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Abstract

Continuing the work [Fuc08], I show that the translation functions developed previously
map iterable λ-structures to iterable s-structures and vice versa. To this end, I analyze how
the translation functions interact with the formation of extender ultrapowers and normal
iterations. This analysis makes it possible to translate iterations, and, in a last step, iteration
strategies, thus arriving at the result.

1 Introduction

In this article, I continue the work begun in [Fuc08], and the first part is a prerequisite of the
current paper. Both of these papers are based on my dissertation. In the first part, I intro-
duced λ-structures and s-structures (for simplicity, I won’t distinguish between the potential
and “Pseudo” variants of these structures in this introduction). These are closely related to
premice in the Friedman-Jensen and the Mitchell-Steel indexing convention, respectively. I de-
veloped functions which translate these structures in both directions. The aim of the current
paper is to take the analysis of these structures further, turning to iterable λ-structures and
s-structures. The main result is that the translation functions work for these structures as well,
if an appropriate notion of iterability for λ-structures is chosen. The point is that when forming
normal iterations, the model in the iteration tree to which an extender is applied depends on how
the critical point of the extender fits into the sequence of the iteration indices of the previously
used extenders. Since the indexing of extenders is different in s-structures and λ-structures, this
means that the arising iteration trees may have a different structure as well. The solution to this
problem is to introduce a notion of normal s-iteration of a λ-structure, which basically mimics
the way normal iterations of s-structures are formed.

The paper is organized as follows: In section 2, I recall the main tools of the first part of
the paper that will be needed, for the reader’s convenience. Section 3 analyzes Σ(n)

1 definability
in a λ-structure M and its counterpart s-structure N = S(M). This analysis is needed when
comparing the outcome of forming fine structural extender-ultrapowers of these structures, which
is done in section 4. The formation of such ultrapowers is the successor step in an iteration, which
I analyze in the following section 5. There, I introduce the notion of a normal s-iteration of a
λ-structure. A lot of things which are essential to get the theory going are verified in that
section: That the s′-initial segment condition is preserved under normal s-iterations, and that
there is a notion of s-coiteration such that the s-coiteration of normally s-iterable λ-structures
terminates. I also show some basic results on the s′-initial segment condition: It is implied by
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the Z-initial segment condition used in the current Mitchell-Steel variant of premice, so that the
notion of s-premice is not unduly restrictive, and it is preserved downwards to Σ1-embeddable
structures. After that, in section 6, I develop a method to “translate” a normal s-iteration I of
a pλ-structure M to a normal iteration S(I), called the transliteration of I, of the ps-structure
S(M). The transliteration process works in the other direction as well, and it can be used to
finally translate normal s-iteration strategies of pλ-structures to normal iteration strategies of
ps-structures, and vice versa. So this shows that the translation functions translate normally
s-iterable λ-structures to normally iterable s-structures, and vice versa, which is the main result
of this paper. The last section collects some results that didn’t fit in elsewhere: First, I show
that normally iterable Mitchell-Steel-premice are normally iterable s-structures, then I analyze
different notions of iterability and argue that transliterations of the arising iterations can be
formed also, and finally I compare the procedure of passing to the squash of a type III structure,
forming an ultrapower, and then inverting the squash, to the process of passing to its maximal
continuation instead in both cases: They are equivalent.

In order to facilitate the orientation of the reader, I added a table of contents right after this
introduction, and at the end of the paper, there is an index.
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2 Preliminaries, and a quick review

In this section, I collect results proved in the first part of this paper, [Fuc08], which will be
used here as well. The first part is a prerequisite to the current paper, and the latter cannot
be understood without knowledge of the former, but let me briefly remind the reader what was
done in the first part. I developed functions S mapping pPλ-structures to pPs-structures and Λ,
which is the inverse of S, preserving a considerable amount of fine structure; I’ll be more explicit
on this matter later. In order to summarize the main results on these functions, let me recall the
following definitions. pPλ, Pλ and Λ are the classes of pPλ- Pλ and λ-structures, respectively.
Analogously, pPs, Ps and S are the classes of pPs-, Ps and s-structures, respectively. For the
exact meaning of p and P in the definition of these structures, the reader is referred to the first
part of this paper.

Theorem 2.1.

1. S is a bijection between pPλ and pPs, and Λ is the inverse of S, hence a bijection between
pPs and pPλ.

2. S�Pλ is a bijection between Pλ and Ps. Λ� Ps is the inverse of S� Pλ, hence a bijection
between Ps and Pλ.

3. S�Λ is a bijection between Λ and S. Λ� S is the inverse of S�Λ, and hence a bijection
between S and Λ.

A λ-structure M is a premouse following the Friedman-Jensen indexing scheme, enhanced
by an additional predicate, DM , the use of which is that it allows us to define the function S
restricted to initial segments of M in a simple way. The predicate is the following:

Definition 2.2. Let M be a weak j-ppm. Then let DM be the set defined by:

DM := {τ ∈M | (Lim(τ) ∨ τ = 0) ∧
¬(∃ν ∈M EMων 6= ∅ ∧ s+(ν)M < τ ≤ ν)}.

For ν, γ ≤ ht(M), say that ν hides γ in M iff M ||ν is active and s+(ν)M < γ ≤ ν. So DM

consists of 0 and those limit ordinals of M that are not hidden by any ν < ht(M).

The main reason why it is possible to work with these enhanced structures is that the function
sending a weak j-ppm M̄ (this is what is referred to as a pre-premouse in the Jensen approach)
to DM̄ is what I refer to as an enhancement (an exact definition of this concept is given in the
first part). The following lemma is the crucial fact on enhancements:

Lemma 2.3. Let 〈AM |M is a j − ppm〉 be an enhancement. Fix a weak j-ppm M and let

π : 〈M,AM 〉 −→∗F 〈N,A〉 or π : 〈M,AM 〉 −→F 〈N,A〉.

Let N be transitive. Then A = AN .

Here are some basic facts on the specific enhancement M 7→ DM .

Lemma 2.4. Let M be a pPλ-structure s.t. ht(M) is a limit ordinal. Then DM is closed and
unbounded in OnM .
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Corollary 2.5. Let M be a pPλ-structure. Then

ht(N) =
{

otp(DM ) if M is passive,
∪ otp(D∗M ) otherwise.

Moreover, h1
M (ht(N)) = |M |.

If M is an active pPλ-structure, then s+(M) is the index its top-extender would have in the
Mitchell-Steel indexing convention. The following lemma describes when S(M ||µ) is a segment
of S(M), for µ ≤ ht(M).

Lemma 2.6. Let M be a pPλ-structure. Let α < ht(M). Then the following are equivalent:

1. There is no µ ≤ ht(M) such that M ||µ is active and s+(M ||µ) ≤ α < µ.

2. S(M ||α) is a segment of N .

In particular, this is true if M ||α is active and s+(M ||α) ∈ DM .

The first item of the previous lemma can be easily expressed using the predicate DM . It
follows that the expressive power of a pPλ-structure is strong enough to describe its corresponding
pPs-structure in a Σ1 way, as follows:

Lemma 2.7. There are Σ1 formulae ϕV(x, y), ϕE(x, y), ϕF (x) such that for every pPλ-structure
M = 〈JEα , F,DM 〉 with α > 1, we have:

(a) |Ŝ(M)| = {z |M |= ϕV[z, α−̇1]}.

(b) E Ŝ(M) = {z |M |= ϕE [x, α−̇1])}.

(c) E
Ŝ(M)
top = {z |M |= ϕF [z]}.

Here, let Ŝ(M) = 〈|Ŝ(M)|, E Ŝ(M), E
Ŝ(M)
top 〉.

Moreover, 〈E ̂S(M ||γ) | γ < ht(M)〉 and 〈| ̂S(M ||γ)| : γ < ht(M)〉 are uniformly Σ1(M).

This is the key to the next tool, a way to translate Σ1-formulae from a pPs-structure to its
corresponding pPλ-structure.

Lemma 2.8. There are functions ĝ and g with the following property: If M = 〈JEα , F,D〉 (α > 1)
is a pPλ-structure and ϕ is a Σ1 formula, then ĝ(ϕ) and g(ϕ) are Σ1 formulae such that for
arbitrary ~x, the following holds:

(a) If ϕ is a formula in the language of N̂ , then ĝ(ϕ) is a formula in the language of M , and

N̂ |= ϕ[~x] ⇐⇒ M |= ĝ(ϕ)[~x, α−̇1].

(b) If ϕ is a formula in the language of C̃0(N̂), then ĝ(ϕ) is a formula in the language of C̃0(M),
and

C̃0(N̂) |= ϕ[~x] ⇐⇒ C̃0(M) |= ĝ(ϕ)[~x, α−̇1].

(c) If M is a pλ-structure, and ϕ is a formula in the language of C0(N̂), then ĝ(ϕ) is a formula
in the language of C0(M), and

C0(N̂) |= ϕ[~x] ⇐⇒ C0(M) |= ĝ(ϕ)[~x, α−̇1].
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(d) If ϕ is a formula in the language of C̃0(N), then g(ϕ) is a formula in the language of C̃0(M),
and

C̃0(N) |= ϕ[~x] ⇐⇒ C̃0(M) |= g(ϕ)[~x, α−̇1].

(e) If M is a pλ-structure and ϕ is a formula in the language of C0(N), then g(ϕ) is a formula
in the language of C0(M), and

C0(N) |= ϕ[~x] ⇐⇒ C0(M) |= g(ϕ)[~x, α−̇1].

The main result for translating formulae in the other direction is this:

Corollary 2.9. Let M be a pPλ-structure. Then there is a sequence FN = 〈fNµ | µ ≤ ht(N)〉 of
functions from ω to ω with the following properties (in the following, we write fµ for fNµ ):

(a) Λ(N ||µ) |= ϕ[~ξ] ⇐⇒ N ||µ |= fµ(ϕ)[~ξ, µ−̇1], where ~ξ < ωµ.

(b) fµ(ϕ) is a Σ1-formula, if ϕ is.

(c) fµ is uniformly Σω(N ||µ).

(d) F = {〈n,m, γ〉 | n = fγ(m) ∧ γ < ht(N)} is uniformly Σ1(N).

The following lemma describes the relationship between the fine structure of a pPλ-structure
and its pendant s-structure.

Lemma 2.10. Let M be a pPλ-structure. Then for n ≥ 1:

(a) ωρnM = ωρnS(M),

(b) Σ(n−1)
1 (M) ∩ P(Hn

M ) = Σ(n−1)
1 (S(M)) ∩ P(Hn

S(M)).

It even follows that ωρnN , Σ(n−1)
1 (N) ∩ P(Hn

N ) are the same for every N ∈ {M , S(M), Ŝ(M),
C̃0(M), C̃0(S(M)), C̃0(Ŝ(M)), C0(M), C0(S(M)), C0(Ŝ(M))}.

3 Σ
(n)
1 -definable sets in M and N

Lemma 3.1. Let M be a pPλ-structure and N = S(M). Then there are q := {~α} ∈ [ht(N)]<ω

and functions f ′N : ω −→ ω and f̂ ′N : ω −→ ω, so that the following holds:
There is a fixed list ~w of variables of the same length as ~α, so that for every Boolean com-

bination ϕ(~x) of Σ1-formulae in which the variables ~w don’t occur, f ′N (ϕ) is also a Boolean
combination of Σ1-formulae. The free variables of f ′N (ϕ) are {~x, ~w}, and we have for arbitrary
~a ∈ |N |:

M |= ϕ[(~x/~a)] ⇐⇒ N |= f ′N (ϕ)[(~x/~a), (~w/~α)].

Correspondingly, f̂ ′N (ϕ) is a Boolean combination of Σ1-formulae, and we have for arbitrary ~a
in |N̂ |:

M |= ϕ[(~x/~a)] ⇐⇒ N̂ |= f̂ ′N (ϕ)[(~x/~a), (~w/~α)].

If ht(M) and ht(N) are limit ordinals, then q = ∅.
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Proof. I concentrate on the definition of f ′N ; the definition of f̂ ′N is analogous. The new point here
is that arbitrary members of |N | are allowed, not only ordinals. I use the fact that the restriction
to ordinals is not necessary for the translation in the opposite direction. Let f : OnN −→ |N |
be a canonical Σ1(N)-surjection (f is a partial function). Let ϕ(~x) be a Σ1-formula (we define
f ′N only for Σ1-formulae, since it is obvious how to deal with Boolean combinations of such
formulae). Note that f is Σ1(M) in ht(M)−̇1; this makes use of Lemma 2.8.

Let ϕ∗(~x, y) = ϕ(f(~x)) be the result of substituting f(~x) for ~x, so

M |= ϕ∗[~a,ht(M)−̇1] ⇐⇒ M |= ϕ[f(~a)]

for ~a ∈ |M | (so each of these statements can only hold if ~a ∈ OnN ). The map ϕ 7→ ϕ∗ is uniform
in the definition of f over M , and ϕ∗ is Σ1.

Using Lemma 2.5, let q = {~α} ∈ [ht(N)]<ω be chosen so that ht(M)−̇1 ∈ h1
M (q). q can be

chosen so that ht(N)−̇1 ∈ q. Let ht(M)−̇1 = h1
M (m, ~α).

If ht(M) and ht(N) are limit ordinals, then q = ∅ is as desired. In this situation, the next
substitution is obsolete.

Substituting h1
M (m, ~w) for y yields a Σ1-formula ϕ̃(~x′, ~w) with

M |= ϕ̃[~a, ~α] ⇐⇒ M |= ϕ[f(~a)].

Using the function fN := fNht(N) from Corollary 2.9 yields:

M |= ϕ[~a] ⇐⇒ M |= ϕ̃[f−1(~a), ~α]
⇐⇒ N |= fN (ϕ̃)[f−1(~a), ~α]
⇐⇒ N |= ψ[~a, ~α],

where ψ(~x, ~w) is the following formula:

∃~x′ ~x = f(~x′) ∧ fN (ϕ̃).

The parameter ht(N)−̇1 does not need to be exhibited in fN (ϕ̃), because it occurs in q already.
Hence, setting f ′N (ϕ) := ψ finishes the proof.

Lemma 3.2. Let M be a pPλ-structure, N = S(M). Then there is a q := {~α} ∈ [ht(N)]<ω and
a fixed list ~w of variables such that for every n < ω, there are functions f (n)

N and f̂
(n)
N with the

following properties:
For (Boolean combinations of) Σ(n)

1 -formulae ϕ(~z0, . . . , ~zl) in which none of the variables
~w occur, f (n)

N (ϕ) and f̂
(n)
N (ϕ) are again (Boolean combinations of) Σ(n)

1 -formulae, so that for
~a0 ∈ |N |,~a1 ∈ H1, . . . ,~al ∈ H l we have: 1

M |= ϕ[(~z
0
/~a0), . . . , (~z

l

/~al)] ⇐⇒ N |= f
(n)
N (ϕ)[(~z

0
/~a0), . . . , (~z

l

/~al), (
~w0
/~α)],

and for ~a0 ∈ |N̂ |,~a1 ∈ H1, . . . ,~al ∈ H l we have:

M |= ϕ[(~z
0
/~a0), . . . , (~z

l

/~al)] ⇐⇒ N̂ |= f̂
(n)
N (ϕ)[(~z

0
/~a0), . . . , (~z

l

/~al), (
~w0
/~α)].

Proof. I concentrate of the functions f (n)
N . I proceed by recursion on n.

For n = 0, I use the function f ′N and the parameter q from Lemma 3.1 and set:

f
(0)
N := f ′N ,

1Here I write Hm = Hm
M = Hm

N .
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in the sense that the types of the variables from ϕ are taken over in f (n)
N (ϕ); this is unproblematic,

since for m ≥ 1 Hm
M = Hm

N .
Now assume that f (n)

N has been defined. I derive how to define f (n+1)
N . It suffices to give

the definition of f (n+1)
N (ϕ) for Σ(n+1)

1 -formulae, since it is clear how to extend the definition to
Boolean combinations.

So let ψ be a Σ(n+1)
1 -formula in which no variable from ~w occurs. Then ψ has the form

∃~zn+1 (Q1w
n+1
1 ∈ vi11 · · ·Qmwn+1

m ∈ vimm ϕ),

where i1, . . . , im ≥ n+ 1 and ϕ is a Boolean combination of Σ(n)
1 -formulae. Then I define:

f (n+1)(ψ) := ∃~zn+1 (Q1w
n+1
1 ∈ vi11 · · ·Qmwn+1

m ∈ vimm f
(n)
N (ϕ)).

It follows from Lemma 2.10 that this definition works, or rather, it follows from the consequence
of that lemma that Hn+1

M = Hn+1
N : Let ~u0, . . . , ~un+1 be the free variables of ψ. Then we have

for ~a0 ∈ |N |,~a1 ∈ H1, . . .~an+1 ∈ Hn+1:

M |= ∃~zn+1 (Q1w
n+1
1 ∈ vi11 · · ·Qmwn+1

m ∈ vimm ϕ)[(~u
0
/~a0), . . . , (~u

n+1
/~an+1)]

⇐⇒ ∃~bn+1 ∈ Hn+1Q1w
n+1
1 ∈ vi11 · · ·Qmwn+1

m ∈ vimm (~u
0
/~a0), . . . , (~u

n+1
/~an+1)

M |= ϕ[(~u
0
/~a0), . . . (~u

n+1
/~an+1)]

⇐⇒ ∃~bn+1 ∈ Hn+1Q1w
n+1
1 ∈ vi11 · · ·Qmwn+1

m ∈ vimm (~u
0
/~a0), . . . , (~u

n+1
/~an+1)

N |= f
(n)
N (ϕ)[(~u

0
/~a0), . . . , (~u

n+1
/~an+1)]

⇐⇒ N |= f
(n+1)
N (ψ)[(~u

0
/~a0), . . . , (~u

n+1
/~an+1)].

This involves some abuse of notation, but it should be clear what’s meant: In the second and
third step, the first variable substitution has to be done by hand, so that if vijj = u

ij
k , then v

ij
j

has to be replaced with ~aijk .
One arrives at the following converse in the same way. Instead of the functions f ′N and f̂ ′N

from Lemma 3.1, now the functions g and ĝ from Lemma 2.8 have to be used.

Lemma 3.3. Let N be a pPs-structure, M = Λ(N). For n < ω, there are functions g(n) and
ĝ(n), which map (Boolean combinations of) Σ(n)

1 -formulae to (Boolean combinations of) Σ(n)
1 -

formulae, so that for all (Boolean combinations of) Σ(n)
1 -formulae ϕ(~z0, . . . , ~zl) in which some

fixed variable z̃0 does not occur, and all elements ~a0 ∈ |N |,~a1 ∈ H1, . . . ,~al ∈ H l, we have:

C̃0(N) |= ϕ[(~z
0
/~a0), . . . , (~z

l

/~al)] ⇐⇒ C̃0(M) |= g(n)(ϕ)[(~z
0
/~a0), . . . , (~z

l

/~al), (
z̃0
/ht(M)−̇1)],

and analogously, for ~a0 ∈ |N̂ |,~a1 ∈ H1, . . . ,~an ∈ H l, we have:

N̂ |= ϕ[(~z
0
/~a0), . . . , (~z

l

/~al)] ⇐⇒ M |= ĝ(n)(ϕ)[(~z
0
/~α0), . . . , (~z

l

/~αl), (
z̃0
/ht(M)−̇1)].

Here is the lemma that one expected in this section:

Lemma 3.4. Let M be a pPλ-structure and N = S(M). Then we have for n < ω:

Σ(n)
1 (M) ∩ P(|N |) = Σ(n)

1 (N),

and
Σ(n)

1 (M) ∩ P(|N̂ |) = Σ(n)
1 (N̂).
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Proof. Fix n < ω.
The inclusions from right to left are obvious consequences of Lemma 3.3; for the first, one can

apply the function g(n), for the second ĝ(n). These functions transform Σ(n)
1 -formulae from C̃0(N)

to C̃0(M), but since in the same additional constants appear in the pseudo-Σ0-codes of N and
M , these can be treated like parameters. Since the result talks about definability in parameters,
this is unproblematic. Also the parameter ht(N)−̇1 that may occur in the translated formula is
harmless here.

For the opposite direction, a little argument is needed. I only show the first claim, the proof
of the second one is analogous. So let A ∈ Σ(n)

1 (M) ∩ P(|N |) in parameters ~a0, . . . ,~al. Since
we have already seen that |M | = h1

M (ht(N)) (Lemma 2.5), there is a p = {~γ} ∈ [ht(N)]<ω, so
that A is Σ(n)

1 (M) in some parameters {~γ},~a1, . . . ,~al, as h1
M is a good Σ(0)

1 -function to H0
M and

hence can be substituted for ~a0 in the formula defining A. Now let A be defined by

~a ∈ A ⇐⇒ M |= ϕ[(~y
i

/~a), (~x
0
/~γ), (~x

1
/~a1), . . . , (~x

l

/~al)],

where ϕ is a Σ(n)
1 -formula. Let f (n)

N and q = {~α} be chosen as in Lemma 3.1. Then we have:

~a ∈ A ⇐⇒ N |= f
(n)
N (ϕ)[(~y

i

/~a), (~x
0
/~γ), (~x

1
/~a1), . . . , (~x

l

/~al), (
~w/~α)],

and this shows that A is Σ(n)
1 (N), as claimed.

Definition 3.5. Let M be a pPλ-structure, N = S(M). Let κ ∈ |N |, κ < λ, κ, λ p.r. closed.
Set:

Γ̄∗(M,κ) := {f ∈ Γ∗(M,κ) | ran(f) ⊆ |N̂ |},
D̄∗(M,κ, λ) := {〈~α, f〉 ∈ D∗(M,κ, λ) | f ∈ Γ̄∗(M,κ)}.

Lemma 3.6. Let M be a pPλ-structure, N = S(M). Let κ ∈ |N |, κ < λ, κ, λ p.r. closed, and
let ωρ1 := ωρ1

M = ωρ1
N > κ. Then

Γ∗(N̂ , κ) = Γ̄∗(M,κ),

D∗(N̂ , κ, λ) = D̄∗(M,κ, λ).

Remark: The corresponding is true of N as well, as is shown by the same proof. This is not
needed here, though.

Proof. I will first need an observation which requires a new concept:
Let’s call X := 〈T,Z, arg〉 an explicit rendering of a good Σ(n)

1 (M)-function if the following
conditions are satisfied:

1. T = 〈|T |, <T 〉 is a finite tree on Q (that is, the nodes of T are rational numbers).

2. Z is a function with dom(Z) = |T |, and if s ∈ |T |, then Z(s) is a Σ(i)
1 (M)-function to Hi

M ,
for some i ≤ n.

3. For s ∈ |T |, arg(s) is an argument type of Z(s). If s is not a leaf of T (that is, no
maximal node), then let succT (s) be the set of immediate <T -successors of s. In this case,
the following is required: If argX(s) = 〈i0, . . . , im−1〉, then succT (s) = {j0, . . . , jm−1} (in
increasing order) , and Z(jk) is a Σ(ik)

1 (M)-function to Hik
M .

4. For arbitrary leavesr p and q of T , arg(p) = arg(q). The argument type common to all
leaves is called the argument type of X, for which I write arg(X).

9



For s ∈ T , define by >T -recursion a function Xs : Hq0
M × · · · ×H

qr−1
M −→ Hi

M , where arg(X) =
〈q0, . . . , qr−1〉 and Z(s) is a function to Hi

M :
If s is a leaf of T , then let Xs = Z(s). Otherwise let succT (s) = {j0, . . . , jm−1} (in increasing

order). Set:
Xs(~z) := Z(s)(Xj0(~z), . . . ,Xjm−1(~z)).

I shall say that X is an explicit rendering of X⊥, where ⊥ is the root of T .

(∗) Let f be a good Σ(n)
1 (M)-function with ran(f) ⊆ |N̂ |. Then f has an explicit rendering

X = 〈T,Z, arg〉 2, so that for every s ∈ T ,

ran(Z(s)) ⊆ |N̂ |.

Proof of (∗). Assume the contrary. Let f be a counterexample, and set:

E := {X | X is an explicit rendering of f}.

Obviously, E 6= ∅. For X = 〈T,Z, arg〉 ∈ E , let

a(X) := {s ∈ |T | | ran(Z(s)) 6⊆ |N̂ |}.

Let N(X) be the number of members of a(X), and choose a fixed X ∈ E , so that N(X) = minN“E .
By assumption, N(X) > 0. Let s ∈ |T | be <T -minimal with ran(Z(s)) 6⊆ |N̂ |. Obviously, Z(s)
is a Σ(0)

1 (M)-function to H0
M , as H1

M = H1
N̂
⊆ N̂ .

It follows that s 6= ⊥: Otherwise, one could define X′ := 〈T,Z ′, arg〉 by setting, for t 6= ⊥:
Z ′(t) := Z(t), and Z(⊥) := g, where

g(~w) :=
{
Z(⊥)(~w) if Z(⊥)(~w) ∈ |N̂ |,
∅ otherwise.

Since ran(X⊥) = ran(f) ⊆ |N̂ |, it’s obvious that X′ is also an explicit rendering of f . So X′ ∈ E .
But N(X′) < N(X), contradicting the choice of X.

So let s̄ be the immediate <T -predecessor of s. Let succT (s̄) = {j0, . . . , jm−1} (in increas-
ing ordere), and s = jk (k < m). Let g := Z(s̄) be a Σ(i)

1 (M)-function to Hi
M , arg(s̄) =

〈i0, . . . , im−1〉. Then ik = 0, as Z(jk) = Z(s) takes on values in |M | \ |N̂ |, hence in H0
M \

H1
M . Let h = Z(s), and let arg(s) = 〈k0, . . . , kl−1〉. In the following, I want to construct

a new explicit rendering of f in which the “bad function” h does not occur anymore, by
substituting it in g. To this end, define a Σ(i)

1 (M)-function g̃ to Hi
M with argument type

〈i0, . . . , ik−1, k0, . . . , kl−1, ik+1, . . . , im−1〉 as follows:

g̃(v0, . . . , vk−1, w0, . . . , wl−1, vk+1, . . . , vm−1) :=
g(v0, . . . , vk−1, h(w0, . . . , wl−1), vk+1, . . . , vm−1).

It follows from Lemma [Zem02, Lemma 1.8.1] that g̃ is a Σ(i)
1 (M)-function to Hi

M . It’s crucial
here that h is a Σ(0)

1 (M)-function to H0
M .

Let succT (s) = {q0, . . . , ql−1} (in increasing order). Choose rational numbers {q̃0, . . . , q̃l−1} ⊆
Q \ |T | with jk−1 < q̃0 < . . . < q̃l−1 < jk+1 (where formally, jk−1 = −∞, jk+1 = +∞ if

2This means: X⊥ = f .
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undefined). Set K := |T | \ ({s} ∪ succT (s)). Now define X̃ = 〈T̃ , Z̃, ãrg 〉 as follows:

|T̃ | := K ∪ {q̃0, . . . , q̃l−1},
p <T̃ q ⇐⇒ ((p, q ∈ K ∧ p <T q) ∨

∨(p ∈ {q̃0, . . . , q̃l−1} ∧ s̄ ≤T q) ∨
∨
∨
k<l

(q = q̃k ∧ p ≤T qk)) ( for p, q ∈ |T̃ |),

Z̃(q) :=

 Z(q) if q ∈ K \ {s̄},
Z(qk) if q = q̃k,
g̃ if q = s̄ .

ãrg(q) :=

 arg(q) if q ∈ K \ {s̄},
arg(qk) if q = q̃k,
〈i0, . . . , ik−1, k0, . . . , kl−1, ik+1, . . . , im−1〉 if q = s̄.

Obviously then X̃ ∈ E and N(X̃) < N(X), contradicting the choice of X. 2(∗)

Let’s now turn to the main claim. It obviously suffices to prove that Γ∗(N̂ , κ) = Γ̄∗(M,κ),
since this immediately implies the second part of the claim.

The substantial direction here is from right to left. So let f ∈ Γ̄∗(M,κ). Then f is a good
Σ(n)

1 (M)-function, where ωρn+1
M > κ; here, −1 ≤ n < ω. Using the [Zem02, S. 73] convention, I

refer to functions that are members of |M | as good Σ(−1)
1 (M)-functions.

If n ≥ 0, then by (∗), there is an explicit rendering X = 〈T,Z, arg〉 of f as a good Σ(n)
1 (M)-

function, so that ran(Z(s)) ⊆ |N̂ |, for each t ∈ |T |. It follows that each Z(s) can be restricted
to |N̂ | without changing X⊥ (if s is a leaf of T , then dom(Z(s)) ⊆ [κ]m, for some m < ω
already). Denoting the resulting explicit rendering of f by X′ := 〈T,Z ′, arg〉, one sees that Z ′(s)
is a subset of |N̂ |, for every s ∈ |T |. By Lemma 3.4, this means that each such Z ′(s) is also a
Σ(i)

1 (N̂)-function to Hi
N̂

, and so, X′ is an explicit rendering of a good Σ(n)
1 (N̂)-function, namely

the function X′⊥ = f .
On the other hand, if f ∈ |M |, then f is also a (good) Σ(0)

1 (M)-function in the parameter f ,
hence also a (good) Σ(0)

1 (N̂)-function. By assumption, ωρ1
N̂

= ωρ1
M > κ, hence in this case also,

f ∈ Γ∗(N̂ , κ).

4 Ultrapowers

In this section, I analyze the formation of ultrapowers, the successor step in iterations.

4.1 Σ0-extender ultrapowers of successor structures

In [Fuc09], I introduced the notion of a Σω-ultrapower: The construction is analogous to the fine
structural ultrapower, where the functions considered are all definable ones (using parameters).
I proved the following theorem there:

Theorem 4.1. Let ~̇A, ~̇B be predicate symbols with interpretations ~A, ~B. Let X̄ be a transitive set
which is closed under functions rudimentary in ~A, such that ~A, ~B ⊆ X̄. Let M̄ = 〈X̄, ~A, ~B〉 be
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definably well-ordered. Let X := rud ~A(X̄) and M = 〈X, ~A, ~B〉, and let Σ˜ω(M̄) = X ∩P(X̄).3Let
F be an extender on M̄ and M .4Let

π̄ : M̄ −→Σω
F M̄ ′,

where M̄ ′ = 〈X̄ ′, ~A′, ~B′〉 is transitive. Then the following is a correct definition of a function π:

π(valM̄ [t](~a)) := valM̄
′
[t](π̄(~a)),

where t ∈ T( ~̇A) and ~a ∈ X̄ is an assignment of its free variables.
Set X ′ := rud ~A′(X̄

′) and M ′ := 〈X ′, ~A′, ~B′〉. Then

π : M −→F M
′ and π̄ ⊆ π.

4.2 Extender ultrapowers of M and N̂

Lemma 4.2. Let M be a pPλ-structure, N = S(M). Let F be an extender on M and N . Let
ωρ1
M > κ := crit(F ), and let

π : M −→∗F M ′,

π̂ : N̂ −→∗F N ′.

Then N ′ = Ŝ(M ′) and π̂ ⊆ π.

Proof. Let λ = lh(F ).
Define a relation E on D∗(N̂ , κ, λ) by

〈~α, f〉E〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� | f(~γ) ∈ g(~δ)}).

Analogously, E′ and I ′ on D∗(M,κ, λ) are defined by

〈~α, f〉E′〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� | f(~γ) ∈ g(~δ)}),
〈~α, f〉I ′〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� | f(~γ) = g(~δ)}).

Let ϕV be the formula from Lemma 2.7, hence a Σ1-formula defining uniformly over pPλ-

structures M̃ the universe of Ŝ(M̃). In the following, I suppress the additional parameter
ht(M̃)−̇1 occurring in that formula, since it is preserved by π.

(1) Let 〈~α, f〉 ∈ D∗(M,κ, λ) have the property that M ′ |= ϕV[π(f)(~α)]. Then there is a
〈~α, f ′〉 ∈ D̄∗(M,κ, λ) with 〈~α, f〉I ′〈~α, f ′〉.

Proof of (1). Letting X := {≺~γ� |M |= ϕV[f(~γ)]}, we have

≺~α� ∈ F (X),

as follows from a  Loś theorem (see [Zem02, Lemma 3.1.11 (d)]; ϕV is Σ(1)
0 , ωρ1

M > κ).

3If ~B is empty, then it is a general fact that Σ˜ω(M̄) = X ∩ P(X̄), see [Jen72, Cor. 1.7]. But otherwise, this

need not be true, since X is the rudimentary closure of X̄ ∪ {X̄} only under functions which are rudimentary in
~A. So Σ˜ω(M̄) will contain each Bi as an element, while this is not necessarily true of X.

4Note that, letting κ = crit(F ), this implies that P(κ) ∩ X̄ = dom(F ) = P(κ) ∩X.
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Moreover, X ∈ |M |, since ϕV is Σ1, and f is a good Σ(n)
1 (M)-function. The substitution of

f in ϕV yields another Σ(n)
1 (M) formula. Since X ⊆ κ and ωρn+1

M > κ it follows that X ∈ |M |.
Since ≺~α� ∈ F (X), X is not empty. So fix some ~ξ < κ with f(~ξ) ∈ |N̂ |. Define a function

h : κlh(~α) −→ κ by

h(~δ) :=

{
〈~δ〉 if 〈~δ〉 ∈ X ,
〈~ξ〉 otherwise.

Obviously, h is a good Σ(n)
1 (M)-function; it is even a member of |M |. Now define f ′ : κlh(~α) −→

|N̂ | by
f ′(~γ) := f(h(~γ)).

Ten f ′ ∈ Γ̄∗(M), and for ≺~γ� ∈ X, f ′(~γ) = f(~γ). Let

X ′ := {≺~γ� | f(~γ) = f ′(~γ)}.

Then X ⊆ X ′. It follows that
~α ∈ F (X) ⊆ F (X ′),

and this means that 〈~α, f〉I ′〈~α, f ′〉, as wished. 2(1)

(2) If 〈~α, f〉 ∈ D∗(N̂ , κ, λ), then π(f)(~α) = π̂(f)(~α).

Proof of (2). I show the claim by E-induction on 〈~α, f〉. If it holds of all E-predecessors of
〈~α, f〉, then

π(f)(~α) = {π(g)(~β) | 〈~β, g〉E′〈~α, f〉}
⊇ {π(g)(~β) | 〈~β, g〉E〈~α, f〉}
= {π̂(g)(~β) | 〈~β, g〉E〈~α, f〉}
= π̂(f)(~α).

So it remains to show the reverse inclusion. So let 〈~β, g〉E′〈~α, f〉. I have to show that π(g)(~β) ∈
π̂(f)(~α).

Letting X := {≺~γ, ~δ� | g(~γ) ∈ f(~δ)}, we have

≺~β, ~α� ∈ F (X).

Let X ′ := {≺~γ, ~δ� |M |= ϕV[g(~γ)]}. Then X ⊆ X ′, as f ∈ Γ∗(N̂ , κ). It follows easily that

~β ∈ F ({~γ |M |= ϕV[g(~γ)]}).

But this means, by a  Loś theorem, that M ′ |= ϕV[π(g)(~β)]. Now let, by (1), 〈β, g′〉 ∈ D̄∗(M,κ, λ)
be chosen in such a way that 〈~β, g〉I ′〈~β, g′〉. By Lemma 3.6, Γ̄∗(κ,M) = Γ∗(N̂ , κ), and hence
〈~β, g′〉 ∈ D∗(N̂ , κ, λ).

We have 〈~β, g′〉E〈~α, f〉, which means, by inductive hypothesis, and since 〈~β, g〉I ′〈~β, g′〉,

π(g)(~β) = π(g′)(~β) = π̂(g′)(~β) ∈ π̂(f)(~α).

This is what I wanted to show. 2(2)

(3) π̂ ⊆ π.
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Proof of (3). For a ∈ |N̂ |, π̂(a) = π̂(consta)(0) = π(consta)(0) = π(a), by (2). 2(3)

(4) |N ′| = |Ŝ(M ′)|.

Proof of (4). For the direction from left to right, let a ∈ |N ′|. Then a = π̂(f)(~α) = π(f)(~α), for
some 〈α, f〉 ∈ D∗(N̂ , κ, λ). Hence 〈~α, f〉 ∈ D̄∗(M,κ, λ), and this means in particular that

≺~α� ∈ F ({≺~γ� |M |= ϕV[f(~γ)]}),

since {≺~γ� |M |= ϕV[f(~γ)]} = κ. By  Loś, it follows that

M ′ |= ϕV[π(f)(~α)].

So, a = π(f)(~α) ∈ |Ŝ(M ′)|, by Lemma 2.7.
For the other direction, let a ∈ |Ŝ(M ′)|. Let a = π(f)(≺~α�) for some 〈~α, f〉 ∈ D∗(M,κ, λ).

Then
M ′ |= ϕV[π(f)(~α)].

By (1), let 〈~α, f ′〉 ∈ D̄∗(M,κ, λ) = D∗(N̂ , κ, λ) have the property that 〈~α, f ′〉I ′〈~α, f〉. It then
follows by (2) that

a = π(f)(~α) = π(f ′)(~α) = π̂(f ′)(~α) ∈ |N ′|.
2(4)

(5) ĖN
′

= Ė Ŝ(M ′) and ḞN
′

= Ḟ Ŝ(M ′).

Proof of (5). One can argue here as in the proof of (4), using the Σ1-formulae ϕE and ϕF from
Lemma 2.7. 2(5), Lemma

Lemma 4.3. Let M be an active pPλ-structure, N = S(M). Let F be an extender with critical
point κ on M and N , and let

π : M −→∗F M ′,

σ : N −→∗F N ′.

Let ωρ1
M > κ. If π(s(M)) = s(M ′), then N ′ = S(M ′) and σ ⊆ π.

Proof. One can argue like in the proof of Lemma 4.2, with the difficulty that one cannot use the
Σ1 formula ϕV here in order to define |S(M)| uniformly in M . But abstracting from how ϕV is
formulated, it is obvious that |S(M)| is Σ1(M) in the parameter s(M) (note that “x < s+(M)”
Σ1(M) in s(M)). As π(s(M)) = s(M ′), one can deduce (as before) that |N ′| = |S(M ′)|.

In the same way, one show that ĖN
′

= ĖS(M ′), and that ḞN
′

= Ḟ S(M ′). The first is clear, as
ĖS(M) = Ė Ŝ(M)�s+(M); so with the help of the formula ϕE from Lemma 2.7, one can produce
a Σ1-formula defining ĖS(M) in the parameter s(M), uniformly in M . It is easy to see that one
can define F c = Ḟ S(M) as well, going back to the way it was defined (see the first part of this
paper, Def. 3.3). The first part

is not pub-
lished yet, so
this reference
needs to be
checked!

Lemma 4.4. Let M be a pPλ-structure, N = S(M). Let F be an extender on M and N with
critical point κ. Assume (κ+)M exists. Let

π : M −→∗F M ′,

σ : N̂ −→∗F N ′.

Then N ′ = Ŝ(M ′) and σ ⊆ π.
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Proof. If ωρ1
M > κ, then Lemma 4.2 yields the claim. So let ωρ1

N̂
= ωρ1

M ≤ κ. Then π and σ are
Σ0-extender ultrapower embeddings.

Let M = 〈JEMµ , EMtop, DM 〉, N = 〈JENν , ENtop〉 and N̂ = 〈JEN̂ν̂ , EN̂top〉. I distinguish two cases.
Case 1: µ is a successor ordinal.
Let µ = µ̄ + 1. Then ν = ν̄ + 1 is also a successor ordinal. Moreover, clearly, N = N̂ . As

τ := (κ+)M exists, F is an extender on M̄ := M ||µ̄. τ is also a cardinal in N , since |N | ⊆ |M |.
As |M ||τ | = |S(M ||τ)|, and since S(M ||τ) is a segment of N , F is also an extender on N̄ := N ||ν̄.

Moreover, the ∗-ultrapower of M̄ by F exists, since one can define a canonical embedding
ID∗(M̄, F ) −→ Ult(M,F ) by [~α, f ] 7→ π(f)(~α). For the same reason, the ∗-ultrapower of N̄ by
F exists also. Let

π̄ : M̄ −→∗F M̄ ′

σ̄ : N̄ −→∗F N̄ ′.

Obviously, N̄ = S(M̄). Since P(κ) ∩ |M̄ | = P(κ) ∩ |M |, it follows that ωρω
M̄
> κ, hence ωρω

N̄
=

ωρω̂̄N > κ, too. So π̄ and σ̄ are Σ∗-preserving. As R∗
M̄
6= ∅ 6= R∗

N̄
, it even follows that π̄ and σ̄

are Σω-preserving. If M̄ and N̄ are active, then as a consequence, π̄(s(M̄)) = s(M̄ ′).
Using Lemma 4.2, or Lemma 4.3 in case M̄ and N̄ are active, one gets:

N̄ ′ = S(M̄ ′), and σ̄ ⊆ π̄.

Let X̄ = |M̄ |, X = |M |, X̄ ′ = |M̄ ′|, Ȳ = |N̄ |, Y = |N | and Ȳ ′ = |N̄ ′|. Then X = rudĖM̄ ,EM̄top
(X̄)

and Y = rudĖN̄ ,EN̄top
(Ȳ ). Set:

M̃ := 〈X, ĖM̄ , EM̄top, DM̄ 〉,

M̃ ′ := 〈|M ′|, ĖM̄
′
, EM̄

′

top, DM̄ ′〉,

Ñ := 〈Y, ĖN̄ , EN̄top〉,

Ñ ′ := 〈|N ′|, ĖN̄
′
, EN̄

′

top〉.

Obviously,

π : M̃ −→F M̃ ′,

σ : Ñ −→F Ñ ′.

Since π̄ and σ̄ are Σω-preserving, Lemma 4.1 can be applied, showing that

|M ′| = |M̃ ′| = rudĖM̄′ ,EM̄′top
(X̄ ′),

|N ′| = |Ñ ′| = rudĖN̄′ ,EN̄′top
(Ȳ ′),

π(valĖ
M̄ ,EM̄top [c](~a, X̄)) = valĖ

M̄′ ,EM̄
′

top [c](π̄(~a), X̄ ′),

σ(valĖ
N̄ ,EN̄top [c](~b, Ȳ )) = valĖ

N̄′ ,EN̄
′

top [c](σ̄(~b), Ȳ ′),

for c ∈ C(Ė, Ḟ ) and ~a ∈ X̄, ~b ∈ Ȳ . In particular, π̄ ⊆ π and σ̄ ⊆ σ. Since S(M̄ ′) = N̄ ′, it follows
that

|S(M ′)| = |N ′|.

One can conclude that M ′ = M̄ ′ + 1. The crucial point here is that

ĖM
′
(α, b, x) ⇐⇒ (α < µ̄′ ∧ ĖM̄

′
(α, b, x)) ∨ (α = µ̄′ ∧ b ∈ Ḟ M̄

′
(x)).
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This follows from the fact that the corresponding is true of M and M̄ :

ĖM
′
(π(f1)(~α1), π(f2)(~α2), π(f3)(~α3))

⇐⇒ ≺~α1, ~α2, ~α3� ∈ F ({≺~γ1, ~γ2, ~γ3� | ĖM (f1(~γ1), f2(~γ2), f3(~γ3))})
⇐⇒ ≺~α1, ~α2, ~α3� ∈ F ({≺~γ1, ~γ2, ~γ3� |

| M̃ |= (f1(~γ1) < µ̄ ∧ Ė(f1(~γ1), f2(~γ2), f3(~γ3))) ∨
∨(f1(~γ1) = µ̄ ∧ f2(~γ2) ∈ Ḟ (f3(~γ3)))})

⇐⇒ (π(f1)(~α1) < π(µ̄) ∧ ĖM̃
′
(π(f1)(~α1), π(f2)(~α2), π(f3)(~α3))) ∨

∨(π(f1)(~α1) = π(µ̄) ∧ π(f2)(~α2) ∈ Ḟ M̃
′
(π(f3)(~α3))).

Clearly, that ĖM̃
′

= ĖM̄
′

and Ḟ M̃
′

= Ḟ M̄
′
, since ĖM̃ = ĖM̄ , Ḟ M̃ = Ḟ M̄ , and π(M̄) = M̄ ′.

This shows that M ′ =“M̄ ′ + 1”. One shows analogously that N ′ =“N̄ ′ + 1”. Hence

S(M ′) = S(M̄ ′ + 1) = S(M̄ ′) + 1 = N̄ ′ + 1 = N ′.

It remains to show that σ ⊆ π. One deduces from the preservation properties of π:

π(|N̄ |, ĖN̄ , Ḟ N̄ ) = π(|S(M̄)|, ĖS(M̄), Ḟ S(M̄))

= |S(π(M̄))|, ĖS(π(M̄)), Ḟ S(π(M̄))

= |S(M̄ ′)|, ĖS(M̄ ′), Ḟ S(M̄ ′)

= |N̄ ′|, ĖN̄
′
, Ḟ N̄

′
.

Now let x ∈ |N |. Then there are ~a ∈ |N̄ | and some c ∈ C(Ė, Ḟ ), such that x = valĖ
N̄ ,Ḟ N̄ [c](~a, |N̄ |).

Then

σ(x) = σ(valĖ
N̄ ,Ḟ N̄ [c](~a, |N̄ |))

= valĖ
N̄′ ,Ḟ N̄

′

[c](σ̄(~a), |N̄ ′|)

= valπ(ĖN̄ ),π(Ḟ N̄ )[c](π(~a), π(|N̄ |))

= π(valĖ
N̄ ,Ḟ N̄ [c](~a, |N̄ |))

= π(x).

I used the fact here that the map A,B, c,~a 7→ valA,B [c](~a) is Σ1. This is what needed to be
shown, so case 1 is dealt with.

Case 2: ht(M) is a limit ordinal.
I verify first that σ ⊆ π. For α < ν̂, set:

Γα := (κ|N̂ ||α|) ∩ |N |,
Γ̄α := (κ|N̂ ||α|) ∩ |M |.

Then Γα = Γ̄α:
It’s clear that Γα ⊆ Γ̄α. I show the opposite inclusion. So let f ∈ Γ̄α. We know that DM

is unbounded in OnM (Lemma 2.4). Hence β + 1 < µ can be chosen so that f ∈ |M ||β + 1|
and additionally ω(β + 1) ∈ DM . Clearly, f ∈ Σ1(M ||β + 1), and by Lemma 3.4 it follows that
f ∈ Σ1(S(M ||β + 1)). As ω(β + 1) ∈ DM , S(M ||β + 1) is a segment of N̂ . Let S(M ||β) = N̂ ||β′.
Then f ∈ N̂ ||β′ + 1, and in particular, f ∈ |N̂ |. So f ∈ Γα, as claimed. Familiar arguments now
show that σ�|N̂ ||α| = π�|N̂ ||α|, and since this holds for every α < ht(N̂), this proves that σ ⊆ π.
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In the following, I make use of the fact that σ is a Σ0-extender ultrapower embedding, and
is, in particular, cofinal:

“N̂ =
⋃

ωα∈DM

S(M ||α)”,

“N ′ =
⋃

ωα∈OnN

σ(N̂ ||α)”.

So we get:
“N ′ =

⋃
ωα∈DM

σ(S(M ||α))”.

But since σ ⊆ π, and since π : M −→Σ0 M
′ is cofinal, this means:

N ′
passive = “

⋃
ωα∈DM

π(S(M ||α))”

= “
⋃

π(ωα)∈DM′

S(M ′||π(α))”

= “
⋃

ωβ∈DM′

S(M ′||β)”

= Ŝ(M ′)
passive

.

The above argument shows moreover that ĖN
′

= ĖS(M ′).
In case M is active, it is easily seen that ḞM

′
= ḞN

′
. This is because then |M | = |N̂ |, hence

π = σ, and |M ′| = |N ′|. It follows that for a = σ(f)(~α) ∈ |N ′|,

ḞN
′
(a) ⇐⇒ ḞN

′
(σ(f)(~α))

⇐⇒ ≺~α� ∈ F ({~β | Ḟ N̂ (f(~α))})
⇐⇒ ≺~α� ∈ F ({~β | ḞM (f(~α))})
⇐⇒ ḞM

′
(π(f)(~α))

⇐⇒ ḞM
′
(a).

This shows that N ′ = Ŝ(M ′), as wished.

Lemma 4.5. Let M be a pPλ-structure, N = S(M). Let F be an extender on M and N with
critical point κ. Assume (κ+)M exists. Then Ult∗(M,F ) exists iff Ult∗(N̂ , F ) exists, and is of
the form N̂ ′, for a pPs-structure N ′.

Proof. If Ult∗(M,F ) exists, then there is an embedding k : ID∗(N̂ , F ) −→ ID∗(M,F ), defined
by

k([~α, f ]ID∗(N̂,F )) = [~α, f ]ID∗(M,F ).

This works because, letting γ := lh(F ), D∗(N̂ , κ, γ) ⊆ D∗(κ,M, γ), as follows from Lemma 3.6.
Let’s turn to the opposite direction.

Case 1: ωρ1
M = ωρ1

N̂
> κ.

Then we’re not dealing with Σ0-ultrapowers. Let

σ : N̂ −→∗F N̂ ′,

17



and set M ′ := Λ(N ′). This makes sense, as N ′ is a pPs-structure. I am going to construct an
embedding

j : ID∗(M,F ) −→M ′

which preserves the ∈-relation, thus showing that Ult∗(M,F ) is well-founded.
Consider the relation

R = {〈〈m, q〉, x〉 | x = h1
M (m, q) ∧ q ∈ [ht(N̂)]<ω}.

Obviously, R is uniformly Σ1(M) in ht(M)−̇1. Let h be a uniform uniformization of R which is
Σ1(M) in ht(M)−̇1, i.e., let

∀x ∈ |M |((∃m, q ∈ |M | x = h1
M (m, q) ∧ q ∈ [ht(N̂)]<ω)

−→ x = h1
M (h(x)) ∧ (h(x))2

1 ∈ [ht(N̂)]<ω),

and h is (uniformly) Σ1(M) in ht(M)−̇1.
Then for f ∈ Γ∗(M,κ), the function

f̄ := h ◦ f

is also in Γ∗(M,κ). Since moreover, ran(h) ⊆ |N̂ |, so that f̄ ∈ Γ̄∗(κ,M), it follows by Lemma
3.6 even that

f̄ ∈ Γ∗(N̂ , κ).

So the value σ(f̄) can be made sense of as usual. This can be made use of in order to define:

j([~α, f ]ID∗(M,F )) := (h1
M ′ ◦ σ(f̄))(~α).

I prove the correctness of this definition. The same proof shows that j is Σ1-preserving, which
is more than needed in order to conclude the well-foundedness fact – it suffices to know:

[~α, f ]ID∗(M,F )E[~β, g]ID∗(M,F ) −→M ′ |= j([~α, f ]ID∗(M,F )) ∈ j([~β, g]ID∗(M,F )).

So let 〈~α, f〉, 〈~β, g〉 ∈ Γ∗(M,κ), and let [~α, f ]ID∗(M,F ) = [~β, g]ID∗(M,F ). I have to show that
h1
M ′(σ(f̄)(~α)) = h1

M ′(σ(ḡ)(~β)). Let χ(x, y) be uniformly Σ1, so that

M |= χ(x, y) ⇐⇒ h1
M (x) = h1

M (y).

We have:

[~α, f ]ID∗(M,F ) = [~β, g]ID∗(M,F )

⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� < κ |M |= f(~γ) = g(~δ)})
⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� < κ |M |= χ[f̄(~γ), ḡ(~δ)]})
⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� < κ | N̂ |= f̂N (χ)[f̄(~γ), ḡ(~δ),ht(N̂)−̇1]})
⇐⇒ N̂ ′ |= f̂N (χ)[σ(f̄)(~α), σ(ḡ)(~β),ht(N ′)−̇1]

⇐⇒ N̂ ′ |= f̂N ′(χ)[σ(f̄)(~α), σ(ḡ)(~β),ht(N ′)−̇1]

⇐⇒ M ′ |= χ[σ(f̄)(~α), σ(ḡ)(~β)]

⇐⇒ h1
M (σ(f̄)(α)) = h1

M (σ(ḡ)(~β)),

and that’s what was to be shown. In the transition from N̂ to N̂ ′, I used the  Loś theorem,
which is true for Σ1-formulae, as ωρ1

N̂
> κ (by [Zem02, Lemma 3.1.11 (d)], it even holds for
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Σ(1)
0 -formulae). It follows from Corollary 2.9 that f̂N = f̂N ′ . As a side remark, it is easy to see

that the map π : M −→ M ′ defined by π(x) = j([0, constx]ID∗(M,F )) is precisely the extender
ultrapower embedding.

Case 2: ωρ1
N̂

= ωρ1
M ≤ κ.

So in this case, Σ0-extender ultrapowers are formed. Let

σ : N̂ −→F N
′.

Let ht(N) = ν and ht(M) = µ.
Case 2.1: ν = ν̄ + 1.
Then also µ = µ̄ + 1. Let M̄ := M ||µ̄ and N̄ := N ||ν̄. Then σ̄ : N̄ −→∗F N̄ ′ exists, and

ωρω
N̄
> κ, as can be shown using an argument of the proof of Lemma 4.4, in case 1. Arguing like

in case 1 of the current proof, it can be shown that consequently, π̄ : M̄ −→∗F M̄ ′ exists: The
onlyl problematic case is that N̄ is active. Then N̄ is uniformly Σ1(M̄) in the parameter s(M̄).
If in the argument of case 1 one replaces N̂ with N̄ , N̂ ′ with N̄ ′, M with M̄ , M ′ with M̄ ′ and σ
with σ̄ everywhere, the result is a proof of the desired conclusion. Note that σ̄ is Σω-preserving,
so that σ̄(s(N̄)) = s(N̄ ′). This is crucial, since now R is uniformly Σ1(M̄) in s(M̄), and I need
that the same Σ1-definition in the parameter σ̄(s(M̄)) defines the right relation in M̄ ′.

Now an application of Lemma 4.1 yields that Ult(M,F ) exists.
Case 2.2: ν and µ are limit ordinals.
The let σ : N̂ −→F N̂ ′, M ′ = Λ(N ′). As in case 1, I am going to define an embed-

ding from ID∗(M,F ) into M ′, verifying that ID∗(M,F ) is well-founded. Since we’re in case 2,
ID∗(M,F ) = ID0(M,F ). Wloglet M and N be passive; otherwise, Γ0(κ,M) = Γ0(κ, N̂) and the
well-foundedness is trivial. So in the following, I don’t need to distinguish between N̂ and N . I
define k : ID(M,F ) −→M ′ as follows.

Let [~α, f ] ∈ ID(M,F ). Then let f = h1
M (m, d), where d ∈ [ht(N)]<ω. Set

k([~α, f ]) := h1
M ′(m, d)(~α).

I’ll show that this definition is correct. Again, the same proof will show that k is Σ1-preserving.
So let 〈~α, f〉, 〈~β, g〉 ∈ D0(κ, λ,M), so that [~α, f ] = [~β, g], where λ = lh(F ). Let f = h1

M (m, d),
g = h1

M (n, e). Let χ(u, v, w, x, y, z) be a Σ1-formula that has the following property for every
pPλ-structure P :

P |= χ[a, b, c, d, e, f ] ⇐⇒ “h1
P (a, b) and h1

P (c, d) are functions,
and h1

P (a, b)(e) ∼= h1
P (c, d)(f).”

Set:
u := {≺~µ, ~ν� < κ | f(~µ) = g(~ν)}.

[~α, f ] = [~β, g] says precisely that ≺~α, ~β� ∈ F (u) = σ(u) (F may be assumed to be whole).
Choose γ < ht(M) with ωγ ∈ DM , so that f, g ∈ |M ||γ| and S(M ||γ) is a segment of N – for

example, γ can be chosen to be a successor ordinal. Let f = h1
M ||γ(m̄, d̄), g = h1

M ||γ(n̄, ē).

(1) h1
Λ(σ(S(M ||γ)))(m̄, σ(d̄)) = h1

M ′(m,σ(d)). The corresponding is true of n̄, ē, n, e.

Proof of (1). Let M ||γ = h1
M (q, z), z ∈ [ht(N)]<ω, q < ω. If ψ is a Σ1-formula which expresses
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the desired property uniformly, then we have:

h1
h1
M (q,z)(m̄, d̄) = h1

M (m, d)

⇐⇒ M |= ψ[q, z, m̄, d̄,m, d]
⇐⇒ N |= fN (ψ)[q, z, m̄, d̄,m, d]
⇐⇒ N ′ |= fN (ψ)[q, σ(z), m̄, σ(d̄),m, σ(d)]
⇐⇒ N ′ |= fN ′(ψ)[q, σ(z)m̄, σ(d̄),m, σ(d)]
⇐⇒ M ′ |= ψ[q, σ(z), m̄, σ(d̄),m, σ(d)]
⇐⇒ h1

h1
M′ (q,σ(z))(m̄, σ(d̄)) = h1

M ′(m,σ(d)).

So it remains to show that h1
M ′(q, σ(z)) = Λ(σ(S(M ||γ))). To this end, let N ||γ̄ = S(M ||γ).

Then we have:

M |= N ||γ̄ = S(h1
M (q, z))

⇐⇒ M |= ψ′[N ||γ̄, q, z]
⇐⇒ N |= f ′N (ψ′)[N ||γ̄, q, z]
⇐⇒ N ′ |= f ′N ′(ψ

′)[σ(N ||γ̄), q, σ(z)]
⇐⇒ M ′ |= σ(N ||γ̄) = S(h1

M ′(q, σ(z)))
⇐⇒ σ(S(M ||γ)) = S(h1

M ′(q, σ(z)))
⇐⇒ Λ(σ(S(M ||γ))) = h1

M ′(q, σ(z)),

as claimed. Here, I used the functions f ′N and f ′N ′ from Lemma 3.1. Their definitions are
uniform, and in the case that the structures have limit height, as in the current case, no additional
parameters are needed. The same proof shows the corresponding for n̄, ē, n, e. 2(1)

(2) σ(u) = {≺~µ, ~ν� < σ(κ) | h1
M ′(m,σ(d))(~µ) = h1

M ′(n, σ(e))(~ν)}.
Proof of (2).

u = {≺~µ, ~ν� < κ |M ||γ |= χ[m̄, d̄, n̄, ē, 〈~µ〉, 〈~ν〉]}
= {≺~µ, ~ν� < κ | N ||γ̄ |= fN ||γ̄(χ)[m̄, d̄, n̄, ē, 〈~µ〉, 〈~ν〉, γ̄−̇1]}.

So u is defined in N by a Σ0-formula in the parameters N ||γ̄, m̄, d̄, n̄, ē and γ̄−̇1. As σ is
Σ1-preserving, it follows that

σ(u) = {≺~µ, ~ν� < σ(κ) | σ(N ||γ̄) |= fN ||γ̄(χ)[m̄, σ(d̄), n̄, σ(ē), 〈~µ〉, 〈~ν〉, σ(γ̄)−̇1]}
= {≺~µ, ~ν� < σ(κ) | σ(N ||γ̄) |= fσ(N ||γ̄)(χ)[m̄, σ(d̄), n̄, σ(ē), 〈~µ〉, 〈~ν〉, σ(γ̄)−̇1]}
= {≺~µ, ~ν� < σ(κ) | Λ(σ(N ||γ̄)) |= χ[m̄, σ(d̄), n̄, σ(ē), 〈~µ〉, 〈~ν〉, σ(γ̄)−̇1]}
= {≺~µ, ~ν� < σ(κ) | h1

Λ(σ(N ||γ̄))(m̄, σ(d̄))(~µ) = h1
Λ(σ(N ||γ̄))(n̄, σ(ē))(~ν)}.

By (1), this means precisely:

σ(u) = {≺~µ, ~ν� < σ(κ) | h1
M ′(m,σ(d))(~µ) = h1

M ′(n, σ(e))(~ν)},

as claimed. 2(2)

Clearly, ≺~α, ~β� ∈ F (u) = σ(u), and this means by (2) that

h1
M ′(m,σ(d))(~α) = h1

M ′(n, σ(e))(~β),

which shows that the definition of k is correct. Obviously, the same proof shows that

[~α, f ]E[~β, g] =⇒ k([~α, f ]) ∈ k([~β, g]),

and hence the well-foundedness of ID(M,F ).
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5 Iterations

I now introduce in the next subsection a notion of normal iteration (called normal s-iteration)
of a pPλ-structure, which mimics the way pPs-structures are usually iterated. In the following
subsections, I develop the theory of this kind of iterations, and in the end I introduce the fitting
notion of normal iteration of a pPs-structure, which is basically the same as the notion of maximal
iteration used in the Mitchell-Steel setup. The presentation follows [Jen01].

5.1 Normal s-iterations

In the following definition, note that it doesn’t matter for the formation of fine-structural ul-
trapowers of a (pP)λ-structure whether we take it to be its Σ0-code or just the bare structure,
since the Σ0-code just has some additional parameters, and the functions with respect to which
the ultrapowers are formed have to be boldface definable anyway, so the additional parameters
won’t make a difference.

Definition 5.1. Let I = 〈〈Mi | i < θ〉, D, 〈νi | i ∈ D〉, 〈ηi | i < θ〉, T, 〈πi,j | i ≤T j < θ〉〉 be an
iteration (in the sense of [Jen97, §4, p. 3]) of pPλ-structures. Set: si := s(νi)Mi , s+

i := s+(νi)Mi .
Then I is a normal s-iteration with s-indices 〈〈si, s+

i 〉 | i ∈ θ〉 iff the following hold:

(a) I is standard (in the sense of [Jen97, §4, p. 4]).

(b) s+
h < νi for h, i ∈ D with h < i.

(c) T (i+ 1) = the least ξ ∈ D with κi < sξ, if i ∈ D; otherwise T (i+ 1) = i. 5

(d) Let i ∈ D. Then there is no ν > νi such that EMi
ν 6= ∅ and s+(ν)Mi < s+(νi)Mi . I’ll say

that νi is applicable in Mi in order to express this.

Definition 5.2. A pPλ-structure M is normally s-iterable if it has a successful normal iteration
strategy S. This means: S is a partial function whose domain is contained in the class of normal
s-iterations of M of limit length, so that if I is a normal s-iteration of M which lies in the domain
of S, S(I) is a cofinal branch through the iteration tree. I’ll say that an iteration I of M is
according to S, if for every limit ordinal λ < lh(I), S(I|λ) = (<T )“{λ} (here, T = T I is the tree
of the iteration I). S is a successful normal iteration strategy for M if every normal iteration
of M which is according to S can be continued according to S. This means firstly that if I is
such an iteration of limit length, then b := S(I) is defined and the direct limit of the structures
on b is well-founded. Secondly, every normal iteration of M which is according to S and has
successor length, has to be continuable in the sense that one can pick any extender index in the
last model of the iteration which satisfies (b) of Definition 5.1, apply it to the model prescribed
by that definition, and thus produce a well-founded model.

This notion can also be defined using an iteration game, as in [Ste00].

Fix a normal s-iteration I = 〈〈Mi | i < θ〉, D, 〈νi | i ∈ D〉, 〈ηi | i < θ〉, T, 〈πi,j | i ≤T j < θ〉〉
in the following.

Lemma 5.3. Let i = T (h+ 1) and h+ 1 ≤T j. Then πi,j�κh = id�κh.

Proof. Suppose the statement of the lemma fails to hold of i. Let j be the least counterexample.
Case 1: j = h+ 1.

5Henceforth, I denote the immediate <T -predecessor of i+ 1 by T (i+ 1).
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In this case,
πi,j : Mi||ηh −→∗

E
Mh
νh

Mj ,

and hence κh = crit(πi,j).

Case 2: j is the immediate <T -successor of j′ and h+ 1 ≤T j′.
Then let j = k + 1, hence j′ = T (k + 1). As in case 1, it follows that κk = crit(πj′,j).

According to condition (c) of normality, κk ≥ si, as i < j′ = T (k + 1). Moreover, again by
condition (c), κh < si. Hence κh < si ≤ κk = crit(πj′,j), that is, in particular,

πj′,j�κh = id�κh.

By minimality of j, we have:
πi,j′�κh = id�κh.

It follows immediately that the corresponding also holds for πi,j = πj′,jπi,j′ .

Case 3: j is a limit point of T .

This cannot happen, as follows immediately from the minimality of j and the basic properties
of the direct limit.

So all cases are excluded, and hence the lemma is proven.

Lemma 5.4. Let j ∈ D ∩ i. Then JE
Mj

s+j
= JE

Mi

s+j
, and we have: s+

j = (sj)+Mi . The proof shows

moreover that for i ∈ D we have: τi < ηi.

Proof. Assume the contrary. We may assume that the iteration is direct (meaning that D = ∪θ
– see [Jen97, §4, p. 4]). Let i be minimal so that there is a j < i such that the claim fails. Let j
be least with this property.

Case 1: i is a successor ordinal.
Let i = h+ 1 and ξ = T (i). Then ξ ≤ h < i and j ≤ h. By minimality of i, it follows that

JE
Mξ

s+ξ
= JE

Mh

s+ξ
,

and s+
ξ is a cardinal in Mh. By choice of ξ, κh < sξ. It follows that s+

ξ ≥ (κ+
h )JE

Mh
νh = τh. Hence

JE
Mξ

τh
= JE

Mh

τh
. In particular, ηh ≥ s+

ξ ≥ τh.

(1) τh < ηh.

Proof of (1). Assume the contrary. It follows that ηh = s+
ξ = τh, and further that ηh < ht(Mξ):

Otherwise,
ht(Mξ) = ηh = s+

ξ ≤ νξ ≤ ht(Mξ),

hence ηh = νξ = s+
ξ = τh, and it would follow that

(∗) λξ = the largest cardinal of JE
Mξ

νξ

= the largest cardinal of JE
Mh

τh
= κh < sξ ≤ λξ,
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a contradiction.
The fact that ηh < ht(Mξ) entails that ωρωMξ||ηh ≤ κh < sξ. Hence s+

ξ is not a cardinal in
Mξ||(s+

ξ + 1) = Mξ||(ηh + 1). Hence s+
ξ = νξ, since s+

ξ is a cardinal in Mξ||νξ when s+
ξ < νξ.

Again, as a consequence, ηh = νξ = s+
ξ = τh, from which the contradiction (∗) follows as above.

2(1)

(2) JE
Mi

νh
= JE

Mh

νh
, and νh ∈ CardMi .

Proof of (2). It follows from (1) that

JE
Mi

νh
= πξ,i(JE

Mξ

τh
) = πξ,i(JE

Mh

τh
) = JE

Mh

νh
,

and since τh is a cardinal in Mξ||ηh, νh = πξ,i(τh) is a cardinal in Mi. 2(2)

It follows from this that the statement of the lemma holds for h and i: As νh ≥ s+
h , it follows

that
JE

Mi

s+h
= JE

Mh

s+h
.

Moreover, s+
h is a cardinal in Mi: As τh < ηh, either s+

h = νh = πξ,i(τh) ∈ CardMi , hence

the image of a successor cardinal in Mξ||ηh, or s+
h < νh, which implies that s+

h ∈ CardJE
Mh

νh =

CardJE
Mi

νh ⊆ CardMi , as νh ∈ CardMi . But then s+
h even is the successor cardinal of sh in Mi,

as this is true in Mh||νh: If α were a cardinal in Mi between sh and s+
h , then there would be a

surjection f : sh −→ α with f ∈Mh||νh ⊆Mi, a contradiction.
Hence the claim holds for h, i. It follows that j < h. As h < i, the claim is true of j, h, by

minimality, that is,

s+
j is the successor cardinal of sj in Mh and JE

Mj

s+j
= JE

Mh

s+j
.

By (b) in the definition of normal s-iterations (Definition 5.1), νh > s+
j . Moreover, by (2),

JE
Mi

νh
= JE

Mh

νh
, and νh is a cardinal in Mi. Hence

JE
Mi

s+j
= JE

Mh

s+j
= JE

Mj

s+j
,

and s+
j is the successor cardinal of sj in JE

Mh

νh
= JE

Mi

νh
, hence in Mi. Hence this case is excluded.

Case 2: i is a limit ordinal.
Let j < l <T i be such that there are no truncation points in (<T “{i}) \ l, meaning that if

l ≤ h + 1 <T i, then ηh = ht(MT (h+1)). That this is possible is a consequence of the definition
of an iteration (see [Jen97, §4, p. 3]).

Pick h, h′ so that l <T h + 1 <T h′ + 1 are in immediate succession in T . According to
condition (c) in the definition of normality it then follows that

sj ≤ κh < sl ≤ κh′ .

By minimality of i,
s+
j = (sj)+Mh+1 and JE

Mj

s+j
= JE

Mh+1

s+j
.

By choice of l, Mh+1 = Mh+1||ηh′ and hence κh′ is a limit cardinal in Mh+1. So κh′ is a
limit cardinal in Mh+1 greater than sj , and s+

j = (sj)+Mh+1 , hence s+
j < κh′ . But since

πh+1,i�κh′ = id�κh′ ,
JE

Mi

s+j
= πh+1,i(JE

Mh+1

s+j
) = JE

Mh+1

s+j
= JE

Mj

s+j
,
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and s+
j = πh+1,i(s+

j ) = πh+1,i((sj)+Mh+1) = (sj)+Mi . So this case is also eliminated, and the
proof is complete.

Lemma 5.5. For j ∈ D and i ∈ D ∩ j,

s+
i ≤ s

+
j .

If s+
i = s+

i+1, then s+
i = νi, in particular, Mi is not modest. Moreover, in this case, s+

i+1 <

νi+1 = ht(Mi+1) (and so s+
i+1 < s+

i+2, if i+ 1, i+ 2 ∈ D), and νi < ht(Mi+1).

Before beginning the proof of this lemma, let me recall a general fact that was proved in the
first part of this paper:

Lemma 5.6. Let M be an active, weak j-ppm. Then |M | = h1
M (s(M)), in particular ωρ1

M ≤
s(M). Moreover, if µ < ν ≤ ht(M), then s+(µ)M 6= s+(ν)M .

Proof of Lemma 5.5. The iteration may be assumed to be direct (meaning that D = ∪θ). Let
i < θ, ξ = T (i+ 1) and M∗ = Mξ||ηi. Assume that s+

i ≥ s
+
i+1.

(1) νi+1 = ht(Mi+1).

Proof of (1). We have:
ωρ1
Mi+1||νi+1

≤ si+1 < s+
i+1 ≤ s

+
i < νi+1.

Hence νi+1 = ht(Mi+1), since otherwise s+
i wouldn’t be a cardinal in Mi+1, contradicting Lemma

5.4. 2(1)

Hence EM
∗

top 6= ∅ 6= E
Mi+1
top .

(2) s(M∗) < τi.

Proof of (2). Assume the contrary, so that τi ≤ s(ηi)Mξ < ηi. It follows that

s+
i+1 > s(Mi+1) ≥ supπξ,i+1“s(M∗) ≥ supπξ,i+1“τi = νi ≥ s+

i .

For details, see the proof of Lemma 5.25. This chain of inequations contradicts the assumption
that s+

i+1 ≤ s
+
i . 2(2)

(3) s+
ξ ≤ s+(M∗).

Proof of (3). Otherwise, s+(M∗) < s+
ξ , hence ηi 6= νξ. Then it would have to be the case that

ηi < νξ, for otherwise, ηi > νξ would imply that

s+(ηi)Mξ < s+(νξ)Mξ ≤ νξ < ηi,

contradicting condition (d) in the definition of normality; the application of the extender EMξ
νξ

wouldn’t have been allowed. So it follows that s+
ξ > ηi, for otherwise

ωρ1
Mξ||ηi ≤ s(ηi)

Mξ < s+
ξ ≤ ηi < νξ,

so that s+
ξ wouldn’t be a cardinal in Mξ||νξ. But τi is a cardinal in JE

Mi

s+ξ
= JE

Mξ

s+ξ
(or τi = s+

ξ ),

while ηi is maximal with this property, so that ηi ≥ s+
ξ > ηi, a contradiction. 2(3)

Thus far, we have seen:

(4) s(ηi) < τi ≤ s+
ξ ≤ s+(ηi) in Mξ.
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(5) τi = s+(ηi)Mξ = s+
ξ .

Proof of (5). We have: τi ∈ (s(ηi), (s(ηi)+)Mξ ] and τi is a cardinal in M∗. Hence τi =
(s(ηi)+)M

∗
= s+(ηi)Mξ . Using (4), it follows that τi ≤ s+

ξ ≤ s+(ηi)Mξ = τi. 2(5)

(6) νξ = ηi.

Proof of (6). If it were the case that νξ 6= ηi, then it would follow that s+
ξ 6= s+(ηi)Mξ ,

contradicting (5) – the map µ 7→ (s+(µ))Mξ is injective, by Lemma 5.6 2(6)

Hence s(ηi)Mξ = s(νξ)Mξ = sξ > κi, so that

s(Mi+1) ≥ lubπξ,i+1“sξ > πξ,i+1(κi) = λi.

As a consequence,

s+
i+1 = s+(νi+1)Mi+1 ≥ (λ+

i )Mi+1 = νi ≥ s+
i ≥ s

+
i+1;

in order to see that (λ+
i )Mi+1 = νi, note that JE

Mi

νi = JE
Mi+1

νi and νi ∈ CardMi+1 – see the proof
of Lemma 5.4, Case 1. So s+

i = s+
i+1, and thus it is shown that 〈s+

i | i ∈ D〉 is non-decreasing.
Moreover, s+

i = νi, hence Mi is not modest, as claimed. Finally, by Lemma 5.4, τi < ηi, and
hence νi = πξ,i+1(τi) ∈Mi+1. So we have shown:

s+
i+1 = s+

i = νi < ht(Mi+1) = νi+1.

Lemma 5.7. For i < j < θ with i, j ∈ D, λj > s+
i .

Proof. We may assume I is direct. By Lemma 5.4, s+
i is a successor cardinal in Mj , and by

condition (b) in the definition of normality, νj > s+
i . It follows that s+

i is a successor cardinal in
JE

Mj

νj . Since moreover,

JE
Mj

νj |= λj is a limit cardinal and the largest cardinal,

it follows that s+
i < λj .

Definition 5.8. For i < j < θ, set:

λi,j ' min{λl | l ∈ [i, j) ∩D}.

Remark: In order to reduce the notational complexity, I will use the following conventions in
situations where several iterations occur, if possible: If I ′ = 〈〈M ′i | i < θ′〉, D′, 〈ν′i | i ∈ D′〉, 〈η′i |
i < θ′〉, T ′, 〈π′i,j | i ≤T ′ j < θ′〉〉 is an iteration, I write:

λ′i,j ' min{λ′l | l ∈ [i, j) ∩D′},

and similarly for Ī and λ̄i,j , etc.

Corollary 5.9. If h < i < j < θ, h ∈ D, then s+
h < λi,j. Moreover, for i < j < θ with i ∈ D,

si = λi =⇒ λi,j = λi,

si < λi =⇒ λi,j > s+
i .

So in each case, λi,j ≥ si.
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Proof. This follows from Lemma 5.7.

Lemma 5.10. For i < j with [i, j) ∩D 6= ∅,

λi,j is a limit cardinal in Mj , and JE
Mi

λi,j = JE
Mj

λi,j .

Proof. Assume the iteration is direct. Fix i. I proceed by induction on j ∈ (i, θ).
j = i+ 1 Then λi,j = λi < νi, and we have JE

Mi

νi = JE
Mi+1

νi , in particular, JE
Mi

λi,j
= JE

Mj

λi,j
.

Hence λi is a limit cardinal in JE
Mi+1

νi . But νi is a cardinal in Mi+1, since νi = πξ,i+1(τi). Hence,
by acceptability of Mi+1, λi is a limit cardinal also in the full structure Mi+1.

j → j + 1 Firstly, JE
Mi

λi,j+1
= JE

Mj+1

λi,j+1
: By the inductive hypothesis,

JE
Mi

λi,j+1
= JE

Mj

λi,j+1
,

since λi,j+1 ≤ λi,j . Moreover, it is easy to see that

JE
Mj

νj = JE
Mj+1

νj .

Since
νj > λj ≥ λi,j+1

it thus follows that
JE

Mi

λi,j+1
= JE

Mj

λi,j+1
= JE

Mj+1

λi,j+1
.

It remains to be shown that λi,j+1 is a limit cardinal in Mj+1.
Case 1.: λi,j = λi,j+1.
In this case, λj ≥ λi,j . By inductive assumption, λi,j is a limit cardinal in Mj . Obviously,

νj > λj ≥ λi,j . So we have:

λi,j+1 = λi,j is a limit cardinal in JE
Mj

νj = JE
Mj+1

νj .

As before, this implies that λi,j+1 is a limit cardinal in Mj+1 as well.

Case 2.: λi,j > λi,j+1.
In this case, λj = λi,j+1 < λi,j . Obviously, λj is a limit cardinal in JE

Mj

νj = JE
Mj+1

νj , which
implies that λj is a limit cardinal in Mj+1. As λj = λi,j+1, this is all that’s needed.

Lim(j) As the set of truncation points in the branch <T “{j} is bounded in j, i0 + 1 <T j
can be chosen in such a way that the following conditions are satisfied:

(a) There are no truncations in (<T “j) \ i0.

(b) i0 ≥ i.

(c) λi,j = λi,i0 .

Now define a sequence 〈in | n < ω〉 as follows: i0 has been defined already. If in is defined,
then let in+1 + 1 be the immediate T -successor of in + 1 with in+1 + 1 <T j. So the sequence
〈in + 1 | n < ω〉 enumerates the first ω members of the branch below j that are above i0 + 1,
<T -increasingly. We have:
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(∗) There is an n ∈ ω, such that κin+2 ≥ λin+1 .

Proof of (∗). Assume the contrary. So for each n < ω,

κin+2 < λin+1 .

Since
crit(πin+1,in+1+1) = κin+1 und πin+1,in+1+1(κin+1) = λin+1 ,

it follows that

πin+1,j(κin+1) = πin+1+1,jπin+1,in+1+1(κin+1)
= πin+1+1,j(λin+1)
> πin+1+1,j(κin+2).

This holds for all n < ω, hence 〈πin+1,j(κin+1) | n < ω〉 is a decreasing ∈-chain in Mj , which is
well-founded, a contradiction. 2(∗)

Now pick n as in (∗). Since the sequence 〈κin | 1 ≤ n < ω〉 is strictly increasing (as κin+1 <
sin+1 ≤ κin+2), it follows that

crit(πin+2+1,j) = κin+3 > κin+2 ≥ λin+1 ≥ λi,j .

Set: i′ = in+2 + 1. Then by minimality of j,

JE
Mi

λi,i′
= JE

M
i′

λi,i′
,

and λi,i′ is a limit cardinal in Mi′ . As i0 was chosen so that λi,j = λi,i0 , and as i′ > i0, it follows
that λi,j = λi,i′ . We get:

JE
Mj

λi,j = πi′,j(JE
M
i′

λi,i′
) = JE

M
i′

λi,i′
= JE

Mi

λi,i′
= JE

Mi

λi,j ,

and λi,j = πi′,j(λi,i′) is a limit cardinal in Mj .
The proof of the following lemma illustrates how λi,j takes over the role of λi in the usual

Friedman-Jensen setting.

Lemma 5.11. Let I = 〈〈Mi | i < θ〉, D, 〈νi | i ∈ D〉, 〈ηi | i < θ〉, T, 〈πi,j | i ≤T j < θ〉〉 be a
normal s-iteration of the pPλ-structure M , with s-indices 〈〈si, s+

i 〉 | i ∈ D〉. Then for i ∈ D, the
following hold:

(a) If νi = ht(Mi), then P(τi) ∩Σ1(Mi) ⊆ Σ1(MT (i+1)||ηi).

(b) If νi < ht(Mi), then EMi
νi is Σ1−amenable (see [Jen97, §1, p. 12]) wrt. MT (i+1)||ηi.

Proof. Assume the contrary. Let I be a counterexample of minimal length. We may assume I is
direct. Let i ∈ D be such that (a) or (b) are not satisfied. Then θ = i+ 2, for otherwise I|(i+ 2)
(this is the canonically defined initial segment of I of length i+ 2 ) a shorter normal s-iteration
which is a counterexample. For the same reason, (a) and (b) hold for all j < i.

(1) T (i+ 1) < i.

Proof of (1). Otherwise, T (i+ 1) = i and hence (a) and (b) hold trivially. 2(1)

Let ν = νi, κ = κi, δ = T (i+ 1) and τ = τi.

(2) ν = ht(Mi).
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Proof of (2). Otherwise ν < ht(Mi). Let α < λi = lh(EMi
ν ). By normality of I, κ < sδ ≤ λδ,i;

see Corollary 5.9. Moreover, λδ,i is a limit cardinal in Mi, by Lemma 5.10. Together with the
acceptability of Mi, this yields: (EMi

ν )α := {x ⊆ κ | α ∈ EMi
ν (x)} ∈ JE

Mi

(κ++)Mi
⊆ JE

Mi

λδ,i
= JE

Mδ

λδ,i
.

But λδ,i ≤ ηi: Note that κ < sδ < s+
δ < ν, s+

δ ∈ CardMi . Hence, (κ+)Mi||νi = (κ+)Mi||s+δ =
(κ+)Mi , so that P(κ) ∩Mi = P(κ) ∩Mi||ν. Because JE

Mδ

λδ,i
= JE

Mi

λδ,i
, it follows that ηi ≥ λδ,i, as

claimed, since P(κ) ∩ |Mi||νi| = P(κ) ∩ |JEMiλδ,i
| = P(κ) ∩ |JEMδλδ,i

|.
So (EMi

ν )α ∈Mδ||ηi. In particular, (EMi
ν )α is Σ1(Mδ||ηi), hence i is not a counterexample, a

contradiction. 2(2)

(3) i is not a limit ordinal.

Proof of (3). Assume the contrary. As i is a counterexample, there is A ∈ (P(τ) ∩Σ1(Mi)) \
Σ1(Mδ||ηi). Let A be Σ1(Mi) in p. Pick α <T i, α > δ such that κ < crit(πα,i) = κβ , where
α = T (β + 1). Moreover, fix α large enough that there are no truncations in (<T “{i}) \ α, and
so that p ∈ ran(πα,i). Let p̄ := π−1

α,i(p).
Since the sequence of critical points along a branch of T is strictly increasing, it follows that

P(κβ)∩Mα = P(κβ)∩Mi, hence κβ is a limit cardinal in Mi greater than κ, so κβ > τ . As πα,i
is at least Σ1−preserving, and as crit(πα,i) > τ , it follows that A is Σ1(Mα) in p̄.

Define an s-iteration I ′ = 〈〈M ′β | β < θ′〉, D′, 〈ν′β | β ∈ D′〉, 〈η′β | β < θ′〉, T ′, 〈π′β,γ |
β ≤T ′ γ < θ′〉〉 of M as follows. Set: ν′α := ht(Mα). It follows from the Σ1-preservation of
πα,i that EMα

ν′α
6= ∅, as EMi

νi 6= ∅. Let κ′α := crit(EMα

ν′α
). EMα

ν′α
is an extender with critical point

κ′α, hence EMi
ν has critical point πα,i(κ′α) = κ, and hence κ = κ′α, as κ < crit(πα,i). Moreover,

πα,i�P(κ) = id�(P(κ) ∩Mα). Set: ν′j := νj for j < α, T ′ := (T ∩ (α+ 1)2) ∪ {〈ξ, α+ 1〉}, where
ξ is the least µ ≤ α such that κi = κ′α < sµ. So ξ = T ′(α + 1) = T (i + 1) = δ, τ = τi = τ ′α
and η′α = ηi, since κ′α = κ, τ < κβ and δ < α. The s-indices s′j and s′

+
j are defined accordingly.

Finally, θ′ := α+2. Then M ′ξ||η′α = Mδ||ηi is *-extendible by EMα

ν′α
, which can be seen as follows:

〈id, πα,i�λ′α〉 : 〈Mδ||ηi, EMα

ν′α
〉 −→ 〈Mδ||ηi, EMi

νi 〉,

since for X ∈ P(κ) ∩Mδ||ηi = P(κ) ∩Mα and α1, . . . , αn < λ′α,

≺α1, . . . , αn� ∈ EMα

ν′α
(X) ⇐⇒ ≺πα,i(α1), . . . , πα,i(αn)� ∈ EMi

νi (πα,i(X)) = EMi
νi (X),

and πα,i�λ′i : λ′α −→ λi. The desired extendibility follows from [Jen97, Kap.3, Lemma 1], as the
identity map has all preservation properties one could wish for.

But I ′ is a normal s-iteration of M (ν′α ≥ να > s+
j = s′

+
j for j < α) shorter than I. Hence,

α satisfies condition (a) in I ′. Since A is Σ1(Mα) it follows that A ∈ Σ1(M ′T (α+1)||η
′
α) =

Σ1(Mδ||ηi), contradicting the choice of A. 2(3)

So let i = h+ 1, and set:ξ := T (i), M∗ := Mξ||ηh and F := EMh
νh

. So πξ,i : M∗ −→∗F Mi.

(4) κ < κh. Hence πξ,i�(τ+)M
∗

= id.

Proof of (4). By the preservation properties of πξ,i, it follows that EM
∗

top = EMi
top 6= ∅, as

EMi

ht(Mi)
6= ∅, by (2). Moreover, setting κ′ := crit(EM

∗

top ), it follows that κ = πξ,i(κ′).
It follows that κ′ < κh: Otherwise, κ = πξ,i(κ′) ≥ πξ,i(κh) = λh ≥ sh. This would imply for

j < i that
κ ≥ λh ≥ λj,h+1 ≥ sj ,

by corollary 5.9. By definition of δ = T (i+ 1), this would entail that T (i+ 1) = i, contradicting
(1).
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The first part of the claim follows now, as κh = crit(πξ,i):

κ = πξ,i(κ′) = κ′ < κh.

Turning to the second part, note that by weak amenability of F , P(κh)∩M∗ = P(κh)∩Mi, and
κh is a limit cardinal in Mi. As κ < κh and τ = (κ+)Mi , τ < κh. But of course, κh is a limit
cardinal in M∗, hence (τ+)M

∗
< κh = crit(πξ,i). This proves the claim. 2(4)

(5) δ ≤ ξ.

Proof of (5). By (4) and normality of I, it follows that κ < κh < sξ. But δ = T (i + 1) is the
least γ with κ < sγ . 2(5)

(6) F is Σ1−amenable wrt. M∗.

Proof of (6). This follows immediately from the minimality of lh(I). 2(6)

(7) τ < λδ,i.

Proof of (7). We have κ < sδ. I’ll use Corollary 5.9 in the following.
If sδ = λδ, then sδ = λδ = λδ,i > τ , as λδ,i is a limit cardinal in Mi.
If on the other hand, sδ < λδ, then λδ,i > s+

δ ≥ τ , as s+
δ is a cardinal greater than κ in Mi.

2(7)

(8) ωρ1
Mi
≤ τ .

Proof of (8). Assume ωρ1
Mi

> τ . Let A ⊆ τ be a Σ1(Mi)−set. By assumption, A ∈ Mi. By
acceptability of Mi, A ∈ JE

Mi

(τ+)Mi
. But (τ+)Mi < λδ,i, as λδ,i is a limit cardinal in Mi, and

because of (7). Since JE
Mδ

λδ,i
= JE

Mi

λδ,i
, it follows that

A ∈ JE
Mi

λδ,i
= JE

Mδ

λδ,i
.

Since A was arbitrary, (a) is satisfied at i. But vacuously, (b) is also satisfied at i, so that i was
no counterexample after all. 2(8)

(9) ωρ1
M∗ ≤ τ .

Proof of (9). By (6), πξ,i : M∗ −→Mi is Σ∗−preserving. By (4), πξ,i�(τ+)M
∗

= id. The claim
follows from (8), as πξ,i“H1

M∗ ⊆ H1
Mi

. 2(9)

(10) P(κh) ∩Σ1(Mi) ⊆ Σ1(M∗).

Proof of (10). κh = crit(πξ,i), hence (10) follows from [Jen97, §2, Corollary 6.5.]. 2(10)

(11) δ < ξ.

Proof of (11). Assume ξ ≤ δ. By (5), δ ≤ ξ, hence δ = ξ. By (4), τ < κh.
If ηh = ηi, (10) shows that property (a) is satisfied, a contradiction.
Otherwise, ηh < ηi, as τ < κh. Then M∗ ∈Mδ||ηi. But this implies:

Σ1(Mi) ∩ P(τ) ⊆ Σ1(M∗) ⊆Mξ||ηi = Mδ||ηi.

Hence the properties (a) and (b) are satisfied at i, a contradiction. 2(11)

(12) M∗ = Mξ (hence ηh = ht(Mξ)).
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Proof of (12). Assume the contrary, so ηh < ht(Mξ). By (8), ωρ1
Mi
≤ τ . Moreover, πξ,i :

M∗ −→Σ∗ Mi, and by (4), κh > τ , hence ωρ1
M∗ = ωρ1

Mi
≤ τ . Now let A ⊆ τ be Σ1(Mi) and

a counterexample for (a) at i. By (10), A is Σ1(Mξ||ηh). But as Mξ||ηh ∈ Mξ, it follows that
A ∈ P(τ)∩Mξ. By (7), τ < λδ,i ≤ λδ,ξ, and as λδ,ξ is a cardinal in Mξ, it follows by acceptability
that

A ∈ P(τ) ∩Mξ ⊆ JE
Mξ

λδ,ξ
= JE

Mδ

λδ,ξ
.

Note that ηi ≥ λδ,ξ. This is because

P(κ) ∩ JE
Mi

νi = P(κ) ∩ JE
Mδ

s+δ
= P(κ) ∩ JE

Mδ

νδ

by acceptability; for the first identity, note that JE
Mδ

s+δ
= JE

Mi

s+δ
and s+

δ is a cardinal in Mi. For

the second one, it suffices to remark that s+
δ is a cardinal in JE

Mδ

νδ
, if s+

δ < νδ. As νδ > λδ,ξ, this
implies that ηi ≥ λδ,ξ.

Hence,
A ∈ JE

Mδ

λδ,ξ
⊆Mδ||ηi,

which contradicts the choice of A. 2(12)

As was shown in (4), κ = κ′ := crit(EM
∗

ηh
) and τ = (κ+)Mi = (κ′+)M

∗
. As in the proof of (3)

it can be shown that Mδ||ηi is *-extendible by EM
∗

ηh
, since

〈id�Mδ||ηi, πξ,i〉 : 〈Mδ||ηi, EM
∗

ηh
〉 −→ 〈Mδ||ηi, EMi

νi 〉,

and Mδ||ηi is *-extendible by EMi
νi by assumption. Now, in analogy to the proof of (3), one can

define an normal s-iteration I ′ := 〈〈M ′α | α < θ′〉, D′, 〈ν′α | α ∈ D′〉, 〈η′α | α < θ′〉, T ′, 〈π′α,β |
α ≤T ′ β < θ′〉〉 of M with length θ′ := ξ + 2, by setting: ν′ξ := ηh = ht(Mξ) and ν′j := νj for
j < ξ. So κ′ξ = κ, τ ′ξ = τ , hence T ′(ξ + 1) = T (i + 1) and η′ξ = ηi, as δ < ξ. By (4), (10) and
(12),

P(τ) ∩Σ1(Mi) ⊆ P(τ) ∩Σ1(Mξ).

As ξ = T (i), ξ < i, and hence, I ′ is a normal s-iteration of M shorter than I. It follows by
minimality of lh(I) that

P(τ) ∩Σ1(Mξ) = P(τ) ∩Σ1(M ′ξ) ⊆ Σ1(M ′T ′(ξ+1)||η
′
ξ) = Σ1(Mδ||ηi).

Taken together, this shows:
P(τ) ∩Σ1(Mi) ⊆ Σ1(Mδ||ηi).

So i does satisfy the conditions (a) and (b) after all.

5.2 Initial Segment Conditions

Since I use an initial segment condition for pλ-structures that differs from what’s called “s-ISC”
in [Jen01], it needs to be checked that the new condition has all the properties needed. Thus, it
should have the usual properties an initial segment condition should have: Being preserved under
iterations (in the present case under normal s-iterations), and guaranteeing that the coiteration
process of two coiterable structures terminates. I will prove the first part in the present section.
Another property that’s crucial in the context of the present paper is that the s′-ISC shouldn’t
be too restrictive. More precisely, it should be a consequence of the Z-ISC. 6 So what I will

6I refer to the initial segment condition of [Ste00] as Z-ISC, since the notion of a type-Z-extender is used in its
formulation.
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show is that hereditarily continuable Mitchell-Steel-premice satisfy the s′-ISC. It is obvious that
normally iterable Mitchell-Steel-premice are hereditarily continuable, so that this assumption
can be dropped for Mitchell-Steel-mice.

First, let me recall the definition of the s′-ISC and the s′-MISC, on which it builds.

Definition 5.12. Let M be an active extender structure. M satisfies the minimal s′-initial
segment condition (s′-MISC), iff, letting F := EMtop, for every cutpoint7 ξ ∈ [τ(F ), s(F )) of F ,
(ξ+)M 6= (ξ+)[M ]ξ .

Definition 5.13. Let M be a potential Pseudo-λ- or s-structure. The s′-initial segment con-
dition (s′-ISC) for M says that for every α ≤ ht(M) with F = EMα 6= ∅ and each cutpoint
ξ ∈ [τ(F ), s(F )) of F ,

(a) If [M ||α]ξ satisfies the s′-MISC, then [M ||α]ξ ∈ M̂ ||α.

(b) If [M ||α]ξ satisfies the s′-MISC and ξ′ ∈ [τ(F ), ξ) is such that [M ||α]ξ′ satisfies the s′-MISC,
then [M ||α]ξ′ ∈ [M ||α]ξ.

The following is a folkloristic fact (which I made use of in the first part of this paper already).
For the reader’s convenience, I include a proof here.

Lemma 5.14. Let N = 〈JEν , F 〉 be an active pPλ- or pPs-structure. Let s = s(F ), τ = τ(F )
and τ ≤ ξ < ζ ≤ s. Then

crit(σNξ,ζ) ' min((ζ ∩ genF ) \ ξ).

In particular, if [ξ, ζ) contains no generators, then σξ,ζ = id�|[N ]ξ|.

Proof. If (ζ ∩ genF ) \ ξ = ∅, then obviously, [N ]ξ = [N ]ζ and σξ,ζ = id�|[N ]ξ|, as claimed. So let
ξ′ = min(ζ ∩ genF ) \ ξ exist. In the following, I write πα, σα,β for πNα , σNα,β , respectively.

(1) ξ′ ⊆ ran(σξ,s).

Proof of (1). Let γ < ξ′. Then there exist ~α ∈ genF ∩ ξ′ such that γ = πs(f)(~α) for some
f ∈ κnκ ∩ JE

N

τ . But then ~α < ξ, as ξ′ = min(ζ ∩ genF ) \ ξ. Hence,

γ = σξ,s(πξ(f)(~α)),

so that γ ∈ ran(σξ,ζ). 2(1)

(2) σξ,ζ�ξ′ = id�ξ′.

Proof of (2). By (1), σξ,s�ξ′ = id�ξ′, as σξ,s is order preserving. The claim follows, since
σξ,s = σζ,sσξ,ζ . 2(2)

(3) ξ′ /∈ ran(σξ,s).

Proof of (3). Otherwise, there is a function f ∈ κnκ ∩ JE
N

τ and ordinals ~α < ξ with ξ′ =
σξ,s(πξ(f)(~α)) = πs(f)(~α), which is impossible, as ξ′ is a generator of F . 2(3)

(4) σζ,s�ζ = id�ζ.

7As a reminder, a cutpoint here is an s-cutpoint. So in the present context, ξ is a cutpoint of F if ξ = s(F |ξ).
And s(F |ξ) = lub(τ(F |ξ) ∪ genF |ξ). For more details, the reader is referred to the first part.
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Proof of (4). For γ < ζ, σζ,s(γ) = σζ,s(πζ(id)(γ)) = πs(id)(γ) = γ. 2(4)

It follows immediately by (1) and (3) that

(5) ξ′ = crit(σξ,s).

(6) ξ′ = crit(σξ,ζ).

Proof of (6). Otherwise (2) implies ξ′ = σξ,ζ(ξ′). So since ξ′ < ζ, (4) implies:

σξ,s(ξ′) = σζ,s(σξ,ζ(ξ′)) = σζ,s(ξ′) = ξ′,

which contradicts (5). 2(6),Lemma

Corollary 5.15. Let N = 〈JEν , F 〉 be an active pPλ- or pPs-structure. Let s = s(F ), τ = τ(F )
and τ ≤ ξ < ζ ≤ s. Suppose

ξ′ = min((ζ ∩ genF ) \ ξ)

exists. Then
E[N ]ξ�ξ′ = E[N ]ζ �ξ′.

5.2.1 The Z-initial segment condition

The following definition is from [Ste00] or [SSZ02], and is used for the formulation of a variant
of the initial segment condition.

Definition 5.16. Let M = 〈M̄, F 〉 be a continuable extender-structure. Then F of type Z iff
s(F ) = λ + 1, for some limit ordinal λ, so that λ is a cutpoint of F with the property that
(λ+)M = (λ+)[M ]λ .

Remark 5.17. The definition of this concept given in [Ste00, p. 9] uses a different formulation
which is equivalent to the present one for continuable structures. There, it is demanded that
(λ+)M = (λ+)Ult(M,F |λ). If M is continuable, then (λ+)[M ]λ = (λ+)Ult(M,F |λ), since, letting
τ = τ(F ) and π : M −→F |λ Ult(M,F |λ), π(JE

M

τ ) is a segment of Ult(M,F |λ) the height of
which is a cardinal in Ult(M,F |λ) which is greater than λ (as λ < s(F ) ≤ π(crit(F )) < π(τ)).
Since |π(JE

M

τ )| = |[M ]λ|, the equivalence of the two definitions follows by acceptability.

Lemma 5.18. Let M be an active pPs-structure with top extender F . Let ξ be a cutpoint of F .
If [M ]ξ satisfies the s′-MISC, then F �ξ is not of type Z.

Proof. F �ξ is an extender on [M ]ξ. Assume F �ξ if of type Z. Then ξ = ξ̄ + 1, where ξ̄ is a
cutpoint of F . But then, ξ̄ is also a cutpoint of E[M ]ξ

top , so that, as [M ]ξ satisfies the s′-MISC, it
follows that (ξ̄+)[M ]ξ 6= (ξ̄+)[M ]ξ̄ , because [[M ]ξ]ξ̄ = [M ]ξ̄. This contradicts the assumption that
F |ξ is of type Z.

Definition 5.19. A pPs-structure N satisfies the Z-initial segment condition (Z-ISC) iff for
every α ≤ ht(N) such that F := ENα is an extender, the following holds:

For each cutpoint η < s(F ) such that F �η is not of type Z, one of the following is true:

(A) There is a γ < α such that Eγ = (F �η)∗,8 or

(B) ENη 6= ∅, and there is a γ < α such that EN̂ ||ηγ = (F �η)∗.

8Here I use the following terminology: F ∗ = (F̂ f|s+(F ))h.
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Again, the formulation differs from the original slightly (see [Ste00, Definition 2.4]), but is
equivalent for continuable structures.

Lemma 5.20. Let M be a pPs-structure that satisfies the Z-ISC. Then M satisfies the s′-ISC,
too.

Proof. Let ν ≤ ht(M), N := M ||ν active. Let F = ENtop, τ = τ(F ) and s = s(F ). Finally, let
ξ < s be a cutpoint of F , such that [N ]ξ satisfies the s′-MISC. I have to show two things:

(a) [N ]ξ ∈ N̂ .

Proof of (a). By Lemma 5.18, F �ξ is not of type Z. So by the Z-ISC entweder, one of (A) and
(B) is true:

(A) ∃η < ν ENη = (F �ξ)∗.

In this case, [N ]ξ = N̂ ||η ∈ N̂ .

(B) ENξ 6= ∅, and there is a γ such that (F �ξ)∗ = E
N̂ ||ξ
γ .

Then JE
N

τ , ENν |ξ ∈ N̂ ||ξ ∈ N̂ , since N̂passive is a ZFC−-model. For the same reason, it follows
that [N ]ξ ∈ N̂ . 2(a)

(b) Let ζ < ξ be such that [N ]ζ satisfies the s′-MISC. Then [N ]ζ ∈ [N ]ξ.

Proof of (b). First, set
ξ′ = min(genF \ ξ),

which makes sense, as ξ < s. By Lemma 5.14, ξ′ = crit(σξ,s). It may be assumed that ζ is a
cutpoint of F , since, letting ζ̄ = s(F |ζ), ζ̄ is a cutpoint of F , and [N ]ζ = [N ]ζ̄ , ζ̄ ≤ ζ < ξ – so
one could work with ζ̄ instead of ζ. Again, it follows by Lemma 5.18 that F |ζ is not of type Z.
So the Z-ISC may be exploited, providing the following case distinction.

(A) ∃η < ν ENη = (F �ζ)∗.

As τ(F ) = τ(F �ζ),
[N ]ζ = N̂ ||η,

and
η = (s(ENη )+)N̂ ||η = (ζ+)[N ]ζ .

Since [N ]ξ satisfies the s′-MISC and ζ is a cutpoint of E[N ]ξ
top , it follows that

(ζ+)[N ]ζ < (ζ+)[N ]ξ .

As ζ < ξ ≤ ξ′ and ξ′, being the critical point of σξ,s, is a cardinal in [N ]ξ, this implies that

η = (ζ+)[N ]ζ < (ζ+)[N ]ξ ≤ ξ′.

By the coherency of pPs-structures, together with Corollary 5.15, this yields, in particular,

EN�(η + 1) = E[N ]s�(η + 1) = E[N ]ξ�(η + 1).

This results in:
[N ]ζ = ̂[N ]ξ||η ∈ [N ]ξ,

as [N ]ξ
passive is a ZFC−-model.
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(B) ENζ 6= ∅, and there is a γ, such that (F |ζ)∗ = E
N̂ ||ζ
γ .

We know that EN�ξ = E[N ]ξ�ξ, hence N ||ζ = ([N ]ξ)||ζ. So

N̂ ||ζ ∈ [N ]ξ,

as [N ]ξ
passive is a ZFC−-model. Hence,

(F |ζ)∗ = EN̂ ||ζγ ∈ [N ]ξ.

Since
N ||τ = [N ]ξ||τ ∈ [N ]ξ,

this shows that [N ]ζ ∈ [N ]ξ as well, as claimed. 2(b),Lemma

5.3 Preservation of the s′-ISC

In this section, I am aiming at showing that the s′-ISC is preserved by s-iterations, that is, that
normal s-iterates of pλ-structures are pλ-structures. Recall the following definition:

Definition 5.21. Let M be an active extender structure. Set:

CM = {ξ | τ ≤ ξ < s(M), ξ is a cutpoint of EMtop

and [M ]ξ satisfies the s′-MISC }.

I gave a proof of the following lemma in [Fuc08, Lemma 8.25].

Lemma 5.22. Let M be an active pλ-structure. Let τ(M) ≤ ξ < s(M) be a cutpoint with the
property that ξ /∈ CM . Then ξ = ξ̄+1 for a cutpoint ξ̄ of F = EMtop. (So ξ̄ is a limit of generators
of F ). Moreover, (ξ̄+)[M ]ξ̄ = (ξ̄+)[M ]ξ - the proof shows that ξ̄ is the only cutpoint less than ξ
with this property.

This lemma has some useful consequences.

Lemma 5.23. Let M be a pλ-structure. Then M satisfies s′-MISC.

Proof. Assuming the contrary, let M be a counterexample of minimal height. Then M is active.
Let F = EMtop. By choice of M , the statement of the lemma is true of all proper initial segments
of M . So let ξ be a cutpoint of F such that (ξ+)[M ]ξ = (ξ+)M . Then [M ]ξ /∈ M , as otherwise,
in M there would be a surjection from ξ onto |[M ]ξ|, which would imply that (ξ+)M > (ξ+)[M ]ξ .
But since [M ]ξ /∈ M , it cannot be that [M ]ξ satisfies the s′-MISC. Since ξ is a cutpoint, this
means by Lemma 5.22, that ξ = ξ̄+1, where ξ̄ is a generator of F , which is a limit of generators.
As [M ]ξ̄ satisfies the s′-MISC, by the same Lemma, and hence is a member of M , it can be
concluded, again by the same lemma:

(ξ+)M = (ξ̄+)M > (ξ̄+)[M ]ξ̄ = (ξ̄+)[M ]ξ = (ξ+)[M ]ξ ,

contradicting the choice of ξ.

Lemma 5.24. Let M be a pλ-structure. Then CM is closed in s(M).

Proof. This follows immediately from Lemma 5.22. Let ξ be a limit of CM . Then ξ is obviously
a limit of generators, and hence a cutpoint. So the lemma can be applied to show that [M ]ξ
satisfies the s′-MISC, for otherwise ξ would have to be a successor ordinal. So ξ ∈ CM .
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Lemma 5.25. Let M be an active pPλ-structure. Let σ : M −→G M ′, with crit(G) < s(M) (to
emphasize: this is a Σ0-ultrapower). Then s(M ′) = lubσ“s(M).

Proof. Let F = EMtop, κ = crit(F ), τ = τ(F ), s = s(M), F ′ = EM
′

top, κ′ = crit(F ′), τ ′ = τ(F ′),
s′ = s(M ′) and κ̃ = crit(G). Since being a generator of F is Π1(M), and since σ is Σ1-preserving,
it follows that

lub genF ′ ≥ lubσ“genF = lubσ“ lub genF .

In case s(M) = τ , it obviously follows that τ ′ = σ(τ) ≥ lubσ“τ . Thus, so far it has been shown
that s(M ′) ≥ lubσ“s(M).

Letting π = πMs and π′ = πM
′

s′ , we have:

(∗) σ ◦ π = π′ ◦ σ.

Proof of (∗). Firstly, it’s obvious that the domains of the functions on the left and on the right
are equal, namely |JEMτ |. For X ∈ P(κ) ∩M , it follows firstly that

σ(π(X)) = σ(F (X)) = F ′(σ(X)) = π′(σ(X)).

But each member of JE
M

τ can be coded in a Σ1 uniform way by a subset X of κ that belongs to
M . This implies the claim. 2(∗)

In order to see that s(M ′) ≤ lubσ“s(M), assume the contrary. Let ξ ∈ genF ′ be such that
ξ ≥ lubσ“s(M). Pick f ∈ (κ̃

n

κ) ∩M and ~α < lh(G) so that

ξ = σ(f)(~α).

As f ∈ M , by coherency of M , there are a function g ∈ (κ
m

JE
M

τ ) ∩ JE
M

τ and ordinals ~β < s so
that

f = π(g)(~β).

But this implies:

ξ = σ(f)(~α)

= σ(π(g)(~β))(~α)

= σ(π(g))(σ(~β))(~α)

= σ(π(g̃))(σ(~β), ~α).

Here, g̃ ∈ m+nκ ∩M is defined by:

g̃(~γ, ~δ) :=
{
g(~γ)(~δ) if g(~γ) is a function with ~δ ∈ dom(g(~γ)),
0 otherwise.

So by (∗),
ξ = π′(σ(g̃))(σ(~β), ~α).

But since ~β < s, σ(~β) < lubσ“s ≤ ξ, and as κ̃ < s, it follows that ~α < lh(G) ≤ σ(κ̃) < lubσ“s ≤
ξ. Hence σ(~β), ~α < ξ and σ(g̃) ∈ κ′m+n

JE
M′

τ ′ ∩ JE
M′

τ ′ . Thus, ξ is not a generator of F ′ after all, a
contradiction.

Lemma 5.26. Let σ : M −→Σ2 M
′, where M is a pPλ-structure. Then lubσ“s(M) ≤ s(M ′) ≤

σ(s(M)).
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Proof. See [Jen01, §1, Lemma 3.6]
For the reader’s convenience, let me recall the different types of extender-structures:

Definition 5.27. Let M be an active extender-structure. Then M is of. . .

. . . type I iff s(M) = τ(M),
. . . type II iff s(M) = ξ + 1 for some ordinal ξ,
. . . type III iff τ(M) < s(M) is a limit ordinal.

Remark 5.28. If M is a pλ-structure of type II, the then there is a maximal η ∈ CM , by Lemma
5.24.

If in this situation, a generator ξ does not belong to CM , then ξ is an isolated generator of
EMtop, for otherwise ξ would be a limit of generators, hence a cutpoint, so that by Lemma 5.22
[M ]ξ would have to satisfy the s′-MISC.

In the following, I am going to treat the different types of structures separately. In essence,
I’ll carry out the corresponding case of the inductive proof showing that the s′-ISC is preserved
under normal s-iterations. I’ll show even more, namely that the ∗-ultrapower of an active pλ-
structure M by an extender with critical point less than s(M) yields a pλ-structure of the same
type.

5.3.1 Type I

Lemma 5.29. Let M be a pλ-structure and π : M −→∗G M ′, where M is of type I and crit(G) <
s(M). Then M ′ is also a pλ-structure of type I.9

Proof. Obviously, τ(M ′) = π(τ(M)). So it follows that

π(s(M)) = s(M ′) = τ(M ′),

because either crit(G) ≥ ωρ1
M , in which case π is a Σ0-extender ultrapower, and by Lemma 5.25,

s(M ′) = lubπ“s(M) ≤ π(s(M)) = π(τ(M)) = τ(M ′) ≤ s(M ′), or crit(G) < ωρ1
M , and then π is

Σ2-preserving (see [Zem02, Lemma 3.1.11(c)]), so that Lemma 5.26 can be applied. This shows
that s(M ′) ≤ π(s(M)) = π(τ(M)) = τ(M ′). But by definition, also s(M ′) ≥ τ(M ′), which
proves the claim.

As in the following lemmas, it will suffice to show that those parts of the s′-ISC which refer
to the top extender are satisfied in M ′. The rest will obviously be satisfied, as π is either cofinal
or Σ2-preserving, depending on the location of the critical point of G. So since M ′ is of type I
in the present case, there is nothing to show, since [τ(M ′), s(M ′)) = ∅ – see Definition 5.13.

5.3.2 Type II

I would like to remind the reader of the following definition, from [Fuc08]:

Definition 5.30. Let M be a pPλ-structure of type II. Then

qM := F |maxCM .

Lemma 5.31. Let M be a pλ-structure of type II, π : M −→∗G M ′ and crit(G) < s(M). Then
M ′ is also a pλ-structure of type II, π(s(M)) = s(M ′) and π(qM ) = qM ′ .

9Here, as in the following lemmas, I assume the extender ultrapower is well-founded.
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Proof. Let M = 〈JEν , F 〉 and M ′ = 〈JE′ν′ , F ′〉. Let s(M) = ξ + 1, noting that ξ > τ := τ(F ).
Finally, set κ = crit(F ), κ′ = crit(F ′) and τ ′ = τ(F ′).

Claim: π(s(M)) = s(M ′) = π(ξ) + 1.
Proof of claim. There are two cases:
Case 1: crit(G) ≥ ωρ1

M .
In this case, π : M −→G M ′, and by Lemma 5.25

s(M ′) = lubπ“s(M) = π(ξ) + 1 = π(ξ + 1) = π(s(M)),

as claimed.
Case 2: crit(G) < ωρ1

M .
Then π : M −→Σ2 M

′, and Lemma 5.26 yields:

π(ξ) + 1 = lubπ“s(M) ≤ s(M ′) ≤ π(s(M)) = π(ξ) + 1,

where π(ξ) + 1 = π(ξ + 1) = π(s(M)). 2Claim

The rest of the proof proceeds by cases:
Case 1: ξ = maxCM .
Then ξ is a limit of generators, as ξ is a cutpoint. Moreover, since M satisfies the s′-ISC, it

follows that [M ]ξ ∈M , and hence also that F |ξ ∈M . The statement “x = F |ξ” is Π1(M) in ξ:

x = F |ξ ⇐⇒ M |= (x is a function with domain contained in P(κ) ∧
∀X∀Y (Y = F (X)→ x(X) = Y ∩ ξ))

Let x = F |ξ. Then π(x) satisfies this statement in M ′, where F and ξ have to be replaced by
F ′ and π(ξ) = ξ′, respectively. Hence, π(F |ξ) = F ′|ξ′ and π([M ]ξ) = [M ′]ξ′ . It only remains to
show that ξ′ = maxCM .

As π�[M ]ξ : [M ]ξ −→Σω [M ′]ξ′ , the property of ξ of being a limit of generators of E[M ]ξ
top is

preserved, because this can be expressed in [M ]ξ. Hence, ξ′ is a limit of generators of E
[M ′]ξ′
top , and

hence a limit of generators of F ′. So ξ′ is a cutpoint of F ′. It remains to show that [M ]ξ′ satisfies
the s′-MISC. But also the statement expressing that [M ]ξ satisfies the s′-MISC is Σω([M ]ξ), and
hence is carried over to [M ′]ξ′ .

This proves the lemma in case 1.
Case 2: ξ /∈ CM .
Then ξ is not a limit of generators of F , by Remark 5.28. Set:

ξ̄ = sup(genF ∩ ξ) and ξ̄′ = π(ξ̄).

Hence ξ̄ < ξ.
Case 2.1: ξ̄ /∈ genF .
Then ξ̄ is a limit of generators, and by Lemma 5.22, ξ̄ ∈ CM . Hence [M ]ξ̄ ∈ M . It follows

that ξ̄′ is a limit of generators of F ′, as ξ̄ is a limit of generators of E
[M ]ξ̄
top and π�[M ]ξ̄ −→Σω

[M ′]ξ̄′ . Hence ξ̄′ is a cutpoint of F ′, and [M ′]ξ̄′ satisfies the s′-MISC, again by elementarity. So
ξ̄′ ∈ CM ′ . It suffices to show that ξ̄′ = maxCM ′ , and for this, in turn, it suffices to see that
[ξ̄′, ξ′) ∩ genF ′ = ∅, because then there is in M ′ no cutpoint greater than ξ̄′ that’s less than
s(M ′).

We know that [ξ̄, ξ) ∩ genF = ∅. Hence [M ]ξ̄ = [M ]ξ ∈ M . So Fξ := F |ξ ∈ M . Again, Fξ is
characterized by a Π1(M)-statement in ξ, which is preserved by π. Hence F ′ξ′ ∈M ′ and we have
π([M ]ξ) = [M ′]ξ′ . But this implies:

[M ′]ξ̄′ = π([M ]ξ̄) = π([M ]ξ) = [M ′]ξ′ ,
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so that [ξ̄′, ξ′) ∩ genF ′ = ∅, as claimed. The other parts of the s′-ISC for M ′ are easily verified.
Case 2.2: ξ̄ ∈ genF .
Case 2.2.1: ξ̄ + 1 ∈ CM , or ξ̄ = κ (and τ ∈ CM ).
One can argue similarly as in case 2.1. It follows that [M ′]ξ̄′+1 ∈M ′, that ξ̄′ + 1 (or τ ′) is a

cutpoint of F ′, and that [M ′]ξ̄′+1 satisfies the s′-MISC, hence that ξ̄′+ 1 (or τ ′) belongs to CM ′ .
Finally, one can argue that (ξ̄′, ξ′) ∩ genF ′ = ∅, like before.

Case 2.2.2: ξ̄ + 1 /∈ CM , and ξ̄ 6= κ.
As ξ̄ ∈ genF and ξ̄ > τ , ξ̄+1 is a cutpoint of F , and by Lemma 5.22, ξ̄ is a limit of generators

of F . Hence ξ̄ = maxCM , again by the same lemma. As before, it follows that

(+) [M ]ξ̄ ∈M,π(qM ) = F ′|ξ̄′ and π([M ]ξ̄) = [M ′]ξ̄′ ∈M ′.

Moreover, [M ′]ξ̄′ satisfies the s′-MISC, hence ξ̄′ ∈ CM ′ .

(1) (ξ̄+)[M ]ξ̄ = ξ.

Proof of (1). By Lemma 5.22 it’s clear that

(ξ̄+)[M ]ξ̄ = (ξ̄+)[M ]ξ̄+1 .

Moreover, ξ is a cardinal in [M ]ξ̄+1, as ξ = crit(σM
ξ̄+1

). Hence, obviously,

(ξ̄+)[M ]ξ̄ = (ξ̄+)[M ]ξ̄+1 ≤ ξ.

Assume that ζ := (ξ̄+)[M ]ξ̄ < ξ.
Then ζ = σM

ξ̄+1
(ζ) = (ξ̄+)M , which yields the contradiction

ζ = (ξ̄+)M > ht([M ]ξ̄) ≥ (ξ̄+)[M ]ξ̄ = ζ,

since there is in M a surjection from ξ̄ onto |[M ]ξ̄|, as [M ]ξ̄ ∈M . 2(1)

(2) (ξ̄′+)[M ′]ξ̄′ = ξ′.

Proof of (2). This follows immediately from (1) and the preservation properties of π. 2(2)

(3) (ξ̄′, ξ′) ∩ genF ′ = ∅.

Proof of (3). Suppose there was a γ ∈ (ξ̄′, ξ′) ∩ genF ′ . Then

ξ′ = (ξ̄′+)[M ′]ξ̄′ ≤ (ξ̄′+)[M ′]γ ≤ γ < ξ′,

as γ, being the critical point of σM
′

γ , is a cardinal in [M ′]γ . 2(3)

(4) (ξ̄′+)[M ′]ξ̄′ = (ξ̄′+)[M ′]ξ̄′+1 .

Proof of (4). It follows by (2) that

ξ′ = (ξ̄′+)[M ′]ξ̄′ ≤ (ξ̄′+)[M ′]ξ̄′+1 ≤ (ξ̄′+)[M ′]ξ′ ≤ ξ′,

hence all these are equal. I used here that ξ′, being the critical point of σM
′

ξ′,s(M ′), is a cardinal
in [M ′]ξ′ . 2(4)

As ξ̄′ is a limit of generators of F ′, a by now familiar argument shows that ξ̄′ is a cutpoint of
F ′, and (4) shows that [M ′]ξ̄′+1 does not satisfy the s′-MISC. Hence ξ̄′ + 1 /∈ CM ′ . Using (3), it
follows that ξ̄′ = maxCM ′ ; we have already seen that ξ̄′ ∈ CM ′ . So (+) shows the claim also in
this case.

Again, the other parts of the s′-ISC are easily checked.
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5.3.3 Type III

Lemma 5.32. Let M be an active pλ-structure of type III. Then ωρ1
M = s(M).

Proof. It is obvious that ωρ1
M ≤ s(M), since there is a Σ1(M)-surjection from s(M) onto |M |.

Suppose ωρ1
M < s(M). Then let A be a Σ1(M) set, using a parameter p, such that A∩ωρ1

M /∈M .
Set F := EMtop.

Then for δ ∈ genF and δ < δ′ ≤ s, crit(σMδ,δ′) = δ, by Lemma 5.14. Moreover,

(∗) |M | =
⋃
δ∈genF

ran(σMδ,s).

Proof of (∗). By definition of s,
πs : JE

M

τ −→F |s JE
M

ν ,

where τ = τ(M) and ν = ht(M). Let x ∈ JE
M

ν and κ = crit(F ). Then there are n, ~α ∈ sn and a
function f : κn → JE

M

τ with f ∈ JE
M

τ , so that

x = πMs (f)(~α).

Let max(~α) < δ ∈ genF (such a δ exists, as genF has no maximal element). Then

σMδ,s(π
M
δ (f)(~α)) = πMs (f)(~α) = x ∈ ran(σMδ,s).

2(∗)
Now let µ be a cutpoint of F with the following properties:

- p ∈ ran(σMµ,s).

- µ ≥ ωρ1
M .

- [M ]µ satisfies die s′-MISC.

Finding such a µ is no problem, using Lemma 5.22. Then σMµ,s : [M ]µ −→Σ0 M is cofinal, hence
Σ1-preserving.

Let Ā be Σ1([M ]µ) in p̄ by the same definition as A is Σ1(M) in p, where σMµ,s(p̄) = p. As
ωρ1
M ≤ µ ≤ crit(σMµ,s), and since σMµ,s is a Σ1-preserving embedding, it follows that

Ā ∩ ωρ1
M = A ∩ ωρ1

M .

But [M ]µ satisfies the s′-MISC and M is a pλ-structure, so [M ]µ ∈ M . Hence everything
definable in [M ]µ belongs to M , in particular the set Ā ∩ ωρ1

M = A ∩ ωρ1
M , a contradiction.

Lemma 5.33. Let M be an active pλ-structure of type III and G an extender on M with

ωρ2
M ≤ κ̃ := crit(G) < ωρ1

M .

Let π : M −→∗G M ′. Then

π�H1
M : M1,∅ −→G M ′1,∅ and
s(M ′) = ωρ1

M ′ = supπ“s(M).
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Proof. Set
M̃ := M1,∅.

Let F = EMtop, s = s(M), κ = κ(M), τ = τ(M), ν = ht(M).
Remark. pM,1 = ∅, since using the top extender of M a surjection from s = ωρ1

M onto JEν
can be defined in M without using parameters.

Let
π̄ : M̃ −→G M̃∗ = 〈JẼ

∗

s∗ , B〉.

(0) π̄ = π�|M̃ |.

Proof of (0). The proof proceeds in three steps:

(0.1) If f ∈ Γ∗(M, κ̃) and ran(f) ⊆ x ∈ |M̃ | for some x (that is, ran(f) is bounded in |M̃ |), then
f ∈ |M̃ |.

Proof of (0.1). Firstly, it’s clear that if f ∈ Γ∗(M, κ̃)∩ |M | and ran(f) ⊆ x ∈ |M̃ |, then f ∈ |M |
– this follows from the acceptability of M . Now let f ∈ Γ∗(M, κ̃), ran(f) ⊆ x ∈ |M̃ |. By the
above, it suffices to show that f ∈ |M |. But if f /∈ |M |, then f is a good Σ(n)

1 (M)-function,
where ωρn+1 > κ̃. As κ̃ ∈ [ωρ2

M , ωρ
1
M ), this means that n = 0, hence f is a Σ1-function. But as

ran(f) ⊆ x ∈ |M̃ |, there is some α < ht(|M̃ |) = ρ1
M such that f ⊆ |M ||α|. This implies that

f ∈ |M |, by definition of ρ1
M . 2(0.1)

Set λ̃ := lh(G), and define for 〈~α, f〉, 〈~β, g〉 ∈ D∗(M, κ̃, λ̃):

〈~α, f〉E′〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ G({≺γ, δ� < κ̃ | f(~γ) ∈ g(~δ)}),
〈~α, f〉I ′〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ G({≺γ, δ� < κ̃ | f(~γ) = g(~δ)}).

Denote the restrictions of E′, I ′ to D(M̃, κ̃, λ̃) by E, I, respectively.

(0.2) Let 〈β, g〉 ∈ D∗(M, κ̃, λ̃), 〈~α, f〉 ∈ D(M̃, κ̃, λ̃), and let 〈~β, g〉E′〈~α, f〉. Then there is a ḡ, so
that 〈~β, ḡ〉 ∈ D∗(M, κ̃, λ̃), ran(ḡ) is bounded in M̃ , and 〈~β, ḡ〉I ′〈~α, f〉. By (2), ḡ ∈ |M̃ |.

Proof of (0.2). Note that f ∈ |M̃ |. Let α < ht(M̃) be so that f ∈ x := |M̃ ||α|. Define
h : |M | −→ |M | by:

h(a) :=
{
a if a ∈ x,
∅ otherwise.

Then ḡ := h ◦ g is a good Σ(0)
1 (M)-function with the desired properties:

Since {≺~γ� | g(~γ) ∈ x} ⊆ {≺~γ� | g(~γ) = ḡ(~γ)}, it follows that

≺~β� ∈ G({≺~γ� | g(~γ) ∈ x}) ⊆ G({≺~γ� | g(~γ) = ḡ(~γ)}).

Hence 〈~β, ḡ〉I ′〈~β, g〉, and ḡ is as wished. 2(0.2)

(0.3) For 〈~α, f〉 ∈ D(M̃, κ̃, λ̃), π(f)(~α) = π̄(f)(~α).

Proof of (0.3). The proof proceeds by E-induction on 〈~α, f〉. Suppose the claim holds for all
E-predecessors of 〈~α, f〉. We have:

π(f)(~α) = {π(g)(~β) | 〈~β, g〉E′〈~α, f〉}.
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But for 〈~β, g〉E′〈~α, f〉, by (0.2), there is a ḡ so that 〈~β, ḡ〉I ′〈~β, g〉E′〈~α, f〉, and 〈~β, ḡ〉 ∈ D(M̃, κ̃, λ̃).
Hence

π(f)(~α) = {π(g)(~β) | 〈~β, g〉E〈~α, f〉}
= {π̄(g)(~β) | 〈~β, g〉E〈~α, f〉}
= π̄(f)(~α).

This was to be shown. 2(0.3)

The claim follows from (0.3): π(x) = π(constx)(0) = π̄(constx)(0) = π̄(x) for x ∈ |M̃ |. 2(0)

Set:
F̃ := 〈(F |µ) | µ < s〉.

(1) The relation F̃ is rudimentary in s, κ, A1,∅
M .

Proof of (1). The statement ”x = F̃ (µ)“ says that

µ < s ∧ x = (F |µ),

and that statement is Π1(M):

x = (F |µ) ⇐⇒ M |= “x is a function” ∧ dom(x) = P(κ)
∧∀w ∈ dom(x)∀y (Ḟ (y, w) −→ y ∩ µ = x(w)).

By Lemma 5.22, (F |µ) ∈M for µ < s. It follows that

〈x, µ〉 ∈ F̃ ⇐⇒ M |= ϕ[κ, s, µ, x]

for some Π1-formula ϕ. If i is the Gödel number of ¬ϕ, then, consequently:

〈x, µ〉 ∈ F̃ ⇐⇒ ¬A1,∅
M (i, 〈κ, s, µ, x〉),

from which one sees, that F̃ is rudimentary in s, κ and A1,∅
M . 2(1)

By Lemma 5.22, it follows that for each ξ < s, we have:

[M ]ξ ∈ M̃.

Let F ∗ be the function, that’s rudimentary in B, π̄(κ), s∗ by the same definition, by which F̃ is
rudimentary in A1

M , κ, s. For π̄(τ) ≤ γ < s∗, denote the maximal continuation of JẼ
∗

π̄(τ) according
to F ∗(γ) by M∗γ . Using (0) and (1), it is the easy to see that

π([M ]ξ) = M∗π̄(ξ).

For γ ≤ δ ≤ s∗, let σ∗γ,δ be the canonical embedding

σ∗γ,δ : M∗γ −→ M∗δ .

We have:

〈M, 〈σMµ,s | τ ≤ µ < s〉〉 = dir lim(〈[M ]µ | τ ≤ µ < s〉, 〈σMµ,δ | τ ≤ µ ≤ δ < s〉),

because by claim (∗) of the proof of Lemma 5.32, JEν =
⋃
τ≤µ<s ran(σMµ,s), and for τ ≤ µ ≤ δ < s,

obviously, σMδ,sσµ,δ = σMµ,s. Now let

〈M∗, 〈σ∗π̄(µ) | τ ≤ µ < s〉〉 = dir lim(〈M∗π̄(µ) | τ ≤ µ < s〉, 〈σ∗π̄(µ),π̄(δ) | τ ≤ µ ≤ δ < s〉),

where wfc (M∗) is transitive.
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(2) M∗ is well-founded.

Proof of (2). Define an embedding
j : M∗ −→M ′

by
j(σ∗π̄(µ)(π̄(f)(~a)) := σM

′

π(µ),s(M ′)(~a).

The correctness of this definition is implicit in the following proof that j is Σ0−preserving: Let
ϕ be a Σ0−formula, and assume that

M∗ |= ϕ[~a].

Let µ < s be large enough that ~a ∈ ran(σ∗π̄(µ)). Let ~̄a ∈ M∗π̄(µ) be such that σ∗π̄(µ)(~̄a) = ~a. Since
σ∗γ,δ is Σ1-preserving whenever π̄(τ) ≤ γ ≤ δ < s∗, it follows that σ∗π̄(µ) is also Σ1-preserving,
hence we have

M∗π̄(µ) |= ϕ[~̄a].

Now we know:
M∗π̄(µ) = π([M ]µ) = [M ′]π(µ).

Hence we have:

M∗π̄(µ) |= ϕ[~̄a] ⇐⇒ [M ′]π(µ) |= ϕ[~̄a]

⇐⇒ M ′ |= ϕ[σM
′

π(µ),s(M ′)(~̄a)]

⇐⇒ M ′ |= ϕ[j(~a)].

Of course, the well-foundedness of M ′ implies that of M∗. 2(2)

Define a map π′ : M −→M∗ by

π′(σMµ,s(x)) := σ∗π̄(µ)(π̄(x)).

(3) π′�s = π̄�s.

Proof of (3).

(3.1) σMγ,s�γ = id�γ for τ ≤ γ < s.

Proof of (3.1.). By Lemma 5.14, crit(σMγ,s) = min(genF \ γ) ≥ γ. 2(3.1)

(3.2) σ∗γ�γ = id�γ, for π̄(τ) ≤ γ < s∗.

Proof of (3.2). Clearly,
σ∗γ,δ�γ = id�γ fr π̄(τ) ≤ γ ≤ δ < s∗.

This implies the claim: Assume the contrary. Let α be minimal such that

(-) There is a γ < s such that α < π̄(γ) and σ∗π̄(γ)(α) > α.

Choose such a γ. Pick γ′ with γ ≤ γ′ < s, so that α ∈ ran(σ∗π̄(γ′)). Let ᾱ = (σ∗π̄(γ′))
−1(α). Then

we have:
σ∗π̄(γ)(α) = σ∗π̄(γ′)(α),

since σ∗π̄(γ′)(α) = σ∗π̄(γ′)(σ
∗
π̄(γ),π̄(γ′)(α)) = σ∗π̄(γ)(α). I used here that α < π̄(γ) ≤ crit(σ∗π̄(γ),π̄(γ′)).

Hence
σ∗π̄(γ′)(α) = σ∗π̄(γ)(α) > α = σ∗π̄(γ′)(ᾱ),
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which implies that ᾱ < α. Moreover,
ᾱ < π̄(γ′),

since ᾱ < α < π̄(γ) ≤ π̄(γ′). Hence, (-) is also satisfied by ᾱ, as witnessed by γ′, as ᾱ < π̄(γ′)
and σ∗π̄(γ′)(ᾱ) = α > ᾱ. This contradicts the choice of α. 2(3.2)

Now let’s turn to the claim itself:
Let α < s. As s is a limit, α+ 1 < s. Using (3.1) and (3.2), it follows that

π′(α) = π′(σMα+1,s(α)) = σ∗π̄(α+1)(π̄(α)) = π̄(α).

2(3)

(4) π′ : M −→Σ2 M
∗.

Proof of (4). It’s obvious that π′ is Σ1-preserving. So it suffices to show that Σ2-formulae are
preserved downwards. Let ϕ(x, y) be a Σ0-formula, and assume

M∗ |= ∃x∀y ϕ(x, y)

(I suppress parameters in the range of π′). Let a ∈M∗ be such that

M∗ |= (∀y ϕ(x, y))[a].

Let τ ≤ µ < s and ā ∈ π̄([M ]µ) be such that a = σ∗π̄(µ)(ā). As σ∗π̄(µ) is Σ1-preserving, it follows
that

π̄([M ]µ) = M∗π̄(µ) |= (∀y ϕ(x, y))[ā],

hence
M∗π̄(µ) |= ∃x∀y ϕ(x, y),

so that
M̃∗ |= (∃x∀y ϕ(x, y))M∗

π̄(µ)
.

This is Σ0(M̃∗) in M∗π̄(µ), hence

M̃ |= (∃x∀y ϕ(x, y))[M ]µ ,

which implies that
[M ]µ |= ∃x∀y ϕ(x, y).

Now let b̄ ∈ [M ]µ be such that
[M ]µ |= (∀y ϕ(x, y))[b̄].

As σMµ,s : Mµ −→Σ1 M , it follows that

M |= (∀y ϕ(x, y))[σµ,s(b̄)],

in particular,
M |= ∃x∀y ϕ(x, y).

2(4)

In particular, M∗ is a J-model, as this is expressible by a Q-statement which is true in M .
Let

M∗ = 〈JE
∗

ν∗ , E
∗
ν∗〉

and κ∗ = π′(κ), τ∗ = π′(τ), and λ∗ = π′(λ).
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(5) s∗ = ωρ1
M∗ .

Proof of (5). Two directions have to be verified.
s∗ ≥ ωρ1

M∗ This follows, as M∗ = hM∗(s∗): Let x ∈ M∗. Then let µ ∈ [τ, s) and x̄ ∈ M∗π̄(µ)

be such that x = σ∗π̄(µ)(x̄). Obviously, M∗π̄(µ) = hM∗
π̄(µ)

(π̄(µ)), since M∗π̄(µ) is the maximal

continuation of JẼ
∗

π̄(τ) according to F̃ ∗(π̄(µ)). So let ξ < π̄(µ) and m < ω be such that x̄ =
hM∗

π̄(µ)
(ξ,m).

As σ∗π̄(µ) : M∗π̄(µ) −→Σ1 M
∗ and σ∗π̄(µ)�π̄(µ) = id�π̄(µ), it follows that

x = σ∗π̄(µ)(x̄) = σ∗π̄(µ)(hM∗π̄(µ)
(ξ,m)) = hM∗(ξ,m).

s∗ ≤ ωρ1
M∗ For this direction, one can argue as in the proof of Lemma 5.32: Assume the contrary,

so that s∗ > ωρ1
M∗ . Let A be Σ1(M∗) in p so that A ∩ ωρ1

M∗ /∈ M∗. Let µ ≥ τ , µ < s be such
that ωρ1

M∗ ≤ π̄(µ) and p ∈ ran(σ∗π̄(µ)). Let p̄ = (σ∗π̄(µ))
−1(p). Now let Ā be Σ1(M∗π̄(µ)) in p̄ by

the same Σ1-definition as A.
It has to be checked that M∗π̄(µ) ∈M

∗, for then it can be concluded that A∩π̄(µ) = Ā∩π̄(µ) ∈
M∗, a contradiction.

In order to see this, let ν ∈ (µ, s) be chosen so that [M ]µ ∈ [M ]ν – this is easy, using part (b)
of the s′-ISC. Let a = π([M ]µ) = M∗π̄(µ). Then in M∗π̄(ν) the Σ1-statement “a = [M∗π̄(ν)]π̄(µ)”,
which I denote by ϕ[a, π̄(µ)], is true. By (3.2), crit(σ∗π̄(ν)) ≥ π̄(ν), hence by the Σ1-preservation

property of σ∗π̄(ν), it follows that σ∗π̄(ν)(a) = [M∗]π̄(µ). But since FM
∗ |π̄(µ) = FM

∗
π̄(ν) |π̄(µ) and

JE
M∗

π̄(τ) = JE
M∗
π̄(ν)

π̄(τ) , this means that M∗π̄(µ) = σ∗π̄(ν)(a) ∈M∗. 2(5)

(6) s∗ = s(ν∗)M
∗
.

Proof of (6). First, it is obvious that s∗ ≤ s(ν∗)M
∗
, since π′ : M −→Σ2 M

∗ and π′�s = π̄�s,
hence s∗ = lub π̄“s = lub(π′)“s ≤ s(ν∗)M∗ , by Lemma 5.26.

In order to see the converse, define

i : JE
∗

τ∗ −→E∗
ν∗

JE
∗

ν∗ .

As M∗ is a direct limit, it follows that

|JE
∗

ν∗ | =
⋃

τ≤µ<s

ran(σ∗π̄(µ)).

As before, we get:

〈M∗, 〈σM
∗

π̄(µ),s∗ | τ ≤ µ < s〉〉 = dir lim(〈[M∗]π̄(µ) | τ ≤ µ < s〉,

〈σM
∗

π̄(µ),π̄(δ) | τ ≤ µ ≤ δ < s〉)
= 〈M∗, 〈σ∗π̄(µ) | τ ≤ µ < s〉〉.

So we have

|JE
∗

ν∗ | =
⋃

τ≤µ<s

ran(σM
∗

π̄(µ),s∗)

=
⋃

τ≤µ<s

{πM
∗

s∗ (f)(~α) | f ∈ JE
∗

τ∗ ∧ ~α < π̄(µ)}

= {πM
∗

s∗ (f)(~α) | f ∈ JE
∗

τ∗ ∧ ~α < s∗},

since s∗ = sup π̄“s. This shows that s(M∗) ≤ s∗, as wished. 2(6)
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(7) π = π′ and M∗ = M ′.

Proof of (7). It suffices to show:
π′ : M −→∗G M∗.

In order to see this, several points need verification.

- M∗ is transitive.

- π′ : M −→
Σ

(n)
0

M ′ if ωρnM > κ̃.

Proof. In the current constellation, ωρ2
M ≤ κ̃ < ωρ1

M , so it only needs to be checked that π′ is
Σ0- and Σ(1)

0 -preserving. By (4), π′ is even Σ2-preserving, which of course implies the former,
but also Σ(1)

0 -preservation is a consequence. By [Zem02, Lemma 1.7.1], it suffices firstly to show
that (π′)“Γ1

M ⊆ Γ1
M∗ , which is trivial here. Secondly, the following has to be shown:

If p ∈ Γ1
M and p′ = π′(p), then

π′�H1
M : M1,p −→Σ0 (M∗)1,p′

.

To this end, let p, p′ be as in the claim. Because of the known preservation properties of π′ it
suffices to show: 〈i, x〉 ∈ A1,p

M ⇐⇒ 〈i, π′(x)〉 ∈ A1,p′

M∗ . But this is obvious.

- crit(π′) = κ̃.

Proof. This is obvious, as crit(π′) = crit(π̄) = κ̃.

- G = 〈λ̃ ∩ π′(X) | X ∈ P(κ̃) ∩M〉.

Proof. This is also obvious. Since s = ωρ1
M is a cardinal in M , and since κ̃ < s, it follows

by acceptability of M that P(κ̃) ∩ M = P(κ̃) ∩ M̃ . Since π̄ : M̃ −→G M̃∗, it follows that
G = 〈λ̃ ∩ π̄(X) | X ∈ P(κ̃) ∩ M̃〉. The fact that π′�H1

M = π̄�H1
M now implies the claim.

- M∗ = {π′(f)(~α) | ~α < λ̃ ∧ f ∈ Γ∗(M, κ̃)}.

Proof. Since ωρ2
M ≤ κ̃ < s = ωρ1

M , Γ∗(M, κ̃) consists of functions f which are members of M or
have a Σ(0)

1 -definition over M .
So let x ∈M∗. As M∗ = h1

M∗(s
∗), there are i < ω and ξ < s∗ so that

x = h1
M∗(〈i, ξ〉).

But since π̄ : M̃ −→G M̃∗ there are a function f ∈ M̃ and ordinals ~α < λ̃, so that ξ = π̄(f)(~α).
Define g : (On ∩M∗) → M∗ by g(β) = h1

M ′(〈i, β〉). Then g is a Σ1(M∗)-function. Let ḡ be
the Σ1(M)-function defined over M by the same formula. Set: h := ḡ ◦ f . Then h is also a
Σ1(M)-function, and we have:

π′(h)(~α) = (g ◦ π′(f))(~α) = g(π′(f)(~α)) = g(ξ) = h1
M∗(〈i, ξ〉) = x.

I used here that π′�JEs = π̄�JEs .
That’s all that was needed for (7), and hence for the lemma, so that the proof is complete.

2(7),Lemma

For the proof that the s′-ISC is preserved in the case of type III-structures, I need the following
general observation.
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Lemma 5.34. Let M = 〈JAα , ~B〉 be an acceptable J-structure. Let F be an extender on M with
critical point κ. Let π : M −→∗F M ′. If κ < ωρn+1

M , then ωρnM ′ = π(ωρnM ).

Proof. Set ρ = ωρnM .
ωρnM ′ ≤ π(ρ) The statement ∀ξn ξn < ρ is Π(n)

1 (M) in ρ, and since π is Σ(n+1)
0 -preserving

(Σ(n)
1 would suffice), that statement holds in M ′ of π(ρ). I used [Jen97, §2, Lemma 3 (b)] here.
ωρnM ′ ≥ π(ρ) Assume the contrary. Let ρ′ := ωρnM ′ < π(ρ). In M ′, the following Π(n)

1 -
statement holds:

∀ξn ξn 6= ρ′.

Let ρ′ = π(f)(~γ) for some f ∈ Γ∗(M,κ) and ~γ < lh(F ). Moreover, f can be chosen so that
ran(f) ⊆ ρ. It follows that

M ′ |= ∀ξn ξn 6= π(f)(~γ).

By [Jen97, Lemma 3 (d)], one can apply a kind of  Lóz theorem to that statement, as ωρn+1
M > κ,

which yields that this is equivalent to

~γ ∈ F ({~ζ < κ |M |= ∀ξn ξn 6= f(~ζ)}︸ ︷︷ ︸
Z

).

In particular, Z 6= ∅. So let ~ζ ∈ Z. Then we have:

M |= ∀ξn ξn 6= f(~ζ),

but by choice of f , f(~ζ) < ρ = ωρnM - a contradiction.

Lemma 5.35. Let M be an active pλ-structure of type III, G an extender on M with κ =
crit(G) < s(M) and

π : M −→∗G M ′.

Then M ′ is also a pλ-structure of type III (assuming the well-foudedness of M ′).

Proof. Due to the preservation properties of π, it suffices to prove only those aspects of the s′-ISC
that relate to the top extender of M ′. Thus, it suffices to show that [M ′]ζ ∈ M ′ for arbitrarily
large ζ < s(M ′).

As M is of type III, Lemma 5.32 says that ωρ1
M = s(M). So κ < ωρ1

M .
Case 1: ωρ2

M ≤ κ < ωρ1
M .

Using Lemma 5.22, it is easy to see that [M ]ζ ∈M for arbitrarily large ζ < s(M). It follows
that for such ζ, [M ′]π(ζ) = π([M ]ζ) ∈ M ′. But by Lemma 5.33, s(M ′) = supπ“s(M), so we’re
done.

Case 2: κ < ωρ2
M .

Then π : M −→
Σ

(1)
2

M ′ by [Jen97, Lemma 3, (b)]. Using Lemma 5.34, it follows that

s′ := ωρ1
M ′ = π(ωρ1

M ) = π(s). Moreover, Lemma 5.26 says that s(M ′) ≤ π(s) = s′, as π is also
Σ2-preserving. Letting F := EMtop, the following statement, call it Ψ, holds in M :

∀ξ1∃x1 x1 = F |ξ1;

that the existential quantification may be bounded in this way is justified as in the proof of
Lemma 5.33. Here, “x1 = F |ξ1” is expressed by

“x1 is a function” ∧ (dom(x1) ⊆ κ̄) ∧ ∀a0∀b0 (b0 = F (a0) −→ x1(a0) = b0 ∩ ξ1),
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a Π(0)
1 -statement (I denote the critical point of F by κ̄ here). So Ψ is Π(1)

2 in κ̄. Hence, the same
statement holds in M ′, so that

M ′ |= ∀ξ < s′ F ′|ξ ∈M ′.

So s′ = s(M ′), since it follows that s(M ′) ≥ s′ (otherwise M ′ ∈ M ′). So M ′ is of type III and
satisfies the s′-ISC.

5.3.4 Putting things together

Now I am ready to prove that the s′-ISC of pλ-structures is preserved under normal s-iterations.

Theorem 5.36. Any normal s-iterate of a pλ-structure is a pλ-structure.

Proof. It suffices to show that the s′-ISC is preserved. So let M be a pλ-structure, and let
I = 〈〈Mi | i < θ〉, D, 〈νi | i ∈ D〉, 〈ηi | i ∈ D〉, 〈κi | i ∈ D〉, 〈τi | i ∈ D〉, 〈λi | i ∈ D〉, 〈si | i ∈ D〉,
〈s+
i | i ∈ D〉, T, 〈πi,j | i ≤T j < θ〉〉 be a normal s-iteration of M (i.e., with M = M0). I want

to show by induction on i < θ that Mi satisfies the s′-ISC. If Mi is passive, then this is trivial.
What was proved in the previous three subsections can be used to prove the successor step of the
induction. So assume Mj satisfies the s′-ISC, for every j ≤ i. I want to show that Mi+1 does,
too. Again, it may be assumed that Mi+1 is active. Let ξ = T (i+ 1) and M∗ = Mξ||ηi, so that

πξ,i+1 : M∗ −→∗
E
Mi
νi

Mi+1.

By the way s-iterations are constructed, κi < sξ, and in the current case, M∗ is active. Since
|M∗||s+

ξ | = |Mi||s+ξ|, it follows that ηi ≥ s+
ξ .

Claim: κi < s(M∗).
Proof of Claim. This is clear if ηi = νξ, for then, s(M∗) = sξ. Consider the case that ηi < νξ.
It must be that s(M∗) ≥ s+

ξ , for otherwise we would have: ωρωMξ||ηi ≤ s(M∗) < s+
ξ ≤ ηi < νξ,

so that s+
ξ wouldn’t be a cardinal in Mξ||νξ. So clearly, κi < sξ < s+

ξ ≤ s(M∗), as desired.
Finally, consider the case that ηi > νξ, and assume (towards a contradiction) that s(M∗) ≤ κi.
The definition of ηi implies that τi is a cardinal in M∗, so since s(M∗) ≤ κi, it follows that
s+(M∗) ≤ τi. Since κi < sξ and s+

ξ is a cardinal in Mi||νi, it follows that τi ≤ s+
ξ . So

s+(Mξ||ηi) ≤ s+
ξ = s+(Mξ||νξ), which even implies that s+(Mξ||ηi) < s+(Mξ||νξ). But that

would mean that νξ wasn’t applicable in Mξ, since ηi > νξ, a contradiction. 2Claim

Since Mξ satisfies the s′-ISC, and hence, M∗ obviously does, too, it follows by Lemmas
5.29,5.31 and 5.35 (depending on the type of M∗) that this is also true of Mi+1, as desired.
These lemmas are applicable because of the claim.

So suppose now that i is a limit ordinal and for all j < i, Mj satisfies the s′-ISC. Again,
assume that Mi is active. Let ξ <T i be such that [ξ, i)T contains no truncations. I treat the
different types separately again:

Case 1: Mξ is of type I.
Then it is easy to show by induction on ζ ∈ [ξ, i]T that Mζ is of type I, using Lemma 5.29

in the induction step. In the limit step, all one needs to know is that the property of being a
generator is expressible in a Π1 way. In particular, Mi is of type I, and hence it satisfies the
s′-ISC by fiat.

Case 2: Mξ is of type II.
It is straightforward to show by induction on ζ ∈ [ξ, i]T that Mζ is of type II and that

πξ,ζ(s(Mξ)) = s(Mζ), this time using Lemma 5.31 in the successor step. So Mi is of type II and
πξ,i(s(Mξ)) = s(Mi). Now the rest of the proof of Lemma 5.31 (starting at case 1) goes through.
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It didn’t matter for the rest of that argument that π was an ultrapower embedding by a short
extender.

Case 3: Mξ is of type III.
Again, it can easily be shown by induction on ζ ∈ [ξ, i]T that Mζ is of type III. Knowing this,

it suffices to prove that [Mi]γ ∈Mi, for arbitrarily large γ < s(Mi). So pick some generator γ <
s(Mi). Pick ζ <T i such that γ ∈ ran(πζ,i). Then π−1

ζ,i (γ) is a generator of EMζ

top , so inductively,

there is a generator γ′ of EMζ

top which is larger than π−1
ζ,i (γ) and is such that [Mζ ]γ′ ∈Mζ . Then

πζ,i(γ′) > γ, πζ,i(γ′) is a generator of EMi
top, and πζ,i([Mζ ]γ′) = [Mi]πζ,i(γ′) ∈Mi, as wished.

5.3.5 Downwards preservation of the s′-ISC, and some results on ps-structures

The results in this section were presented in [Fuc08] already, since they were needed there. I
repeat them here, because they fit in the present context much better.

Lemma 5.37. Let M be a λ-structure of type II and σ : M̄ −→Σ1 M an embedding with
qM , s(M) ∈ ran(σ). Then M̄ is also a λ-structure of type II, σ(s(M̄)) = s(M) and σ(qM̄ ) = qM .
The corresponding statement is true, when M is a pλ-structure of type II.

Lemma 5.38. There is a Π1-formula ψ(x, y) such that for every active pPs-structure N and
every ordinal ξ, the following is true: If EN̂top|ξ ∈ |N̂ |, then 〈a, f〉 is the ≺N -minimal10 element

of Γ(N,κ(N)) with a ∈ [s(N)]<ω and πNs(N)(f)(a) = EN̂top|ξ, if and only if

C̃0(N) |= ψ[〈a, f〉, ξ].

As a consequence, the following analog of Lemma 5.37 for ps-structures holds:

Lemma 5.39. Let N be a ps-structure of type II and σ : N̄ −→Σ1 N an embedding with
q̇C0(N), ṡC0(N) ∈ ran(σ). Then N̄ is also a ps-structure of type II, σ(ṡC0(N̄)) = ṡC0(N) and
σ(q̇C0(N̄)) = q̇C0(N).

5.4 s-coiterations

Definition 5.40. Let M = 〈JEν , Eων〉 be a pPλ-structure. Then ẼM := 〈Ẽµ | µ ≤ ν〉 =
〈ẼMµ | µ ≤ ν〉 is defined by

Ẽs+(µ)M := Eµ, if Eµ 6= ∅,
Ẽµ := ∅, if there is no ξ such that Eξ 6= ∅ and µ = s+(ξ)M .

Note that this definition is correct, as ν 6= ν′ =⇒ s+M (ν) 6= s+M (ν′) (Lemma 5.6).

Definition 5.41. Let M and M ′ be pPλ-structures. Set:

s(M,M ′) := min{µ | ẼMµ 6= ẼM
′

µ ∧ µ ≤ ht(M) ∩ ht(M ′)}.

So s(M,M ′) is the least s-Index, at which M and M ′ differ. The basic idea is that in con-
structing the s-coiteration of M and M ′, these differences are eliminated in the order determined
by s.

10For the definition of ≺N , see [Fuc08].
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Definition 5.42. Let M0 and M1 be pPλ-structures. An s-coiteration of M0 and M1 with
s-indices 〈s+

i | i ∈ D0〉 is a pair I = 〈I0, I1〉 of iterations of M0 and M1,

Ih = 〈〈Mh
i | i < θh〉, Dh, 〈νhi | i ∈ Dh〉, 〈ηhi | i < θh〉, Th, 〈πhi,j | i ≤Th j < θh〉〉 (h < 2)

with s-indices 〈s+
j | j ∈ Dh〉, where θ0 = θ1 = θ, so that the following conditions are met:

(a) Ih is standard.

(b) If M0
i and M1

i are incompatible, meaning that neither of these structure is a segment of the
other, then s+

i = s(M0
i ,M

1
i ), otherwise s+

i is undefined. If s+
i is undefined, then θ = i+ 1,

i /∈ Dh, and the coiteration terminates at i.

(c) If h ∈ 2 has the property that ẼM
h
i

s+i
6= ∅ (and there is at least one such h unless the

coiteration terminates at i), then let ν̄hi be such that s+(ν̄hi )M
h
i = s+

i . Moreover, let

κ̄hi = crit(ẼM
h
i

s+i
) and τ̄hi = (κ̄h+

i )M
h
i ||ν̄

h
i . If ẼM

h
i

s+i
= ∅, then these are undefined. Let ξhi =

be the least ξ ∈ Dh with κ̄hi < s(νhξ )M
h
ξ , if ν̄hi is defined, ξhi = i otherwise.

If ν̄hi is undefined, then set M̄h
i+1 := Mh

i .

Otherwise let η̄hi ≤ ht(Mh
ξh) be maximal so that we have:

(κ̄h+
i )M

h

ξh
||η̄hi = τ̄hi .

Now let M̄h
i+1 and π̄hi be defined by:

π̄hi : Mh
ξhi
||η̄hi −→∗

Ẽ
Mh
i

s
+
i

M̄h
i+1.

If M̄0
i+1 is a segment of M1

i , then we have:

M1
i+1 = M1

i , i /∈ D1

and
i ∈ D0, M0

i+1 = M̄0
i+1, T

0(i+ 1) = ξ0
i , ν

0
i = ν̄0

i , η
0
i = η̄0

i , s
+
i = s+M

0
i (ν0

i ),

and π0
ξ0
i ,i+1

= π̄0
i .

If this is not the case, but vice versa, M̄1
i+1 is a segment of M0

i , then

M0
i+1 = M0

i , i /∈ D0

and
i ∈ D1, M1

i+1 = M̄1
i+1, T

1(i+ 1) = ξ1
i , ν

1
i = ν̄1

i , η
1
i = η̄1

i , s
+
i = s+M

1
i (ν1

i ),

and π1
ξ1
i ,i+1

= π̄1
i .

Remark: I refer to these situations as exceptions. In case of an exception, the coiteration
terminates in the next step, as M0

i+1 and M1
i+1 are compatible.

Finally, if no such situation occurs, then

Mh
i+1 = M̄h

i+1, T
h(i+ 1) ' ξhi , νhi ' ν̄hi , ηhi ' η̄hi .

Moreover, i ∈ Dh iff νhi is defined, and s+
i = s+(νhi ) for some (and then each) h < 2 with

i ∈ Dh. 11

11In the above definition, “'” is to be understood in the sense of Kleene. So the value on the left hand side is
defined iff the one on the right hand side is, and if so, they are equal.
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The necessity for this rather technical definition results from complications that may occur
when pPλ-structures M0 and M1 are coiterated, and at least one of them is not modest.

5.4.1 Existence and normality of the s-coiteration

Lemma 5.43. Let M0, M1 be normally s-iterable pPλ-structures. Then there is a coiteration
I of M0 and M1. Both sides of this coiteration are normal s-iterations.

Proof. I show that if I = 〈I0, I1〉 is an s-coiteration of M0 and M1, then I0 and I1 are normal
s-iterations. The existence then follows from normal s-iterability. I have to show conditions (b)
and (d) from Definition 5.1 are satisfied.

(1) Sei h < 2, i < lh(Ih). There is no ν̃ > νhi such that s+(ν̃)M
h
i < s+

i . So condition (d) of
normality is satisfied.

Proof of (1). Assume the contrary. Let h = 0. Then

E := E
M0
i

ν̃ = Ẽ
M0
i

s+(ν̃)M
0
i

= Ẽ
M1
i

s+(ν̃)M
0
i

= E
M1
i

ν̃ ;

the last identity is valid since an extender determines its λ-index, because it determines the

power set of its critical point. Let κ = crit(E) and τ = (κ+)JE
M0
i

ν̃ = (κ+)JE
M1
i

ν̃ (again an
extender determines its critical point). Let

π0 : JE
M0
i

τ −→E JE
M0
i

ν̃ ,

π1 : JE
M1
i

τ −→E JE
M1
i

ν̃ .

(1.1) JE
M0
i

τ = JE
M1
i

τ .

Proof of (1.1). I have to show: EM
0
i �τ = EM

1
i �τ . To this end, let µ < τ be such that EM

0
i

µ 6= ∅.
Then

s+(µ)M
0
i ≤ µ < τ ≤ s+(ν̃)M

0
i < s+

i .

Since ẼM
0
i �s+

i = ẼM
1
i �s+

i , it follows that

E
M0
i

µ = Ẽ
M0
i

s+(µ)M
0
i

= Ẽ
M1
i

s+(µ)M
0
i

= E
M1
i

µ .

The opposite direction is proved analogously. 2(1.1)

It follows immediately that

(1.2) JE
M0
i

ν̃ = JE
M1
i

ν̃ .

(1.3) s+(ν0
i )M

0
i = s+(ν0

i )M
1
i .

Proof of (1.3). By (1.2), EM
0
i

ν0
i

= E
M1
i

ν0
i

, from which it follows that

s(ν0
i )M

0
i = s(ν0

i )M
1
i ,

and

s+(ν0
i )M

0
i = (s(ν0

i )M
0
i )

+JE
M0
i

ν0
i = (s(ν0

i )M
1
i )

+JE
M1
i

ν0
i = s+(ν0

i )M
1
i .
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2(1.3) Hence we get:

Ẽ
M0
i

s+i
= Ẽ

M0
i

s+(ν0
i )M

0
i

= E
M0
i

ν0
i

= E
M1
i

ν0
i

= Ẽ
M1
i

s+(ν0
i )M

1
i

= Ẽ
M1
i

s+i
,

contradicting the definition of s+
i = s(M0

i ,M
1
i ). 2(1)

I now turn to condition (b) in the definition of normality.

(2) Let i ∈ Dh, j ∈ Dh ∩ i. Then s+
j = s+(νhj )M

h
j < νi.

Proof of (2). Induction on i. Suppose the claim holds for all i′ < i. If i = min(Dh \ (l+ 1)) and
l ∈ Dh, then I show that νi > s+

l . Wlog, let i = l + 1. As Ih|(l + 1) is a normal s-iteration, it
follows for α ∈ Dh ∩ l that s+h

α ≤ s+h
l < νi. The following observations make this clear:

(2.1) EM
k
i �(νhl + 1) = EM

h
l �νhl for l ∈ Dk.

Proof of (2.1). This follows from the coherency of JE
Mhl

νhl
. 2(2.1)

(2.2) JE
M0
l

s+l
= JE

M1
l

s+l
.

Proof of (2.2). Like the proof of (1.1). 2(2.2)

It follows from (2.1) and (2.2) that

EM
0
i �(s+

l + 1) = EM
0
l �s+

l = EM
1
l �s+

l = EM
1
i �(s+

l + 1),

and that means that νhi+1 > s+
i .

This proves the claim in case i = min(Dh \ (l + 1)).
If i is a limit point of Th, then let b =<Th “{i} and j ∈ b∩Dh. I have to show that s+

j < νhi .
There are only finitely many truncations in b, so by methods established earlier on, one can find
a j′ ∈ b \ (j + 1) so that, setting κ := crit(πhj′,i) and κ̃ := crit(π1−h

j′,i ), it follows that κ, κ̃ > s+
j .

Then JE
Mhi

s+j +1
= JE

Mh
j′

s+j +1
= JE

M
1−h
j′

s+j +1
= JE

M
1−h
i

s+j +1
, and this implies that νhi > s+

j , as wished.

5.4.2 Coherency of the s-coiteration

Lemma 5.44. Let M0 and M1 be pPλ-structures with an s-coiteration I = 〈I0, I1〉, Ih =
〈〈Mh

i | i < θh〉, Dh, 〈νhi | i ∈ Dh〉, 〈ηhi | i < θh〉, Th, 〈πhi,j | i ≤Th j < θh〉〉 being an iteration of
Mh. Then for i ≤ j < θ = θ0 = θ1,

s+
i ≤ s

+
j .

If s+
i = s+

i+1, then we have: There is an h < 2 so that i, i+ 1 ∈ Dh and s+
i = νhi ; in particular,

Mh
i is not modest. Moreover, in this case, s+

i+1 < νhi+1 = ht(Mh
i+1).

Proof. Assume the contrary. So let s+
i+1 ≤ s

+
i .

Case 1: There is an h ∈ 2 so that i, i+ 1 ∈ Dh.
Both sides of the s-coiteration are normal. So it follows from Lemma 5.5 that s+

i+1 = s+
i = νhi ,

and that s+
i+1 < νhi+1 = ht(Mh

i+1), as desired.
Case 2: Case 1 fails.
Then there is an h ∈ 2, so that i ∈ Dh \D1−h and i+ 1 ∈ D1−h \Dh. Wlog, let h = 0. Then

M1
i = M1

i+1, Ẽ
M1
i

s+i
= Ẽ

M1
i+1

s+i
= ∅;
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i is not an exception, as i + 1 ∈ D1. Then s+
i+1 < s+

i , as it follows from i + 1 ∈ D1 and i /∈ D1

that
Ẽ
M1
i+1

s+i+1
6= ∅ = Ẽ

M1
i

s+i
= Ẽ

M1
i+1

s+i
.

Hence:
Ẽ
M1
i+1

s+i+1
= Ẽ

M1
i

s+i+1
= Ẽ

M0
i

s+i+1
,

as ẼM
1
i �s+

i = ẼM
0
i �s+

i . But it follows immediately from Ẽ
M1
i

s+i+1
= Ẽ

M0
i

s+i+1
that

F := E
M1
i

ν1
i+1

= E
M0
i

ν1
i+1
.

Let κ := crit(F ). Then

τ := (κ+)
JE

M0
i

ν1
i+1 = (κ+)

JE
M1
i

ν1
i+1 ≤ s+

i+1 < s+
i ,

hence JE
M0
i

τ = JE
M1
i

τ , as JE
M0
i

s+i
= JE

M1
i

s+i
. Let

π̄ : JE
M0
i

τ −→F JE
M0
i

ν1
i+1

.

Then
π̄ : JE

M1
i

τ −→F JE
M1
i

ν1
i+1

,

hence M0
i ||ν1

i+1 = M1
i ||ν1

i+1. So ν1
i+1 < ν0

i , since otherwise it would follow that M0
i ||ν0

i = M1
i ||ν0

i .
But then

M0
i+1||ν1

i+1 = M0
i ||ν1

i+1 = M1
i ||ν1

i+1 = M1
i+1||ν1

i+1

would be a contradiction. So it can only occur in case 1 that s+
i+1 ≤ s

+
i .

Corollary 5.45. Let M0 and M1 be pPλ-structures. Let I = 〈I0, I1〉 be an s-coiteration of M0

and M1, where Ih = 〈〈Mh
i | i < θh〉, Dh, 〈νhi | i ∈ Dh〉, 〈ηhi | i < θh〉, Th, 〈πhi,j | i ≤Th j < θh〉〉,

for h ∈ 2. If i+ 2 < θ, then
s+
i = s+

i+1 =⇒ s+
i+1 < s+

i+2.

Proof. Assume the contrary. An exception could only occur at i+ 2. But this would only have
an effect on Mh

i+3, so that the possibility of an exception can be ignored here. So let

s+
i = s+

i+1 = s+
i+2.

Then by the previous lemma, there is an h < 2 so that

i, i+ 1 ∈ Dh.

Wlog, let h = 0. By Lemma 5.5 then i+2 /∈ D0, as I0 is a normal s-iteration and s+
i+1 < ν0

i+1 by
Lemma 5.44, so that if i+ 2 were a member of D0, it would have to be the case that s+

i+1 < s+
i+2.

But then, i + 2 ∈ D1. But since s+
i+1 = s+

i+2, again by the previous lemma, there has to be
an h′ ∈ 2 so that i+ 1, i+ 2 ∈ Dh′ . As i+ 2 /∈ D0, it follows that h′ = 1, hence i+ 1, i+ 2 ∈ D1.

It then even follows that i ∈ D1, for otherwise, M1
i = M1

i+1, and since i + 1 ∈ D1, it would
follow that

∅ 6= Ẽ
M1
i+1

s+i+1
= Ẽ

M1
i

s+i+1
= Ẽ

M1
i

s+i
,
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hence i ∈ D1 after all, contradicting the assumption that i /∈ D1.
But I1 is a normal s-iteration, so the constellation

i, i+ 1, i+ 2 ∈ D1 and s+
i = s+

i+1 = s+
i+2

contradicts lemma 5.5.

5.4.3 s-coiterations terminate

Theorem 5.46. Let M0 and M1 be pλ-structures with s-coiteration I = 〈Ĩ0, Ĩ1〉, where all
structures occurring in Ĩ0 and Ĩ1 are pλ-structures. Then

lh(I) ≤ max(M0
+

,M1
+

).

Proof. Assume the contrary. Let θ = max(M0
+

,M1
+

) < lh(I). Set:

Ih := Ĩh|θ + 1 for h ∈ 2.

Wlog, let Dh be unbounded in θ, for each h < 2: If, e.g., D1 is bounded in θ, then D0 has to
be unbounded in θ, hence 〈s+

i | i ∈ D0〉 is unbounded in θ. Let j = supD1. Then ht(M1
j ) < θ,

hence there is an i ∈ D0 \ j with s+
i > ht(M1

j ) = ht(M1
i ), so that s(M0

i ,M
1
i ) = s+

i > ht(M1
i ),

contradicting the definition of s(M0
i ,M

1
i ).

Let τ > θ+ be such that τ is regular and

〈I0, I1〉 ∈ Hτ .

It is a straightforward matter to construct σ : H̄ ≺ Hτ so that the following conditions are
satisfied:

(a) H̄ is transitive and (H̄) < θ.

(b) θ, 〈I0, I1〉 ∈ ran(σ). Let σ(θ̄, Ī0, Ī1) = θ, I0, I1.

(c) σ�θ̄ = id�θ̄.

Let Īh = 〈〈M̄h
i | i ≤ θ̄〉, D̄h, 〈ν̄hi | i ∈ D̄h〉, 〈η̄hi | i ≤ θ̄h〉, T̄h, 〈π̄hi,j | i ≤T̄h j ≤ θ̄〉〉. Then

obviously, for i, j < θ̄:

M̄h
i = Mh

i = σ(M̄h
i ),

π̄hi,j = πhi,j = σ(π̄hi,j),

T̄h ∩ θ̄2 = Th ∩ θ̄2,

<T̄h “{θ̄} = θ̄ ∩ (<Th “{θ}).

Hence θ̄ is a limit point of <Th “{θ}, so that

θ̄Thθ,

as follows from the properties of iteration trees; see [MS94, Def. 5.0.1] or [Jen97, §4, S.2, Def.
and the following remark].

(1) 〈M̄h
θ̄
, π̄h
i,θ̄
〉 = dir limi≤T̄ j<T̄ θ̄(〈M̄

h
i 〉, 〈π̄hi,j〉) = dir limi≤T j<T θ̄(〈M

h
i 〉, 〈πhi,j〉) = 〈Mh

θ̄
, πh
i,θ̄
〉.
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Hence

(2) Mh
θ̄

= M̄h
θ̄
, πh

i,θ̄
= π̄h

i,θ̄
(for i ≤T θ̄).

(3) σ�dom(πh
θ̄,θ

) = πh
θ̄,θ
.

Proof of (3). Let x ∈ dom(πh
θ̄,θ

) ⊆Mh
θ̄

. Let i <Th θ̄ and x′ ∈Mh
i , be so that x = πh

i,θ̄
(x′). Then

we have:
σ(x) = σ(πh

i,θ̄
(x′)) = σ(π̄h

i,θ̄
(x′))

= σ(π̄h
i,θ̄

)(σ(x′)) = πhi,θ(x
′)

= πh
θ̄,θ

(πh
i,θ̄

(x′)) = πh
θ̄,θ

(x).
2(3)

Now, for h < 2 choose the least ξh satisfying

θ̄ <Th ξh + 1 <Th θandξh ∈ Dh.

It’s obvious that

(4) κhξh = crit(πh
θ̄,ξh+1

) = crit(πh
θ̄,θ

) = crit(σ) = θ̄.

Set: κ := κhξh(= θ̄).

(5) For X ∈ dom(E
Mh
ξh

νhξh
), E

Mh
ξh

νhξh
(X) ∩ shξh = σ(X) ∩ shξh .

Proof of (5). The point is that crit(πhξh+1,θ) ≥ shξh (since if ξh+1 = Th(µ+1), then crit(πhξh+1,θ) =
crit(πhξh+1,µ+1) = κhµ < shξh+1, and ξh + 1 is minimal with this property). Using this together

with (3) for α < shξh and the fact that X ∈ dom(E
Mh
ξh

νhξh
) one can argue as follows:

α ∈ E
Mh
ξh

νhξh
(X) ⇐⇒ α ∈ πhθ̄,ξh+1(X)

⇐⇒ πhξh+1,θ(α) ∈ πhθ̄,θ(X)

⇐⇒ α ∈ σ(X).

2(5)

So letting γ = s0
ξ0
∩ s1

ξ1
, we get:

E
M0
ξ0

ν0
ξ0

|γ = E
M1
ξ1

ν1
ξ1

|γ.

Now let, wlog,
ξ0 ≤ ξ1.

Then s+
ξ0
≤ s+

ξ1
. Moreover,

(6) s+
ξ0
∈ CardM

1
ξ1
||ν1
ξ1 .

Proof of (6). This is trivial if s+
ξ0

= s+
ξ1

. If s+
ξ0
< s+

ξ1
, then

s+
ξ0
∈ Card

JE
M0
ξ1

s
+
ξ1 = Card

JE
M1
ξ1

s
+
ξ1 ⊆ Card

JE
M1
ξ1

ν1
ξ1 ;

the inclusion follows from the fact that s+
ξ1
∈ Card

JE
M1
ξ1

ν1
ξ1 . 2(6)
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(7) τ := τ0
ξ0

= τ1
ξ1
.

Proof of (7). It follows from (6) that

τ0
ξ0 = (κ+)

JE
M0
ξ0

ν0
ξ0 = (κ+)

JE
M0
ξ0

s
+
ξ0 = (κ+)

JE
M0
ξ1

s
+
ξ0 = (κ+)

JE
M1
ξ1

s
+
ξ0 = (κ+)

JE
M1
ξ1

ν1
ξ1 = τ1

ξ1 .

2(7)

Now let h ∈ 2 be such that
shξh ≤ s

1−h
ξ1−h

.

Case 1: shξh < s1−h
ξ1−h

.
Then let

π̄ : JE
M

1−h
ξ1−h

τ −→
E
M

1−h
ξ1−h

ν
1−h
ξ1−h

|shξh

JE
′

ν′ .

As E
M1−h
ξ1−h

ν1−h
ξ1−h

|shξh = E
Mh
ξh

νhξh
|shξh , it follows that

[M1−h
ξ1−h
||ν1−h
ξ1−h

]shξh
= 〈JE

′

ν′ , π̄�P(κ)〉 = Mh
ξh
||νhξh ;

note that JE
M0
ξ0

τ = JE
M1
ξ1

τ .

Since shξh is a cutpoint of E
M1−h
ξ1−h

ν1−h
ξ1−h

which is less than s1−h
ξ1−h

, the s′-MISC for M1−h
ξ1−h
||ν1−h
ξ1−h

implies:

(∗) s+
ξh

is not a cardinal in M1−h
ξ1−h
||ν1−h
ξ1−h

;

M1−h
ξ1−h
||ν1−h
ξ1−h

satisfies the s′-ISC, hence also the s′-MISC (see Lemma 5.23).
For the same reason, Mh

ξh
||νhξh satisfies the s′-MISC, hence Mh

ξh
||νhξh = [M1−h

ξ1−h
||ν1−h
ξ1−h

]shξh
∈

M1−h
ξ1−h
||ν1−h
ξ1−h

. In particular,
νhξh < ν1−h

ξ1−h
.

It follows from (6) and (∗) that h = 1, so ωρ1
M1
ξ1
||ν1
ξ1
≤ s1

ξ1
< s0

ξ0
< s+

ξ0
≤ s+

ξ1
≤ ν1

ξ1
< ν0

ξ0
. So

s+
ξ0

is not a cardinal in M0
ξ0
||ν0
ξ0

, a contradiction. N.B.: M1
ξ1
||ν1
ξ1

= [M0
ξ0
||ν0
ξ0

]s0ξ0
∈M0

ξ0
||ν1
ξ1

.
So case 1 cannot occur.
Case 2: shξh = s1−h

ξ1−h
= γ.

Set:
F := E

M0
ξ0

ν0
ξ0

|γ = E
M1
ξ1

ν1
ξ1

|γ.

Then
F ′ := E

M0
ξ0

ν0
ξ0

= F̂ = E
M1
ξ1

ν1
ξ1

.

Since an extender determines its λ-index, it follows that

ν := ν0
ξ0 = ν1

ξ1 ,

and using coherency of M0
ξ0
||ν and M1

ξ1
||ν, it even follows that

M0
ξ0 ||ν = M1

ξ1 ||ν;
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again I use that JE
M0
ξ0

τ0
ξ0

= JE
M1
ξ1

τ1
ξ1

. Hence, ξ0 6= ξ1. So it must be the case that

ξ0 < ξ1.

Moreover, we know that
s+
ξ0

= s+
ξ1
.

It follows from Lemma 5.44 and Corollary 5.45 that

ξ1 = ξ0 + 1.

Moreover,
ν0
ξ0 = ν = ν1

ξ1 > s+
ξ0

by normality. Hence,
ξ1 = ξ0 + 1 /∈ D0

by Lemma 5.5, since otherwise s+
ξ1
> s+

ξ0
. Again by Corollary 5.45 it follows that

ξ0, ξ1 ∈ D1 und ν1
ξ0 = s+

ξ0
.

Also,
ν1
ξ1 = ht(M1

ξ1),

by Lemma 5.5. So we’re in the situation

M1
ξ0+1 = M1

ξ1 ||ν = M0
ξ0 ||ν,

which contradicts the definition of s-coiterations: At stage ξ0 of the coiteration, by Definition
5.42(c), M0

ξ0
was not allowed to be moved, and M1

ξ0+1 would have had to be a segment of
M0
ξ0+1 = M0

ξ0
(so that termination had occurred at stage ξ0 + 1). This contradiction finishes the

proof.

5.5 Normal iterations of pPs-structures

Definition 5.47. I = 〈〈Ni | i < θ〉, D, 〈ηi | i ∈ D〉, 〈κi | i ∈ D〉, 〈τi | i ∈ D〉, 〈λi | i ∈ D〉, 〈si | i ∈ D〉,
〈s+
i | i ∈ D〉, T, 〈σi,j | i ≤T j < θ〉〉 is a normal iteration of the pPs-structure N if:

(a) T is an iteration tree (in the sense of [Jen97]).

(b) For i < θ, Ni is a pPs-structure, and N0 = N .

(c) If i /∈ D, then i <T i+ 1, Ni+1 = Ni and σi,i+1 = id�|Ni|.

(d) If i ∈ D, then we have:

(1) i+ 1 < θ.

(2) ENi
s+i
6= ∅, and κi = crit(ENi

s+i
), si = s(ENi

s+i
), λi = λ(ENi

s+i
), τi = τi(ENis+i

).

(3) ξ := T (i+ 1) = min{δ | δ = i ∨ (δ ∈ D ∧ κi < sδ)}.

(4) ηi = max{η ≤ ht(Nξ) | (κ+
i )Nξ||η = (κ+

i )Ni||s
+
i }.

(5) σξ,i+1 : N̂ξ||ηi −→∗
E
Ni

s
+
i

N̂i+1.
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(6) If j ∈ D ∩ i, then s+
j < ht(N̂i||s+

i ).

(e) If λ < θ is a limit ordinal, then

〈Nλ, 〈σi,λ | i <T λ〉〉 = dir lim(〈Ni | i <T λ〉, 〈σi,j | i <T j <T λ〉).

(f) For i <T j <T k, σi,k = σj,kσi,j .

(g) For j < θ {i | i+ 1 ≤T j ∧ ηi < ht(NT (i+1))} is finite. As before, I use T (j) to denote the
immediate <T -predecessor of j, if it exists. Also, I refer to i + 1 as a truncation point if
ηi < ht(NT (i+1)). So for each j < θ, there are only finitely many truncation points below
j.

Definition 5.48. Complementing the the notion of normal s-iterability of pPλ-structures in
Definition 5.2, I define now when a pPs-structure N is normally iterable. This shall mean that
there is a successful normal iteration strategy for N , which is formulated precisely as before.
It should be pointed out, though, that the continuation of an iteration has to consist of pPs-
structures. In particular, the additional structure must be hereditarily continuable.

This finishes the treatment of normal iterations of pPs-structures. The reader may wonder
why I don’t go on proving things like that the s′-ISC of ps-structures is preserved under these
iterations, et cetera. The reason is that I am going to show in the next section that the translation
functions can even be used to translate iterations in such a very nice way that in order to see that
the s′-ISC of a ps-structure N is preserved under a normal iteration, one can argue as follows:
Let N ′ be a normal iterate of N . Let M = Λ(N), M ′ = Λ(N ′). M then satisfies the s′-ISC
for pλ-structures, and M ′ is a normal s-iterate of M . So since s-iterations preserve the s′-ISC
of pλ-structures, M ′ satisfies the s′-ISC. This is again preserved by the translation function,
so that N ′ = S(M ′) satisfies the s′-ISC as well. It is also easy to check that the comparison
process works, the main point being that Λ-images of initial segments of a pPs-structure are
initial segments of the Λ-image of the whole structure. So in principle, one could just coiterate
pPs-structures by coiterating their translates and retranslating the outcomes.

6 Transliterations

I put the results obtained up to now together in this section in order to translate iterations,
forming what I call transliterations. Before doing this, let me recall a general observation which
was shown in the first part of the paper:

Lemma 6.1. Let M and N be acceptable J-models with:

(i) Σ1(M) ∩ P(H1
M ) = Σ1(N) ∩ P(H1

N ).

(ii) for α ∈ CardM ∩ CardN HM
α = HN

α .

Then for every n ≥ 1:

(a) ωρnM = ωρnN ,

(b) Σ(n−1)
1 (M) ∩ P(Hn

M ) = Σ(n−1)
1 (N) ∩ P(Hn

N ).

I shall also need the following observation on normal s-iterations:
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Lemma 6.2. Let I = 〈〈Mi | i < θ〉, D, 〈νi | i ∈ D〉, 〈ηi | i < θ〉, T, 〈πi,j | i ≤T j < θ〉〉 be a
normal s-iteration with s-indices 〈〈si, s+

i 〉 | i ∈ θ〉. Let i ∈ D and j = T (i+ 1). Then there is no
µ > ηi such that µ ≤ ht(Mj) and s+(Mj ||µ) ≤ ηi.

Proof. Assume the contrary. Pick a counterexample µ ≤ ht(Mj) so that s+(Mj ||µ) ≤ ηi < µ. It
is then obvious that i+ 1 is a truncation point.

(1) s+(Mj ||µ) ≤ κi.

Proof of (1). Assume κi < s+(Mj ||µ). As in Mj ||ηi + 1, a new subset of κi appears, ηi is
collapsed there to κi. But κi < s+(Mj ||µ) ≤ ηi, hence s+(Mj ||µ) is not a cardinal in Mj ||ηi + 1,
hence it’s not a cardinal in Mj ||µ either, as ηi < µ, a contradiction. 2(1)

Hence we have

(2) s+(Mj ||µ) ≤ κi < sj < νj.

Proof of (2). By definition of T (i+ 1) in s-iterations, κi < sj 2(2)

(3) µ < νj.

Proof of (3). Assume the contrary. Then νj < µ, as s+(Mj ||µ) 6= s+(Mj ||νj): s+(Mj ||µ) ≤
κi < sj < s+(Mj ||νj), so in particular, µ 6= νj . So it would follow that s+(Mj ||µ) < νj < µ,
meaning that νj was not applicable in I. 2(3)

(4) ηi ≥ s+
j = s+(Mj ||νj).

Proof of (4). This follows from Lemma 5.4. As s+
j is a cardinal greater than κi in Mi, and since

s+
j ≤ s

+
i , it follows that

P(κi) ∩ |Mi||νi| = P(κi) ∩ |Mi||s+
j | = P(κi) ∩ |Mj ||s+

j |.

This implies the claim, since by normality, ηi is maximal with this property. 2(4)

So this is the situation:

s+(Mj ||µ) ≤ κi < sj < s+
j ≤ ηi < µ < νj .

But [s+(Mj ||µ), µ] ∩ CardMj ||νj = ∅, as νj > µ. On the other hand, s+
j is a cardinal in Mj ||νj ,

and s+
j is in that interval, a contradiction.

This will be used in the proof of the next lemma, which introduces the notion of a translit-
eration.

Lemma 6.3. Let M be a pPλ-structure, and I = 〈〈Mi | i < θ〉, D, 〈νi | i ∈ D〉, 〈ηi | i < θ〉, T,
〈πi,j | i ≤T j < θ〉〉 a normal s-iteration of M with s-indices 〈〈si, s+

i 〉 | i ∈ D〉. Let N = S(M).
For i < θ, set

Ni = S(Mi).

Moreover, for i ∈ D, define η′i, as follows:
Let ξ = T (i+ 1), M∗i = Mξ||ηi and N∗i = S(M∗i ). Set:

η′i := ht(N∗i ).

Then there are uniquely determined maps 〈σi,j | i <T j < θ〉, so that

I ′ := 〈〈Ni | i < θ〉, D, 〈η′i | i ∈ D〉, 〈κi | i ∈ D〉, 〈τi | i ∈ D〉, 〈λi | i ∈ θ〉,
〈si | i ∈ D〉, 〈s+

i | i ∈ D〉, T, 〈σi,j | i ≤T j < θ〉〉

is a normal iteration of N . I call this iteration the transliteration of I, and denote it by S(I).
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Proof. The uniqueness of the maps is obvious, so it suffices to prove their existence. Wlog, let I
be direct. I prove by induction on 1 ≤ γ ≤ θ:

(∗) S(I|γ) exists, and for α < β ≤ γ, the iteration S(I|α) is an initial segment of S(I|β). In
the notation of the lemma, we have for i ≤T j < γ: σi,j ⊆ πi,j.

So let γ ≥ 1, and assume (∗) to hold for all γ̄ < γ.
Case 1: γ = 1.
Trivial.
Case 2: γ > 1, and γ is a successor ordinal.
Then let γ = γ̄ + 1 and

S(I|γ̄) = 〈〈Ni | i < γ̄〉, D ∩ (∪γ̄), 〈η′i | i ∈ D ∩ (∪γ̄)〉, 〈κi | i ∈ D ∩ (∪γ̄)〉,
〈τi | i ∈ D ∩ (∪γ̄)〉, 〈λi | i ∈ γ̄〉, 〈si | i ∈ D ∩ (∪γ̄)〉, 〈s+

i | i ∈ D ∩ (∪γ̄)〉,
T ∩ γ̄2, 〈σi,j | i ≤T j < γ̄〉〉.

Case 2.1: γ̄ is a successor ordinal.
Set γ̄ = ζ + 1. I shall prove:

(1) E
Nζ

s+ζ
= ((EMζ

νζ |s+
ζ )h)c 6= ∅.

(2) ξ := T (ζ + 1) = min{δ | δ = ζ ∨ (κζ < sδ)}.

(3) η′ζ = max{η ≤ ht(Nξ) | (κ+
ζ )Nξ||η = (κ+

ζ )Nζ ||s
+
ζ }.

(4) Letting σξ,ζ+1 : N̂ξ||η′ζ −→∗
E
Nζ

s
+
ζ

N ′, σξ,ζ+1 ⊆ πξ,ζ+1 and N ′ = N̂ζ+1.

(5) For j ∈ D ∩ i, s+
j < ht(N̂i||s+

i ).

Proof of (1). By definition of normality, νζ is applicable in Mζ (Def. 5.1). By Lemma 2.6,
S(M ||νζ) is a segment of Nζ = S(Mζ). This implies the claim immediately.
Proof of (2). This is trivial, as I is a normal s-iteration.
Proof of (3). As I is a normal s-iteration, it follows that

ηζ = min{η ≤ ht(Mξ) | (κ+
ζ )Mξ||η = (κ+

ζ )Mζ ||νζ = τζ}.

It was mentioned in the proof of (1) already that S(M ||νζ) is a segment of Nζ . So

S(Mζ ||νζ) = Nζ ||s+
ζ .

By Lemma 6.2, also S(Mξ||ηζ) is a segment of Nξ, hence

S(Mξ||ηζ) = Nξ||η′ζ .

As |Nξ||η′ζ | ⊆ |Mξ||ηζ |, τζ is a cardinal in Nξ||η′ζ .12 As τζ is a cardinal in Mξ||ηζ , it follows that

|Mξ||τζ | = |Nξ||τζ |.
12At this point, one has to use a different argument to prove the converse of this Lemma.
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Hence
(κζ , τζ) ∩ CardNξ||η′ζ = (κζ , τζ) ∩ CardNξ||τζ = (κζ , τζ) ∩ CardMξ||τζ = ∅.

This shows that (κ+
ζ )Nξ||η

′
ζ = τζ .

If η′ζ < ht(Nξ), it remains to show that η′ζ is maximal with the above property. But then it is
also the case that ηζ < ht(Mξ), and that means that ωρωMξ||ηζ ≤ κζ . Applying Lemma 6.1 yields:

ωρωNξ||η′ζ
= ωρωMξ||ηζ ≤ κζ .

This shows the maximality.
Proof of (4). Define N ′ and σξ,ζ+1 by:

σξ,ζ+1 : N̂ξ||η′ζ −→
∗
E
Nζ

s
+
ζ

N ′.

This extender ultrapower is well-founded, by Lemma 4.5.
By Lemma 4.4, N ′ = ̂S(Mζ+1) = N̂ζ+1, and σξ,ζ+1 ⊆ πξ,ζ+1, as desired.

Proof of (5). For j ∈ D∩ i s+
j < νi = ht(N̂i||s+

i ), as I is a normal s-iteration. Define for i <T ξ:

σi,ζ+1 := σξ,ζ+1 ◦ σi,ξ.

Then (1)-(5) implies that

S(I|γ) = 〈〈Ni | i < γ〉, D ∩ (∪γ), 〈η′i | i ∈ D ∩ (∪γ)〉, 〈κi | i ∈ D ∩ (∪γ)〉,
〈τi | i ∈ D ∩ (∪γ)〉, 〈λi | i ∈ γ〉, 〈si | i ∈ D ∩ (∪γ)〉, 〈s+

i | i ∈ D ∩ (∪γ)〉,
T ∩ γ2, 〈σi,j | i ≤T j < γ〉〉

is as wished.
Case 2.2: γ̄ is a limit ordinal.
Let

〈Ñ , 〈σi,γ̄ | i <T γ̄〉〉 := dir lim(〈N̂i | i <T γ̄〉, 〈σi,j | i <T j <T γ̄〉),

where for notational ease, I’ll assume that no truncations occur in that tree. If this direct limit
is well-founded, I’ll identify it with its transitive isomorph, as usual.

Now define a model M̃ = 〈|M̃ |, ĖM̃ , Ḟ M̃ 〉 by

|M̃ | := {πi,γ̄(a) | i <T γ̄ ∧ a ∈ |N̂i|},

ĖM̃ (πi,γ̄(a)) ⇐⇒ a ∈ |N̂i| ∧ ĖN̂i(a),

Ḟ M̃ (πi,γ̄(a)) ⇐⇒ a ∈ |N̂i| ∧ Ḟ N̂i(a).

|M̃ | is transitive: Assume the contrary. Then let a ∈ |M̃ | be such that a * |M̃ |. Choose
b ∈ a\ |M̃ |. Let i′ <T γ̄ and a′ ∈ |N̂i′ | be such that πi′,γ̄(a′) = a. Now let i ≥T i′, i <T γ̄ be such
that there is a b̄ ∈ |Mi| with the property that b = πi,γ̄(b̄). Set: ā = πi′,i(a′). Then ā ∈ |N̂i|, since
a′ ∈ |N̂i′ |, and πi′,i�|N̂i′ | = σi′,i : N̂i′ −→ N̂i. Moreover, πi,γ̄(ā) = πi,γ̄(πi′,i(a′)) = πi′,γ̄(a′) = a.
So thus far, we know: a = πi,γ̄(ā), b = πi,γ̄(b̄), ā ∈ |N̂i| and b̄ ∈ ā. But |N̂i| is transitive, hence
b̄ ∈ |N̂i|, and this implies by definition of |M̃ |, that b = πi,γ̄(b̄) ∈ |M̃ |. This is a contradiction.
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I’ll now show that

〈M̃, 〈πi,γ̄�|N̂i| | i <T γ̄〉〉 = 〈Ñ , 〈σi,γ̄ | i <T γ̄〉〉,

making use of the fact that

〈Ñ , 〈σi,γ̄ | i <T γ̄〉〉 = dir lim(〈N̂i | i <T γ̄〉, 〈σi,j | i <T j <T γ̄〉).

Obviously, for i ≤T j <T γ̄, πj,γ̄σi,j = πi,γ̄�N̂i. Moreover, |M̃ | is transitive, and by definition,
|M̃ | =

⋃
i<tγ̄

ran(πi,γ̄�|N̂i|). This is all we need.

So σi,γ̄ ⊆ πi,γ̄ , for i <T γ̄. Moreover, it’s easy to see that M̃ = Ŝ(Mγ̄):

πi,γ̄(a) ∈ |Ŝ(Mγ̄)| ⇐⇒ Mγ̄ |= ϕV[πi,γ̄(a), πi,γ̄(ht(Mγ̄)−̇1)]
⇐⇒ Mi |= ϕV[a,ht(Mi)−̇1]

⇐⇒ a ∈ |N̂i|,

for i <T γ̄ and a ∈ |Mi|. Here, I used the formula ϕV from Lemma 2.7 again.
Hence:

|Ŝ(Mγ̄)| = {πi,γ̄(a) | i <T γ̄ ∧ a ∈ |N̂i|}
= |M̃ |.

Analogously, one sees that ĖM̃ = Ė Ŝ(Mγ̄) and Ḟ M̃ = Ḟ Ŝ(Mγ̄). Hence,

Ñ = Ŝ(Mγ̄) = N̂γ̄ .

So it’s obvious that S(I|γ) exists, as demanded.
Case 3: γ is a limit ordinal.
In this case, one can just set:

S(I|γ) := “
⋃

1≤α<γ

S(I|α)”,

in the obvious sense.
Here is the transliteration for the opposite direction:

Lemma 6.4. Let N be a pPs-structure, and I = 〈〈Ni | i < θ〉, D, 〈ηi | i ∈ D〉, 〈κi | i ∈ D〉,
〈τi | i ∈ D〉, 〈λi | i ∈ D〉, 〈si | i ∈ D〉, 〈s+

i | i ∈ D〉, T, 〈σi,j | i ≤T j < θ〉〉 a normal iteration of N .
Let M = Λ(N). For i < θ, let

Mi = Λ(Ni).

For i ∈ D let ξ = T (i+ 1), and N∗i = Nξ||ηi. Let M∗i = Λ(N∗i ). Set:

η′i := ht(M∗i ).

Then there are uniquely determined maps 〈πi,j | i <T j < θ〉, so that

I ′ := 〈〈Mi | i < θ〉, D, 〈η′i | i ∈ D〉, 〈κi | i ∈ D〉, 〈τi | i ∈ D〉, 〈λi | i ∈ θ〉, T, 〈σi,j | i ≤T j < θ〉〉

is a normal s-iteration of M with s-indices 〈〈si, s+
i 〉 | i ∈ D〉. I denote this iteration by Λ(I),

and call it the transliteration of I.
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Proof. The proof of the opposite direction goes through, up to some minor modifications. Using
the same numbering as in that proof, the first change in the argumentation occurs in case 2.1,
in the proof of claim (3). It has to be shown that

(3) η′ζ = max{η ≤ ht(Mξ) | (κ+
ζ )Mξ||η = (κ+

ζ )Mζ ||νζ}.

Proof of (3). I first show:

(a) (κ+
ζ )Mξ||η′ζ = τζ .

Suppose not. By Lemma 5.4,
JE

Mξ

s+ξ
= JE

Mζ

s+ξ
,

and as κζ < sξ < s+
ξ , and since s+

ξ is a cardinal in Mζ , it follows that

(κ+
ζ )Mξ||s+ξ = τζ .

As |S(Mξ||s+
ξ )| = |Nξ||s+

ξ |, it follows that (κ+
ζ )Nξ||s

+
ξ = τζ , and hence ηζ ≥ s+

ξ . This implies that

η′ζ ≥ ηζ ≥ s+
ξ .

By assumption, η′ζ > s+
ξ , since (κ+

ζ )Mξ||s+ξ = τζ . Hence, α ∈ (s+
ξ , η

′
ζ) can be chosen to be

minimal with the property that (κ+
ζ )Mξ||α > τζ . As s+

ξ is a cardinal in Mξ||νξ, (κ+
ζ )Mξ||s+ξ =

(κ+
ζ )Mξ||νξ . This means that

α > νξ.

Moreover, it is obvious that α is a successor ordinal. Let α = ᾱ+ 1. Then

ωρωMξ||ᾱ ≤ κζ .

(∗) S(Mξ||ᾱ) is a segment of Nξ.

Proof of (∗). By Lemma 2.6, it suffices to show that there is no µ ≤ ht(M) with M ||µ active and
s+(Mξ||µ) ≤ ωᾱ < µ. Assuming this is not the case let µ have this property. Since ωρωMξ||ᾱ ≤ κζ ,

CardMξ||µ ∩ (κζ , ωᾱ] = ∅.

As s+(Mξ||µ) ≤ ωᾱ it even follows that s+(Mξ||µ) ≤ κζ < s+
ξ . Moreover, it was already shown

that α > νξ. Hence, µ > α > νξ. Altogether,

s+(Mξ||µ) < s+(Mξ||νξ) ≤ νξ < µ,

which contradicts the applicability of νξ in Mξ. 2(∗)
So let Nξ||α′ = S(Mξ||ᾱ). Then

ωρωNξ||α′ = ωρωMξ||ᾱ ≤ κζ .

But obviously, τζ < α′ < ηζ , which contradicts the fact that (κ+
ζ )Nξ||ηζ = τζ . 2(a)

(b) η′ζ is maximal with the property in (a).
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Proof of (b). If ηζ = ht(Nξ), then η′ζ = ht(Mξ), and there is nothing to prove. Otherwise,
ωρωMξ||η′ζ

= ωρωNξ||ηζ ≤ κζ , since Mξ||η′ζ = Λ(Nξ||ηζ). Hence (κ+
ζ )Mξ||η′ζ+1 ≥ η′ζ ≥ ηζ > τζ . So no

γ > η′ζ can possibly have the property in (a). 2(b),(3)

One thing that didn’t need a proof in the proof of the other direction is that νζ is applicable
in Mζ . But that’s easy to see: As s+

ζ indexes an extender in Nζ = S(Mζ), S(Mζ ||νζ) = Nζ ||s+
ζ ,

which is a segment of Nζ . Now Lemma 2.6 yields that νζ is applicable.
The second change needed occurs here:
Case 2.2: γ̄ is a limit ordinal.
Assume Λ(I|γ̄) has been defined already, and let σi,j ⊆ πi,j for all i ≤T j < γ̄.
Set M ′ := Λ(Nγ̄). Define for i <T γ̄ (again assuming no truncations occur in the branch

between i and γ̄) a map πi,γ̄ : Mi −→Mγ̄ by:

πi,γ̄(h1
Mi

(j, q)) := h1
M ′(j, σi,γ̄(q)),

where j < ω and q ∈ [ht(Ni)]<ω. I again make use of the fact that |Mi| = h1
Mi

(ht(S(Mi))). The
correctness follows by the usual argument: It can be expressed uniformly by a Σ1-formula that
h1
Mi

(j, q) = h1
Mi

(k, r), which is transported by fNi to Ni. The transformed formula then holds,
modulated by σi,γ̄ , in Nγ̄ . So since fNi = fNγ̄ , the original formula holds in M ′, which by the
uniformity means that h1

M ′(j, σi,γ̄(q)) = h1
M ′(k, σi,γ̄(r)).

It is easy to see that the so-defined functions verify the existence of Λ(I|γ) (setting Mγ̄ := M ′,
of course). For example, to show that every a ∈ |M ′| is in the range of πi,γ̄ , let a = h1

M ′(j, q
′),

for some j < ω, q ∈ [ht(Nγ̄)]<ω. Then there exist i <T γ̄ and q ∈ [ht(Ni)]<ω so that q′ = σi,γ̄(q).
Let ā := h1

Mi
(j, q). Then a = πi,γ̄(ā).

This concludes the treatment of case 2.2.
The other parts of the proof work as before.

6.1 Translating strategies

Having developed the method of transliterations, the following lemma is straightforward.

Lemma 6.5. Let M be a normally iterable pPλ-structure. Let S be a normal iteration strategy
for M . Then there is a normal iteration strategy S(S) for S(M).

The corresponding statement holds true of normally iterable pPs-structures as well.

Proof. I define
S(S)(I) ∼= S(Λ(I)).

It follows by induction on the length of iterations I of S(M) of limit length that for every iteration
I of N which is according to S(S), Λ(I) is according to S, and that S(Λ(I)) is defined. The
converse is shown in the same way.

The following is the main theorem of this paper:

Theorem 6.6. The restriction of S to the class of normally s-iterable λ-structures is a bijection
between this class and the class of normally iterable s-structures. The restriction of Λ to the
latter class is the inverse of this bijection.

The corresponding statement is true for the class of normally iterable pPλ, pλ and Pλ-
structures.

Proof. This follows from Lemma 6.5, together with Theorem 2.1.
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7 Further results

7.1 Iterable Mitchell-Steel premice

At this point, I am returning to an issue I raised in the introduction to the first part of this
paper. From the very beginning, I tried to keep the definitions of the structures used as liberal
as possible. It was necessary, though to demand continuability of the pPs-structures, in order
to insure that they will have a counterpart with λ-indexing. I am going to prove presently
that normally iterable Mitchell-Steel-premice, as introduced in [Ste00] are normally iterable s-
structures. This shows that continuability is not restrictive in the realm of Mitchell-Steel mice. I
am not going to use the notion of k-iterations here, but instead use the ∗-fine structure theory to
form ∗-iterations, like elsewhere in the present paper. The Mitchell-Steel premice are precisely
the weak s-structures defined in the following definition.

Definition 7.1. N ia a weak ps-structure iff N has all the properties of a ps-structure, with the
exception of hereditary continuability, that is the continuability of all active segments, including
the whole structure, if active, and N is modest (meaning that for every α ≤ ht(N) that indexes
an extender, s(N ||α) < λ(N ||α)).

Analogously, N is a weak s-structure iff N is modest and has all properties of an s-structure
except hereditary continuability.

Lemma 7.2. Let N be a weak (p)s-structure which is normally iterable. Then it is a normally
iterable (p)s-structure.

Proof. I will assume familiarity with iterations of Mitchell-Steel-premice, as described in [Ste00]
or [MS94]. Instead of k-extender ultrapowers, I will use ∗-ultrapowers, though.

Obviously, N it suffices to show that N is normally iterable, as a (p)s-structure (this implies
immediately that N is hereditarily continuable, and Lemma 5.20 yields that N satisfies the s′-
ISC). In order to see this, it has to be shown that there is a successful normal iteration strategy
for N in that sense. The point is that if a normal iteration of N is continued, the new structures
have to be hereditarily continuable. So the proof is complete if the following can be shown:

If S is a successful normal iteration strategy for N as a weak (p)s-structure (i.e., as a Mitchell-
Steel premouse), then all the models in any normal iteration of N which is according to S are
hereditariliy continuable weak (p)s-structures (and hence (p)s-structures). This shows then that
S is also a successful normal iteration strategy for N , viewed as a (p)s-structure.

Assume the contrary. Let I = 〈〈Ni | i < θ〉, D, 〈ηi | i ∈ D〉, 〈κi | i ∈ D〉, 〈τi | i ∈ D〉, 〈si | i ∈ D〉,
〈s+
i | i ∈ D〉, T, 〈πi,j | i ≤T j < θ〉〉 be a normal iteration ofN according to S which is a counterex-

ample to the claim of minimal length θ. Obviously then θ is a successor ordinal, since otherwise,
every Ni is hereditarily continuable (i < θ): Ni appears in I|(i + 1), a normal iteration of N
which has length less than θ and is according to S.

So let θ = γ + 1. Then the previous argument shows that Nγ is not hereditarily continuable,
while Ni is, whenever i < γ. So let α be an extender index of Nγ witnessing this, so that Nγ ||α
is not continuable. I show:

(∗) There is a j ∈ D with s+
j ≥ α.

Proof of (∗). Assuming the contrary, it would be possible to continue the iteration by letting
s+
γ := α, κγ := crit(ENγα ), so that at stage γ, the extender ENγα is used. This would be possible
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since by assumption, α > s+
j , for every j ∈ D. 13 So let ηγ , ξ := T ′(γ + 1) be defined like they

have to be defined in order to produce a normal iteration I ′ with iteration tree T ′ that continues
I as described. Since I was formed according to S, this is possible, and the result is that

σξ,γ+1 : C0(Nξ||ηγ)sq −→∗
E
Nγ
α

C0(Nγ+1)sq

exists. By definition of ηγ , and due to the coherency of normal iterations of Mitchell-Steel-
structures it follows that τγ = (κ+

ξ )Nξ||ηγ ≤ s+
ξ , and JE

Nξ

s+ξ
= JE

Nγ

s+ξ
, so that s+

ξ ≤ ηγ , and hence

|JENγτγ | ⊆ |Nξ||ηγ |. So there is an embedding k : ID(JE
Nγ

τγ , E
Nγ

s+γ
) −→ Nγ+1 defined by

k([~α, f ]) := σξ,γ+1(f)(~α).

But this shows that ID(JE
Nγ

τγ , E
Nγ

s+γ
) is well-founded, so that Nγ ||α is continuable, contradicting

the assumption. 2(∗)
Now let j ∈ D be least with s+

j ≥ α. By the strong coherency properties of normal iterations
of Mitchell-Steel premice, it follows that

JE
Nj

s+j
= JE

Nγ

s+j
, and E

Nγ

s+j
= ∅.

As α indexes an extender in Nγ , it follows that s+
j > α. So Nj ||α = Nγ ||α. But Nj is hereditarily

continuable, as j < γ, and hence Nj ||α is continuable, so also Nγ ||α, a contradiction. This proves
the claim, and hence the lemma.

7.2 Other notions of iterability

There are diverse notions of iterability. For example, one can restrict the length of the iterations
that can be formed. This yields the notion of θ-iterability of [Ste96, Def. 2.9]). The methods of
the previous section show that that the translation functions S and Λ provide a correspondence
between (ω1 + 1)-iterable structures, for example.

It is also true that an (ω1+1)-iterable weak (p)s-structure is an (ω1+1)-iterable (p)s-structure:
Let S be an ω1 + 1-iteration strategy for the weak (p)s-structure N . It follows from the proof
of Lemma 7.2 that all models occurring in an iteration of length less than ω1 are hereditarily
continuable. The only new point is that the directed limit model along the cofinal branch through
an iteration of length ω1 determined by the strategy is also hereditarily continuable. It is clear
that the iteration of length ω1 can be translated to an iteration of Λ(N) which has the same
length, and that the limit along the main branch of the translated iteration is well-founded,
just because ω1 has uncountable cofinality. A decreasing epsilon-chain in the limit model would
already yield such a chain in a previous model. The limit model of the translated iteration will be
the Λ-image of the limit model of the original iteration (see case 2.2 of the proof of Lemma 6.3),
and the existence of this image shows in particular that the pre-image is hereditarily continuable.

Another frequently useful variant is the one that’s just referred to as iterability in [Jen97,
§4, S. 26]. It postulates the existence of a good iteration strategy. In essence, a good iteration is
just a composition of normal iterations, so that the base model of each component iteration is
a segment of the target model of the previous component iteration. As usual, direct limits are

13Note that in [MS94] and [Ste00], it is demanded that the sequence of extender indices in a normal iteration
is strictly increasing. This works, since the structures considered in these works only contain extenders whose
s-index is less than their λ-index. If this assumption is dropped, then one has to deal with normal iterations in
which the s-indices are not strictly increasing, otherwise one cannot show that coiterations terminate. But the
structure at hand is a Mitchell-Steel-pm, so that the sequence of extender indices is strictly increasing.

65



formed at limit stages. This notion of iteration is used to prove the Dodd-Jensen-Lemma. I’ll
call the corresponding notion of iterability good iterability.

One can formulate an iterability notion for (p)s-structures in precisely the same way. In order
to arrive at the corresponding notion for (p)λ-structures, an additional requirement is needed,
though: If at the beginning of one of the component iteration, some model Mi is truncated, say
to η, then there may be no ν ≤ ht(Mi) such that s+(ν)Mi ≤ η ≤ ν (this is relevant because
of Lemma 2.6). The methods developed so far show that the translation functions constitute a
precise correspondence between this notion of s-iterability for λ-structures and good iterability for
s-structures. The corresponding results obviously hold true for pPs-, pPλ and the corresponding
weak pPs-structures.

7.3 On the squashed (Pseudo)-Σ0-codes

Recall the types of Σ0-codes introduced in the first part of this paper, first for (pP)s-structures:

Definition 7.3. Let L be the language of set theory with additional symbols Ė, Ḟ , κ̇ and ṡ.
Let N = 〈JEα , F 〉 be a pPs-structure. Then its Pseudo-Σ0-code, C̃0(N), is an L-structure, which
is defined as follows:

1. If N is passive, then C̃0(N) has the universe |JEα |, κ̇C̃0(N) = ṡC̃0(N) = 0, ĖC̃0(N) = E�α and
Ḟ C̃0(N) = ∅.

2. If N is active of type I or II, then C̃0(N) has the universe |JEα | again, but in that case,
κ̇C̃0(N) = crit(F ), ṡC̃0(N) = s(F ), ĖC̃0(N) = E�ωα and Ḟ C̃0(N) = F .

3. If N is active of type III, then the universe of C̃0(N) is |N̂ |, κ̇C̃0(N) = crit(F ), ṡC̃0(N) = 0,
ĖC̃0(N) = EN̂�ht(N̂) and Ḟ C̃0(N) = EN̂top.

In addition, the squashed-Pseudo-Σ0-code, C̃0(N)sq of N , is defined as follows: If N is passive
or active of type I or II, then C̃0(N)sq = C̃0(N). If, on the other hand, N is active of type
III, then let s = s(F ). The universe of C̃0(N)sq is then |JEs |, κ̇C̃0(N)sq

= crit(F ), ṡC̃0(N)sq
= 0,

ĖC̃0(N)sq
= E�s and Ḟ C̃0(N)sq

= F h�s = {〈α,X〉 | α ∈ (F f(X)) ∩ s}.
Analogously, the code C̃0(N̂) is defined as follows.

1. If N is passive, then C̃0(N̂) = C̃0(N).

2. If N is active of type I or II, then C̃0(N̂) has universe |N̂ |, and I set: κ̇C̃0(N̂) = crit(F ),
ṡC̃0(N̂) = s(F ), ĖC̃0(N̂) = EN̂�ht(N̂) and Ḟ C̃0(N̂) = EN̂top .

3. If N is active of type III, then C̃0(N̂) = C̃0(N).

The corresponding codes for (pP)λ-structures were defined as follows:

Definition 7.4. Let L̃ be the language of set theory with additional symbols Ḋ, Ė, Ḟ , κ̇ and ṡ.
Let M = 〈JEα , F,DM 〉 be a pPλ-structure. Then its Pseudo-Σ0-code, C̃0(M) is the L̃-structure
defined as follows. The universe of C̃0(M) is |C̃0(M)| = |JEα | and ḊC̃0(M) = DM , and

1. If M is passive, then κ̇C̃0(M) = ṡC̃0(M) = 0, ĖC̃0(M) = E�ωα and Ḟ C̃0(M) = ∅.

2. If M is active of type I or II, then κ̇C̃0(M) = crit(F ), ṡC̃0(M) = s(F ), ĖC̃0(M) = E�ωα and
Ḟ C̃0(M) = F .
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3. If M is active of type III, then κ̇C̃0(M) = crit(F ), ṡC̃0(M) = 0, ĖC̃0(M) = E�ωα and
Ḟ C̃0(M) = F .

I am going to deal with the squashed codes in this section for the first (and last) time, showing
that (C̃0(N))1,∅ and C̃0(N)sq are “fine structurally equivalent” in case N is a ps-structure of type
III. I’ll also show that the notion of normal iteration of ps-structures is equivalent to the one
used in [MS94], if the structures are hereditarily continuable and ∗-ultrapowers are used.

Lemma 7.5. Let N be an active ps-structure of type III. Let s = s(ENtop). Then s = ωρ1
C̃0(N)

,
and pC̃0(N),1 = 〈∅〉.

Proof. This is shown like Lemma 5.32; it’s obvious that one can define a Σ1-surjection from s
onto |N̂ | in N̂ , using the top extender predicate.

Lemma 7.6. Let N be an active ps-structure of type III. Then the structures C̃0(N)sq and
C0(N)sq are amenable.

Proof. Let s = s(ENtop). Since |N̂ | = |Λ(N)|, it follows from Lemma 5.22 that for each α < s,

(EN̂top|α) ∈ |N̂ |. It has to be shown that for such α,

|JE
N

α | ∩ Ḟ C̃0(N)sq
∈ |JE

N

s |,

where it may be assumed that α ≥ τ(N). Let F̃ = Ḟ C̃0(N)sq
. Then F̃ = {〈γ,X〉 | s > γ ∈

EN̂top(X)}. Hence,

F̄ := |JE
N

α | ∩ F̃ = {〈γ,X〉 | N̂ |= γ < ωα ∧ ∃Y (Ḟ (Y,X) ∧ γ ∈ Y )}.

So this is a Σ1(N̂)-subset of |JEN̂α |, and α < s = ωρ1
N̂

by Lemma 7.5. Hence, F̄ ∈ |N̂ |, and thus by

acceptability of N̂ , it follows that F̄ ∈ |N̂ ||(α+)N̂ |. But (α+)N̂ ≤ ωρ1
N̂

= s, hence F̄ ∈ |C̃0(N)sq|,
as claimed.

Lemma 7.7. Let N be an active ps-structure of type III. Then Z := |C̃0(N)sq| = |C0(N)sq| =
|C̃0(N)1,∅|, and the following assertions hold:

(a) for q ∈ Z, a set A is Σ1(C̃0(N)sq) in q, iff A is Σ1(C̃0(N)1,∅) in q.

(b) for q ∈ Z, a set A is Σ1(C0(N)sq) in q, iff A is Σ1(C0(N)1,∅) in q.

Proof. Note that C̃0(N) is essentially the same as N̂ , as N is of type III – the only additional
constant that’s not interpreted as 0 in C̃0(N) is κ̇, and that is easily definable in N̂ as well.

It suffices obviously to prove the claims concerning C̃0(N)sq, since C0(N)sq differs from C̃0(N)sq

only by the additionally available constant q̇C0(N)sq
= ∅, which is irrelevant.

It follows immediately from Lemma 7.5 that |C̃0(N)sq| = |C0(N)sq| = |C̃0(N)1,∅|. Moreover,
we know that s := s(ENtop) = ωρ1

C̃0(N)
. Set: N̄ := (C̃0(N))1,∅.

Two directions have to be shown. I’ll deal with the easier one first, the direction from left
to right. Essentially, the proof reduces to expressing the predicate F̃ := Ḟ C̃0(N)sq

over N̄ by a
Σ0-formula. We have for α < s:

F̃ (α,X) ⇐⇒ C̃0(N) |= ∃Y (Ḟ (Y,X) ∧ α ∈ Y )︸ ︷︷ ︸
ϕi[〈α,X〉]

⇐⇒ N̄ |= Ȧ(i, 〈α,X〉).
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So if a set A is defined in C̃0(N)sq by a Σ1-formula ϕ(x, y) in the parameter q, then one just has
to replace every occurrence of Ḟ (v, w) in the formula by “Ȧ(i, 〈v, w〉)”, in order to arrive at a
formula which defines the same set in N̄ .

A little more work is needed for the converse. I’ll translate the formula in two steps.
Step 1: Let e : s −→ |Ñ | be the monotone enumeration of |Ñ | according to the canonical

well-ordering of Ñ . Note that JE
N

s is a ZF−-model, and hence the order type of this well-ordering
is s. Moreover, e is uniformly Σ1. Let Ā = {〈i, ξ〉 | ξ < s ∧A1,∅

C̃0(N)
(i, e(ξ))}. Set:

Ñ := 〈JE
N̂

s , Ā〉.

I’ll show that every set that is Σ1-definable in N̄ using parameters is also Σ1-definable in Ñ ,
using the same parameters, and vice versa. Let ϕ(~x) be a Σ1-formula. I’ll first define another
Σ1-formula ϕ∗(~x) such that N̄ |= ϕ(~b) iff Ñ |= ϕ∗(~b). Here is the deduction of the definition of
ϕ∗, as well as the proof that ϕ∗ behaves as desired:

N̄ |= ϕ(~b)

⇐⇒ ∃γ < s (~b ∈ N̄ |γ ∧ N̄ |γ |= ϕ(e(~ξ))

⇐⇒ Ñ |=
(
∃e′∃u∃a∃γ (“~b ∈ u = JEγ ” ∧

“(e′ ⊆ e) ∧ (u ⊆ ran(e′))” ∧
“a = u ∩A1,∅

C̃0(N)
” ∧

ϕ〈u,∈,E∩u,a∩u〉(~b))
)

⇐⇒ Ñ |= ϕ∗(~b).

Here, “(e′ ⊆ e) ∧ (u ⊆ ran(e′))” expresses that e′ is a function that satisfies the uniform Σ1-
definition of e on its domain, and is large enough that u ⊆ ran(e′). “a = u ∩ A1,∅

C̃0(N)
” expresses

that a = {〈i, x〉 | i, x ∈ u ∧ Ā(i, e′−1(x))}, which is easy to express explicitly in Ñ , where Ā is
available as a predicate.

Step 2: Now I want to show that every set that’s Σ1-definable in Ñ using a parameter, is
also Σ1-definable in C̃0(N)sq, using the same parameter. Again, the main problem is expressing
the predicate Ā over C̃0(N)sq:

Ā(i, ξ) ⇐⇒ ξ < s ∧ C̃0(N) |= ϕi(e(ξ), ∅)
⇐⇒ C̃0(N)sq |= ξ ∈ On ∧

∧Ḟ (ξ, {ζ < κ(N) | N ||τ(N) |= ϕi[eN ||τ(N)(ξ), ∅]}).

This is obviously equivalent to a Σ0-formula in the parameter JE
N

τ(N)+1, for eN ||τ(N) is an element
of this structure, and it is definable over Nτ(N). By replacing each occurrence of Ȧ(i, a) with the
above formula in a Σ1-formula which defines some set B in a parameter q over Ñ , one produces
a Σ1-formula ϕ′ defining the same set over C̃0(N)sq in q and the parameter JE

N

τ(N)+1. So the
latter parameter has to be eliminated. Obviously, it suffices to check that {τ(N)} is lightface
Σ1-definable in C̃0(N)sq.

Let π : JE
N

τ −→ENtop
N̂passive. Let f : κ −→ κ be defined by: f(α) = (α+)JE

N

τ = (α+)JE
N

κ(N)

(this last identity makes use of the acceptability of N ; κ(N) is a cardinal in N). Then we have:
τ(N) = π(f)(κ) = π(id)(τ), as is easily seen. Hence, by a  Loś theorem, τ(N) is the unique ξ
with:

Ḟ C̃0(N)sq
(≺κ, ξ�, {≺α, β� < κ(N) | (α+)JE

N

κ(N) = β}).
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As κ(N) is available in C̃0(N)sq as a constant (which isn’t crucial here, as κ(N) can be defined
to be the unique ζ with Ḟ C̃0(N)sq

(ζ, ζ)), this can obviously be expressed by a Σ1-formula over
C̃0(N)sq without parameters. It was such a description of τ(N) that we were looking for.

By induction on n, this implies:

Lemma 7.8. Let N be an active ps-structure of type III, n < ω. Then ωρnC̃0(N)sq = ωρn+1

C̃0(N)
=

ωρn
(C̃0(N))1,∅ , Z := |C̃0(N)sq| = |(C̃0(N))1,∅|, and for q ∈ Z we have:

(a) A is Σ(n)
1 (C̃0(N)sq) in q, iff A is Σ(n)

1 (C̃0(N)1,∅) in q.

(b) A is Σ1(C0(N)sq) in q, iff A is Σ1(C0(N)1,∅) in q.

In particular, pC̃0(N)1,∅ = pC̃0(N)sq , qnC̃0(N)1,∅ = qnC̃0(N)sq , and C̃0(N)1,∅ is sound iff C̃0(N)sq is

sound, etc. In short: C̃0(N)1,∅ and C̃0(N)sq are fine structurally equivalent.

Proof. It was shown in Lemma 7.7 already that Z := |C̃0(N)sq| = |(C̃0(N))1,∅|. It also follows
from that lemma that ωρ1

C̃0(N)sq = ωρ1
(C̃0(N))1,∅ , and in particular that H1

C̃0(N)sq = H1
(C̃0(N))1,∅ .

Moreover, it shows that the assumptions of Lemma 6.1 are satisfied by C̃0(N)sq and (C̃0(N))1,∅.
It follows that all projecta of these structures coincide.

Moreover, Lemma 7.7 yields equivalents to Lemma 3.1, where no additional parameters are
needed, and M is replaced with (C̃0(N))1,∅, C̃0(N)sq, and N is replaced with C̃0(N)sq, C̃0(N))1,∅,
respectively. Correspondingly, one gets analogs of the succeeding Lemma 3.2, where again, M is
replaced with C̃0(N))1,∅, C̃0(N)sq, and N is replaced with C̃0(N)sq, C̃0(N))1,∅, respectively, and
no additional parameters are needed. This obviously shows (a) and (b).

It follows from (a) that C̃0(N)sq and C̃0(N))1,∅ are fine structurally equivalent. The analogous
statement is obviously also true of C0(N)sq and C̃0(N)1,∅.

This gives:

Lemma 7.9. Let N be a ps-structure of type III and F an extender on N with critical point less
than s(N). Let π̄ : C̃0(N)sq −→∗F N̄ . Let π : N̂ −→∗F N̂ ′ (assuming N ′ is well-founded). Then
N̄ = C̃0(N ′)sq.

Proof. It was already shown that C̃0(N)sq is fine structurally equivalent to N̂1,∅ (save the ad-
ditional constant κ(N) that’s available in C̃0(N)sq – but this has no influence on the class of
functions used when forming the fine structural extender ultrapower). Moreover, ∅ ∈ R1

N̂
. But

it is well-known that in this case, forming the ∗-extender ultrapower of a structure is the same
as forming the ∗-extender ultrapower of the reduct and then lifting the embedding the the full
structure, using the upwards extension of embeddings lemma (see [Zem02, p. 13]).
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Applicable, 21

CM , 34
Continuability

hereditary, 64
of a normal s-iteration, 21

C̃0(M), 66
C̃0(N), 66
C̃0(N̂), 66
C̃0(N)sq, 66

DM , 4
D̄∗(M,κ, λ), 9

ẼM , 48
Exception, 49
Explicit rendering of a good Σ(n)

1 -function, 9
Extender

of type Z, 32

F ∗, 32

Γ̄∗(M,κ), 9

Hereditary continuability, see Continuability
Hidden, 4

Iterability
ω1 + 1-iterability, 65
good, 66
normal, 57

Iteration
direct, 24
of a pPs-structure

normal, 56
of an s-structure

good, 66
Iteration strategy

good, 66
normal, 21
successful, 21

I|γ, 27

L, 66
L̃, 66
λi,j , 25

Modest, 64

ps-structure
weak, 64

Pseudo-Σ0-code
of a pPλ-structure, 66
of a pPs-structure, 66
of the maximal continuation of a pPs-structure,

66
squashed, 66

s′-initial segment condition, 31
s′-ISC, 31
s′-MISC, 31
s(M,M ′), 48
s-Coiteration, 49
s-iterability, 66

good, 66
normal, 21

s-iteration
good, 66
normal, 21

s-structure
weak, 64

succT , 9

Truncation point, 23, 57
Type I, 36
Type II, 36
Type III, 36
Type Z, see Extender

Z-initial segment condition, 32
Z-ISC, 32
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