

-

= G E3F (w(B) AAG, (a,5).
We have for all a € H':

ac A (,;O(M)l’qo E ola, q]

= (H'A) F¢adq,

where ¢ arises from substituting every occurrence of A(i,z) in ¢ with A(i, f~*(z)), and then
substituting the ¥;-definition of f for f. The result is a ¥;-formula. Further, we have for all
ac€ H:

aed = (I A)E
= (HLAL VI W) A e[,
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where ¢* results from substituting every occurrence of A(l,a) in ¢’ with A(i, ((I,a), 3)). Then

*

™ is again X7, and so the proof is complete.
If the heights of M and N are limit ordinals, the complication with the additional parameter
ht(N)—1 doesn’t arise, which simplifies the proof.

For the right-to-left direction, one can argue similarly. But this time, one has to express A%
over M. Let A = {(i,a) | Co(N) [= @ila,q°]} (the step of coding by a set of ordinals is not
necessary now), which is obviously a 37 (V) relation. Now the function g from Lemma 5.16 can
be used in order to see that A is $1(M) in ¢°Uht(M)—1. If the heights of M and N are successor
ordinals, it must be shown that ht(M) — 1 = hé})(M) (4,¢° U {@}), for suitable @ < wpé~ (M) For

this, the soundness of Co(NN) can be applied, yielding that ht(N) = h1 o )( ,q°U{a}), and thus

allows us to use Lemma 8.12. The rest of the argument is as before. O

The previous Lemmas remain true, mutatis mutandis, if they are stated for the full 3y-Codes
Co(M) and Co(N) instead of Co(M) and Co(N). I need some facts on the downward preservation
of s-structures, though.

Lemma 8.18. There is a I1; formula w( ,Y), such that for every active pPs-structure N and
every ordinal &, the following holds: If top\f € |N| then (a, f) is the <n-minimal™ member of
['(N,k(N)) with a € [s(N)]<* and (N)(f)( a) = tOp|£, if and only if

éO(N) ': ¢[<a7f>7§]

Proof. For an active pPs-structure N, let T'y := I'(N||7(N), k(N)). The statement “z = EtJXp|§”

is uniformly IT; (N), denote this formula by g (v, w). So N = tlz,&] < z = tOp|§ In the
following, I shall use the function d from Lemma 5.11. Let {(a, f) € T'y. Then

X (F(@) = Blople = (N | ~trlrlin (1)), 7 (d)(€)))
= (G(N) = d(=er)[(f,a), (id, €)])
= C(N) E~d(=¥e)[(f.a). (id. &)]
= G(N) Evl(f,a),¢

for a II; formula . This formula is independent of N. So we get:

(1) For every active pPs-structure N’ of type II, every (a, f) € T'nx and every &,
T (@) = ERgle <= Co(N') = ¥l(a, £),€).
For (a, f),(b,g) € T'n, let

Ala,f),(b,g) = {ce[x]"] fa,aub(c) = gb,bu@(C)},

where f, oup and gy puc result from adding appropriate “dummy” variables to f and g, see [Ste00,
P. 4f]. Let n be the number of Elements of a Ub. We have:

(2) Let (a, f) € T'n, and let 0 be minimal such that f € |J(§N| (hence 8 < 7(N)). Let (b,g9) <n
(a, f). Then aiq f),,9) € [I541]-

17For the definition of <, see 3.37.
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Proof of (2). Since (b,g9) <n {(a, f), g <n f, and hence also g € |J£N|. For the definition of,
Aa,f),(b,g) DO exact knowledge about a and b is needed; it suffices to know “how a and b lie in
aUb”. There are only finitely many possibilities. Hence a(q, 1) (s,4) is definable from f and g,

and hence a member of J7,. O2)

(3) The relation {(v,&) € IN| | § < T(N) A~y > e} is uniformly Xo(N) in the parameter {1},
for active pPs-structures N. For the definition of ¢ see the proof of 5.12.

Proof of (3). 1have to go back to Definition 3.3, where (EX

top) < 1s introduced. We have:

Y > Ye — Etjgp(’y’g7 L {1}),

obviously, B (1,{1}), since 1 = {0} € []*, {1} = {{0}} C [x]*, and 1 € 7}V ({1}) = {1}. Hence,
Et]Xp(’y,f,l,{l}) means that F' N ([s(N)]<¥ x |JgN\) € |J5N\, e, v > . O(s)
So we have: (a, f) is <y-minimal with a € [s(N)]<* and 7y, (f)(a) = EF,|¢ iff

Co(N) [ a € [8]% Ad{a, £), €] AV(b,g)W0VvYe
(((a, f) € [JE" | AVO <0 '<a,f> ¢ |J§3 | Ay > o117 A (b, g) <N (a, FIA
NC =) ibg) — 7F (7,0 +1,aU0,0)).

Note here that —F(y,6 + 1,a U b, ¢) means that ﬂé\(fN)(f)(a) # wé\(’N)(g)(b). This is because
N
€= af).(bg) € Fl, BY (2), and v = 711, 0

Lemma 8.19. Let N be a ps-structure of type II and o : N —yx, N an embedding such that
€ W) and 5°W) € ran(o). Then N is also a ps-structure of type II, o(§°0N)) = 560(N) qnd
o) = eV,

Proof. The map o can be extended to a Xi-preserving embedding ¢’ from ]/\:f to N in a canonical
way. The proof of Lemma 8.27 can be applied to ¢/ : N —y, N and shows that o’ (€M) =
¢© ™) and that N satisfies the s’-ISC. It follows from the preceding Lemma 8.18 that o (g€ (M))

¢ (V) Moreover, it’s obvious that N satisfies the s’-ISC and is of type IL

Lemma 8.20. Let M be an active pX structure of type III. Then wpl; = s(M).

ol

Proof. Obviously, wpl, < s(M) since there is a 1 (M)-surjection from s(M) onto |M|. Assume
that wpl; < s(M). Then let A be a set which is 31 (M)-definable in the parameter p such that
ANupy, ¢ M. Let F := B} Then for § € geny and § < ¢’ < s, crit(a%,) = ¢, as is easily
checked. Moreover,

(%) 1M] = Uscgen,, ran(ozs)-

Proof of (x). By definition of s,

M

C1EM E
WS.JT _>F|s Ju 5

where 7 = 7(M) and v = ht(M). Let z € JE" and k = crit(F). Then there are n, @ € s™ and
a function f: k" — JEM with f € JEM, so that z = 7 (f)(@). Let max(&) < § € genp (this is
possible since genp has no maximum). Then

a5yt (F)(@) = 73" (f)(@) = = € ran(o}7).
Now let p be a cutpoint of F' with the following properties:
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L. p €ran(o,;

2. 1> uply.
3. [M], satisfies the s-MISC.

Such a p is easily found, using Lemma 8.26. Then aﬁ/{s : [M], —x, M cofinally, hence

¥ —preserving. Let A be ¥1([M],) in p by the same formula that defines A in a X;(M)
way using the parameter p, where oljxfs(ﬁ) = p. Since wp}w < p < crit(aM M

1s), and since 0, is
31 —preserving, it follows that

Anwl, = Anwl,.

But [M],, satisfies the s'-MISC and M is a pA structure, hence [M], € M. Hence, everything
that’s definable over [M],, belongs to M, in particular ANwpl, = ANup},, a contradiction. [

Corollary 8.21. Let N be an active ps structure of type III. Let s = s(EéXp). Then s = wpéO(N
and pg,(nya = (0)-

)7

Proof. This is shown like Lemma 8.20; it’s obvious that one can define a ¥;-surjection from s
onto |N| in N using the top extender. O

Lemma 8.22. Let N be a ps-structure such that Co(N) is 1-solid. Let M = A(N). Then for
0
every vy € pgo(N), the corresponding witness on the M -side, ngﬁ)(m, is an element of |M]|.

Proof. If N is of type III, then qgo(N) = (; see Lemma 8.21. So in that case, nothing is to be
shown — the situation in the more general case that N is a pPs-structure was different.

The only point that deserves extra attention is the verification that W9 is a ps-structure.
This follows from Lemma 8.19. The rest of the proof remains more ore less the same. The main
efforts were in the case that IV is passive, anyway, and in that case, the Pseudo-Yy-Codes are
essentially the same as the full 3y-Codes. O

Lemma 8.23. Let Co(N) be a ps-structure that’s 1-solid and sound. Let M = A(N). Then
Co(M) is 1-solid and sound.

Proof. Like before. O

8.6 Soundness and Solidity from M to N
Let’s turn around what was done in the previous section now.

Lemma 8.24. Let M be a pPA-structure, so that Co(M) is 1-solid. Let N = S(M). Then for
0

le’péo(M)

Gy 0 s an element of |N|.

every vy € p%O(M), the corresponding witness on the N -side,

Proof. Let M = <JEM,EM ), N = (JB" EN ), and suppose first that M is not active of type III.

Wi

Let v € ng(M), and set:

q:=pg oy \ (V+1) and X :=he (YU Q).

Let -
o: M+« M|X
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invert the collapse of M|X, and set § := 0~ 1(q). Finally, let

M = (35" F, D).

Obviously, M is a pPA-structure of the same type as M; that D = Dy; follows from the

0
uniform IT;-definability of enhancements (Lemma 3.12). We have that Co(M) = g(f;;)(m € |M]|,

as Co(M) is 1-solid. Let N := S(M) = (JEN EM> Obviously, |M| = héo(m(yuq).

Claim: Co( ) C’YD;(DCO)(M)_

Proof of the claim.

Case 1: p=p' +1.

Then v is of the form v/ 4+ 1 as well. So in particular, M is passive.
Case 1.1: p=p' + 1.

Then v =o' + 1.

(1) Let o(Z,y) be a Xq-formula, and let & < . Then we have:

Co(N) E ¢ld,q] <= Co(N) = ¢ld, q.

Proof of (1). First, it has to be argued that ¢ € |[N| and q € [N|. We have that g € |N|, because
q C p%O(M) C ht(N), by Lemma 6.2. This means that for every element ¢ of ¢, the formula

©v[¢, '] holds in M. The corresponding is true in M, where ¢ of course has a pre-image under
0. So the claim follows from the uniformity of ¢y — see Lemma 5.15. One shows analogously
that v C |N|.

We have that o(@, i) = &, /. In the following, I shall make use of the function g from 5.16.

Co(N) Epld,q] < Co(M)E g(v)d, q,V]
= Co M) E g(e)ld, 677 7]

Here, I used that o : Co(M) —x, Co(M), and that g(¢) is a X;-formula. Oa)
(2) [N = k% o (7UQ).
Proof of (2).

(21) 7' € hl o, (YU D).

Proof of (2.1). We know that |M| = héO(M)(’yU 7). Hence, i’ is ©1(Co(M)) in gU {a@} for some

finite set {@} C 7. Now we can apply Lemma 8.11 to get that 7’ is ¥;(Co(N)) in §U {@}, and

this gives the claim. O(2.1)
Since Ongy C hc () (v U q), it follows from Lemma 5.20 that Ongy C h1 (’y Ugqu {v'}).
But by (2.1), v’ € hé (N)(’y U ), which gives the claim. 02

Now define o’ : Co(N) — Co(N) by o’ (h} Eo () ( (B.a))) = éO(N)(i,W_', q)) (for i < w and
G <)
(3) o' : Co(N) —x, Co(N), 0’|y =id|y and X" := ran(c’) = héO(N)(’yU q).
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Proof of (3). Obvious. O¢s)
But this shows that Co(N) = Wg"(lN), and so we’re done in case 1.1.
0
Again, the problem that can occur in the other cases is that M could have successor height,

while M has limit height.
Case 1.2: i is a limit.
Then let A be the largest limit below u, and let n = p— A. Then A+m ¢ X, for m < n. Set:

o A if M| is passive,
s otherwise.

passive

Set: M := (M]|\) and N := A(M). Note that MH)\ is active in case A = st (M]|\).
Let X be the largest limit below v. Obviously then A’ = ht(N). Let X := h1 (’y Uaq).

(1) X = X.

Proof of (1).
(L) MA+1,..., A0+ (n—-1)¢ X.

Proof of (1.1). We know that p/ ¢ X. But if there was some m < n such that A+m € X, then
1 € X as well, a contradiction. O

(1.2) X C |M]|.

Proof of (1.2). If A = X, then this follows immediately from (1.1), since A = ht(M). Otherwise,
M]||\ is active, and one can argue as follows. Since A\ ¢ X, X ¢ X: If we had that A\ € X, then
A € X as well, for X =the unique & such that s*(M|[§) = A, and this is a X;-definition of A from
A. But from this, we can conclude that X N1 On C A: Assume 3 € X \ \. By (1.1), X NOn C A,
and we have already shown that A ¢ X. Hence, A < # < A. We have (\,\]N Dy; = 0 and
X € Dy;. Hence \ =the unique § with

M = D(6) A (VB < B(6 < B — =D(B))),

since A = max(Dpys N 3). Hence X € X, which we already know is impossible. So X NOn C \ =
Onyy;, and the claim follows. O(1.2)

(1.3) Co(M)|X <5, Co(M).
Proof of (1.3). This follows from the definition of X. O(1.3)

(1.4) Co(M) = Co(M)|(|M]).

Proof of (1.4). M and M both are passive, hence E
appearing in éo( 1) and Cy(M) are interpreted as 0.

Finally, D; = Dps N Onyy:

We have that wA € Dy, for either M|\ is passive, wA € Dy and}\ = A, or M|\ is
active and X\ = st(M||\) € Dy, (this is also true if A\ = st(M][|\)). But X\ = ht(M), so that
Dy=D DMHS\ = Djys N On,y, by the coherency of enhancements. O(1.4)

= F M

top top = 0, and the additional constants

MHS\passive ==
(1.5) Co(M)|X <5, Co(M).
Proof of (1.5). This follows from (1.2)-(1.4): Co(M)|X = Co(M)|X. O15)
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(1.6) Co(M)|X =<z, Co(M).
Proof of (1.6). 1t has to be shown that for every ¥;-formula ¢(Z) and every tuple @ € X,

Co(M)|X E pla] = Co(M) [ ll.

From left to right: Let ¢ = Jy ¢, where ¥(y,Z) is Xo. Suppose Co(M)|X E gla). Let

then b € X be so that Co(M)|X |= ¥[b,a). By (1.5) then Co(M) |= ¥[b,a]. But ¢ is £y and

b € |M\ by (1.2), and Co(M) and Co(M) = Co(M)|(|M]) are transitive models, hence we have
Co(M) | 1[b,d]. For the opposite direction, we have:

Co(M) = pld] = C:O(M) E ¢[d] (Persistency and (1.4))
= Co(M)|X |= pla] by (1.5).

i)
(1.7) X C X.
Proof of (1.7). X is minimal with 7 U ¢ C X and the property that Co(M)|X <y, Co(M). Both
are true of X, by (1.6) and the very definition of X. 017
(1.8) X C X.

Proof of (1.8). Let b € X. Then there are @ € vU ¢ and a X;-formula ¢(y, &), so that b is the
unique ¢ with the property that Co (M) E ¢le,a]. By (1.5) and (1.2) it follows that (Co(M)|X) =

¢[b,a. By (1.6), this implies that Co(M) = ¢[b,@). But b is uniquely determined by this again,
because another b # b with Co(M ) = ¢l[b', @] would give the contradiction Co(M) |= o[V, d] (by

(1.4) and persistency). Hence b € X. Uas)
(1.7) and (1.8) show the claim. D)
5 (N 74
Hence Co(M) = WCO(M)

We get the equivalents of (1)-(3) of case 1.1, where M and N have to be replaced with M
and N, respectively. For now, the heights of N and N are limits. Of course N is passive, as N
is. So we get:

(a) Let ¢(Z,y) be a Xy-formula, and let & < . Then we have:
Co(N) | ¢ld,q] <= Co(N) = ¢ld, ql.

(b) IN|=hg, 5,(YUD)
(¢) o' : Co(N) —x, Co(N), 0’1y =id]y and X’ := ran(o’) = h}v(’y Ugq),

where o/ : Co(N) — Co(N) is defined by o’ (hk (i, (3,))) = hL (i, (F,q)) (for i <w and § < 7).
By definition, X' = h1 (7 Ugq).
(2) X' =hg (YU Q).
Proof of (2). LetY := hé ) (VUq).
(2.1) VM, N +1,...,M+(n—-1)¢Y.

Proof of (2.1). Note that v’ ¢ Y, or else, by Lemma 8.12, it would follow that ' € X, which is
not the case. The rest is clear. O2.1)
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(2.2) Y C |N].
Proof of (2.2). N = ht(N), so the claim follows from (2.1). O(.2)
(2.3) Co(N)|Y <5, Co(NN).

Proof of (2.3). By definition of Y. O(2.3)
(24) Co(N) = Co(N)|(IN]).-

Proof of (2.4). N and N both are passive, hence EN = EN —

iop = Eiop = 0, and the additional constants

of Co(N) and Cy(N) are interpreted in both structures as (. O2.4)
(2.5) Co(N)|Y <5, Co(N).
Proof of (2.5). By (2.3) and (2.4). 0.5
(2.6) Co(N)[Y <5, Co(NV).

Proof of (2.6). Tt has to be shown that for every ¥;-formula ¢(Z) and every tuple @ € Y,

Co(M)Y E ¢la] = Co(N) [ lal.

The direction from left to right: Let ¢ = Jy 1, where ¢(y,7) is a ZO formula. Suppose
Co(N)|Y [= pla]. Let then b € Y be so that Co(N)|Y = ¢[b,a]. By (2.5), Co(N) = 9[b, d]. Since
¥ is Xg, Co(N) [= [b,d]. For the opposite direction,

Co(N) = ¢ld] = (,;O(N) E pld] (persistency and (2.4))
= Co(N)[Y = old] by (2.5).

U2.6)
(2.7) X' CY.
Proof of (2.7). X' is minimal with v U ¢ C X’ and the property that Co(N)| X’ <5, Co(N).
Both properties are shared by Y. O2.7)
(2.8) Y C X'

Proof of (2.8). Let b € Y. Then there are @ € yU ¢ and a X;-formula (%), so that b is the
unique ¢ with the property that Co(N) = ¢lc,d]. By (2.5), (Co(N)|Y) E ¢[b, @] and by (2.6),

1t follows that Co(N) = @[b,d. This again determines b, for if there were some b’ # b with
Co(N) |= [V, @), we would get the contradiction Co(N) |= o[/, @) (by (2.4) and persistency). So
b e X', as wished. Oe.8)
(2.7) and (2.8) prove the claim. O

So we get:

(1) Let ¢(Z,y) be a Xj-formula, and let & < . Then

Co(N) E ¢ld,q] <= Co(N) = ¢ld, q.

(3") 0" : Co(N) —x, Co(N), o'y = id]7y and ran(o’) = héO(N)(W Uaq).
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But from (1')-(3’), it follows that Co(N) = Wgyt(]]c\?)(M), and that o’ is the corresponding witness
map. ’

Case 2: 1 is a limit.

Then [ is also a limit. So one can argue in this case like in case 1.1., where the parameters
v/ and 7' don’t occur. This finishes the proof of the claim. Ociaim

The case that M is active of type III can be treated with the methods of the proof of the
opposite direction of the current lemma.

Q _ _ _
So Wg’?f\f)(w = S(M) and M € |M|. The proof that this implies that N € | N, is as before,
0

in the end of the proof of Lemma 8.16. O

Lemma 8.25. Let Co(M) be a pPA-structure that’s 1-solid and sound. Let N = S(M). Then
Co(N) is 1-solid and sound.

Proof. The proof of 8.17 works mutatis mutandis. O
The same results hold true of the full ¥y-codes Co(M) and Cy(N). In preparation for this, a
close look at the s’-initial segment conditions is needed.

Lemma 8.26. Let M be an active pA structure. Let (M) < & < s(M) be a cutpoint such that
E¢ Cuy. '8 Then € =€+ 1 for a cutpoint £ of F = Etl‘g[p. (So € is a limit of generators of F).
Moreover, (€7)Mle = (£+)[Mle _ the proof shows that € is the only cutpoint less than & with this
property.

Proof. Assume the contrary. Let £ be the least counterexample. Then £ # 7 := 7(M), since by
definition 7 € Cjy.

(1) € is not a limit of genp.

Proof of (1). Assume £ were a limit of generators of F. Since { ¢ Ciy, [M]e does not satisfy the
s'-MISC, because ¢ is a cutpoint of F'. So pick a cutpoint ¢ € [r, £) such that (CJF)[M]< = (C*)[M]g.
Let § = min(geny N (¢, €)) (this 6 exists, since by assumption, ¢ is a limit of geny. By minimality
of &, [M]g41 satisfies the s-MISC, as 6 is not a limit of generators and 6 + 1 is a cutpoint of F.

So we have: ] ] )
(G I (G R (G R

contradicting the choice of (. O¢1) So let § = €+ 1. Then £ € geny. Obviously, £ # 7.
(2) € is a limit of genp.

Proof of (2). Again, pick a cutpoint ¢ < § so that (C+)[M]< = (C“‘)[M}&. Assume that £ is not a
limit of generators. Then & is not a cutpoint, as § obviously is not the successor of a generator.
Hence ¢ < €.

(2.1) () = (¢)e,

Proof of (2.1).
(e < (¢F)Me = ()M < ()M,

U2

(2.2) (¢F)Me = (¢H)M.

18For the definition of Cj, see Definition 3.30.
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Proof of (2.2). Otherwise, (¢*)Ml¢ < (¢F)M | hence
(CM = (oe(O)N)M = ag((¢H)Me) > ()M = ¢y

by (2.1). Hence (¢T)Me = ¢ = (¢)Mle | a5 € = crit(og) is a cardinal in [M]g. But this entails
that

contradicting the choice of (. O(2.2)
(2.3) [M]¢ does not satisfy the s'-MISC.
Proof of (2.3). Otherwise [M]; € M, and hence (¢T)™ > (¢*)Ml<, contradicting (2.2). Dz
(2.4) ¢ =C+ 1, where C is a limit of generators. Moreover,

(C)MIs = (M = (§F)Me = ()M,

Proof of (2.4). By minimality of £, and since ( is a cutpoint the conclusion of the lemma can
be applied to ¢, by (2.3). O(2.4)
So we have:
()Me = ()M = ()M,

But [M ],3 € M, since ( € Cj; by minimality of £ as a counterexample to the lemma, hence
(¢HM > (¢H)Me since in M there is a surjection even from ¢ onto |[M]¢|. Hence (¢T)M >
(¢H)MI¢ by (2.4), contradicting (2.2). O2)

In order to finish the proof, pick ¢ < ¢ in such a way that ¢ is a cutpoint and (¢+)[Mle =
(¢H)Mle, T show:

3) ¢=¢
Proof of (3). Assuming the contrary, it follows that ¢ < . Let § = min(geny \ (¢ + 1)). Then
0+ 1€ Chy, so, [M]py1 satisfies the s-MISC. Hence we have:

(<+)[M]c < (C+)[M]e+1 < (C+)[M]s

)

contradicting the choice of (. U(3),Lemma

Lemma 8.27. Let M be a A structure of type II and o : M —x, M be an embedding with
qm, s(M) € ran(o). Then M is also a A structure of type II, o(s(M)) = s(M) and o(q5;) = qur-
The corresponding is true if M is a pA\ structure of type II.

Proof. Let M = (JE F) and M = (JE F). Let s(M) = £ + 1, k = crit(F), 7 = 7(F), and
correspondingly, & = crit(F), 7 = 7(F). Firstly, it is easy to see that o(s(M)) = s(M). This is
because being a generator is ITy, and because s(M) € ran(o).

Let 5:= 0~ !(s) and & := 0~ 1(£), hence 5 = & + 1.

Case 1: £ =maxC)y

Since s = £ + 1, € is a generator of F, and since £ € C)y, £ is a cutpoint of F. Hence, £ is a
limit of generators of F.

Since M satisfies the s'-ISC, [M], € M. The statement “z = F|¢” is II; (M) and true of qum
in M. Soif § =o0""(qu), then g = F|{. Moreover, 0~ *([M]¢) = [M]¢, as da [M]¢ is coded by
gy the same way [M]g is coded by g. I show now that £ = max C\y;.
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Since o [[M]g : [M]g —x,, [M]e, the property of & of being a limit of generators of Et[M

preserved downwards, as this can be formulated in [M]¢. So € is a limit of generators of Et[op] ,

and hence of F. Hence, ¢ is a cutpoint of F. It remains to show that [M]g ¢ satisfies the s’-MISC.
But the statement that [M] satisfies the s’-MISC is also X,,([M]¢), and thus carries over to
[]\7[]5. So ¢ = q;z. This proves the lemma in case 1.

Case 2: £ ¢ Cyy.

Then £ is not a limit of generators of F'; by Lemma 8.26. Set: ¢ = sup(genp N¢). Hence,
(<&

Case 2.1: ( is a limit of generators, and ¢ ¢ genp.

Then ¢ € Cj by Lemma 8.26. Hence, ¢ = maxC\yy, [M]c € M and gy = F|¢ € ran(o), so

¢ € ran(o). Let { = 071(¢). It follows that ( is a limit of generators of F', as ¢ is a limit of

generators of Et[M]‘ and o[[M]; —x, [M]¢. Hence, ( is a cutpoint of F', and [M]; satisfies the

s'-MISC, again by elementarity. Hence ( € Cy;. It suffices to show that ( = max Cj;, and for
this, it suffices to see that [¢,£) Ngenz = (), since then in M, there is no cutpoint that’s greater
than ¢ and less than s(M). But that follows immediately from the fact that [C §) Ngenp = 0,
as o maps generators of F' to generators of F. The other requirements of the s’-ISC for M are
easily verified.

Case 2.2: ¢ € genp.

Case 2.2.1: (+1 € Cyy.

One can argue here similarly as in case 2.1. Since ( + 1 = maxC)y, it follows that gy =
F|¢ +1 € ran(o). So ¢ + 1 € ran(o), and hence ¢ € ran(c). Let ( = o~ 1(¢). It follows that
[M]z,, € M, that ¢ 4 1 is a cutpoint of F, and that [M]s, satisfies the s’-MISC, hence that
(+ 1€ Cy. Finally, (¢,€) Ngenp = 0.

Case 2.2.2: (+1¢ Cyy.

Since ¢ € genp, (+1 is a cutpoint of F', and hence, by Lemma 8.26, ¢ is a limit of generators
of F. Further, ¢ = maxC)y, by the same lemma. Since gy = F|¢ € ran(o ), it follows again
that ¢ € ran(o). So set ( = o7 1((), as before. It follows that § := o~ Yam) = F|¢ and
o([M]¢) = [M];. Moreover, [M]¢ satisfies the s'-MISC, so that ¢ € Cy. Finally, (¢,€)Ngenp = 0,
since a generator of F' lying in this interval would be mapped to a generator of F lying in the
interval (¢,¢), which cannot be, by definition of ¢. Hence ( = maxC,; and § = q,;. The other

requirements of the s'-ISC are again easily verified. O
Lemma 8.28. Let M be a pA-structure, so that Co(M) is 1-solid. Let N = A(M). Then for
every y € pc (M) the corresponding witness on the N-side, W fc")(M), is a member of |N|.

Proof. The only additional point here is that W”’qga(M ) is a pA-structure, as follows from Lemma
8.27. 0

Lemma 8.29. Let Co(M) be a pA-structure that’s sound and 1-solid. Let N = S(M). Then
Co(N) is sound and 1-solid.

Proof. As before. O

8.7 The domains of S and A, part 2

Definition 8.30. In order to state the following results in a compact way, let’s introduce the
following notation:
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PA = The class of PA-structures.

Ps := The class of Ps-structures.
A := The class of A\-structures.
S := The class of s-structures.

Theorem 8.31. S[PA is a bijection between PA and Ps. A] Ps is the inverse of S| P, hence
a bijection between Ps and PA.

Proof. T show by <p-induction on PA-structures that S(M) is a Ps-structure. By Lemma 8.9,
it’s known already that S(M) is a pPs-structure, so that it merely has to be verified that for
1 < ht(S(M)), the structure Co(S(M)||p) is sound and 1-solid. But this structure is always of
the form S(M||7), for some v < ht(M). As M is a PA-structure, Co(M||7) is sound and 1-solid.
Now it follows from Lemma 8.25 that Co(S(M||7)) = Co(S(M)||1) has the desired properties.
For the opposite direction, I argue by induction on <;. In the case that N has successor
height v + 1, it suffices to know that A(N) = “A(N||v) 4+ 17, for inductively, A(N||v) is a PA-
structure. So it remains to verify soundness and 1-solidity of A(N||v). But that follows from
Lemma 8.17. The other successor case is that N is active. But in that case, there is nothing
to prove, as A(N) = “(A(NpaSSive),EtIXp,DA(N))”, and A(vaass“’e) already has the desired pre-
soundness/solidity-properties. The limit case is trivial. O

Theorem 8.32. STA is a bijection between A and &. A| & is the inverse of S[A, and hence a
bijection between & and A.

Proof. In order to prove pre-soundness/solidity, I argue as in the proof of Theorem 8.31, with
the difference that now the Lemmas 8.29 and 8.23 are used. It follows from Lemma 4.16 that
the s’-ISC carries over. O
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<*, 54 I'(M, k), 6
<o, 13 I'™*(M,k), 6
<1, 22 genpg, 5
<wm, 17 Generator, 5
</, 19
;7 40 Hidden, 11
—%, 6
6 Iy, 24

17 .
=M j-ppm

weak, see Weak j-ppm

Active, 6
Amenable coding, 7 J-structure, 3
CM, 16 £7 16
Continuability, 6 [o17
crit(F), 5 /18
Co(M), 17 /;*: 17
Co(N), 16 A, 87
Co(N), 16 AF), 5
Co(N)™, 16 M), 6
Cutpoint, 15 A(N), 23
DM, F), 6 l)\h(sg;lc;ure, 18
D(M,k,\), 6 ’
D*(M, F), 6 [M]e, 6
D*(M,k,\), 6 M~ 11
D3, 13 Maximal continuation, 6
D, 11 M|y, 8
o M, 6
Eiop: 6 Natural length, 5, 6
Enhancement, 9 Nly, 7
néw, 12
Extender P, D4
in functional representation, 5 PMn, 4
in hypermeasure representation, 5 Passive, 6

Extender structure, 6 wé” , 6

R P, 87
F,6 pA, 62
Fe, 7 PA-structure, 18
fo(M), 25 pA-structure, 16
F 1|1a, 5 Potential A-structure, 16
F*,5 Potential Pseudo-A-structure, 11
Fla, 5 Potential pseudo-s-structure, 7

, Potential s-structure, 16
I'(M,F), 17 pPA, 62
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pP A-structure, 11 Top extender, 6

pPs, 62 Trivial completion, 5
pPs-structure, 7 Truncation
Pre-extender, 6 of a pPA-structure, 11
Ps, 87 of a pPs-structure, 7
ps, 62 of a weak j-ppm, 8
Ps-structure, 18 of an extender, 5
ps-structure, 16 Type I, 16
Pseudo-A-structure, 18 Type 11, 16
Pseudo-s-structure, 18 Type III, 16
Pseudo-Xy-code

of a pPA-structure, 17 Ult(M, F), 6

of a pPs-structure, 16 Ult" (M, F), 6

of the maximal continuation of a pPs-

structure, 16 wee, 70
squashed, 16 Weak j-ppm, 8
Weak Jensen-pre-premouse, 8

qr, 59 Witness, 70
qm, 17 -map, 70
S, 87
s'-initial segment condition, 15
s'-ISC, 15
s'-MISC, 15
s(F), 5
S(M), 19
s(M), 6
st(F), 5
sT(M), 6
s-structure, 18
Ué\?c, 6
Yp-code

of a ps-structure, 17

of a pA-structure, 18

of the maximal continuation of a ps-
structure, 17

squashed, 17

Solid, 70
above «, 70
n-solid, 70

Standard Parameter, 54
iterated, 59
Support, 5

Ty, 32
Ty, 33
Ty, 31
Ty, 33
T(F), 5
T(M), 6
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