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Abstract

Continuing the work [Fuc08], I show that the translation functions developed previously
map iterable A-structures to iterable s-structures and vice versa. To this end, I analyze how
the translation functions interact with the formation of extender ultrapowers and normal
iterations. This analysis makes it possible to translate iterations, and, in a last step, iteration
strategies, thus arriving at the result.

1 Introduction

In this article, I continue the work begun in [Fuc08], and the first part is a prerequisite of the
current paper. Both of these papers are based on my dissertation. In the first part, I intro-
duced A-structures and s-structures (for simplicity, I won’t distinguish between the potential
and “Pseudo” variants of these structures in this introduction). These are closely related to
premice in the Friedman-Jensen and the Mitchell-Steel indexing convention, respectively. I de-
veloped functions which translate these structures in both directions. The aim of the current
paper is to take the analysis of these structures further, turning to iterable A-structures and
s-structures. The main result is that the translation functions work for these structures as well,
if an appropriate notion of iterability for A-structures is chosen. The point is that when forming
normal iterations, the model in the iteration tree to which an extender is applied depends on how
the critical point of the extender fits into the sequence of the iteration indices of the previously
used extenders. Since the indexing of extenders is different in s-structures and A-structures, this
means that the arising iteration trees may have a different structure as well. The solution to this
problem is to introduce a notion of normal s-iteration of a A-structure, which basically mimics
the way normal iterations of s-structures are formed.

The paper is organized as follows: In section 2, I recall the main tools of the first part of
the paper that will be needed, for the reader’s convenience. Section 3 analyzes Egn) definability
in a A-structure M and its counterpart s-structure N = S(M). This analysis is needed when
comparing the outcome of forming fine structural extender-ultrapowers of these structures, which
is done in section 4. The formation of such ultrapowers is the successor step in an iteration, which
I analyze in the following section 5. There, I introduce the notion of a normal s-iteration of a
A-structure. A lot of things which are essential to get the theory going are verified in that
section: That the s'-initial segment condition is preserved under normal s-iterations, and that
there is a notion of s-coiteration such that the s-coiteration of normally s-iterable A-structures
terminates. I also show some basic results on the s’-initial segment condition: It is implied by



the Z-initial segment condition used in the current Mitchell-Steel variant of premice, so that the
notion of s-premice is not unduly restrictive, and it is preserved downwards to >i-embeddable
structures. After that, in section 6, I develop a method to “translate” a normal s-iteration Z of
a pA-structure M to a normal iteration S(Z), called the transliteration of Z, of the ps-structure
S(M). The transliteration process works in the other direction as well, and it can be used to
finally translate normal s-iteration strategies of pA-structures to normal iteration strategies of
ps-structures, and vice versa. So this shows that the translation functions translate normally
s-iterable A-structures to normally iterable s-structures, and vice versa, which is the main result
of this paper. The last section collects some results that didn’t fit in elsewhere: First, I show
that normally iterable Mitchell-Steel-premice are normally iterable s-structures, then I analyze
different notions of iterability and argue that transliterations of the arising iterations can be
formed also, and finally I compare the procedure of passing to the squash of a type III structure,
forming an ultrapower, and then inverting the squash, to the process of passing to its maximal
continuation instead in both cases: They are equivalent.

In order to facilitate the orientation of the reader, I added a table of contents right after this
introduction, and at the end of the paper, there is an index.
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2 Preliminaries, and a quick review

In this section, I collect results proved in the first part of this paper, [Fuc08], which will be
used here as well. The first part is a prerequisite to the current paper, and the latter cannot
be understood without knowledge of the former, but let me briefly remind the reader what was
done in the first part. I developed functions S mapping pPA-structures to pPs-structures and A,
which is the inverse of S, preserving a considerable amount of fine structure; I'll be more explicit
on this matter later. In order to summarize the main results on these functions, let me recall the
following definitions. pPA, PA and A are the classes of pPA- PA and A-structures, respectively.
Analogously, pPs, Ps and & are the classes of pPs-, Ps and s-structures, respectively. For the
exact meaning of p and P in the definition of these structures, the reader is referred to the first
part of this paper.

Theorem 2.1.

1. S is a bijection between pPA and pPs, and A is the inverse of S, hence a bijection between
pPs and pPA.

2. S|P is a bijection between PA and Ps. A| Ps is the inverse of S| P\, hence a bijection
between Ps and PA.

3. S[A is a bijection between A and &. A] & is the inverse of S|A, and hence a bijection
between & and A.

A A-structure M is a premouse following the Friedman-Jensen indexing scheme, enhanced
by an additional predicate, Dy, the use of which is that it allows us to define the function S
restricted to initial segments of M in a simple way. The predicate is the following:

Definition 2.2. Let M be a weak j-ppm. Then let Dj; be the set defined by:
Dy :={reM | Lim(r)VT=0)A
-FveM EM Lonstw)M <7 <)}

For v,y < ht(M), say that v hides v in M iff M||v is active and s*(v)M < v < v. So Dy
consists of 0 and those limit ordinals of M that are not hidden by any v < ht(M).

The main reason why it is possible to work with these enhanced structures is that the function
sending a weak j-ppm M (this is what is referred to as a pre-premouse in the Jensen approach)
to Dy; is what I refer to as an enhancement (an exact definition of this concept is given in the
first part). The following lemma is the crucial fact on enhancements:

Lemma 2.3. Let (Ay | M is a j — ppm) be an enhancement. Fiz a weak j-ppm M and let
7w (M, Ay) —5 (N,A) or m:(M,Ayn) —r (N,A).
Let N be transitive. Then A = Ay.
Here are some basic facts on the specific enhancement M — Dj;.

Lemma 2.4. Let M be a pPA-structure s.t. ht(M) is a limit ordinal. Then Dy is closed and
unbounded in Onyy.



Corollary 2.5. Let M be a pPA-structure. Then

[ otp(Du) if M is passive,
ht(N) = { Uotp(D3/) otherwise.

Moreover, h},(ht(N)) = |M]|.

If M is an active pPA-structure, then s™ (M) is the index its top-extender would have in the
Mitchell-Steel indexing convention. The following lemma describes when S(M||p) is a segment
of S(M), for p < ht(M).

Lemma 2.6. Let M be a pPA-structure. Let o < ht(M). Then the following are equivalent:
1. There is no pu < ht(M) such that M||p is active and sT(M||p) < a < p.
2. S(M||a) is a segment of N.

In particular, this is true if M||a is active and st (M||a) € Dyy.

The first item of the previous lemma can be easily expressed using the predicate Dp;. It
follows that the expressive power of a pP A-structure is strong enough to describe its corresponding
pPs-structure in a ¥; way, as follows:

Lemma 2.7. There are 31 formulae oy (z,y), or(x,y), pr(z) such that for every pPA-structure
= (JE F,Dy) with a > 1, we have:

(a) [S(M)| = {z | M | gy[z.a-1]}.
(b) B5OD = {z| M | pplz,a-1))}.
(¢) BSUD = (2| M orl)}.

Here, let S(M) = <\s( )|, ESON EJ .

Moreover, (ES(M”“/) | v < ht(M)) and <|Sm)| sy < ht(M)) are uniformly X1 (M).

This is the key to the next tool, a way to translate ¥;-formulae from a pPs-structure to its
corresponding pP \-structure.

Lemma 2.8. There are functions § and g with the following property: If M = (JE F, D) (a > 1)
is a pPA-structure and ¢ is a 1 formula, then §(¢) and g(p) are X1 formulae such that for
arbitrary &, the following holds:

(a) If ¢ is a formula in the language of J/\7, then §(p) is a formula in the language of M, and
N old] <= M E §(9)[& a-1].
(b) If v is a formula in the language oféo(ﬁ), then §(p) is a formula in the language of Co(M),
and
Co(N) E ¢la] <= Co(M) k= §(p)[F,a-1].

(¢) If M is a pA-structure, and ¢ is a formula in the language ofCO(]V), then g(p) is a formula
in the language of Co(M), and

Co(N) | ol7] <= Co(M) E §(¢)[& a—1].



(d) If g is a formula in the language of Co(N), then g() is a formula in the language of Co(M),
and

Co(N) [ ¢l7] <= Co(M) = 9(9)[7 a—1].

(e) If M is a pA-structure and @ is a formula in the language of Co(N), then g(p) is a formula
in the language of Co(M), and

Co(N) = ¢[a] < Co(M) k= g(p)[Z, a—1].

The main result for translating formulae in the other direction is this:
Corollary 2.9. Let M be a pP\-structure. Then there is a sequence FV = <fév | @ < ht(N)) of
functions from w to w with the following properties (in the following, we write f,, for fliv)
(a) AN||u) b= ¢lé] <= Nllu = fu(@)[E p=1], where £ < wp.
(b) fu(y) is a Xq-formula, if ¢ is.
(¢) fu is uniformly X, (N||u).
(d) F={(n,m,y)|n=fy(m) Ay <ht(N)} is uniformly ¥, (N).

The following lemma describes the relationship between the fine structure of a pPA-structure
and its pendant s-structure.

Lemma 2.10. Let M be a pPA-structure. Then for n > 1:
(a) wolyy = WP;L(M)a
(b) BV (M) N P(H7y) = 57"V (S(M)) N P(Hy)-

It even follows that wp¥;, Egn_l)(N) NP(HY) are the same for every N € {M, S(M), m,
Co(M), Co(S(M)), Co(S(M)), Co(M), Co(S(M)), Co(S(M))}.

3 Egn)—deﬁnable sets in /M and N

Lemma 3.1. Let M be a pPA-structure and N = S(M). Then there are q :== {a} € [ht(N)]<¥
and functions fy 1w — w and fj : w — w, so that the following holds:
There is a fized list W of variables of the same length as &, so that for every Boolean com-
bination ©(Z) of X1-formulae in which the variables W don’t occur, fi(p) is also a Boolean
combination of X1-formulae. The free variables of fi () are {Z, W}, and we have for arbitrary
ae|N|:
M ¢[("/a)] <= N fn(@)(*/a), (“/a)]-

Correspondingly, f]’\,(go) is a Boolean combination of X1-formulae, and we have for arbitrary a
M [("/a)] <= N fn@)(*/a), (“/a))-

If ht(M) and ht(N) are limit ordinals, then q = ().



Proof. 1 concentrate on the definition of f}; the definition of f]'\, is analogous. The new point here
is that arbitrary members of | N| are allowed, not only ordinals. I use the fact that the restriction
to ordinals is not necessary for the translation in the opposite direction. Let f : Ony — |N|
be a canonical ¥;(N)-surjection (f is a partial function). Let ¢(Z) be a X;-formula (we define
f only for ¥;-formulae, since it is obvious how to deal with Boolean combinations of such
formulae). Note that f is X1(M) in ht(M)—1; this makes use of Lemma 2.8.

Let o*(#,y) = ¢(f(Z)) be the result of substituting f(Z) for Z, so

M = ¢ [a,ht(M)—1] <= M k ¢[f(@)]

for @ € |[M| (so each of these statements can only hold if @ € Ony). The map ¢ +— ¢* is uniform
in the definition of f over M, and ¢* is ¥;.

Using Lemma 2.5, let ¢ = {@} € [ht(N)]<* be chosen so that ht(M)—1 € h},(q). q can be
chosen so that ht(N)—1 € ¢q. Let ht(M)—1 = hl,;(m, ).

If ht(M) and ht(N) are limit ordinals, then ¢ = () is as desired. In this situation, the next
substitution is obsolete.

Substituting h},(m, @) for y yields a ¥;-formula @¢(7,w) with

M = ¢la,d] <= M = ¢[f(@)].

Using the function fV := fk]l\t[( N) from Corollary 2.9 yields:

MEgld <= Mg (a),d
= N M@ (a),d
= N Eylaa,

where (Z, W) is the following formula:

3 &= f(@) A FY(P).
The parameter ht(/N)—1 does not need to be exhibited in fV (@), because it occurs in ¢ already.
Hence, setting f}(¢) := v finishes the proof. O

Lemma 3.2. Let M be a pP\-structure, N = S(M). Then there is a q := {d} € [ht(N)]<“ and

a fixed list W of variables such that for every n < w, there are functions fj(\?) and fj(\?) with the

following properties:

For (Boolean combinations of) Zgn)-formulae 0(2°,...,2) in which none of the variables

o occur, ](\?)(go) and fj(\?)(cp) are again (Boolean combinations of) Egn)—formulae, so that for
a’ € |N|,a' € H',...,d' € H" we have: !

ME(Z/a0), ., Cla)l = NE PO o) C a), (T
and for @ € |N|,a' € H',...,d € H' we have:
M E (% [a0),-.. (T Ja)] = NE @I a0, (

Proof. 1 concentrate of the functions f](\? )1 proceed by recursion on 7.
For n = 0, I use the function f} and the parameter ¢ from Lemma 3.1 and set:

N = f

'Here I write H™ = HY} = HY.



in the sense that the types of the variables from ¢ are taken over in f ](\;L ) (); this is unproblematic,
since for m > 1 Hy; = Hy.
Now assume that fj(\?) has been defined. I derive how to define fj(\? D It suffices to give

the definition of f](\;H_l)(go) for Egnﬂ)—formulae, since it is clear how to extend the definition to
Boolean combinations.
So let ¥ be a Zgnﬂ)—formula in which no variable from @ occurs. Then ¢ has the form

I (@it e vy QT e v @),

where i1,...,%, > n+ 1 and ¢ is a Boolean combination of Zg")—formulae. Then I define:
FO @) =3 (Quuptt € v - Q™ e v 17 (9).

It follows from Lemma 2.10 that this definition works, or rather, it follows from the consequence
of that lemma that 117]7/;rl = H]T\”,H: Let @°,...,@" " be the free variables of 7). Then we have
for @ € |N|,a* € H',...a""t € H"*1:

0 ﬂ”+1

M 32 (Quup™ e vpt - Q€ vl @)(T ao)y- o (T Jansr)]
e Jprtle HLQuul ™ e vit . Qi € vim (ao 60)7._.)(11"“/5"“)
M EQ[(" fao), . (T Janin)]
e e HPQuuwltt € vl Q™ € vim (T fa0)y (T Jqnan)

ﬂ”+1

NE PO Ja)s- o (T Jans)]
= NERTV@ o) (T farn)].

This involves some abuse of notation, but it should be clear what’s meant: In the second and
third step, the first variable substitution has to be done by hand, so that if v/ = w,’, then v}’

,En+1

has to be replaced with d’i". O
One arrives at the following converse in the same way. Instead of the functions fj and fj

from Lemma 3.1, now the functions g and § from Lemma 2.8 have to be used.

Lemma 3.3. Let N be a pPs-structure, M = A(N). For n < w, there are functions g and

G™, which map (Boolean combinations of) Egn) -formulae to (Boolean combinations of) Z(ln)—

formulae, so that for all (Boolean combinations of) Eg")-formulae 0(2°,...,2) in which some
fized variable 2° does not occur, and all elements @ € |N|,a* € H',...,a" € H', we have:

5 70 # 5 n Pl P 30

Co(N) @l Jao)s - (F Ja)] <= Co(M) |= g™ (@) [ao)s -+, (T Ja)s O Jrwaany=1)]s

and analogously, for @° € \ZV|,&'1 € H',...,a" € H', we have:

NEQIE [a0)- s Ja)] == ME TV QI [a0)s. .

Here is the lemma that one expected in this section:

Pl 20
&) C Jusany 21)]-
Lemma 3.4. Let M be a pPA-structure and N = S(M). Then we have for n < w:

= () N PN = E{7 (),

and R R
(M) NP(IN]) = = (N).



Proof. Fix n < w.

The inclusions from right to left are obvious consequences of Lemma 3.3; for the first, one can
apply the function ¢(™, for the second §(™). These functions transform Egn)—formulae from (fO(N )
to Co (M), but since in the same additional constants appear in the pseudo-¥y-codes of N and
M, these can be treated like parameters. Since the result talks about definability in parameters,
this is unproblematic. Also the parameter ht(N)—1 that may occur in the translated formula is
harmless here.

For the opposite direction, a little argument is needed. I only show the first claim, the proof

of the second one is analogous. So let A € Egn)(M) N P(|N|) in parameters a°,...,a". Since
we have already seen that |[M| = hi,(ht(N)) (Lemma 2.5), there is a p = {¥} € [ht(N)]<*, so
that A is 25")(M) in some parameters {7},a',...,a, as h}; is a good Zgo)—function to HY, and

hence can be substituted for @° in the formula defining A. Now let A be defined by

GeA = MEo[("/a),("/3), (" Jar)y- s ( Ja)],

where ¢ is a Egn)—formula. Let J(V") and ¢ = {&} be chosen as in Lemma 3.1. Then we have:

78 n ' z° @t & @
i€A = NEKN@IT /), /2. fa). .. fa). (P )
and this shows that A is Eg")(N), as claimed. O

Definition 3.5. Let M be a pPA-structure, N = S(M). Let x € |N|, k < A, K, A p.r. closed.
Set:

[*(M,x) := {feT*(M,x)|ran(f) C N[},
D*(M,k,\) = {{a,f)eD*(M,r,\) | fel*(M,r)}.

Lemma 3.6. Let M be a pPA-structure, N = 3(M). Let k € [N|, K < A, k, A p.r. closed, and
let wp' := wpl; = wpk; > k. Then
I*(N,k) = T*(M, &),

D*(N,r,\) = D*(M,r,N\).

Remark: The corresponding is true of N as well, as is shown by the same proof. This is not
needed here, though.

Proof. T will first need an observation which requires a new concept:
Let’s call X := (T, Z, arg) an explicit rendering of a good Egn)(M)—function if the following
conditions are satisfied:

1. T ={|T|, <r) is a finite tree on Q (that is, the nodes of T are rational numbers).

2. Z is a function with dom(Z) = |T|, and if s € |T|, then Z(s) is a Egi)(M)—function to Hi,,
for some 7 < n.

3. For s € |T, arg(s) is an argument type of Z(s). If s is not a leaf of T' (that is, no
maximal node), then let succr(s) be the set of immediate <p-successors of s. In this case,
the following is required: If argy(s) = (ig,...,%4m—1), then sucer(s) = {jo,.-.,Jm-1} (in
increasing order) , and Z(ji) is a Egl’“)(M)—function to Hik.

4. For arbitrary leavesr p and g of T, arg(p) = arg(q). The argument type common to all
leaves is called the argument type of X, for which I write arg(X).



For s € T, define by >p-recursion a function X, : H{j X -+ X H]‘f/'}’l — Hziw where arg(X) =
(qoy---,qr—1) and Z(s) is a function to Hi,:
If s is a leaf of T, then let X, = Z(s). Otherwise let sucer(s) = {Jjo,-..,Jm—1} (in increasing
order). Set:
:{s(g) = Z(s)(xjo(g)a s 7xjm—l (Z))

I shall say that X is an explicit rendering of X, , where L is the root of T'.

(%) Let f be a good E:(ln)(M)-function with ran(f) C |N|. Then f has an explicit rendering
X = (T, Z,arg) 2, so that for every s € T,

ran(Z(s)) C |N|.

Proof of (x). Assume the contrary. Let f be a counterexample, and set:
& :={X | X is an explicit rendering of f}.
Obviously, £ # 0. For X = (T, Z,arg) € £, let
a(%) = {s € |T| | ran(Z(s)) Z |N|}.

Let N (%) be the number of members of a(X¥), and choose a fixed X € &, so that N(X) = min N “£.
By assumption, N(X) > 0. Let s € |T| be <p-minimal with ran(Z(s)) ¢ |ZV| Obviously, Z(s)
is a 2% (M)-function to HY,, as H}, = HS C N.

It follows that s # L: Otherwise, one could define X' := (T, Z’, arg) by setting, for t # L:
Z'(t) .= Z(t), and Z(L) := g, where

o) { Z()(@) it Z(1)(@) € N,
0 otherwise.
Since ran(X ) = ran(f) C |]V|, it’s obvious that X’ is also an explicit rendering of f. So X’ € £.
But N(X’) < N(X), contradicting the choice of X.

So let 3 be the immediate <p-predecessor of s. Let succr(5) = {jo,...,Jm—1} (in increas-
ing ordere), and s = ji (k < m). Let g := Z(5) be a Egz)(M)—function to Hi,, arg(s) =
(io, - im—1). Then i) = 0, as Z(jz) = Z(s) takes on values in [M|\ |N|, hence in HY N\
Hj,. Let h = Z(s), and let arg(s) = (ko,...,ki—1). In the following, I want to construct
a new explicit rendering of f in which the “bad function” h does not occur anymore, by
substituting it in g. To this end, define a Egl)(M )-function g to Hi, with argument type

(10 -+« yik—1y K0y« -+ s Kl—15 Tkt 1y -« -, Im—1) as follows:
g('l)(), cee sy Uk—1, W0, -+ - s Wi—1, V41, - -+ 7’Um71) =
g(v()v sy Uk—1, h(w(b cee 7wl—1)avk+1; s avm—l)-

It follows from Lemma [Zem02, Lemma 1.8.1] that g is a Egi)(M)-function to Hi,. It’s crucial

here that h is a Ego)(M)—function to HY,.
Let succr(s) = {qo, - - ., q—1} (in increasing order). Choose rational numbers {go, ..., -1} C
Q\ |T| with jg—1 < go < ... < gi—1 < jg+1 (where formally, jp—1 = —o00, Jrt1 = +oo if

2This means: X = f.
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undefined). Set K := |T|\ ({s} Usuccr(s)). Now define X = (T, Z, arg ) as follows:

T = KuU{dp,...,qi-1},
p<iq <= (p.a€KNp<rqV
V(p€{do, - @i-1} N5 <1 q) V
v \/(q:th- Ap<rar)  (forp,qelT)),

k<l
i Z(q) if g € K\ {5},
Z(q) = Z(q)  ifg=dq,
g ifg=s5s.
N arg(q) if g € K\ {s},
arg(q) = arg(qx ) if g = qr,
<i0, ey ti—1, ko, ..., klfl,ik+17 .. ,Z'm,1> ifq = S.
Obviously then ¥ € € and N(X) < N(X), contradicting the choice of X. O

Let’s now turn to the main claim. It obviously suffices to prove that T'*(N, ) = I*(M, k),
since this immediately implies the second part of the claim.

The substantial direction here is from right to left. So let f € I'*(M, ). Then f is a good
Egn)(M)—function, where wpg‘jl > k; here, —1 < n < w. Using the [Zem02, S. 73] convention, I
refer to functions that are members of |M| as good ngl)(M )-functions.

If n > 0, then by (x), there is an explicit rendering X = (T, Z, arg) of f as a good Eg”)(M)—
function, so that ran(Z(s)) C |N|, for each ¢ € |T|. It follows that each Z(s) can be restricted
to |N| without changing X, (if s is a leaf of T, then dom(Z(s)) C [x]™, for some m < w
already). Denoting the resulting explicit rendering of f by X’ := (T, Z’, arg), one sees that Z'(s)
is a subset of [N|, for every s € |T|. By Lemma 3.4, this means that each such Z'(s) is also a
Egi)(Z\Af)—function to H]%, and so, X’ is an explicit rendering of a good E§") (N)-function, namely
the function X/, = f.

On the other hand, if f € |M], then f is also a (good) 250)(M)—function in the parameter f,
hence also a (good) E§°>(N )-function. By assumption, wp}v = wp}; > K, hence in this case also,
f eT*(N, k). O

4 Ultrapowers

In this section, I analyze the formation of ultrapowers, the successor step in iterations.

4.1 >j-extender ultrapowers of successor structures

In [Fuc09], I introduced the notion of a ¥,-ultrapower: The construction is analogous to the fine
structural ultrapower, where the functions considered are all definable ones (using parameters).
I proved the following theorem there:

Theorem 4.1. Let A, B be predicate symbols with interpretationsg, BL Let X be a transitive set
which is closed under functions rudimentary in A, such that A,B C X. Let M = (X, A, B) be

11



F be an extender on M and M .*Let
T:M —%“’ ]\_4'7
where M' = (X', A", B') is transitive. Then the following is a correct definition of a function 7:

m(valM [t (@) := val™ [{](7(a)),

where t € ‘I(A) and @ € X is an assignment of its free variables.
Set X' :=rudz,(X') and M’ := (X', A" B'). Then

M —p M and 7C.

4.2 Extender ultrapowers of M and N
Lemma 4.2. Let M be a pPA-structure, N = S(M). Let F be an extender on M and N. Let
wph, > k= crit(F), and let
oM
NI

—
—

=

.
=z Z

F
Then N’ = ST\]\/[’) and 7 C .
Proof. Let A = 1h(F).
Define a relation E on D*(N, k,\) by

-

(@ f)E(B.g) <= =d.B~ € F({=7,6~ | f(7) € g(O)}).

Analogously, E' and I’ on D*(M, k,\) are defined by

-

(9)}),
(8)}).

Let v be the formula from Lemma 2.7, hence a Y;-formula defining uniformly over pPA-

structures M the universe of S(]\Zf ). In the following, I suppress the additional parameter
ht(M)—1 occurring in that formula, since it is preserved by .

@ fE"(F,g) <= =a,fB~ecF{=7,0~]|f7) e

g
@ nr'@,g < =<apf-ecF{=<70~|fF) =g

(1) Let (a,f) € D*(M,k,\) have the property that M' |= @v[r(f)(@)]. Then there is a
(@, f") € D*(M, K, \) with (&, f)I'(a, ).

Proof of (1). Letting X :={<7> | M = pv[f(¥)]}, we have
<a- € F(X),

as follows from a Lo$ theorem (see [Zem02, Lemma 3.1.11 (d)]; ¢v is Eél), wply > k).

3If B is empty, then it is a general fact that X, (M) = X NP(X), see [Jen72, Cor. 1.7]. But otherwise, this
need not be true, since X is the rudimentary closure of X U {X} only under functions which are rudimentary in

A So Y (M) will contain each B; as an element, while this is not necessarily true of X.
4Note that, letting x = crit(F), this implies that P(x) N X = dom(F) = P(x) N X.

12



Moreover, X € |M]|, since ¢y is 31, and f is a good Z(n)( M)-function. The substitution of
f in vy yields another E( )(M) formula. Since X C & and wpli' > & it follows that X € |M].

Since <@ € F(X), X is not empty. So fix some € < x with f(£) € |N|. Define a function
[ R —

—

b ::{ 8y i) ex,

€) otherwise.
Obviously, & is a good B{") (M )-function; it is even a member of |M|. Now define f’: £h(@ —
[N by ,
') = F(h(7)).
Ten f' € T*(M), and for <y~ € X, f'(7) = f(7). Let
X' ={=9- ) =@}
Then X C X'. It follows that
de F(X)C F(X'),
and this means that (@, f)I'(&, f'), as wished. Oq)

(2) If (@, f) € D*(N, 5, A), then n(f)(@) = 7()(@).

Proof of (2). 1 show the claim by E-induction on (&, f). If it holds of all E-predecessors of
(@, f), then

)| (B.g
)| (B, >E<&

—

f
) | (6, 9)E(@, [

m(f)(@)

ol
——
==
Q

-,

So it remains to show the reverse inclusion. So let (3, g)E'(&, f). I have to show that 7(g)(f) €
#(£)(@). ) )
Letting X := {<7,0> | g(¥) € f(d)}, we have

<f,a- € F(X).
Let X' := {<7,6% | M = ov[g(?)]}. Then X C X', as f € I*(N, k). It follows easily that
f e FUT | M= ovlg@)h)-

But this means, by a Lo$ theorem, that M’ = oy[r(g)(5)]. Now let, by (1), (8,4') € D*(M, s, \)
be chosen in such a way that (3,¢)I’(3,¢'). By Lemma 3.6, [*(k, M) = I‘*(J/\}m), and hence
(5.4 € D*(N, k).

We have (ﬁ, g)E(d, f), which means, by inductive hypothesis, and since <5, g>I’(ﬁ, g,

-, -, -,

m(9)(B) = n(g")(B) = 7(g")(B) € 7(f)(d).
This is what I wanted to show. O2)

3) #Cnm
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Proof of (3). For a € |N|, #(a) = #(consty)(0) = 7(const, ) (0) = 7(a), by (2). O(s)
(4) [N'| = [s(M")].

Proof of (4). For the direction from left to right, let a € |[N’|. Then a = #(f)(&) = 7 (f)(&), for

some (a, f) € D*(N, k,\). Hence (&, f) € D*(M, k, ), and this means in particular that

<ad= € F({=y= | M = ov[f(D]}),

since {<¥> | M = pv[f(¥)]} = . By Lo§, it follows that
M = ov[r(f)(a)]-

So, a = 7(f)(&) € |[S(M’)|, by Lemma 2.7.
For the other direction, let a € |ST\]\/[’)| Let a = w(f)(<a@>) for some (&, f) € D*(M, K, A).
Then
M’ = oy (f)(@)).
By (1), let (&, f’) € D*(M,r,\) = D*(N,k,\) have the property that (&, f/)I'(&, f). It then
follows by (2) that
a=7(f)(@) =n(f)(a@)=x(f)(a) €N

Ha
(5) BN — ESO0) gpg BN = SO0,

Proof of (5). One can argue here as in the proof of (4), using the X;-formulae pg and ¢ from
Lemma 2.7. I:|(5), Lemma

Lemma 4.3. Let M be an active pPA-structure, N = S(M). Let F' be an extender with critical
point K on M and N, and let

T M —% M,
oc:N —% N'.

Let wply > k. If m(s(M)) = s(M’), then N' = S(M') and o C .

Proof. One can argue like in the proof of Lemma 4.2, with the difficulty that one cannot use the
%, formula ¢y here in order to define |S(M)| uniformly in M. But abstracting from how ¢y is
formulated, it is obvious that [S(M)] is ¥1(M) in the parameter s(M) (note that “z < sT(M)”
Y1(M) in s(M)). As w(s(M)) = s(M’), one can deduce (as before) that |[N'| = |S(M’)].

In the same way, one show that EN' = pS(M) and that BN = FS(M) | The first is clear, as
ESOM) — ES(M) 15+ (M); so with the help of the formula g from Lemma 2.7, one can produce
a ¥-formula defining E3) in the parameter s(M), uniformly in M. Tt is easy to see that one
can define F¢ = FSM) a5 well, going back to the way it was defined (see the first part of this
paper, Def. 3.3). O

Lemma 4.4. Let M be a pP\-structure, N = S(M). Let F be an extender on M and N with
critical point k. Assume (kT)M exists. Let

m: M —% M’

c:N —% N'.

)

—

Then N' =S(M’) and o C .
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Proof. 1If wpl,; > r, then Lemma 4.2 yields the claim. So let wp}v =uwpl; < k. Then 7 and o are
Yo-extender ultrapower embeddings.

Let M = (JZ" EYM D), N = (JE" BN,

Case 1: p is a successor ordinal. R

Let u = g+ 1. Then v = 7 + 1 is also a successor ordinal. Moreover, clearly, N = N. As
7:= (k)M exists, F is an extender on M := M]||zi. 7 is also a cardinal in N, since |[N| C |M].
As |M||7| = |S(M]||7)]|, and since S(M||T) is a segment of N, F is also an extender on N := N||i.

Moreover, the *-ultrapower of M by F exists, since one can define a canonical embedding
D*(M,F) — Ult(M, F) by [@, f] — 7(f)(&). For the same reason, the *-ultrapower of N by
F exists also. Let

) and N = (JEV EN

iop)- 1 distinguish two cases.

71 M—% M
: N—% N.
Obviously, N = §(M). Since P(x) N |M| = P(r) N |M], it follows that wp¥, > r, hence wp% =

wp;%[ > K, too. So 7 and & are X*-preserving. As R}, # 0 # Ry, it even follows that 7 and o

are X,-preserving. If M and N are active, then as a consequence, 7(s(M)) = s(M’).
Using Lemma 4.2, or Lemma 4.3 in case M and N are active, one gets:
N’ =8(M’), and 7 C 7.

Let X = |[M|, X = |M|, X' =|M’'|,Y = |N|,Y = |N| and Y’ = |N’|. Then X =rudgw g (X)
and Y =rudgy gy (Y). Set:

M = (X,EM EM Dy,
M= (M EM B D),
N = (Y,ENEN),

N' = (N'|,EN EN).

Obviously,
[ M —F M’,
]\7 —F N’.

Since 7 and & are X, -preserving, Lemma 4.1 can be applied, showing that

M| = 0] = rud g o (X,

IN'| =N = rudpy gy (V')
r(valB" B (@, X)) = valf" B [d(7(d), X),
o(val® Pl [d(5,Y)) = val?" F(](a(5), V),

for c€ ¢(E,F) and @ € X, b€ Y. In particular, 7 C 7 and & C 0. Since S(M’') = N’, it follows
that
S(M")| = |N"].

One can conclude that M’ = M’ + 1. The crucial point here is that

EM (a,b,2) <= (o< i’ AEM (a,b,2))V (a = Abe FM (z)).
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This follows from the fact that the corresponding is true of M and M:

EM (n(fu)(a@"), m(f2)(@?), m(f3)(@®))

= <ad,a@ e F({=7,7%9%- | EM(H(FY), 237), (7))
—

<l @ L7273 = |

2@ e F({=7

| M (h(F") < MAE(ﬁ( b, fz( %),

V(AGY = A f2(7) € F(fs(7)))}

= (r(f)@) < (@) A BT (r(f1)(@), 7(f2)(@2), 7(f3)(@%) v
V(r(fi)(@) = 7(i) Am(f2)(@) € FM (n(f5)(a@%)).

Clearly, that EM' = EM’ and FM = M gince EM = EM M — FM,iand n(M) =M.
This shows that M’ =“M’ 4 17. One shows analogously that N =“N’ + 1”. Hence

fs(7)) v
)

S(M')=s(M'+1)=s(M')+1=N'+1=N".

It remains to show that o C 7. One deduces from the preservation properties of 7:

a(IN|, BN, EN) = w(s(M)|, ESUD, pSUD)
= |s(x(M))], ES(Tr(M)) [rs(m(M))
|S( )|7ES(M )7FS(M)

|N/|’EN"FN/'

Now let 2 € |[N|. Then there are @ € |N| and some ¢ € €(F, F), such that 2 = valBV FY [c](@, |N]|).
Then

o(z) = o(val® " [d(@|N]))

I used the fact here that the map A, B,c,d@ — val®B[¢](@) is ¥;. This is what needed to be
shown, so case 1 is dealt with.

Case 2: ht(M) is a limit ordinal.

I verify first that o C w. For a < 7, set:

Lo = ("IN]laf) N[N,
Lo = (*[N]laf) N |M].

Then T'y =Ty

It’s clear that 'y, C T'w. I show the opposite inclusion. So let f € I'y. We know that D,
is unbounded in Ony; (Lemma 2.4). Hence 8 + 1 < p can be chosen so that f € |M||8 + 1
and additionally w(8 4+ 1) € Dyy. Clearly, f € 31(M||8+ 1), and by Lemma 3.4 it follows that
fEeZI(S(M|[B+1)). Asw(B+1) € Dy, S(M|[B+1) is a segment of N. Let s(M||3) = N||3".
Then f € NHﬁ' + 1, and in particular, f € |N| So f € T, as claimed. Familiar arguments now
show that o[|N||a| = || N||a|, and since this holds for every o < ht(/N), this proves that o C 7.
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In the following, I make use of the fact that o is a Yg-extender ultrapower embedding, and
is, in particular, cofinal:

“N o = U S(MHCV)”,
wa€D

“N/ — U J(NHCV)”.
wa€Onn

So we get:

“N'= |J os(M]a).

wa€D s

But since o C , and since 7 : M —yx, M’ is cofinal, this means:

N,passive — o« U W(S(MHQ))”

waE€D s

= U sy

m(wa) €Dy

= < U sy
wBED

_——_passive

= S(M)

The above argument shows moreover that EN = ES_(M 0. ~
In case M is active, it is easily seen that FM = F'N'. This is because then |M| = |N|, hence
7w =0, and |M'| = |N'|. It follows that for a = o(f)(&@) € |N'|,

EN(a) = FV(o(f)(@))
— <a-eF{F]
— <a-ecF{B|F
= FM(r(f)(@))
— FM(a).

—

This shows that N’ = S(M’), as wished. O

Lemma 4.5. Let M be a pP\-structure, N = S(M). Let F be an extender on M and N with
critical point k. Assume (k)M exists. Then Ult*(M, F) ezists iff Ut*(N, F) exists, and is of
the form N', for a pPs-structure N'.

Proof. If Ult*(M, F) exists, then there is an embedding k : ID*(N, F) — ID*(M, F), defined
by
k([&a f]D*(]va)) = [077 f]D*(M7F)
This works because, letting v := Ih(F), D*(]\A/', k,7v) € D*(k, M,~), as follows from Lemma 3.6.
Let’s turn to the opposite direction.
Case 1: upl; = wp}v > K.
Then we're not dealing with Xp-ultrapowers. Let

oc: N —p N/,

17



and set M’ := A(N’). This makes sense, as N’ is a pPs-structure. I am going to construct an
embedding
j:ID*(M,F) — M’

which preserves the €-relation, thus showing that Ult* (M, F) is well-founded.

Consider the relation

R={({m,q),z) | & = h;(m,q) A g € [t(N)]=}.
Obviously, R is uniformly 31 (M) in ht(M)=1. Let h be a uniform uniformization of R which is
31(M) in ht(M)—1, i.e., let
Vo€ |M|((Gm.g € M| x=hi(m.q)Age ()<
— x = hy(h(2)) A (h(2))] € [ht(N)]<),

and h is (uniformly) 31 (M) in ht(M)—1.

Then for f € T'*(M, k), the function

Fi=hof

is also in I'*(M, ). Since moreover, ran(h) C |]V|, so that f € ['*(x, M), it follows by Lemma
3.6 even that - R

feTr*(N,k).
So the value o(f) can be made sense of as usual. This can be made use of in order to define:

(@ flp- (v,my) = (R 0 o (F))(@).

I prove the correctness of this definition. The same proof shows that j is 3;-preserving, which
is more than needed in order to conclude the well-foundedness fact — it suffices to know:

(@, flp- 0,0 BB, 9lp- vy — M 5@, flp-anm)) € 5B, 9D (a,7))-

>,<g7g> € I'"(M, k), and let [@, f]p-(m, ) = [ﬁ_:g],p*(M,F). I have to show that
)= hi (o(9)(B)). Let x(z,y) be uniformly 1, so that

M = x(z,y) <= hy(x) = by (y).
We have:

@, flo- ) = 5. 9l (o,

<@, 0= € F({=7,0~ < k| M = f(
%52,3>‘€F({<’Y,5>-<I€|M':X[
<@, 3= € F({=7,0= <k | N = fn(x
N' = (0l ()(@), o(3)(5), ht(N') -1
N’ = favr (0o ()(@), o(3)(F), ht(N') 1)
M’ = X[o(£)(d),0(9)(5)]

hir(o(£)(@) = hi(o(9)(B)),

and that’s what was to be shown. In the transition from N to J/V\’, I used the Lo$ theorem,
which is true for ¥;-formulae, as wp}v > £ (by [Zem02, Lemma 3.1.11 (d)], it even holds for

7) =9(0)})
7).

F(3),3(8), ht(N)=1]})
]

rrrreee
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Zél)—formulae). It follows from Corollary 2.9 that fN = fo. As a side remark, it is easy to see
that the map 7 : M — M’ defined by 7(x) = j([0, const,]p~(ar,r)) is precisely the extender
ultrapower embedding.

Case 2: WP}V =uwpl; < k.

So in this case, Yp-extender ultrapowers are formed. Let

J:ﬁ—»FN’.

Let ht(N) = v and ht(M) = p.

Case 2.1: v=v+ 1.

Then also p = i + 1. Let M := M||p and N := N||z. Then 6 : N —% N’ exists, and
wpy, > K, as can be shown using an argument of the proof of Lemma 4.4, in case 1. Arguing like
in case 1 of the current proof, it can be shown that consequently, @ : M —7% M’ exists: The
onlyl problematic case is that N is active. Then N is uniformly 3 (M) in the parameter s(M).
If in the argument of case 1 one replaces N with N, N’ with N', M with M, M’ with M’ and o
with & everywhere, the result is a proof of the desired conclusion. Note that ¢ is ¥,-preserving,
so that &(s(IV)) = s(N’). This is crucial, since now R is uniformly Y1 (M) in s(M), and I need
that the same Y;-definition in the parameter &(s(M)) defines the right relation in M.

Now an application of Lemma 4.1 yields that Ult(M, F') exists.

Case 2.2: v and p are limit ordinals.

The let 0 : N —p N/, M’ = A(N’). As in case 1, I am going to define an embed-
ding from ID*(M, F) into M’, verifying that ID*(M, F) is well-founded. Since we're in case 2,
ID*(M, F) = D°(M, F). Wloglet M and N be passive; otherwise, [°(k, M) = I'°(x, N) and the
well-foundedness is trivial. So in the following, I don’t need to distinguish between N and N. I
define k : ID(M, F) — M’ as follows.

Let [@, f] € ID(M, F). Then let f = hi,(m,d), where d € [ht(N)]<“. Set

k((@, £]) = hag (m, d)(d).

T’ll show that this definition is correct. Again, the same proof will show that & is X;-preserving.

So let (@, f), (G, g) € D°(x, X\, M), so that [@, f] = [3, g], where A = Ih(F). Let f = hl,(m,d),
g = his(n,e). Let x(u,v,w,z,y,2) be a ¥i-formula that has the following property for every
pPA-structure P:

P E xla,b,c,de, f] <= “hp(a,b) and hh(c,d) are functions,
and hi(a,b)(e) = hb(c,d)(f).”
Set:
w:={=i, v~ <k | f(ji) = g(V)}.

[@, f] = [B, g] says precisely that <&@, 5> € F(u) = o(u) (F may be assumed to be whole).
Choose v < ht(M) with wy € Dy, so that f,g € |M||y| and S(M||y) is a segment of N — for

example, v can be chosen to be a successor ordinal. Let f = h}wm(m, d), g= h}wlh(ﬁ, €).
(1) h}\(o‘(S(MH"/)))(m7O'(CZ)) = hl; (m,o(d)). The corresponding is true of i1, €, n, e.

Proof of (1). Let M|y = hl;(q,2), z € [bt(N)]<%, ¢ < w. If ¥ is a X;j-formula which expresses
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the desired property uniformly, then we have:

h}IL}w(Q,Z)<m7J) = h}w(m,d)

M =g, z,m,d,m,d]

N E fn(®)lg, z,m,d,m, d]

N'E fx(@)la, o(2),m, 0(d), m, o(d)]
N' = fa()lg, o(2)m, o(d), m, o(d)]
M’ = 4lg, o(2),m, 0(d), m,o(d)]
hfll}w,(qﬁ(z))(mv a(d)) = hyp (m, o(d)).

So it remains to show that hl, (q,0(2)) = A(a(S(M]|y))). To this end, let N||y = S(M|}y).
Then we have:

Freeee

M E N||5 = (hjy(q.2))

M = ¢'[N|1y.q, 7]

N = fn@)INI7, g, 2]

N[ fn (D)o (N117), g, 0(2)]

M' | o(N|17) = S(hyr(4,0(2)))

a(8(M[l)) = S(hys (g,0(2)))

Ao (8(M[|7))) = has(g,0(2)),

as claimed. Here, I used the functions fj;, and fjp, from Lemma 3.1. Their definitions are

uniform, and in the case that the structures have limit height, as in the current case, no additional
parameters are needed. The same proof shows the corresponding for 7, €, n, e. O

(2) o(u) = {=ii, 7= < o (k) | hyy(m,o(d)) (i) = hyp(n,o(e))(P)}.
Proof of (2).

rreeee

u = {=A, 7= <r| M|y xlm,dne G, @)}
= (=i, 7= <r| NIIF E a5 00lm, d, 7€, (), (7),7-1]}.

So u is defined in N by a Yo-formula in the parameters N||5, m, d, 7, € and 5—1. As o is

¥1-preserving, it follows that
o(u) = =@, v-<o(k
= {<f,v- <ok
= {<@,v- <ok
= {<@,v-<o(k

(N1[7) = fayis(x

o [m, (J)afb,ﬂ(é) (i), (7),0(3)—1]}
a(N|7) F Jo(N|19) e '
A

) |
)|
)|
) [ ha
By (1), this means precisely:
o(u) = {=f1, 7= < o(x) | hyp(m,o(d)(7) = hip (n,0(e))(7)},

as claimed. O(2)
Clearly, <@, 3+ € F(u) = o(u), and this means by (2) that

hiyr (m, o(d))(@) = by (n,0(e))(5),

which shows that the definition of k is correct. Obviously, the same proof shows that

(@, f1E[5,9] = k((d. f]) € k(5. 9)),
and hence the well-foundedness of ID(M, F). O
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5 Iterations

I now introduce in the next subsection a notion of normal iteration (called normal s-iteration)
of a pPA-structure, which mimics the way pPs-structures are usually iterated. In the following
subsections, I develop the theory of this kind of iterations, and in the end I introduce the fitting
notion of normal iteration of a pPs-structure, which is basically the same as the notion of maximal
iteration used in the Mitchell-Steel setup. The presentation follows [Jen01].

5.1 Normal s-iterations

In the following definition, note that it doesn’t matter for the formation of fine-structural ul-
trapowers of a (pP)A-structure whether we take it to be its Xg-code or just the bare structure,
since the Yp-code just has some additional parameters, and the functions with respect to which
the ultrapowers are formed have to be boldface definable anyway, so the additional parameters
won’t make a difference.

Definition 5.1. Let Z = ((M; | i < 6),D,(v; |t € D),(n; | i < 0),T,(m; | i <r j < 0)) be an
iteration (in the sense of [Jen97, §4, p. 3]) of pPA-structures. Set: s; := s(v;)Mi, s = st (1;) M.
Then 7 is a normal s-iteration with s-indices ((s;,s;") | i € 8) iff the following hold:

(a) 7 is standard (in the sense of [Jen97, §4, p. 4]).

(b) s <w; for h,i € D with h < i.
(c) T(i+ 1) = the least £ € D with r; < s¢, if i € D; otherwise T'(i + 1) =4. °
)

(d) Let i € D. Then there is no v > v; such that EMi # () and s*(v)M: < sT ()M, Tl say
that v; is applicable in M; in order to express this.

Definition 5.2. A pPA-structure M is normally s-iterable if it has a successful normal iteration
strategy S. This means: S is a partial function whose domain is contained in the class of normal
s-iterations of M of limit length, so that if Z is a normal s-iteration of M which lies in the domain
of S, §(Z) is a cofinal branch through the iteration tree. T'll say that an iteration Z of M is
according to S, if for every limit ordinal A\ < 1h(Z), S(Z|\) = (<7)“{\} (here, T = T7 is the tree
of the iteration 7). S is a successful normal iteration strategy for M if every normal iteration
of M which is according to S can be continued according to §. This means firstly that if 7 is
such an iteration of limit length, then b := S(Z) is defined and the direct limit of the structures
on b is well-founded. Secondly, every normal iteration of M which is according to S and has
successor length, has to be continuable in the sense that one can pick any extender index in the
last model of the iteration which satisfies (b) of Definition 5.1, apply it to the model prescribed
by that definition, and thus produce a well-founded model.
This notion can also be defined using an iteration game, as in [Ste00].

Fix a normal s-iteration Z = ((M; | i < 6),D,(v; |t € D),(n; | 1 < 0),T,(m; |t <p j <¥8))
in the following.

Lemma 5.3. Leti=T(h+1) and h+ 1 <p j. Then m; ;lk, =1id[kp.

Proof. Suppose the statement of the lemma fails to hold of i. Let j be the least counterexample.
Case 1: j=h+1.

5Henceforth, I denote the immediate <-predecessor of i + 1 by T'(i + 1).
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In this case,
. *
i o Millnn — 7 a, M
Yh

and hence kj, = crit(m; ;).

Case 2: j is the immediate <p-successor of j' and h+ 1 < j'.

Then let j = k + 1, hence j/ = T'(k + 1). As in case 1, it follows that k, = crit(m;: ;).
According to condition (c) of normality, kx > s;, as @ < j' = T(k + 1). Moreover, again by
condition (c), ki, < s;. Hence kj, < s; < ki, = crit(m;r ;), that is, in particular,

T .5 [I{h S id[/ih.

By minimality of j, we have:
T4,5! [I‘&h =id [Iﬁ:h.

It follows immediately that the corresponding also holds for m; ; = 7/ jm; ;.
Case 3: j is a limit point of T'.

This cannot happen, as follows immediately from the minimality of j and the basic properties
of the direct limit.
So all cases are excluded, and hence the lemma is proven. O

Lemma 5.4. Let j € DNi. Then JgMj = JgMi , and we have: s;r = (sj)‘*‘Mi. The proof shows

moreover that for i € D we have: 7; < n;.

Proof. Assume the contrary. We may assume that the iteration is direct (meaning that D = U6
—see [Jen97, §4, p. 4]). Let i be minimal so that there is a j < i such that the claim fails. Let j
be least with this property.

Case 1: i is a successor ordinal.

Let i=h+1and £ =T(i). Then £ < h < i and j < h. By minimality of i, it follows that

EMe  {EMn
JS? = Jsz ,
EMp
and sg' is a cardinal in M},. By choice of &, k;, < s¢. It follows that sg' > (nf;)‘]% = 73,. Hence

EJW{ o EI\/Ih
JEYE g8

" . In particular, n, > sg > Th.

(1) 7 < .

Proof of (1). Assume the contrary. It follows that 7, = sgr = 7y, and further that n, < ht(M¢):
Otherwise,
ht(Me) =y, = s < ve < ht(M),

hence 7, = vg = sgr = 75,, and it would follow that

EMe
v,
EgM n
Th

(¥) A¢ = the largest cardinal of J

= the largest cardinal of J
= kp < 5¢ < Ag,
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a contradiction.
The fact that 7, < ht(M,) entails that “Pirelim, < Kn < s¢. Hence 82' is not a cardinal in

M§||(sg|r +1) = M¢||(nn + 1). Hence 32’ = g, since 52’ is a cardinal in M¢||ve when 52" < vg.
Again, as a consequence, 1, = Vg = Sgr = 7, from which the contradiction (x) follows as above.

Hay
(2) JE}M = thMh, and vy, € Card™:.
Proof of (2). Tt follows from (1) that
EMi EMe EMn EMn
JVh = ﬂ-fﬂ; (JTh ) = T(&ai(JTh ) = Jl/h ’
and since 7y, is a cardinal in M¢||np, vy = e ;(73) is a cardinal in M. Oa)

It follows from this that the statement of the lemma holds for h and ¢: As v, > SZ, it follows
that

+

M; My,
JET =B
Sh Sh

Moreover, s;{ is a cardinal in M;: As 7, < 1, either s;{ =, = 7T§,i(7‘h) S CardMi, hence

EMh
the image of a successor cardinal in M¢||np, or s; < vy, which implies that SZ € Card’» =
BM;

Card’»» C CardM"', as v, € Card™’. But then s: even is the successor cardinal of s, in M;,
as this is true in Mp||vp: If a were a cardinal in M; between sj, and sﬂ then there would be a
surjection f : sp, — «a with f € M|y, C M;, a contradiction.

Hence the claim holds for h, 4. It follows that j < h. As h < i, the claim is true of j, h, by
minimality, that is,
+

S

. . . EM; EMn
S s the successor cardinal of s; in M} and JS+ = JS+ .

J J

By (b) in the definition of normal s-iterations (Definition 5.1), v > sj Moreover, by (2),

M; My, . . .
th = th , and vy, is a cardinal in M;. Hence

M, M;, M;
JE =08 =08
Sj S]. Sj

and sj is the successor cardinal of s; in J thh =] E}Mi, hence in M;. Hence this case is excluded.

Case 2: 1 is a limit ordinal.

Let j < <7 i be such that there are no truncation points in (<7 “{i}) \ {, meaning that if
Il <h+1<pi, then n, = ht(MT(hH)). That this is possible is a consequence of the definition
of an iteration (see [Jen97, §4, p. 3]).

Pick h, b’ so that | <r h+ 1 <7 h’ + 1 are in immediate succession in T. According to

condition (c) in the definition of normality it then follows that
8; < Kp <8 < K.

By minimality of 4,
+ 4+ Mp4a EMi _ tEMnr+1
si = (sj) and Jsj’ _Jsj' .
By choice of I, Mp41 = Mpi1|lnn and hence kps is a limit cardinal in Mpy1. So Ky is a

o . . M .
limit cardinal in M4, greater than s;, and sj' = (s;)T7"*", hence sj' < Kp. But since
Th+1,i [K/h/ = id[:‘ih/,
EMi EMh+41 EMnh+41 EM;
T =m0 ) =I5 =057,
J J J J
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and 57 = mhy1(s)) = 7rh+1’i((sj)+Mh'+l) = (sj)*‘Mi. So this case is also eliminated, and the
proof is complete. O

Lemma 5.5. For j € D andi€ DNj,
If st = sty then s} = v;, in particular, M; is not modest. Moreover, in this case, s}, <
Vi1 = ht(Miy1) (and so sy < sf,, ifi+1,i+2€ D), and v; < ht(Mi1).

Before beginning the proof of this lemma, let me recall a general fact that was proved in the
first part of this paper:

Lemma 5.6. Let M be an active, weak j-ppm. Then |M| = hi,(s(M)), in particular wpl; <
s(M). Moreover, if p < v < ht(M), then st (u)M # s (v)M.

Proof of Lemma 5.5. The iteration may be assumed to be direct (meaning that D = U#). Let
i<, £ =T(i+1) and M* = M||n;. Assume that s > s, ;.

(1) vigr = ht(Miyq).

Proof of (1). We have:
1 + +
WM, (g < Sit1l < Sipp S8 < Vig1.

Hence v; 11 = ht(M;41), since otherwise sj wouldn’t be a cardinal in M; 4, contradicting Lemma
5.4. O
Hence Etj‘(;[; #+ 0+ Et]\f;“.

(2) s(M*) < ;.
Proof of (2). Assume the contrary, so that 7; < s(n;)M¢ < n;. It follows that
3i++1 > §(M;q1) > sup me i1 “s(M™) > sup me i1 4T = 15 > st

For details, see the proof of Lemma 5.25. This chain of inequations contradicts the assumption
that s;; < s;. O(2)
(3) sg' < sT(M*).

Proof of (3). Otherwise, s™(M*) < sgr, hence n; # ve. Then it would have to be the case that
M; < vg, for otherwise, n; > v¢ would imply that

st ()™M < sT(ve) M <wve <,
contradicting condition (d) in the definition of normality; the application of the extender E% ¢
wouldn’t have been allowed. So it follows that 82_ > n;, for otherwise

1 M,
WPy S S(03)7¢ < 52_ S < Ve

so that 32' wouldn’t be a cardinal in M¢||ve. But 7; is a cardinal in JsEeri = JSE;Q (or 7; = 52’),
while n; is maximal with this property, so that n; > sg' > n;, a contradiction. O3

Thus far, we have seen:

(4) s(m) <m < SZ < st(ni) in M.
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(g \Me — oF
(5) 7 =sT(m)™Me = s¢ .

Proof of (5). We have: 7; € (s(n;),(s(n;)7)¢] and 7; is a cardinal in M*. Hence 7, =

(s(ni) )M = sT(n;)Me. Using (4), it follows that 7; < sgr < st(n)Me = 7. O(s)
(6) ve =m;.

Proof of (6). 1If it were the case that v # n;, then it would follow that 52’ # st (n;)Me,

contradicting (5) — the map u — (s¥(p))Me is injective, by Lemma 5.6 O(6)

Hence s(n;)Me = s(vg)Me = s¢ > £y, so that
S(Mi+1) > 1ub7757¢+1“35 > 7T§’i+1(lii) =\
As a consequence,

si = 5T ()M > (AHM = v > 5T > st

in order to see that (\;")Mi+1 = 1;, note that JE_Mi = JEMHI and v; € Cardyy,,, — see the proof
of Lemma 5.4, Case 1. So sj = s;:_l, and thus it is shown that (s | i € D) is non-decreasing.
Moreover, sj‘ = v;, hence M; is not modest, as claimed. Finally, by Lemma 5.4, 7, < n;, and
hence v; = m¢ ;41(7;) € Miy1. So we have shown:

5;:1 = Sl—-i_ =y < ht(MH_l) = V41

Lemma 5.7. Fori¢ < j <0 withi,j€ D, \j > s:r

Proof. We may assume Z is direct. By Lemma 5.4, sj is a successor cardinal in M, and by
condition (b) in the definition of normality, v; > s;. It follows that s; is a successor cardinal in

M .
J,‘?j ’. Since moreover,

JEJMJ-

v, | Ajis alimit cardinal and the largest cardinal,
it follows that s;” < \;. O
Definition 5.8. For i < j < 0, set:

Aij ~min{)\ |l € [i,5) N D}.

Remark: In order to reduce the notational complexity, I will use the following conventions in
situations where several iterations occur, if possible: If 7/ = ((M/ | ¢ < 8"), D', (v} | i € D'), (n; |
1<), T (7';; |1 <pr j <)) is an iteration, I write:
Ay ~=min{\; [ 1€ [i,5) N D'},

and similarly for Z and \; j, etc.
Corollary 5.9. If h<i < j <0, he D, then SZ < Aij. Moreover, fori < j <0 withiec D,

si=Xi = Aij=A,

s <N = /\1‘7]‘ > S:'_

So in each case, \;; > ;.
;
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Proof. This follows from Lemma 5.7. O
Lemma 5.10. Fori < j with [1,7) N D # 0,

. . . . M, EM;j
Aij is a limit cardinal in Mj, and J) =~ =Jy .
2 V) V)

Proof. Assume the iteration is direct. Fix 4. I proceed by induction on j € (i,6).

Then \;; = A\; < v;, and we have JE = JE "' in particular, JE = JE:V: :

Hence ); is a limit cardinal in JE " But v; is a cardinal in M; 1, since v; = m¢ ;41 (7'1) Hence,
by acceptability of M; i1, A; is a hmlt cardinal also in the full structure M, 1.

j— 7+ 1| Firstly, JEMH JEZ fll By the inductive hypothesis,

JEM _ JEAI
i1 i1

since A; j+1 < Ay ;. Moreover, it is easy to see that

JEMJ' _ JEMHl
. v .

Since
v > )‘j > )\i,j+1
it thus follows that
EMi JEM JEM “.
Aig+1 T YA A1
It remains to be shown that \; ;41 is a limit cardinal in M.
Case 1.: )‘Lj = Ai,j-&-l-
In this case, A; > \; ;. By inductive assumption, A;; is a limit cardinal in M;. Obviously,
v; > Aj > A j. So we have:

e o M M1
Nij+1 = Aij is a limit cardinal in J¥7 = JE™

As before, this implies that A; j41 is a limit cardinal in M;4; as well.

Case 2.: Nij > Nijt1-

In this case, A\j = Ajj4+1 < Aij- ObVlously7 Aj is a limit cardinal in JE = JE Y+ which
implies that A; is a limit cardinal in M;4q1. As A\j = A; j41, this is all that’ b needed

Lim(j)| As the set of truncation points in the branch <7 “{j} is bounded in j, ic +1 <7 j
can be chosen in such a way that the following conditions are satisfied:

(a) There are no truncations in (<7 “j) \ i
(b) io > 1.
(€) Aij = Ao

Now define a sequence (i, | n < w) as follows: iy has been defined already. If 7, is defined,
then let 4,41 + 1 be the immediate T-successor of i, + 1 with 4,11 + 1 <7 j. So the sequence
(in + 1| n < w) enumerates the first w members of the branch below j that are above ig + 1,
<p-increasingly. We have:
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(x) There is an n € w, such that ki, ., > N, -

Proof of (x). Assume the contrary. So for each n < w,

Kipio <A

Tyl
Since
it (i, 41,0, 40 4+1) = Kipyy WA T 11,41 (Riy ) = Aipyys

it follows that

Tip41,j (Kips1) = Mot 1,i i+ i1 +1(Kiny)
= Mipga+1j ()‘in+1)
> Tipy1+1,5 (K;in+2)'
This holds for all n < w, hence (m;, 11,j(Ki,.,) | » <w) is a decreasing €-chain in M;, which is
well-founded, a contradiction. O

Now pick n as in (). Since the sequence (x;, | 1 <n < w) is strictly increasing (as x;,,, <
Sip+1 < Ki,,,), it follows that

Crit(ﬂiwwz-‘rl:j) = Kings = Ripgo 2 /\in,+1 2 /\iaj'
Set: i’ = 4,12+ 1. Then by minimality of j,

EM; EMy
J)\ = )‘i,i’ )

and )\; ; is a limit cardinal in M;,. As iy was chosen so that \; ; = \; ;,, and as i’ > g, it follows
that )\i,j = )\i,i" We get:

My EMy\  1EMy S pM; o pM;
J)\l i Tf-i/,j (JAi,i’ ) - J)"i,i’ - J)"i,i’ - J)\,;’j )

and A; j = my ;(As) is a limit cardinal in M;. O
The proof of the following lemma illustrates how A; ; takes over the role of A; in the usual
Friedman-Jensen setting.

Lemma 5.11. Let Z = ((M; | i < 6),D,(v; | i € D), (m; | 1 < 8),T,(m;; |t <p j < 0)) be a
normal s-iteration of the pPA-structure M , with s-indices ((s;,s]) | i € D). Then fori € D, the
following hold:

(a) [f Vv, = ht(Ml), then P(Ti) n El(M’L) g El(MT(,LJrl)HTIZ)
(b) If v; < ht(M;), then E,ﬂ‘f is X1 —amenable (see [Jen97, §1, p. 12]) wrt. Mp(iq1)||n;-

Proof. Assume the contrary. Let Z be a counterexample of minimal length. We may assume Z is
direct. Let ¢ € D be such that (a) or (b) are not satisfied. Then § = i+ 2, for otherwise Z|(i + 2)
(this is the canonically defined initial segment of Z of length ¢ + 2 ) a shorter normal s-iteration
which is a counterexample. For the same reason, (a) and (b) hold for all j < 1.

(1) TG +1) <i.

Proof of (1). Otherwise, T'(i + 1) = ¢ and hence (a) and (b) hold trivially. Oy
Letl/:l/i? K = Ki, 5:T(l+1) and’T:Ti.

(2) v = ht(M;).
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Proof of (2). Otherwise v < ht(M;). Let a < \; = Ih(EX:). By normality of Z, k < s5 < As;
see Corollary 5.9. Moreover, As; is a limit cardinal in M;, by Lemma 5.10. Together with the
o1 . . . . M; M; M,
acceptability of M;, this yields: (EX), :={z C k| a € EMi(z)} € JaH)Mi cIs =38
But \;; < n;: Note that & < s5 < s} < v, s§ € Card™. Hence, (xT)Mill"i = (K;'*‘)Mi”‘*; =
(kT)Mi | so that P(k) N M; = P(k) N M,;||v. Because fo‘; = J/I{J&M_i, it follows that n; > As;, as
. . M; (1EM N
claimed, since P(k) N |M;||vi| = P(k) N |J§5,7~, =P(k)N |Jf&i5 |
So (EM:), € M;||n;. In particular, (EM:),, is X1 (M;]||n;), hence i is not a counterexample, a
contradiction. U2

(3) i is not a limit ordinal.

Proof of (8). Assume the contrary. As i is a counterexample, there is A € (P(7) N X1 (M;)) \
31 (Ms||n;). Let A be ¥1(M;) in p. Pick a <p i, o > ¢ such that k < crit(my;) = kg, where
a =T(B +1). Moreover, fix « large enough that there are no truncations in (<7 “{i}) \ «, and
so that p € ran(m, ;). Let p:= w;’i (p).

Since the sequence of critical points along a branch of T is strictly increasing, it follows that
P(kg) N My = P(kg) N M;, hence kg is a limit cardinal in M; greater than k, so kg > 7. As 7y ;
is at least 31 —preserving, and as crit(m, ;) > 7, it follows that A is 3 (M) in p.

Define an s-iteration 7' = ((Mj | B < ¢),D", (v | B € D), (nz | B < 0"),T" (754 |
B <rr vy < 0)) of M as follows. Set: v/, := ht(M,). It follows from the X;-preservation of
Ta,; that ESZ“ # 0, as E)i £ 0. Let w), := crit(Ei‘Z“). E%u is an extender with critical point
k!, hence EMi has critical point 7, ;(k,) = &, and hence k = K, as k < crit(m,,;). Moreover,
Toi[P(k) = 1d[(P(k) N My). Set: v :=vj for j <o, T := (TN (a+1)*) U{(, + 1)}, where
¢ is the least u < a such that k; = K, < s,. So{ =T'(a+1)=T(+1)=6,7=17 =1,
and 1, = 7;, since ry, = K, 7 < kg and 0 < a. The s-indices s} and s’j are defined accordingly.
Finally, 6" := a+2. Then M¢||n;, = Mjs||n; is *-extendible by E*e which can be seen as follows:

(id, Ta,i TAG) = (Ms|lmi, Epfe) — (Ms||mi, EJN),
since for X € P(k) N Ms||n; = P(k) N My and aq, ..., < AL,
<at,. .. an= € BN (X) = <ma(a1),... Tailan)= € EMi(1,:(X)) = EMi{(X),

and 7o ; [N, : A, — A;. The desired extendibility follows from [Jen97, Kap.3, Lemma 1], as the
identity map has all preservation properties one could wish for.
But 7’ is a normal s-iteration of M (v, > vy > s;r = s’;r for j < «) shorter than Z. Hence,
o satisfies condition (a) in Z'. Since A is X1(Ma) it follows that A € 31(Mp, qllna) =
31 (Ms||n;), contradicting the choice of A. Ogs)
So let i = h+ 1, and set:§ := T'(i), M* := M¢||ny, and F := E%’L. So e+ M* —% M.

s

(4) K < Kkp. Hence me ;i [(rT)M" =id.

Proof of (4). By the preservation properties of m¢;, it follows that E,f\gp = Etlgg # 0, as

Efl\f("Mi) # 0, by (2). Moreover, setting k' := crit(Et]‘fg), it follows that k = m¢ ;(x').
It follows that x" < kp: Otherwise, k = m¢ ; (k") > ¢ ;(kp) = Ap > sp,. This would imply for
7 < i that
K2 A 2 Ajht1 > 55,

by corollary 5.9. By definition of § = T'(¢ 4 1), this would entail that T'(i 4+ 1) = ¢, contradicting

(1)
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The first part of the claim follows now, as kj, = crit(me ;):
k=mei(K) =k <Ekp.

Turning to the second part, note that by weak amenability of F', P(kp) N M* = P(kp) N M;, and
Kp, is a limit cardinal in M;. As kK < kp, and T = (/f"‘)M", T < kp. But of course, k5, is a limit

cardinal in M*, hence (77)M" < kj, = crit(m¢ ;). This proves the claim. O
(5) 6 <¢€.

Proof of (5). By (4) and normality of Z, it follows that k < k, < s¢. But § = T'(i + 1) is the

least v with x < s,. Os)

(6) F is X1—amenable wrt. M*.
Proof of (6). This follows immediately from the minimality of 1h(Z). Oe)
(7) T < )\5,2'-

Proof of (7). We have k < s5. I'll use Corollary 5.9 in the following.
If ss = As, then s5 = A\s = A\s; > 7, as As; is a limit cardinal in M;.
If on the other hand, s5 < As, then As; > sg' > T, as s(';" is a cardinal greater than « in M;.
Od
(7)

(8) wppy, < 7.
Proof of (8). Assume wpy, > 7. Let A C 7 be a X1(M;)—set. By assumption, A € M;. By
acceptability of M;, A € Jgii)Mi. But (7)™ < Xs;, as As; is a limit cardinal in M;, and
because of (7). Since fo‘; =] fxi, it follows that

AeJZl =g

Since A was arbitrary, (a) is satisfied at . But vacuously, (b) is also satisfied at 4, so that i was
no counterexample after all. Os)

(9) wply- < 7.

Proof of (9). By (6), m¢; : M* — M, is &*—preserving. By (4), m¢;[(7+)™" =id. The claim
follows from (8), as m¢; “Hy,. € Hyy . O(o)

(10) P(kn) N By (M;) C 2y (M*).
Proof of (10). kp = crit(me ;), hence (10) follows from [Jen97, §2, Corollary 6.5.]. O(10)
(11) 6 < &.

Proof of (11). Assume £ < 4. By (5), § <&, hence 6 =&. By (4), 7 < kp.
If 9, = m;, (10) shows that property (a) is satisfied, a contradiction.
Otherwise, np, < 1;, as T < ;. Then M* € Ms||n;. But this implies:

3y (M;) NP(7) © B (M) © Me||ni = Ms||m;-
Hence the properties (a) and (b) are satisfied at i, a contradiction. Oa1)

(12) M* = M¢ (hence np, = ht(M¢)).
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Proof of (12). Assume the contrary, so n, < ht(M¢). By (8), wpy,, < 7. Moreover, me; :
M* —y+« M;, and by (4), k5 > 7, hence wpl,. = wp}wi < 7. Now let A C 7 be X;(M;) and
a counterexample for (a) at i. By (10), A is X1(M||nn). But as Me||ny, € M, it follows that
AeP(r)NMe. By (7), 7 < Asi < Ase, and as s ¢ is a cardinal in M, it follows by acceptability
that M M,

AeP(r)NMe CIY F =387,

A(S,E Aé)E
Note that 7; > As¢. This is because

P(r) NIE" = P(r) N Jf;“; = P(r)NJE"

by acceptability; for the first identity, note that J ff[‘s = JSE+Mi and s(}" is a cardinal in M;. For
5 5

the second one, it suffices to remark that s} is a cardinal in J E;M‘;, if sT < vs5. Asvs > s, this
implies that n; > A5 ¢.
Hence,

M
AeIE < Mslim,

which contradicts the choice of A. O(12)
As was shown in (4), k = &’ := crit(E}") and 7 = (k7)™ = (xF)M". As in the proof of (3)

it can be shown that Ms||n; is *-extendible by E%*, since
(id [ Mp| s, mei) + (Ms||mi, E)Y ) — (Ms||mi, EAT),

and Ms||n; is *-extendible by Ef,”i by assumption. Now, in analogy to the proof of (3), one can
define an normal s-iteration 7' := (M}, | a < 0'), D", (v, | a« € D), (), | « < "), T (7’0 |
a <p/ 3 < ¢)) of M with length 0" := £ + 2, by setting: v{ := 5, = ht(M¢) and v} = v; for
j <& Sokg=k, i =r, hence T"({ + 1) = T'(i + 1) and n; = n;, as § < £ By (4), (10) and
(12),

As £ = T(i), £ < i, and hence, 7’ is a normal s-iteration of M shorter than Z. It follows by
minimality of 1h(Z) that

P(r) N E1(Mg) = P(r) N 1 (M¢) € Ta(Mpy(e gy |Ing) = B1(Ms||m:).-

Taken together, this shows:
P(r) N X1 (M;) C 1 (Msl[n:).

So i does satisfy the conditions (a) and (b) after all. O

5.2 Initial Segment Conditions

Since I use an initial segment condition for pA-structures that differs from what’s called “s-ISC”
in [Jen01], it needs to be checked that the new condition has all the properties needed. Thus, it
should have the usual properties an initial segment condition should have: Being preserved under
iterations (in the present case under normal s-iterations), and guaranteeing that the coiteration
process of two coiterable structures terminates. I will prove the first part in the present section.
Another property that’s crucial in the context of the present paper is that the s’-ISC shouldn’t
be too restrictive. More precisely, it should be a consequence of the Z-ISC. ¢ So what I will

61 refer to the initial segment condition of [Ste00] as Z-ISC, since the notion of a type-Z-extender is used in its
formulation.
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show is that hereditarily continuable Mitchell-Steel-premice satisfy the s’-ISC. It is obvious that
normally iterable Mitchell-Steel-premice are hereditarily continuable, so that this assumption
can be dropped for Mitchell-Steel-mice.

First, let me recall the definition of the s-ISC and the s’-MISC, on which it builds.

Definition 5.12. Let M be an active extender structure. M satisfies the minimal s’-initial
segment condition (s'-MISC), iff, letting F := EM | for every cutpoint” ¢ € [7(F),s(F)) of F,

op?
(€M # (e,
Definition 5.13. Let M be a potential Pseudo-A- or s-structure. The s’-initial segment con-
dition (s'-ISC) for M says that for every o < ht(M) with F = EM =+ ) and each cutpoint
§e[r(F),s(F)) of F,
(a) If [M||c]¢ satisfies the s'-MISC, then [M]|a]¢ € m.

(b) If [M]|a]e satisfies the s'-MISC and &' € [7(F), ) is such that [M]|a]¢ satisfies the s'-MISC,
then [M||a]e € [M]||ale.

The following is a folkloristic fact (which I made use of in the first part of this paper already).
For the reader’s convenience, I include a proof here.

Lemma 5.14. Let N = (JE F) be an active pPA- or pPs-structure. Let s = s(F), 7 = 7(F)
and T <& <(<s. Then

crit(agg) ~ min((¢ Ngeng) \ §).

In particular, if [£,() contains no generators, then o¢ ¢ = id[|[N]¢|.

Proof. If ((Ngeny) \ & = 0, then obviously, [N]¢ = [N]¢ and o¢ ¢ = id[|[N]¢|, as claimed. So let
¢ =min(¢ Ngeng) \ € exist. In the following, I write 7, 04,5 for 7%, O'(J)Xﬁ, respectively.

(1) & Cran(ogs).

Proof of (1). Let v < &. Then there exist & € genp N &' such that v = 75(f)(@) for some
fekNIEY But then @ < &, as & = min(¢ N geny) \ €. Hence,

v = 0,5 (e (£)(@)),

so that v € ran(og ¢). U
(2) ge¢ rgl =id [f/

Proof of (2). By (1), o¢s[¢ = id[¢’, as o¢ s is order preserving. The claim follows, since
Tg,s = 0¢,506,C e

(3) & ¢ ran(o¢ ;).

Proof of (3). Otherwise, there is a function f € * kN JfN and ordinals @ < & with & =
oe,s(me(f)(@)) = ms(f)(&), which is impossible, as £’ is a generator of F. Os)
(4) o¢sI¢=1d[C.

7As a reminder, a cutpoint here is an s-cutpoint. So in the present context, ¢ is a cutpoint of F if £ = s(F€).
And s(F'|§) = lub(7(F|§) U genp). For more details, the reader is referred to the first part.
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Proof of (4). For v <, 0¢,s(7) = 0¢,s(mc(id)(7)) = ms(id) () = 7. )
It follows immediately by (1) and (3) that

(5) & = crit(og,s).
(6) 5, = Crit(0'57c).

Proof of (6). Otherwise (2) implies &' = ¢ ¢(£'). So since £’ < ¢, (4) implies:

0¢,s(§) = 0¢,s(0¢,c(§)) = 0, (€) =€,
which contradicts (5). O(6), Lemma

Corollary 5.15. Let N = (JE F) be an active pPA- or pPs-structure. Let s = s(F), 7 = 7(F)
and T <& < <s. Suppose

¢ =min((¢Ngeng) \ €)

exists. Then

EWle ¢! = pWNlepe’,

5.2.1 The Z-initial segment condition

The following definition is from [Ste00] or [SSZ02], and is used for the formulation of a variant
of the initial segment condition.

Definition 5.16. Let M = (M, F) be a continuable extender-structure. Then F of type Z iff

s(F) = A+ 1, for some limit ordinal A, so that A is a cutpoint of F' with the property that
(A = (at) M,

Remark 5.17. The definition of this concept given in [Ste00, p. 9] uses a different formulation
which is equivalent to the present one for continuable structures. There, it is demanded that
(AHM = (AHURMMEIN - 1f M is continuable, then (A\H)[MIh = (AH)URMMFIN Fgince, letting
T =7(F) and 7 : M —p|\ Ult(M, F|)), m(JE") is a segment of Ult(M, F|\) the height of
which is a cardinal in Ult(M, F|\) which is greater than A (as A < s(F) < w(crit(F)) < w(7)).

E}\l
T

Since |7(JZ )| = |[M]a], the equivalence of the two definitions follows by acceptability.

Lemma 5.18. Let M be an active pPs-structure with top extender F'. Let & be a cutpoint of F.
If [M]¢ satisfies the s'-MISC, then F|¢ is not of type Z.

Proof. F1¢ is an extender on [M]e. Assume F'[{ if of type Z. Then § = &+ 1, where £ is a
cutpoint of F. But then, ¢ is also a cutpoint of Et[ﬁ/g&, so that, as [M]¢ satisfies the s-MISC, it
follows that (£1)[Mle £ (£+)IMle because [[M]¢]lg = [M]g. This contradicts the assumption that
F|¢ is of type Z. O

Definition 5.19. A pPs-structure N satisfies the Z-initial segment condition (Z-ISC) iff for
every a < ht(N) such that F := EY is an extender, the following holds:
For each cutpoint 1 < s(F) such that F'[n is not of type Z, one of the following is true:

(A) There is a v < a such that E, = (F|n)*,® or

(B) EN #0, and there is a v < a such that Ef,VHn = (Fn)*.

8Here I use the following terminology: F* = (}/7\‘f|s+(F))h.
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Again, the formulation differs from the original slightly (see [Ste00, Definition 2.4]), but is
equivalent for continuable structures.

Lemma 5.20. Let M be a pPs-structure that satisfies the Z-ISC. Then M satisfies the s'-ISC,
too.

Proof. Let v < ht(M), N := M||v active. Let F = EN_ . 7 = 7(F) and s = s(F). Finally, let

top?
& < s be a cutpoint of F, such that [N], satisfies the s’-MISC. I have to show two things:

(a) [N]e € N.

Proof of (a). By Lemma 5.18, F'|¢ is not of type Z. So by the Z-ISC entweder, one of (A) and
(B) is true:

(A) In<v EY =(Flo)".
In this case, [N]¢ = N||n € N.
(B) EY #0, and there is a vy such that (F[€)* = E{y\'\\g‘

Then JEN, EN|¢ e m € N, since NPassive jg 5 ZFC™-model. For the same reason, it follows

~

that [N]g €N. D(a)
(b) Let ¢ < & be such that [N]¢ satisfies the s'-MISC. Then [N]; € [N]e.
Proof of (b). First, set
& = min(geny \ £),
which makes sense, as { < s. By Lemma 5.14, & = crit(oe s). It may be assumed that ¢ is a
cutpoint of F, since, letting ¢ = s(F'[(), ¢ is a cutpoint of F, and [N]¢c = [N]¢, ¢ < ¢ < &~ s0

one could work with ¢ instead of ¢. Again, it follows by Lemma 5.18 that F|( is not of type Z.
So the Z-ISC may be exploited, providing the following case distinction.

(A) In<v E,JIV = (F]¢)*.
As 7(F) = 7(F(¢), -
[N]¢ = Nlln,

and —
n= (BN YN = ().

Nl¢

op » it follows that

Since [N]¢ satisfies the s'-MISC and ¢ is a cutpoint of Et[
(¢ Nle < (¢,
As ¢ < £ < ¢ and ¢, being the critical point of o¢ s, is a cardinal in [N]¢, this implies that
n= (e < (e <.
By the coherency of pPs-structures, together with Corollary 5.15, this yields, in particular,
ENM(n+1) = ENE1(n+ 1) = ENep(n + 1),

This results in: o
[Ne = [Nelln € [N,
as [N]¢"*¥V¢ is a ZFC™-model.
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(B) EY #0, and there is a vy, such that (F|()* = Ef,VHC,

We know that EV ¢ = EWNle ¢, hence N||¢ = ([N¢)||¢. So

—

NI[¢ € [V]e,
as [N]"*%"° is a ZFC™-model. Hence,
(Flo)" = BYC € [N]e.
Since
N7 = [NellT € [N]e,
this shows that [N]. € [N]¢ as well, as claimed. O(b),Lemma

5.3 Preservation of the s'-ISC

In this section, I am aiming at showing that the s’-ISC is preserved by s-iterations, that is, that
normal s-iterates of pA-structures are pA-structures. Recall the following definition:

Definition 5.21. Let M be an active extender structure. Set:

Cuv =A{& | 7 <€ < s(M), £is a cutpoint of B,
and [M]¢ satisfies the s’-MISC }.

I gave a proof of the following lemma in [Fuc08, Lemma 8.25].

Lemma 5.22. Let M be an active pA-structure. Let (M) < & < s(M) be a cutpoint with the
property that € ¢ Cyr. Then &€ = £+1 for a cutpoint £ of F = Eé\gfp. (So € is a limit of generators
of F). Moreover, (€7)Mle = (¢1)[Mls _ the proof shows that € is the only cutpoint less than &
with this property.

This lemma has some useful consequences.

Lemma 5.23. Let M be a pA-structure. Then M satisfies s'-MISC.

Proof. Assuming the contrary, let M be a counterexample of minimal height. Then M is active.
Let FF = Etﬂofp. By choice of M, the statement of the lemma is true of all proper initial segments
of M. So let ¢ be a cutpoint of F' such that (¢+)Mle = (¢+)M. Then [M]¢ ¢ M, as otherwise,
in M there would be a surjection from ¢ onto |[M]¢|, which would imply that (£+)M > (¢+)Mle,
But since [M]¢ ¢ M, it cannot be that [M], satisfies the s’-MISC. Since ¢ is a cutpoint, this
means by Lemma 5.22, that £ = £ + 1, where £ is a generator of I/, which is a limit of generators.
As [M]g satisfies the s'-MISC, by the same Lemma, and hence is a member of M, it can be
concluded, again by the same lemma:

(€)M = (€M > (£N)Me = (£7)Me = (g)Me,
contradicting the choice of &. O
Lemma 5.24. Let M be a pA-structure. Then Cyr is closed in s(M).

Proof. This follows immediately from Lemma 5.22. Let £ be a limit of Cj;. Then ¢ is obviously
a limit of generators, and hence a cutpoint. So the lemma can be applied to show that [M]¢
satisfies the s'-MISC, for otherwise £ would have to be a successor ordinal. So £ € C),. O
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Lemma 5.25. Let M be an active pP\-structure. Let o : M — ¢ M, with crit(G) < s(M) (to
emphasize: this is a Xg-ultrapower). Then s(M') = lubo“s(M).

Proof. Let F = EM |k = crit(F), 7 = 7(F), s = s(M), F' = EM' | &/ = crit(F'), 7/ = 7(F"),

top» top?
s’ = s(M') and &k = crit(G). Since being a generator of F' is IT; (M), and since o is X1-preserving,
it follows that
lubgenyp, > lubo“geny = lubo“lubgeny.

In case s(M) = 7, it obviously follows that 7/ = o(7) > lub o “r. Thus, so far it has been shown
that s(M') > lubo“s(M).
Letting 7 = 7 and «' = 71", we have:

(*) com=n'oo0.
Proof of (x). Firstly, it’s obvious that the domains of the functions on the left and on the right
are equal, namely [JZ"|. For X € P(x) N M, it follows firstly that
o(n(X)) = o(F(X)) = F'(0(X)) = 7'(c(X)).

But each member of JZ * can be coded in a 31 uniform way by a subset X of s that belongs to
M. This implies the claim. O

In order to see that s(M’) < lubo“s(M), assume the contrary. Let & € genp, be such that
¢ >lubo“s(M). Pick f € (k)N M and & < 1h(G) so that

§=o(f)(@).

As f € M, by coherency of M, there are a function g € (*" JEM) N JEM and ordinals § < s so
that

But this implies:

Here, § € ™™k N M is defined by:

-

5(7.5) = g(F)(6)  if g(7) is a function with 6 € dom(g(7)),
gm0l 0 otherwise.
So by (%),

§=n'(c(9))(c(B),d).
But since § < s, 0(f) < lubo“s < ¢, and as & < s, it follows that @ < 1h(G) < o(&) < lubo“s <
¢. Hence o(8),d < € and o(j) € “'W'MJE,M N JE,M . Thus, £ is not a generator of F' after all, a

contradiction. O

Lemma 5.26. Let 0 : M —yx, M', where M is a pPA-structure. Then lubo“s(M) < s(M') <
o(s(M)).
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Proof. See [Jen01, §1, Lemma 3.6] O
For the reader’s convenience, let me recall the different types of extender-structures:

Definition 5.27. Let M be an active extender-structure. Then M is of. ..

..otypel iff s(M) =T1(M),
... type Il iff  s(M) =&+ 1 for some ordinal &,
cootype IIT i 7(M) < s(M) is a limit ordinal.

Remark 5.28. If M is a pA-structure of type II, the then there is a maximal € C};, by Lemma
5.24.

If in this situation, a generator £ does not belong to C)y, then £ is an isolated generator of
Et]gp, for otherwise ¢ would be a limit of generators, hence a cutpoint, so that by Lemma 5.22
[M]¢ would have to satisfy the s’-MISC.

In the following, I am going to treat the different types of structures separately. In essence,
I’ll carry out the corresponding case of the inductive proof showing that the s’-ISC is preserved
under normal s-iterations. I'll show even more, namely that the #-ultrapower of an active pA-
structure M by an extender with critical point less than s(M) yields a pA-structure of the same

type.

5.3.1 Typel

Lemma 5.29. Let M be a pA-structure and w: M —7, M’, where M is of type I and crit(G) <
s(M). Then M’ is also a pA-structure of type 1.°

Proof. Obviously, 7(M’) = n(r(M)). So it follows that

because either crit(G) > wpl,, in which case 7 is a Yg-extender ultrapower, and by Lemma 5.25,
s(M') =lubr“s(M) < w(s(M)) = n(r(M)) = 7(M") < s(M"), or crit(G) < wp},, and then 7 is
Yo-preserving (see [Zem02, Lemma 3.1.11(c)]), so that Lemma 5.26 can be applied. This shows
that s(M') < w(s(M)) = n(r(M)) = 7(M'). But by definition, also s(M') > 7(M’), which
proves the claim.

As in the following lemmas, it will suffice to show that those parts of the s-ISC which refer
to the top extender are satisfied in M’. The rest will obviously be satisfied, as 7 is either cofinal
or Yo-preserving, depending on the location of the critical point of G. So since M’ is of type I
in the present case, there is nothing to show, since [7(M’), s(M")) = 0 — see Definition 5.13. [

5.3.2 Typell
I would like to remind the reader of the following definition, from [Fuc08]:
Definition 5.30. Let M be a pPA-structure of type II. Then

qm = F|max C)y.

Lemma 5.31. Let M be a pA-structure of type II, m : M —% M’ and crit(G) < s(M). Then
M’ is also a pA-structure of type II, w(s(M)) = s(M") and w(qnm) = qur -

9Here, as in the following lemmas, I assume the extender ultrapower is well-founded.
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Proof. Let M = (JE,F) and M’ = (JE' | F'). Let s(M) = € + 1, noting that £ > 7 := 7(F).
Finally, set k = crit(F), &' = crit(F”) and 7/ = 7(F").

Claim: ©(s(M)) = s(M') = w(£) + 1.

Proof of claim. There are two cases:

Case 1: crit(G) > wpl,.

In this case, 7 : M —g M’, and by Lemma 5.25

s(M")y=Tubr“s(M) =7n(&) +1 =n(£+ 1) = m(s(M)),

as claimed.
Case 2: crit(G) < wpl,.
Then 7 : M —y, M’, and Lemma 5.26 yields:

(&) +1=lubm“s(M) < s(M') < w(s(M)) = () + 1,

where 7(§) + 1 =7n(§ + 1) = 7(s(M)). OCiaim
The rest of the proof proceeds by cases:
Case 1: £ = max C)y.
Then £ is a limit of generators, as £ is a cutpoint. Moreover, since M satisfies the s’-ISC, it
follows that [M]e € M, and hence also that F|§ € M. The statement “z = F|¢” is II1 (M) in &:

r=F|( < ME (xisafunction with domain contained in P(x) A
VXVY (Y = F(X) — 2(X) =Y N¢))

Let x = F|¢. Then 7(x) satisfies this statement in M’, where F' and £ have to be replaced by
F" and ©(§) = &, respectively. Hence, 7(F|{) = F'|¢’ and n([M]¢) = [M']¢r. It only remains to
show that £ = max C)y.

As m[[M]¢ : [M]e —s%, [M']er, the property of £ of being a limit of generators of l*?t[o]\/[p]5 is

preserved, because this can be expressed in [M]¢. Hence, ¢’ is a limit of generators of Et[fi ]5', and
hence a limit of generators of F'. So ¢’ is a cutpoint of F’. It remains to show that [M]. satisfies
the s-MISC. But also the statement expressing that [M]¢ satisfies the s’-MISC is £, ([M]¢), and
hence is carried over to [M']e.

This proves the lemma in case 1.

Case 2: £ ¢ Cyy.

Then £ is not a limit of generators of F', by Remark 5.28. Set:

€ = sup(genp N¢€) and £ = 7(§).

Hence € < €. -
Case 2.1: £ ¢ genp.

Then £ is a limit of generators, and by Lemma 5.22, £ € Cy. Hence [M]z € M. It follows

that & is a limit of generators of F', as ¢ is a limit of generators of Et[ﬂf)]f and 7[[M]g —x,

[M']&. Hence £ is a cutpoint of F’, and [M’]z satisfies the s’-MISC, again by elementarity. So
£ € Cyp. Tt suffices to show that & = max Oy, and for this, in turn, it suffices to see that
[€',¢) Ngenp, = (), because then there is in M’ no cutpoint greater than & that’s less than
s(M").

We know that [¢,€) Ngenp = (). Hence [M]g = [M]¢ € M. So F¢ := F|¢ € M. Again, Fg is
characterized by a Iy (M)-statement in £, which is preserved by 7. Hence F, 5', € M’ and we have
m([M]¢) = [M']¢. But this implies:



so that [¢/,¢) Ngenp, = (), as claimed. The other parts of the s’-ISC for M’ are easily verified.

Case 2.2: § € genp. B
Case 2.2.1: £+ 1€ Cpy,or £ =k (and 7 € Cyyp).

One can argue similarly as in case 2.1. It follows that [M']z,, € M’, that £’ +1 (or 7/) is a

cutpoint of F', and that [M']¢ ,; satisfies the s’-MISC, hence that £’ +1 (or 7') belongs to Cy.

Finally, one can argue that &, §') Ngenp, =0, like before.
Case 2.2.2: £+ 1 ¢ Cyr, and § # k.

Asé € geng and § > 7, {+1is a cutpoint of F', and by Lemma 5.22, € is a limit of generators

of F'. Hence £ = max C)/, again by the same lemma. As before, it follows that
(+) [M]g € M, m(qu) = F'|¢ and F([M]g) = [M']g/ c M.
Moreover, [M']g satisfies the s'-MISC, hence ' € Ciy-.
(1) (€)M =&
Proof of (1). By Lemma 5.22 it’s clear that
(E)MIe = (€r)Miewn,

M

Moreover, ¢ is a cardinal in [M]g, ;, as § = crit(ag— .1)- Hence, obviously,

(€)M = (£7)Men < ¢,
Assume that ¢ := (£1)Mle < ¢,
Then ¢ = agrl(g“) = (67)M  which yields the contradiction
C=(ENM >ht([M]g) > (€)M = ¢,
since there is in M a surjection from £ onto |[M]g|, as [M]¢ € M.
(2) (§H)Me =g
Proof of (2). This follows immediately from (1) and the preservation properties of .
(3) (€,&) Ngenp = 0.
Proof of (3). Suppose there was a v € (€/,¢') N geny,. Then
¢ =(@EHMe < EHMh <y <,

M’

as 7, being the critical point of o7,

is a cardinal in [M’],.
(4) (@)l = (@) rlern,
Proof of (4). Tt follows by (2) that

5/ _ (é/—‘r)[]\/f/]é/ S (g/+)[M’]g/+1 S (g/—‘,—)[M/]g/ S 5/7

)

U2

U)

hence all these are equal. I used here that £, being the critical point of Ué\f[;(M,), is a cardinal

in [M/]g/.

U

As ¢ is a limit of generators of F”, a by now familiar argument shows that & is a cutpoint of
F', and (4) shows that [M’]¢; does not satisfy the s'-MISC. Hence &' +1 ¢ Cyyr. Using (3), it
follows that & = max Cj;; we have already seen that & € Cjppr. So (+) shows the claim also in

this case.
Again, the other parts of the s’-ISC are easily checked.
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5.3.3 Type II1
Lemma 5.32. Let M be an active pA-structure of type III. Then wpl, = s(M).

Proof. 1t is obvious that wp}, < s(M), since there is a (M )-surjection from s(M) onto |M|.
Suppose wpl; < s(M). Then let A be a X1(M) set, using a parameter p, such that ANupl, ¢ M.
Set F:= EM

top*
Then for 6 € geny and § < ¢ < s, crit(a%,) = 4, by Lemma 5.14. Moreover,

(*) |M| = UéegenF ran(aﬁ)-

Proof of (x). By definition of s,

M

. 1EM
7TS.JT —Fls JV s

where 7 = 7(M) and v = ht(M). Let 2 € JE" and k = crit(F). Then there are n,d@ € s™ and a
function f : K™ — JEM with f € JEM, so that
v = (f)(@).

Let max(d) < 0 € genyp (such a § exists, as genp has no maximal element). Then

o5s(my! (F)(@)) = 7 (f)(d) = @ € ran(oy).

Now let 1 be a cutpoint of F with the following properties:

- p € ran(o}l).
- > wpyy
- [M], satisfies die s’-MISC.

Finding such a p is no problem, using Lemma 5.22. Then oljxfs : [M],, —x, M is cofinal, hence
Yi-preserving.
Let A be 3([M],) in p by the same definition as A is 3;(M) in p, where U%S (p) =p. As

wphy < p < crit(oM M

i.s), and since 0,7

is a Xp-preserving embedding, it follows that
Anuwpl, = ANwpl,.

But [M],, satisfies the s’-MISC and M is a pA-structure, so [M], € M. Hence everything
definable in [M],, belongs to M, in particular the set ANuwpl, = ANuwpl,, a contradiction. O

Lemma 5.33. Let M be an active pA-structure of type III and G an extender on M with
Wiy < &= crit(G) < wply.
Let m: M —§ M'. Then

TlHy MY —e MY and
s(M')= wpl;, =supm“s(M).
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Proof. Set
M =M,
Let F = B}, s =s(M), k= (M), 7 = 7(M), v = ht(M).
Remark. py1 = 0, since using the top extender of M a surjection from s = wpl, onto JZ
can be defined in M without using parameters.
Let 3
7 M —g M* = <J£*,B>.

(0) 7 =ml[M].
Proof of (0). The proof proceeds in three steps:
(0.1) If f € (M, &) and ran(f) C x € |M| for some x (that is, van(f) is bounded in |M]|), then
felM.

Proof of (0.1). Firstly, it’s clear that if f € T*(M, %) N |M| and ran(f) C = € |M], then f € [M]|
— this follows from the acceptability of M. Now let f € I'*(M, &), ran(f) C « € |M|. By the

above, it suffices to show that f € |M|. But if f ¢ |M]|, then f is a good Egn)(M)—function,

where wp™t! > k. As & € [wp3,, wpl,), this means that n = 0, hence f is a ¥;-function. But as

ran(f) C = € | M|, there is some a < ht(|M|) = p}, such that f C |[M||a|. This implies that

f € |[M|, by definition of p},. Oo.1)
Set A :=1h(G), and define for (@, f), (3, g) € D*(M, &, \):

) € 9(5)}),

(@ HE'(B.g) = <& p~ecG{=70-<k|f(F
) = g(5)})

(@ NG = =a,B-eG({=v6-<k|[(7)
Denote the restrictions of E’, I’ to D(]\ZI'7 R, 5\) by E, I, respectively.

(0.2) Let (8,9) € D*(M,&,N), (@, f) € D(M,R,\), and let (3, 9)E'(a, ). Then there is a g, so
that (3,g) € D*(M, &, \), ran(g) is bounded in M, and (3,g)I'(a@, ). By (2), g € |M]|.

Proof of (0.2). Note that f € |M|. Let a < ht(M) be so that f € z := |M||a|. Define
h:|M| — |M| by:
a if a€x,
ha) = { 0 otherwise.

Then g := hog is a good 250)(1\4 )-function with the desired properties:
Since {<¥> | g(7) € x} C {=¥> | g(¥) = §(7)}, it follows that

=B~ € G{=<7> | 9(7) € 2}) € G{<F~ | 9(¥) = 9(T)})-
Hence (ﬁ, 9)I' (B, g), and g is as wished. O0.2)
(0.3) For (@, f) € D(M,&,\), n(f)(@) = 7(f)(a).

Proof of (0.3). The proof proceeds by E-induction on (&, f). Suppose the claim holds for all
E-predecessors of (@, f). We have:

=,

()@ = {r(9)(5) | (B,9)E'(@. )}
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But for <E, g E'{a, f), by (0.2), there is a g so that (ﬁ, g>I’<3, g)E' (@, f), and <5, g) € D(M, R, 5\)
Hence

(@) = {x(9)(B) | (B, 9)E(d, f)}
= {7(9)(8) | (B.9)E(@, )}
T(f)(@)
This was to be shown. O(0.3)

The claim follows from (0.3): 7(z) = m(const,)(0) = 7(const,)(0) = 7(z) for = € |M]|. O(o0)
Set:
Fim ((Flp) | 5 < 5).
(1) The relation F is rudimentary in s, &, A}\’f),
Proof of (1). The statement .z = F(u)“ says that
p<sAz=(F|p),
and that statement is IT; (M):

z=(Flu) <= ME “zisa function” Adom(xz)=P(k)

AVw € dom(z)Vy (F(y,w) — yNup = z(w)).
By Lemma 5.22, (F|u) € M for p < s. It follows that
(x,p) € F <= M = g[r, s, u, z]
for some II;-formula . If i is the Gédel number of =, then, consequently:
(z,p) € F — —|A}\’4®(i, (K, 8, 14, ),

from which one sees, that F is rudimentary in s, x and A}\;I(D. O
By Lemma 5.22, it follows that for each & < s, we have:

[M]§ S M

Let F* be the function, that’s rudimentary in B, 7(k), s* by the same definition, by which Fis
rudimentary in A}, , s. For #(7) < < s*, denote the maximal continuation of Jg(*T) according
to F*(y) by M. Using (0) and (1), it is the easy to see that
m([M]e) = Mz .
For v < § < s*, let O’,? s be the canonical embedding
ol 5 M3 — My.
We have:
(M (o |7 < <)) = di T ([M], | 7 < o < s), {olly | 7 < p <5< 5)),

because by claim (x) of the proof of Lemma 5.32, JZ = Usr<pes ran(o},), and for 7 < pp < 6 < s,
obviously, 0(]5\,/['50#,5 = aﬁ/{s. Now let
(M (o7 | 7 << s)) =dir im((MZ () |7 < i< 5), (0725 | TS <6 <)),

where wfc (M*) is transitive.
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(2) M* is well-founded.
Proof of (2). Define an embedding
jiM* — M’
by )
3% (T()@) = 02,0y sarr) (@)

The correctness of this definition is implicit in the following proof that j is Xo—preserving: Let
 be a Yp—formula, and assume that

M* = pla).
Let p < s be large enough that @ € ran(oy ). Let ac Mz ) be such that U;(#)(c‘?) = d. Since
< 4§ < s*, it follows that a;(#) is also X-preserving,

o} 5 is Xy-preserving whenever 71(7) < v
hence we have

Mz, E elal.
Now we know:

M;(,u) = ﬂ-([M],u) = [M/]Tr(u)'

Hence we have:

My Eela] = M = eld
= ME @[U%;),S(M/)(a)]
= M Ej(@)]

Of course, the well-foundedness of M’ implies that of M*. O(2)
Define a map ' : M — M* by

(3) ©'s =7|s.
Proof of (3).
(3.1) Uys [v=id[y for 7 < v <s.
Proof of (3.1.). By Lemma 5.14, crit(o2’)) = min(geny \ 7) > 7. 0.1
(3.2) oy =id[y, for (1) < v < s*.

Proof of (3.2). Clearly,
ol sly=idlyfra(r) <y <0 <s™

This implies the claim: Assume the contrary. Let o be minimal such that

(-) Thereis ay < s such that o < 7(7y) and o

2 (@) > o

Choose such a 7. Pick 7" with v <" <'s, so that a € ran(o7 /). Let & = (U;(V,))_l(a). Then
we have:

since 0;(7,)(04) = 0;(7/)(0;(7),7?(7’)(0‘)

=05 (). T used here that o < 7(y) < Crit(gz(w),ﬁ(v’))‘
Hence

(@) > a =0z (@),

Il
Q

Tx(y) (@)
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which implies that & < a. Moreover,

a <w(y),
since & < a < w(y) < 7w(y'). Hence, (-) is also satisfied by @, as witnessed by v/, as & < 7(v/)
and o7, (@) = a > &. This contradicts the choice of a. O3.2)

Now let’s turn to the claim itself:
Let o < s. As s is a limit, « + 1 < s. Using (3.1) and (3.2), it follows that

() = 7' (0441,(0)) = 0% (ar) (7(a)) = 7(a).
D)
4) 7' M —y5, M*.

Proof of (4). It’s obvious that n’ is ¥1-preserving. So it suffices to show that Xs-formulae are
preserved downwards. Let ¢(z,y) be a Xp-formula, and assume

M* | 3avy  o(z,y)

(I suppress parameters in the range of ©’). Let a € M* be such that

M= Yy o(z,y))lal.

L}ft T <p<sandae 7([M],) be such that a = U;(u)(&)' As 07,y is Yi-preserving, it follows
that
T([M]y) = Mz = Yy o(z,y))[al,
hence
Mz, B3y o(z,y),
so that
M = 3y ol y)us,, -

This is Xo(M*) in M), hence

M E (32¥y  o(x,9)) i),
which implies that
(M, = 32Vy  o(z,y).
Now let b € [M],, be such that

(Ml = (Vy (@, 9))[b]-
As oM . M, —s, M, it follows that

T
M (Y ¢(2,9)]0,,: )],
in particular,
M 3ovy o(,y).

O
(4)
In particular, M* is a J-model, as this is expressible by a Q-statement which is true in M.
Let
M* = (JE E)

and k* = 7'(k), 7" = 7'(7), and A* = 7'(N).
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(5) s* = wply--
Proof of (5). Two directions have to be verified.
This follows, as M* = hy«(s*): Let € M*. Then let p € [r,s) and T € M7,
be such that = = o7, (%). Obviously, M7 = = haz,, )( 7(p)), since Mz, is the maximal

continuation of Jf(*ﬂ according to F*(7(u)). So let € < 7(u) and m < w be such that 7 =
hAL (§7 )

(1)

As oy, Mz, —s, M* and o} [7(p) = id[7(p), it follows that

T = Jw(,u)( ) - U;kr(y)(hM;w) (S’m)) = har+ (5; m)

s* < wpl . |For this direction, one can argue as in the proof of Lemma 5.32: Assume the contrar
pA{ 9 g p %

so that s* > wpl,.. Let A be ¥1(M*) in p so that A Nwpl,;. ¢ M*. Let p > 7, pn < s be such
that wpl,. < 7(p) and p € ran(o7 ). Let p = (U;(H))’l(p). Now let A be Zl(Mﬂ )) in p by
the same X ;-definition as A.

It has to be checked that M7, € M, for then it can be concluded that ANT () = AN#(u) €
M*, a contradiction.

In order to see this, let v € (u, s) be chosen so that [AM], € [M], — this is easy, using part (b)
of the s"-ISC. Let a = w([M],) = M7 . Then in M7 the X¥-statement “a = [M;(u)]fr(u)”’
which I denote by ¢la, 7(p)], is true. By (3.2), crit(o,)) = 7(v), hence by the X;-preservation

property of af( )» it follows that o7, (a) = [M~]z(,). But since FM'|7(p) = FMrw) |72 (1) and
Jﬂ(f =JZ (a) € M*. O¢s)
(6) s* =s(*)M".

Proof of (6). First, it is obvious that s* < s(v*)M" | since 7’ : M —yx, M* and 7’|s = 7|s,
hence s* = lub7“s = lub(n’)“s < s(v*)™" | by Lemma 5.26.
In order to see the converse, define

w(p)

, this means that M*

. T = T7w)

. 1E* E*
(2N JT* —>E;* JV* .

As M* is a direct limit, it follows that

JE| = U ran(oz,,))
T<u<s
As before, we get:
(M* (oo [T <n<s) = dir im(((M )z | 7 < p < s),
(X yae) | T<n<6<s)
So we have
JE | = U ran(a%;)’s*)
T<u<ls
= U G 0@ |7 eI na<aw)
T<u<s
= =M H@ | felfna<sy,
since s* = sup 7“s. This shows that s(M*) < s*, as wished. Ogs)
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(7) m=x" and M* = M.

Proof of (7). It suffices to show:
' M —F M*.

In order to see this, several points need verification.
- M* s transitive.

/. ! -
-m .M—>287L>M if wplyy > K.

Proof. In the current constellation, wp%; < & < wpl,, so it only needs to be checked that 7’ is
3o~ and Egl)—preserving. By (4), 7’ is even Ya-preserving, which of course implies the former,

but also Eél)—preservation is a consequence. By [Zem02, Lemma 1.7.1], it suffices firstly to show
that (7/)“I'}; C I'};., which is trivial here. Secondly, the following has to be shown:
If pe I}, and p' = 7/(p), then

w T HLy : MY —sy (M)
To this end, let p, p’ be as in the claim. Because of the known preservation properties of 7’ it
suffices to show: (i,z) € Ay <= (i,7'(z)) € A}\’f;. But this is obvious. O
- crit(n’) = &.
Proof. This is obvious, as crit(n’) = crit(7) = k. O
- G=0n7(X)| X e P(R) N M).

Proof. This is also obvious. Since s = up}, is a cardinal in M, and since £ < s, it follows
by acceptability of M that P(k) N M = P(k) N M. Since 7 : M —¢g M*, it follows that
G={AN7(X)|X € P(&)NM). The fact that «'[H}, = 7| Hi, now implies the claim. O

- MF = {7 (f)(@) | @ <AAfeT*(M,R)}.

Proof. Since wpi; < & < s = wpl,, I*(M, &) consists of functions f which are members of M or

have a Ego)—deﬁnition over M.
So let x € M*. As M* = hl,.(s*), there are i < w and £ < s* so that

@ = hy- (i, €))-

But since 7 : M — ¢ M* there are a function f € M and ordinals & < ), so that & = 7(f)().
Define g : (OnN M*) — M* by g(8) = ki, ((i,8)). Then g is a X1 (M*)-function. Let g be
the 31 (M )-function defined over M by the same formula. Set: h := go f. Then h is also a
%1 (M)-function, and we have:

' (h)(@) = (g o' ())(@) = g(n'(/)(@)) = 9(&) = hi-((,€)) = =

I used here that 7/ [JE = 7 JE. O
That’s all that was needed for (7), and hence for the lemma, so that the proof is complete.

O
(7),Lemma

For the proof that the s’-ISC is preserved in the case of type III-structures, I need the following
general observation.
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Lemma 5.34. Let M = (J4, §> be an acceptable J-structure. Let F' be an extender on M with

critical point k. Let m: M —% M'. If k < wp’](jl, then wp; = m(wphy)-

Proof. Set p = wpf;.

M The statement V™ £" < p is Hg")(M) in p, and since 7 is E(()”H)—preserving
(Egn) would suffice), that statement holds in M’ of 7(p). I used [Jen97, §2, Lemma 3 (b)] here.

wpy > w(p) | Assume the contrary. Let p' := wpll;, < w(p). In M’, the following Hgn)—
statement holds:

ver £t

Let p/ = #(f)(¥) for some f € I'*(M,k) and ¥ < 1h(F). Moreover, f can be chosen so that
ran(f) C p. It follows that

M'EvEr & #E(f)()
n+1

By [Jen97, Lemma 3 (d)], one can apply a kind of L6z theorem to that statement, as wply] ™ > &,
which yields that this is equivalent to

FeF{{< k| MEYE" € # (O

Z

In particular, Z # (). So let 56 Z. Then we have:

—

M =ver & # f(0),

but by choice of f, f(¢) < p = wpl; - a contradiction. O

Lemma 5.35. Let M be an active pA-structure of type III, G an extender on M with Kk =
crit(G) < s(M) and
T M —¢ M.

Then M’ is also a pA-structure of type III (assuming the well-foudedness of M').

Proof. Due to the preservation properties of 7, it suffices to prove only those aspects of the s’-ISC
that relate to the top extender of M’. Thus, it suffices to show that [M’]. € M’ for arbitrarily
large ¢ < s(M").

As M is of type III, Lemma 5.32 says that uwpl, = s(M). So k < wp};.

Case 1: wp3;, < Kk < wpl;.

Using Lemma 5.22, it is easy to see that [M]; € M for arbitrarily large ¢ < s(M). It follows
that for such ¢, [M']) = 7([M];) € M’. But by Lemma 5.33, s(M’) = sup7“s(M), so we're
done.

Case 2: Kk < wp;.

Then 7 : M 50 M’ by [Jen97, Lemma 3, (b)]. Using Lemma 5.34, it follows that

!

s’ == wply = m(wpl,) = 7(s). Moreover, Lemma 5.26 says that s(M’) < m(s) = s', as 7 is also
Yo-preserving. Letting F' := Etj\gp, the following statement, call it ¥, holds in M:

velazt ozt = Pl

that the existential quantification may be bounded in this way is justified as in the proof of
Lemma 5.33. Here, “z' = F|¢7 is expressed by

“r!is a function” A (dom(z') C &) AVa'V' (b = F(a") — 2 (a®) =1 N ¢Y),
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a Hgo)-statement (I denote the critical point of F' by & here). So ¥ is H(Ql) in k. Hence, the same
statement holds in M’, so that

M EVE<S F'l¢e M.

So s = s(M'), since it follows that s(M') > s (otherwise M’ € M'). So M’ is of type III and
satisfies the s'-ISC. O

5.3.4 Putting things together
Now I am ready to prove that the s’-ISC of pA-structures is preserved under normal s-iterations.

Theorem 5.36. Any normal s-iterate of a pA-structure is a p\-structure.

Proof. Tt suffices to show that the s’-ISC is preserved. So let M be a pA-structure, and let
IT={(M;|i<0),D{v;|t€D)(n|ie€D)(k;|i€D)(r|i€D)(\|i€D)(s|i€ D),
(st | i€ D),T,(m;|i<rj<8)) beanormal s-iteration of M (i.e., with M = My). I want
to show by induction on i < € that M; satisfies the s’-ISC. If M; is passive, then this is trivial.
What was proved in the previous three subsections can be used to prove the successor step of the
induction. So assume M; satisfies the s’-ISC, for every j < i. I want to show that M;;, does,
too. Again, it may be assumed that M;;, is active. Let £ = T(¢ + 1) and M* = M¢||n;, so that

. * *
TEi+1 - M —)EM'i Mi+1-
Vi

By the way s-iterations are constructed, x; < s¢, and in the current case, M* is active. Since
|M*||s§| = |M;||sT€|, it follows that n; > 52’.

Claim: k; < s(M*).

Proof of Claim. This is clear if ; = v, for then, s(M*) = s¢. Consider the case that n; < ve.
It must be that s(M*) > 8;, for otherwise we would have: wpf, = < s(M*) < sgr <mi < g,

so that 52’ wouldn’t be a cardinal in M||ve. So clearly, k; < s¢ < 32 < s(M™*), as desired.
Finally, consider the case that 7; > v¢, and assume (towards a contradiction) that s(M*) < k;.
The definition of n; implies that 7; is a cardinal in M*, so since s(M*) < k;, it follows that
sT(M*) < 7. Since k; < s¢ and sgr is a cardinal in M;||y;, it follows that 7; < sgr So
sT(Mel||mi) < sgr = st (Me||ve), which even implies that st (M||n;) < sT(Me||lve). But that
would mean that v¢ wasn’t applicable in Mg, since 1; > v¢, a contradiction. O Claim

Since M, satisfies the §’-ISC, and hence, M* obviously does, too, it follows by Lemmas
5.29,5.31 and 5.35 (depending on the type of M*) that this is also true of M;y 1, as desired.
These lemmas are applicable because of the claim.

So suppose now that i is a limit ordinal and for all j < i, M; satisfies the s’-ISC. Again,
assume that M; is active. Let £ <r i be such that [¢,i)7 contains no truncations. I treat the
different types separately again:

Case 1: M is of type L.

Then it is easy to show by induction on ¢ € [£,i]r that M, is of type I, using Lemma 5.29
in the induction step. In the limit step, all one needs to know is that the property of being a
generator is expressible in a II; way. In particular, M; is of type I, and hence it satisfies the
s'-ISC by fiat.

Case 2: M; is of type 1L

It is straightforward to show by induction on ¢ € [, i]r that M, is of type II and that
me,c(s(Me)) = s(M,), this time using Lemma 5.31 in the successor step. So M; is of type II and
me,i(s(Mg)) = s(M;). Now the rest of the proof of Lemma 5.31 (starting at case 1) goes through.

47



It didn’t matter for the rest of that argument that = was an ultrapower embedding by a short
extender.

Case 3: My is of type III.

Again, it can easily be shown by induction on ¢ € [€, ] that M, is of type III. Knowing this,

it suffices to prove that [M;], € M;, for arbitrarily large v < s(M;). So pick some generator v <
s(M;). Pick ¢ <7 i such that v € ran(m¢ ;). Then 77511 (7) is a generator of Etj\f;, so inductively,
there is a generator 7' of Et](v)jé which is larger than 7r<_11 (7) and is such that [M¢],, € M. Then

(7)) >y, mci(7') is a generator of EQ{;, and m¢ i ([Mc]y) = [Mi]z vy € Mi, as wished. [

5.3.5 Downwards preservation of the s-ISC, and some results on ps-structures

The results in this section were presented in [Fuc08] already, since they were needed there. I
repeat them here, because they fit in the present context much better.

Lemma 5.37. Let M be a A-structure of type I and o : M —w, M an embedding with
qm, s(M) € ran(o). Then M is also a A-structure of type II, o(s(M)) = s(M) and o(q57) = qur-
The corresponding statement is true, when M is a p\-structure of type II.

Lemma 5.38. There is a Il -formula ’(/J(J,‘A, y) such that for every active pPs-structure N and
every ordinal &, the following is true: If E{’Xp|§ € |N|, then {a, f) is the <n-minimal'® element
of T(N,k(N)) with a € [s(N)]<“ and Wi\(’N)(f)(a) = ENLIE, if and only if

éO(N) ': 1/)[<a7f>7§]

As a consequence, the following analog of Lemma 5.37 for ps-structures holds:

Lemma 5.39. Let N be a ps-structure of type II and o : N —y, N an embedding with
GCoWN) | 5CoN) ¢ van(s). Then N is also a ps-structure of type II, o(5%°WV)) = §€0N) qnd
o (¢CoN)) = GGV,

5.4 s-coiterations
Definition 5.40. Let M = (JF E,,) be a pPA-structure. Then EM := (E, |u<v) =
<E~'IJL” | p < v) is defined by
Es*(u)M = E#, if E# 75 @,
E, := 0, ifthereisno ¢ such that E¢ # § and p = s*(£)™.

Note that this definition is correct, as v # v/ = s+ (v) # s"‘M(y’) (Lemma 5.6).
Definition 5.41. Let M and M’ be pPA-structures. Set:
s(M, M') := min{p | B} # EM' A < ht(M) nht(M')}.

So s(M, M’) is the least s-Index, at which M and M’ differ. The basic idea is that in con-
structing the s-coiteration of M and M’, these differences are eliminated in the order determined
by s.

10For the definition of <y, see [Fuc08].
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Definition 5.42. Let M and M' be pPA-structures. An s-coiteration of M° and M' with
s-indices (s; | i € D) is a pair Z = (Z°,I') of iterations of M and M1,

Ih = <<Mzh | i < 9h>7Dh7 <Vzh | (&S Dh>7 <771h | i < 9h>’Th’ (ﬂ-hl}j | i <pnj< 9h>> (h < 2)

with s-indices (sj | j € D), where §° = 9! = 0, so that the following conditions are met:

(a)
(b)

()

7" is standard.

If M and M} are incompatible, meaning that neither of these structure is a segment of the
other, then s = s(M?, M}), otherwise s; is undefined. If s} is undefined, then 6 =i + 1,
i ¢ D", and the coiteration terminates at .

~ h
If b € 2 has the property that Ei\f # 0 (and there is at least one such h unless the

h
M|

coiteration terminates at i), then let ¥ be such that s* (o) = sf. Moreover, let

~ h _ ~ h
kh = crit(Ejf" ) and 7/ = (Rer)Mih”V?. If Ei\f = (), then these are undefined. Let & =

be the least ¢ € D" with &l < s(ug)MEh7 if 7! is defined, £ = i otherwise.

If 7! is undefined, then set Mi’f‘_l = MP].

K2

Otherwise let 7' < ht(M?h) be maximal so that we have:

h =h
Zh\ M lln _ =h
(RE)Menl! = 20,

Now let M/ | and 7" be defined by:

(3

—h . Arh ||k * Th
U 'Mthnz‘ — " an MYy
i E+‘L

s !
i

If M&_l is a segment of M}, then we have:

M}, =M}, i¢ D'

(3

and
. 0 0 70 0/: 0 ,0_ -0 ,0_ =0 Mo
ieD MP =M, T(i+1) =&, v) =0, n) =i, s7 =s7 (1)),

ﬁ.O

and 70 i

€041

If this is not the case, but vice versa, M}, | is a segment of M?, then

My, = M, i ¢ D"

Remark: 1 refer to these situations as exceptions. In case of an exception, the coiteration
terminates in the next step, as M?,, and M}, are compatible.

Finally, if no such situation occurs, then

M-}fH = M.}f‘_l, Th(i+ 1) :5?, I/zh ~ 17?7 mh ~ ﬁh

7 (3 (N

Moreover, i € D" iff v is defined, and s;” = s*(v!") for some (and then each) h < 2 with
i€ Dh. 1

1n the above definition, “~” is to be understood in the sense of Kleene. So the value on the left hand side is
defined iff the one on the right hand side is, and if so, they are equal.

49



The necessity for this rather technical definition results from complications that may occur
when pPA-structures M° and M are coiterated, and at least one of them is not modest.

5.4.1 Existence and normality of the s-coiteration

Lemma 5.43. Let M°, M"' be normally s-iterable pP\-structures. Then there is a coiteration
T of M° and M'. Both sides of this coiteration are normal s-iterations.

Proof. 1 show that if Z = (Z° ') is an s-coiteration of M° and M, then Z° and Z' are normal
s-iterations. The existence then follows from normal s-iterability. I have to show conditions (b)
and (d) from Definition 5.1 are satisfied.

(1) Sei h < 2, i < 1h(Z"). There is no v > vl such that s"‘(D)Mih < st. So condition (d) of
normality is satisfied.

Proof of (1). Assume the contrary. Let h = 0. Then

M? ~ M2 ~ M}
E=EFE"=FE" = i

_ EMil.
~\MO T M9 T Do
5+(y) Q 5+(y) i

the last identity is valid since an extender determines its A-index, because it determines the
MY M}
power set of its critical point. Let x = crit(E) and 7 = (k)% '~ = (k)7 ' (again an

extender determines its critical point). Let

gM?
=

0
EM;
v )

1
EM;
Jz .

|

M}
al . JET

—E J

.
0 1
(1.1) JEY = g™

0
Proof of (1.1). 1 have to show: EM! |7 = EM! |7, To this end, let s < 7 be such that Ey" # 0.
Then . .
sT(M <p <1 <sH()M < st

(2
Since EM! Isi = EM! Is;, it follows that

M) MY _ M} M}
But = ES*(#)Ml0 s s M Bt
The opposite direction is proved analogously. 0.1

It follows immediately that

0 1
(1.2) JEY = j&™
1

(13) 5T ()M = s+ (@0)M!

Proof of (1.3). By (1.2), E%D = E%}, from which it follows that

and



O¢:1.3) Hence we get:

LMY MY _ oM oM} M) _ M}
ES? o Elafr(z/?)]\/fzO - EV? - E"? - E5+(V?)Mi1 - Esj ’
contradicting the definition of s]” = s(M?, M}). O

I now turn to condition (b) in the definition of normality.
(2) Letie€ D", j € D"ni. Then s;r = 3+(V§‘)M;L < v;.

Proof of (2). Induction on i. Suppose the claim holds for all i’ < i. If i = min(D" \ (I+ 1)) and
I € D", then I show that v; > 51+ Wilog, let i = [ + 1. As Z"|(I + 1) is a normal s-iteration, it
follows for aw € D" N1 that s;fh < sfh < v;. The following observations make this clear:

(2.1) EME (v +1) = EM v} for | € DF.

h
Proof of (2.1). This follows from the coherency of Jfl,fw’ . O2.1)
(2.2) JEM — yEM
Sl Sl
Proof of (2.2). Like the proof of (1.1). O(2.2)

It follows from (2.1) and (2.2) that
EMY [(sf +1) = EM 15} = EMi 15} = EMY (s 4 1),

and that means that v’ | > s

This proves the claim in case i = min(D" \ (I + 1)).

If i is a limit point of 7", then let b =<z» “{i} and j € b D". 1 have to show that s;r < vk
There are only finitely many truncations in b, so by methods established earlier on, one can find
aj’ € b\ (j+1) so that, setting x := crit(x” ;) and & := crit(w}, "), it follows that % > sT.

h MR MR 1—h
EM; E" E EM; P : h + :
Then JS;r+1 = JS;r+1 = JS;r+1 = Jsj+1 , and this implies that ' > s, as wished. O

5.4.2 Coherency of the s-coiteration

Lemma 5.44. Let M° and M' be pPA-structures with an s-coiteration T = (I°,T'), I =
(M} i< @), DM (W |ie DMy, (nh | i< 0M),Th (zh ;| i <pn j < O") being an iteration of
M". Then fori<j<60=060=6"',

+ +
S, Ssj.

If s;r = 5¢++1’ then we have: There is an h < 2 so that i, i+ 1 € D" and sj = l/lh,' in particular,
M is not modest. Moreover, in this case, s, < vl =ht(M/,).
Proof. Assume the contrary. So let S;:_l <sj.

Case 1: There is an h € 2 so that i, i + 1 € D",

Both sides of the s-coiteration are normal. So it follows from Lemma 5.5 that s}, ; = s = v,
and that s, | < vl =ht(M} ), as desired.

Case 2: Case 1 fails.

Then there is an h € 2, so that i € D"\ D" and i +1 € D*~"\ D". Wlog, let h = 0. Then

1
1_ agl M} AMi g
M; =M, E ' =E =0;

o1



i is not an exception, as i + 1 € D. Then s}, < s;, as it follows from i + 1 € D' and i ¢ D!

that
1+1 # (Z) E E]\f
+1

S

1
+1

S

Hence: .y o o
B =B, = Es;j_;
as EM! [ = EM) [ . But it follows immediately from E = —FE +01 that
F = E = E
Vip, Vi
Let x := crit(F'). Then
JEM? VlMil

MY M} M9 M}
hence JE™* = JE™ | as Jf_+ = Jf_+ . Let

Then . .
M; ]\/I
T JE L —p JE )
'L+1

0 1
hence MP||v}, , = M}|vl . Sovi, <)

9 since otherwise it would follow that M?|[v) = M}||?.
But then

0 1 0 ML 1
MP|[vigy = MP|[vigy = Mi[lvigy = Mig[lvig
would be a contradiction. So it can only occur in case 1 that s, ; < s O

Corollary 5.45. Let M° and M*' be pP\-structures. Let T = (IO,Il> be an s-coiteration of M°
and M*, where T = ((M}' | i < 6"), D" (vl | i€ D), (nh | i < "), T" (xh ;| i <pn j < OM)),
forhe2. Ifi+2<40, then

+_ ot

sz - sz—i—l - 5 +1 < Sz+2

Proof. Assume the contrary. An exception could only occur at i + 2. But this would only have
an effect on M”, iv3, so that the possibility of an exception can be ignored here. So let

ot
Si = Sip1 = Siya-

Then by the previous lemma, there is an h < 2 so that
i,i+1e D"

Wilog, let h = 0. By Lemma 5.5 then i +2 ¢ D°, as 7" is a normal s-iteration and s;;_l < V?_H by
Lemma 5.44, so that if i +2 were a member of D°, it would have to be the case that s;fH < 5112.
But then, i + 2 € D'. But since s;CH = S;S_Q, again by the previous lemma, there has to be
an b’ € 2so that i+1,i+2 € D". Asi+2 ¢ DO, it follows that i’ = 1, hence i +1,i+2 € D,
It then even follows that i € D!, for othervvlse M} =M}, |, and since i + 1 € D1 it would
follow that
0# B/ =B = B,

z+1 1+1
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hence i € D! after all, contradicting the assumption that i ¢ D!.
But 7' is a normal s-iteration, so the constellation

i,i+1,i+2¢€ D" and s/ = st = SL_Q
contradicts lemma 5.5. O

5.4.3 s-coiterations terminate

Theorem 5.46. Let M~O and M1 be pA-structures with s-coiteration I = <f0,f1>, where all
structures occurring in I° and I' are pA-structures. Then

Ih(Z) < max(M° , ML ).

Proof. Assume the contrary. Let 0 = max(MO9 M1 ) < 1h(Z). Set:
Th =T"o+1 forhe?.

Wilog, let D" be unbounded in @, for each h < 2: If, e.g., D' is bounded in @, then D° has to
be unbounded in 6, hence (s; | i € D°) is unbounded in 6. Let j = sup D*. Then ht(M}) < 6,
hence there is an i € D\ j with s > ht(M}) = ht(M}), so that s(MP, M}) = s} > ht(M}),
contradicting the definition of s(M?, M}).

Let 7 > 07 be such that 7 is regular and

(1°,7") € H,.

It is a straightforward matter to construct o : H < H, so that the following conditions are
satisfied:

(a) H is transitive and (H) < 6.
(b) 6,(Z° T') € ran(o). Let 0(9,2°,T") = 6,7°,1".
(c) o]0 =id]6.

Let T = (A" |i < 8),D" (7} | i € D", (i | i < 6"),T" (=", | i <qu j < 6)). Then
obviously, for ,j < 6:

Mzh = Mlh = O-(Mih)7
—h _  _h  _ _(=h
Wifj = T = U(Wz‘,j)a
™ne? = T1T'ne?,
<Fn “{g} = 0n (<n “{0}).

Hence @ is a limit point of <;» “{#}, so that
0T,

as follows from the properties of iteration trees; see [MS94, Def. 5.0.1] or [Jen97, §4, S.2, Def.
and the following remark].

(1) «( 75177_TZ§> =dir limigfj<fé(<Mzh>, <7_Tzhj>) = dir hmigTj<Té(<Mih>a <7Tzh]>) = <M£77TZ§>~
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Hence

(2) MP = A, 7t

)

= 7?29— (fori <1 0).
(3) J[dom(ﬂg,e) =xh .

Proof of (3). Let z € dom(w}} ) € M}. Let i <pn 6 and 2’ € M}, be so that x = 7" ;(2’). Then

we have: !
oz) = olahy@) = (@)
= o(@ly)o(@)) = mlp(z')
g (Tl 5(2")) 5 (@)

O
3)
Now, for h < 2 choose the least &}, satisfying

7 <rn & + 1 <pn fand§, € D",
It’s obvious that

(4) I{?h = crit(ﬂg’§h+1) = crit(ﬂ'g’e) = crit(o) = 0.

Set: k= th(: 0).

For X € dom(E™),  EM(x)nsh = o(X) N sl
(5) For X € dom(E ,""), w( )ﬂsgh—a( )ﬁséh.

v, v
133 93

Proof of (5). The point is that Crit(wgﬂ,e) > sé‘h (since if &, +1 = T"(u+1), then crit(w?}ﬁlﬂ) =

Crit(”?h—s—l,u-s-l) = ,%Z < sth, and &, + 1 is minimal with this property). Using this together
with (3) for a < s?h and the fact that X € dom(Eith) one can argue as follows:
At
o€ Evgih (X) <= ac Wg7£}l+1(X)
= ﬂthrl)e(Oé) € Wg70<X)

—= aco(X).

D)
So letting v = sgo N 3%17 we get:
M M}
EV0§O |'7 — EV1£1 |’Y—
0] &1
Now let, wlog,
§o < &1
Then st < sT. Moreover,
o &
1 1
(6) sgro € CardMe Ve, |
Proof of (6). This is trivial if SZ) = 52’1. If sgj < 52'1, then
o o i
€+ i‘+ Jlll
82; € Card &1 =Card "&s  C Card "&1
B
1
the inclusion follows from the fact that sg € Card "a1 . O(e)
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(7) 7= 7'50O = 7511.
Proof of (7). Tt follows from (6) that

JE 50 JE_;VIQO JE_:_M% JE_:_Wil1 JEMill
0 s s s vl 1
R =) =) =) e =) R =) =1
e
Now let h € 2 be such that
h 1—h
8¢, < Se1n
Case 1: Sﬁh < sél };
Then let
M, :
7. JE " it JE
B s,
§1—h
1 h
As E , Me- st = E M, |s§} , it follows that
51 3
1-h E' - h h .
[M& h|| &1 ;] = (1, ®P(x)) = thHth’
M9 M}
note that JZ © = JF ¢
1—h
Since s?h is a cutpoint of Eyff,fh which is less than sl h , the s-MISC for M1 hH 51 .
) €1-n

implies:

(*) s5 s not a cardinal in M1 h H ;

1 h

M£11 f:||1/11_j satisfies the s'-ISC, hence also the ’-MISC (see Lemma 5.23).

For the same reason, M/ Hugh satisfies the s’-MISC, hence M£h||1/gh [Mﬁl |k Ve, ] €
1—-h 1—h
M£11 f:||1/ ~"In particular,

h 1—h
Ve < Ve,
It follows from (6) and (x) that h =1, so Wp}‘/fsll””él < sél < 820 < sg; < 52‘1 < 1/511 < I/go. So
s¢, is not a cardinal in M ||v2, a contradiction. N.B.: M, [[v} = [MéooHVgo]sgo € M ||vg,-
So case 1 cannot occur.
1—h
Case 2: Sﬁh =S¢, =7
Set: . )
M M
F = Eyoso |’7 = EV1£1 |’7-
<o &1
Then
/ MO M&
F=FE, =F= E .
50 51
Since an extender determines its A-index, it follows that
0 _ 1
Vi=Vey = Veys

and using coherency of M || and M} ||v, it even follows that

Mg ||y = Mg, [|v;
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. EMgO EM%1 .
again I use that J, = = J2 . Hence, {o # £1. So it must be the case that
&1

€o

§o < &1
Moreover, we know that
st =sf
o &1°
It follows from Lemma 5.44 and Corollary 5.45 that
& =% +1.

Moreover,

0 _ .1 +
Vﬁo_y_l/51>3£o

by normality. Hence,
&Li=6+1¢ D°

by Lemma 5.5, since otherwise sgr > SE Again by Corollary 5.45 it follows that
€0,& € D' und 1/510 = 32;
Also,
1 1
V€1 = ht(M&l)’
by Lemma 5.5. So we're in the situation
M§10+1 = MéHy = M&H”v

which contradicts the definition of s-coiterations: At stage &y of the coiteration, by Definition
5.42(c), Mgo was not allowed to be moved, and M,;}(J 41 would have had to be a segment of
M go =M, go (so that termination had occurred at stage & + 1). This contradiction finishes the
proof. O

5.5 Normal iterations of pPs-structures

Definition 5.47. Z = ((N; | i < 0),D,(n; | i € D),{k; | i € D),{(r; | i € D),{\; | i € D), (s; | i € D),

(si |i€ D), T,{(0;;|i<rj<8))isanormal iteration of the pPs-structure N if:

(a) T is an iteration tree (in the sense of [Jen97]).

(b) For i <@, N; is a pPs-structure, and Ny = N.

(¢) Ifig D, theni <pi+1, Niyy = N; and 07441 = id[|Ns].
)

(d) If ¢ € D, then we have:

(1) i+1<6.

(2) EN #0, and r; = crit(BY), s; = s(BY), N = MEYN), i = 7(EY).
(3) £:=T@{+1)=min{d | § =iV (6 € DAK; <ss)}

(4) m = max{y < ht(Ne) | (x])Nel7 = () NlI<7),

(5) o¢iv: N&H’?z —)*ENL Niy1.
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(6) If j € DN, then s;r < ht(N;]]s7).
(e) If A < @ is a limit ordinal, then

<N>\, <0’,’7)\ | 1<t )\>> = dir lim(<Ni | 1<t )\>, <O’i,j | 1 <7 J<r )\>)

(f) Fori <r j <rk, o5 =0j10i;.

(g) For j <0 {i|i+1<pjAn <ht(Npe41))} is finite. As before, I use T'(j) to denote the
immediate <p-predecessor of j, if it exists. Also, I refer to i + 1 as a truncation point if
n; < ht(Np(iq1y). So for each j < 6, there are only finitely many truncation points below

VE

Definition 5.48. Complementing the the notion of normal s-iterability of pPA-structures in
Definition 5.2, I define now when a pPs-structure N is normally iterable. This shall mean that
there is a successful normal iteration strategy for IV, which is formulated precisely as before.
It should be pointed out, though, that the continuation of an iteration has to consist of pPs-
structures. In particular, the additional structure must be hereditarily continuable.

This finishes the treatment of normal iterations of pPs-structures. The reader may wonder
why I don’t go on proving things like that the s’-ISC of ps-structures is preserved under these
iterations, et cetera. The reason is that I am going to show in the next section that the translation
functions can even be used to translate iterations in such a very nice way that in order to see that
the s’-ISC of a ps-structure N is preserved under a normal iteration, one can argue as follows:
Let N’ be a normal iterate of N. Let M = A(N), M’ = A(N’). M then satisfies the s'-ISC
for pA-structures, and M’ is a normal s-iterate of M. So since s-iterations preserve the s’-ISC
of pA-structures, M’ satisfies the s’-ISC. This is again preserved by the translation function,
so that N’ = S(M’) satisfies the s’-ISC as well. It is also easy to check that the comparison
process works, the main point being that A-images of initial segments of a pPs-structure are
initial segments of the A-image of the whole structure. So in principle, one could just coiterate
pPs-structures by coiterating their translates and retranslating the outcomes.

6 Transliterations

I put the results obtained up to now together in this section in order to translate iterations,
forming what I call transliterations. Before doing this, let me recall a general observation which
was shown in the first part of the paper:

Lemma 6.1. Let M and N be acceptable J-models with:
(i) (M) NP(H),) = 31 (N) N P(Hy).
(i) for a € Card™ N Card™ HM = HY.
Then for everyn > 1:
(a) wplyy = wpiy,
(v) ="V N N P(HY) = 2V (N) N PR,

I shall also need the following observation on normal s-iterations:
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Lemma 6.2. Let T = ((M; | i < 0),D,(v; | i € D),(n; |t < 6),T,(m; | i <p j <8)) bea
normal s-iteration with s-indices {(s;,s;) | i €0). Leti € D and j = T(i+1). Then there is no

9

w>n; such that p < ht(M;) and s (M;||n) < n;.

Proof. Assume the contrary. Pick a counterexample p < ht(M;) so that st (M;||p) < n; < p. It
is then obvious that 7 4 1 is a truncation point.

(1) T (Mjllp) < ki

Proof of (1). Assume k; < st(M;||p). As in M;||n; + 1, a new subset of x; appears, 7; is

collapsed there to x;. But x; < st (M;||p) < n;, hence sT(M;||p) is not a cardinal in M;||n; + 1,

hence it’s not a cardinal in M;||p either, as n; < p, a contradiction. Oy
Hence we have

(2) sT(M;llp) < ki <55 <vj.
Proof of (2). By definition of T'(i 4+ 1) in s-iterations, k; < s; O2)
(3) u<w;.

Proof of (3). Assume the contrary. Then v; < p, as sT(M;||u) # sT(M;||v;): sT(M;||p) <
ki < s; < sT(M,||v;), so in particular, p # v;. So it would follow that s*(M;||p) < v; < p,
meaning that v; was not applicable in 7. O(3)

(4) mi = sf = st (Mjl[vy).
Proof of (4). This follows from Lemma 5.4. As sj is a cardinal greater than k; in M;, and since
s;r < sf, it follows that
Pri) N [Ml[vi| = P(ki) 0 [Mills | = P(ri) 0 [M][s5].
This implies the claim, since by normality, 7; is maximal with this property. Og)
So this is the situation:

sT(Mj|lp) < ki <55 <s7 <mi<p<uvj.

But [sT(M;]|p), 1) N Card™ill"s = ¢, as vj > p. On the other hand, s;r is a cardinal in M;||v;,

and s;r is in that interval, a contradiction. O]

This will be used in the proof of the next lemma, which introduces the notion of a translit-
eration.

Lemma 6.3. Let M be a pP\-structure, and T = ((M; | i < 6),D,{v; | i € D),(n; | i < 0),T,
(mij | i <1 j <0)) anormal s-iteration of M with s-indices ((s;,s}) |i € D). Let N = S(M).
Fori <0, set

N; = S(M;).

Moreover, for i € D, define ., as follows:
Let £ =T(i+1), M} = M¢||n; and N} = S(M}). Set:

n; = ht(N7).
Then there are uniquely determined maps (0;; |t <t j < 0), so that

I = <<Nz|l<9>aDa<n;|7’€D>7<H1|Z€D>?<Tl|Z€D>7<)‘7‘Z€9>’
(s; | i€ D), (sf |ieD),T {o;;]i<rj<8))

is a normal iteration of N. I call this iteration the transliteration of Z, and denote it by S(Z).

58



Proof. The uniqueness of the maps is obvious, so it suffices to prove their existence. Wlog, let 7
be direct. I prove by induction on 1 <y < 6:

(%) S(Z|v) exists, and for a < 8 < =, the iteration S(Z|a) is an initial segment of S(Z|3). In
the notation of the lemma, we have fori <p j <~y: 0;; C ;.

So let v > 1, and assume (%) to hold for all ¥ < ~.
Case 1: v=1.

Trivial.

Case 2: v > 1, and 7 is a successor ordinal.

Then let v =%+ 1 and

S(Z17) = ((Ni|i<7),DN(Uy),(m;li€DN(UF), (ki |ieDnN(UF)),
(i |i € DN(WR)), (N | i €F),{s; | i€ DN (UY)),(s] | i€ Dn(UY)),
TN {oiy|i<rj <)
Case 2.1: 7 is a successor ordinal.
Set ¥ = ¢ + 1. I shall prove:
(1) B = ((Bx|sHR)e # 0.
<
(2) €:=T(C+1) = min{8 [ = CV (k¢ < 55)}-
(3) e = max{y < bi(N) | () Vel = ()l

(4) Letting Og ¢4l NEHT’,( *)*ENg N, O ¢c+1 - Te c+1 and N/ = N<+1.
st

<

(5) For j € DNi, s <ht(N;||s]).
Proof of (1). By definition of normality, v¢ is applicable in M (Def. 5.1). By Lemma 2.6,
S(M||v¢) is a segment of No = S(M). This implies the claim immediately.
Proof of (2). This is trivial, as Z is a normal s-iteration.
Proof of (3). As T is a normal s-iteration, it follows that
e = minfn < (M) | ()17 = (560 = 7).

It was mentioned in the proof of (1) already that S(M||v¢) is a segment of N¢. So

S(Mc|lve) = Nellst-
By Lemma 6.2, also S(M¢||n¢) is a segment of N¢, hence

S(Mellnc) = Ne|lné.
As [Ne|In;| € [Me||nc|, ¢ is a cardinal in N§H77’<.12 As 7 is a cardinal in M¢||n, it follows that

| Me||7c| = [Nel ¢ |-

12 At this point, one has to use a different argument to prove the converse of this Lemma.
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Hence
(k¢,7¢) N Cardyg e = (K¢, 7¢) N Cardy, e = (ki¢, 7¢) N Cardayjr, = 0.

This shows that (mf)NﬁH”Z =T
If 77’( < ht(N¢), it remains to show that n’< is maximal with the above property. But then it is
also the case that n¢ < ht(Mg), and that means that WS ne < - Applying Lemma 6.1 yields:

W — (03] <
WONe|ln = “PMeine = Fe:

This shows the maximality.
Proof of (4). Define N" and o¢ 11 by:

OgC+1 " N5||?7/C ‘}*ENC N'.
st
¢
This extender ultrapower is well-founded, by Lemma 4.5.
By Lemma 4.4, N’ = S(M¢41) = Ney1, and o¢ 11 C e c41, as desired.
Proof of (5). For j € DNi sj‘ < v; = ht(N;||s]"), as T is a normal s-iteration. Define for i <r &:

Ti¢+1 *= 06,¢+1 © Tig-
Then (1)-(5) implies that

S(Zly) = ((Nili<),DN(Uy),(m; i€ DN (W), (ki liecDnN(Uy)),
(i lie DN (W), (X lie€r),(si|ie DN(U)),(si |ieDn (W),
TNy (oig i <rj<9)

is as wished.
Case 2.2: 7 is a limit ordinal.
Let R .
(N, (oi5 [ i <r 7)) = dir im((N; [ i <7 7), (03,5 | i <1 j <1 7)),
where for notational ease, I’ll assume that no truncations occur in that tree. If this direct limit
is well-founded, I'll identify it with its transitive isomorph, as usual.
Now define a model M = (|M|, EM M) by

M| = {misla)|i<ryAac|Ni},
EM(mi5(a) < ae|N]|AEN(a),
FM(r,~(a)) < ac|Ni|AEN(a).

|M| is transitive: Assume the contrary. Then let a € [M| be such that a ¢ [M]|. Choose
bea\|M| Leti <7 7anda € |]<f;| be such that 7y 5(a’) = a. Now let ¢ >¢ ¢, i <7 ¥ be such
that there is a b € |M;| with the property that b = 7; 5(b). Set: @ = 7y ;(a’). Thena € |]/V\Z|, since
a € |]/\77/|, and m/,i[|]@| =0y, ]@ — Z/\f\z Moreover, 7; 5(a) = m; 5(mi 5(a’)) = myr 5(a’) = a.
So thus far, we know: a = m; (@), b= m; 5(b), a € |N;| and b € a. But |N;] is transitive, hence
be |]/V\Z|, and this implies by definition of |M|, that b = m; 5(b) € |M|. This is a contradiction.
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I'll now show that
(M, (misl|Nil | <7 7)) = (N, {055 | i < 7)),
making use of the fact that
(N (015 | i < 7)) = dir km((N; | § <7 7). (01 | § <1 § <7 7))-
OPviously, for i <p j <T 7 Tja0iG = Tiy [7\7\1-. Moreover, |J\~4\ is transitive, and by definition,
|M| = U, ran(m; 5 [|V;]). This is all we need.
So 035 C m; 5, for i < 7. Moreover, it’s easy to see that M = S(/\]\/fﬁ):
mis(a) € [8(My)] == M; = ov[mis(a), mis(ht(Ms)-1)]
— M; ': gpv[a,ht(Ml)—l]
= ac|N],

for i <r 7 and a € |M;|. Here, I used the formula vy from Lemma 2.7 again.
Hence:

S(Mz)] = A{miz(a) [i<ryAac|Ni}
= [M].

Analogously, one sees that EM — ES(/AE) and M = FS(/Z‘E) Hence,

—

N =8(Mz) = N;.

So it’s obvious that S(Z|v) exists, as demanded.
Case 3: ~ is a limit ordinal.
In this case, one can just set:

s(Zh) = J sl
1<a<y

in the obvious sense. ]
Here is the transliteration for the opposite direction:

Lemma 6.4. Let N be a pPs-structure, and T = ((N; |i<8),D,(n;|i€ D), (x;|i€ D),
(ri| i€ D),(\i|i€ D), (si|ieD)(sf|ieD),T,(o;;]|i<rj<0)) anormal iteration of N.
Let M = A(N). Fori <0, let

M; = A(NV;).
Forie D let § =T(i+ 1), and N = Ne||n;. Let M} = A(N}). Set:

) = ht(M).
Then there are uniquely determined maps (m; ; | i <r j < 8), so that

7= <<Ml|Z<9>aDa<n;|Z€D>a<’{l|Z€D>v<7—l"LGD>7<)‘Z|’L€9>7T’<OZ,]|’LST.7<9>>

is a mormal s-iteration of M with s-indices {(s;,s;)|i € D). I denote this iteration by A(T),
and call it the transliteration of 7.
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Proof. The proof of the opposite direction goes through, up to some minor modifications. Using
the same numbering as in that proof, the first change in the argumentation occurs in case 2.1,
in the proof of claim (3). It has to be shown that

(3) m = max{y < ht(Me) | (7)Melln = () Mellc),
Proof of (3). 1 first show:

(a) (sE)MeltE = 7.
Suppose not. By Lemma 5.4,

EMe EMc¢
Jg+ :Jg+ )
s s¢

and as k¢ < 8¢ < sgr, and since SZ is a cardinal in M¢, it follows that
()T = 7,
As |S(M5||s§+)| = |N5||sg“\, it follows that (m?)NﬁHSz = 7¢, and hence 7 > sg. This implies that
772 >N 2 sg

.
Mellsg _ 7¢c. Hence, a € (327172) can be chosen to be

n
M&‘lsg —

By assumption, 7. > SZ, since (nzr)
minimal with the property that (né‘)MﬁHo‘ > 1. As sgr is a cardinal in M¢||ve, (/ié')

(rd)Mell”s. This means that
a > Vg.

Moreover, it is obvious that « is a successor ordinal. Let « = &+ 1. Then
WPirella < e
() S(M¢l||@) is a segment of Ne.

Proof of (x). By Lemma 2.6, it suffices to show that there is no p < ht(M) with M||u active and
sT(Me||p) < wa < p. Assuming this is not the case let p have this property. Since wpUJQsII& < K¢,

CardeW N (Hc,w@] = 0.

As st (M||p) < wa it even follows that st (Me||p) < ke < 32' Moreover, it was already shown
that o > ve. Hence, pp > o > ve. Altogether,

sT(M||p) < 5™ (Mellve) < ve < py

which contradicts the applicability of v in M. O
So let N¢||a' = S(Mel||@). Then

PNl = Plgla < Fic-
But obviously, e < a’ < ¢, which contradicts the fact that (r})Nellne = 7. O(a)

(b) ne is mazimal with the property in (a).
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Proof of (b). If nc = ht(N¢), then n; = ht(M¢), and there is nothing to prove. Otherwise,
WPTW&IW( = W |ne < Kg, since Me||n}: = A(Nel|n¢). Hence (nZF)Mﬁ””éH > = ne > 7¢. So no
v > 77’C can possibly have the property in (a). Ow),(3)

One thing that didn’t need a proof in the proof of the other direction is that v¢ is applicable
in M. But that’s easy to see: As Sé indexes an extender in Ny = S(M¢), S(M¢||ve) = NCHSZF,
which is a segment of N¢. Now Lemma 2.6 yields that v, is applicable.

The second change needed occurs here:

Case 2.2: 4 is a limit ordinal.

Assume A(Z|7) has been defined already, and let o; ; C m; j for all i <p j < 7.

Set M' := A(N5). Define for i <7 7 (again assuming no truncations occur in the branch
between ¢ and ¥) a map m; 5 : M; — Mx by:

iz (g, (3:0)) = b (3, 044(0)),
where j < w and ¢ € [ht(N;)]<“. I again make use of the fact that [M;| = h}, (ht(S(M;))). The

correctness follows by the usual argument: It can be expressed uniformly by a ¥ 1-formula that
B, (4,q) = hjy, (k,7), which is transported by fx, to N;. The transformed formula then holds,
modulated by 0; 5, in Ny. So since fn, = fn,, the original formula holds in M’, which by the
uniformity means that hl, (j,0:5(q)) = ki (k,0i5(r)).

Tt is easy to see that the so-defined functions verify the existence of A(Z|v) (setting M~ := M,
of course). For example, to show that every a € |[M’| is in the range of m; 5, let a = hi;. (4,q),
for some j < w, g € [ht(N5)]<“. Then there exist ¢ <7 7 and ¢ € [ht(N;)]<“ so that ¢’ = 0, 5(q).
Let @ := hj, (j,q). Then a = m; 5(a).

This concludes the treatment of case 2.2.

The other parts of the proof work as before. O

6.1 Translating strategies
Having developed the method of transliterations, the following lemma is straightforward.

Lemma 6.5. Let M be a normally iterable pPA-structure. Let S be a normal iteration strategy
for M. Then there is a normal iteration strategy S(S) for S(M).
The corresponding statement holds true of normally iterable pPs-structures as well.

Proof. 1 define
S$(8)(Z) = S(A(D)).

It follows by induction on the length of iterations Z of S(M) of limit length that for every iteration

T of N which is according to S(S), A(Z) is according to S, and that S(A(Z)) is defined. The

converse is shown in the same way. O
The following is the main theorem of this paper:

Theorem 6.6. The restriction of S to the class of normally s-iterable \-structures is a bijection
between this class and the class of normally iterable s-structures. The restriction of A to the
latter class is the inverse of this bijection.

The corresponding statement is true for the class of normally iterable pPA, p\ and PA-
structures.

Proof. This follows from Lemma 6.5, together with Theorem 2.1. O
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7 Further results

7.1 Iterable Mitchell-Steel premice

At this point, I am returning to an issue I raised in the introduction to the first part of this
paper. From the very beginning, I tried to keep the definitions of the structures used as liberal
as possible. It was necessary, though to demand continuability of the pPs-structures, in order
to insure that they will have a counterpart with A-indexing. I am going to prove presently
that normally iterable Mitchell-Steel-premice, as introduced in [Ste00] are normally iterable s-
structures. This shows that continuability is not restrictive in the realm of Mitchell-Steel mice. 1
am not going to use the notion of k-iterations here, but instead use the *-fine structure theory to
form *-iterations, like elsewhere in the present paper. The Mitchell-Steel premice are precisely
the weak s-structures defined in the following definition.

Definition 7.1. N ia a weak ps-structure iff N has all the properties of a ps-structure, with the
exception of hereditary continuability, that is the continuability of all active segments, including
the whole structure, if active, and N is modest (meaning that for every a < ht(N) that indexes
an extender, s(N||a) < A(N]|a)).

Analogously, N is a weak s-structure iff NV is modest and has all properties of an s-structure
except hereditary continuability.

Lemma 7.2. Let N be a weak (p)s-structure which is normally iterable. Then it is a normally
iterable (p)s-structure.

Proof. T will assume familiarity with iterations of Mitchell-Steel-premice, as described in [Ste00]
or [MS94]. Instead of k-extender ultrapowers, I will use *-ultrapowers, though.

Obviously, N it suffices to show that N is normally iterable, as a (p)s-structure (this implies
immediately that N is hereditarily continuable, and Lemma 5.20 yields that N satisfies the s'-
ISC). In order to see this, it has to be shown that there is a successful normal iteration strategy
for N in that sense. The point is that if a normal iteration of IV is continued, the new structures
have to be hereditarily continuable. So the proof is complete if the following can be shown:

If S is a successful normal iteration strategy for N as a weak (p)s-structure (i.e., as a Mitchell-
Steel premouse), then all the models in any normal iteration of N which is according to S are
hereditariliy continuable weak (p)s-structures (and hence (p)s-structures). This shows then that
S is also a successful normal iteration strategy for N, viewed as a (p)s-structure.

Assume the contrary. Let Z = ((N; | i < 0),D,(n; | i € D),(k; | i € D),{r; | 1 € D),{s; | i € D),
(s |ie D), T,(m;|i<rj<8))beanormaliteration of N according to S which is a counterex-
ample to the claim of minimal length 6. Obviously then 6 is a successor ordinal, since otherwise,
every N; is hereditarily continuable (¢ < #): N; appears in Z|(¢ + 1), a normal iteration of N
which has length less than 6 and is according to S.

So let # = v+ 1. Then the previous argument shows that N, is not hereditarily continuable,
while IV; is, whenever ¢ < 7. So let a be an extender index of N., witnessing this, so that N, ||«
is not continuable. I show:

(¥) There is a j € D with sj > a.

Proof of (x). Assuming the contrary, it would be possible to continue the iteration by letting

sj‘ = Ky = crit(E(]lV”), so that at stage -y, the extender EY is used. This would be possible
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since by assumption, o > sj, for every j € D. '3 So let n,, & := T'(y + 1) be defined like they
have to be defined in order to produce a normal iteration Z’ with iteration tree 7" that continues
T as described. Since Z was formed according to S, this is possible, and the result is that

¢+ 1 Co(Nellny )™ —n, Co(Na)™

exists. By definition of 7,, and due to the coherency of normal iterations of Mitchell-Steel-

structures it follows that 7., = (f{)NSHTh < sg, and J?Nﬁ = JSE+NW, so that sgr < 1, and hence
€ €

|waN”| C | Ne||my]- So there is an embedding % : D(JﬁN”,ES_jﬁ) — N,41 defined by

k(@ f1) = 041 (F)(A).

But this shows that JD(JEWNW , Ei\fﬁ) is well-founded, so that N, ||« is continuable, contradicting
v

the assumption. O
Now let 5 € D be least with sj > «. By the strong coherency properties of normal iterations

of Mitchell-Steel premice, it follows that

ENj EN N,

JS.?. b= Jsj— ’Y, and ES;_’Y =
As « indexes an extender in N.,, it follows that s > a. So Nj||a = N,||a. But Nj is hereditarily
continuable, as j < -, and hence N, ||a is continuable, so also N, ||a, a contradiction. This proves
the claim, and hence the lemma. O

7.2 Other notions of iterability

There are diverse notions of iterability. For example, one can restrict the length of the iterations
that can be formed. This yields the notion of ¢-iterability of [Ste96, Def. 2.9]). The methods of
the previous section show that that the translation functions S and A provide a correspondence
between (w; + 1)-iterable structures, for example.

Tt is also true that an (w;+1)-iterable weak (p)s-structure is an (w;+1)-iterable (p)s-structure:
Let G be an w; + l-iteration strategy for the weak (p)s-structure N. It follows from the proof
of Lemma 7.2 that all models occurring in an iteration of length less than w; are hereditarily
continuable. The only new point is that the directed limit model along the cofinal branch through
an iteration of length w; determined by the strategy is also hereditarily continuable. It is clear
that the iteration of length w; can be translated to an iteration of A(N) which has the same
length, and that the limit along the main branch of the translated iteration is well-founded,
just because w; has uncountable cofinality. A decreasing epsilon-chain in the limit model would
already yield such a chain in a previous model. The limit model of the translated iteration will be
the A-image of the limit model of the original iteration (see case 2.2 of the proof of Lemma 6.3),
and the existence of this image shows in particular that the pre-image is hereditarily continuable.

Another frequently useful variant is the one that’s just referred to as iterability in [Jen97,
84, S. 26]. It postulates the existence of a good iteration strategy. In essence, a good iteration is
just a composition of normal iterations, so that the base model of each component iteration is
a segment of the target model of the previous component iteration. As usual, direct limits are

I3Note that in [MS94] and [Ste00], it is demanded that the sequence of extender indices in a normal iteration
is strictly increasing. This works, since the structures considered in these works only contain extenders whose
s-index is less than their A-index. If this assumption is dropped, then one has to deal with normal iterations in
which the s-indices are not strictly increasing, otherwise one cannot show that coiterations terminate. But the
structure at hand is a Mitchell-Steel-pm, so that the sequence of extender indices is strictly increasing.
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formed at limit stages. This notion of iteration is used to prove the Dodd-Jensen-Lemma. I’ll
call the corresponding notion of iterability good iterability.

One can formulate an iterability notion for (p)s-structures in precisely the same way. In order
to arrive at the corresponding notion for (p)A-structures, an additional requirement is needed,
though: If at the beginning of one of the component iteration, some model M; is truncated, say
to n, then there may be no v < ht(M;) such that s*(v)™ < n < v (this is relevant because
of Lemma 2.6). The methods developed so far show that the translation functions constitute a
precise correspondence between this notion of s-iterability for A-structures and good iterability for
s-structures. The corresponding results obviously hold true for pPs-, pPA and the corresponding
weak pPs-structures.

7.3 On the squashed (Pseudo)-Y,-codes

Recall the types of ¥y-codes introduced in the first part of this paper, first for (pP)s-structures:

Definition 7.3. Let £ be the language of set theory with additional symbols E, F, i and $.
Let N = (JE F) be a pPs-structure. Then its Pseudo-Yo-code, Co(N), is an L-structure, which
is defined as follows:

1. If N is passive, then Co(N) has the universe [JZ|, £C0(0V) = = €)= 0, EGW) = Elq and
FCN) = ¢,

2. If N is active of type I or II, then~(§0(N) has the universe |[JE| again, but in that case,
£CON) = crit(F), s%W) = 5(F), E%W) = Elwa and FOW) = F.

3. If N is active of type III, then the universe of Co(N) is ‘N| RO = = cit(F), 30 =0,
EC(N) = ENht(N) and FCN = g .

In addition, the squashed-Pseudo-Y-code, Cio(N )%4 of N, is defined as follows: If N is passive
or active of type I or II, then Co(N)*® = Co(N). If, on the other hand, N is active of type
I1I, then let s = s(F). The universe of Cy(N)* is then |JE|, k€M™ = crit(F), sCo(N)™ = 0,
ECN™ — Bls and FOMN™ = Frls = {(a, X) | a € (F£(X)) N s},

Analogously, the code éo(ﬁ ) is defined as follows.

1. If N is passive, then Co(N) = Co(N).

2. If N is active of type I or II, then Co(N) has universe |N\ and I set: #Co(N) = crit(F),
$0WN) = 5(F), EOWN) = ENht(N) and FCOWN) = ENep,

3. If N is active of type IIL, then Co(N) = Co(N).

The corresponding codes for (pP)A-structures were defined as follows:

Definition 7.4. Let £ be the language of set theory with additional symbols D, E, F, i and s.

Let M = (JE F,Dy) be a pPA-structure. Then its Pseudo-Y-code, Co(M) is the L-structure
defined as follows. The universe of Co(M) is |Co(M)| = |[JE| and DM) = Dy, and

1. If M is passive, then xC0(M) = sCo(M) — o Co(M) — Elwa and FCM) = ¢,

2. If M is active of type I or II, then xC0(M) = crit(F), §Co(M) — s(F), ECM) = Blya and
M) — p
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3. If M is active of type III, then &Co(M) = crit(F), sCo®) = o, ESM) = Elwa and
Féo(M) = F.

T am going to deal with the squashed codes in this section for the first (and last) time, showing
that (Co(N))"? and Co(N)* are “fine structurally equivalent” in case N is a ps-structure of type
III. T'll also show that the notion of normal iteration of ps-structures is equivalent to the one
used in [MS94], if the structures are hereditarily continuable and #-ultrapowers are used.

Lemma 7.5. Let N be an active ps-structure of type III. Let s = s(EY

top)- Then s = wpéO(N
and pe, (ny1 = (0)-

)7

Proof. This is shown like Lemma 5.32; it’s obvious that one can define a ¥;-surjection from s
onto |N| in N, using the top extender predicate. O

Lemma 7.6. Let N be an active ps-structure of type III. Then the structures Co(N)*® and
Co(N)®4 are amenable.

Proof. Let s = s(E[,). Since |f\7| = |A(N)|, it follows from Lemma 5.22 that for each a < s,

(Etjgp\a) € |N|. It has to be shown that for such a,
A5 N OO € T,

where it may be assumed that o > 7(N). Let F = FCMN™ Then F = {(7,X)|s>~v¢€

Etﬁorp(X)}. Hence,

F=|IE"nF={(X)|NEy<wanrdY (F(Y,X)AyeY)}.

So this is a 3 (N)-subset of \JEN [,and @ < s = wp}v by Lemma 7.5. Hence, F € |N|, and thus by
acceptability of N, it follows that F € |ﬁ||(a+)ﬁ|. But (oﬁ)ﬁ < wp}v = 5, hence F € |Co(N)*|,
as claimed. O

Lemma 7.7. Let N be an active ps-structure of type III. Then Z := ICo(N)*4| = |Co(N)*| =
ICo(N)10|, and the following assertions hold:

(a) for g€ Z, a set A is 21(Co(N)*) in q, iff A is £1(Co(N)™?) in q.
(b) for q € Z, a set A is $1(Co(N)*3) in q, iff A is £1(Co(N)"?) in q.

Proof. Note that éO(N ) is essentially the same as N , as N is of type IIT — the only additional
constant that’s not interpreted as 0 in (fO(N ) is £, and that is easily definable in N as well.

It suffices obviously to prove the claims concerning Co(N ), since Co(N)* differs from Co(N)
only by the additionally available constant ¢¢°(™)™ = @), which is irrelevant.

It follows immediately from Lemma 7.5 that [Co(N)*| = |Co(N)*3| = |Co(N)"?|. Moreover,
we know that s := s(Ef,) = wpéO(N). Set: N := (Co(N))0.

Two directions have to be shown. I'll deal with the easier one first, the direction from left
to right. Essentially, the proof reduces to expressing the predicate F := FCW)™ gver N by a
Yo-formula. We have for a < s:

F(a,X) <= CyN)E3Y (FY,X)AaeY)

Qgi[(aaX)]




So if a set A is defined in Co(N)*@ by a X;-formula o(z,y) in the parameter ¢, then one just has
to replace every occurrence of F(v,w) in the formula by “A(i, (v,w))”, in order to arrive at a
formula which defines the same set in V.

A little more work is needed for the converse. I'll translate the formula in two steps.

Step 1: Let e : s — |N| be the monotone enumeration of |N| according to the canonical
well-ordering of N. Note that J L Yisa ZF~-model, and hence the order type of this well-ordering
is s. Moreover, e is uniformly ;. Let A = {(i,£) | £ < s A Aé’O@(N)(i, e(€))}. Set:

N = (JE" A4).

T’ll show that every set that is 3i-definable in N using parameters is also Y;-definable in N ,
using the same parameters, and vice versa. Let ¢(Z) be a ¥;-formula. Tl first define another
%1-formula @*(Z) such that N | (b) iff N |= ¢*(b). Here is the deduction of the definition of
p*, as well as the proof that ¢* behaves as desired:

N o(b)
= Fy<s (e Ny AN Eped)
—= NE (@¢u3ady (beu= I A
“(e' Ce)A(uCran(e))” A
“a=un Aé;@(N)” A

-,

@(u,e,Eﬂu,aﬁu)( )))
<~ N E¢"().
Here, “(e/ C e) A (u C ran(e’))” expresses that €’ is a function that satisfies the uniform ;-

definition of e on its domain, and is large enough that u C ran(e’). “a =un Aé@( N)” expresses
0

that a = {(i,z) | i,z € u A A(i,e' " (z))}, which is easy to express explicitly in N, where A is
available as a predicate.

Step 2: Now I want to show that every set that’s 3;-definable in N using a parameter, is
also X1-definable in (fO(N )*9, using the same parameter. Again, the main problem is expressing
the predicate A over éO(N)Sq:

A(i, &) <= £<sNC(N) = gile(€),0)
— Co(NE&ecOnA
NE(E{C < K(N) | N||I7(N) k= @i[eMITN) (£),0]}).

7(N)

This is obviously equivalent to a Xo-formula in the parameter J f(lj\,) 41 for eV I is an element

of this structure, and it is definable over N7(N). By replacing each occurrence of ~A(z, a) with the
above formula in a Y;-formula which defines some set B in a parameter g over N, one produces
a Yp-formula ¢’ defining the same set over Co(IN)*® in ¢ and the parameter JE&)H' So the

latter parameter has to be eliminated. Obviously, it suffices to check that {7(NN)} is lightface
Y1 -definable in Co(N)%.

Let m: JEY —EN, Npassive et f: x — k be defined by: f(a) = (a*)
(this last identity makes use of the acceptability of N; k() is a cardinal in N). Then we have:
7(N) = 7(f)(x) = w(id)(7), as is easily seen. Hence, by a Lo$ theorem, 7(N) is the unique £
with:

Jf}N = (aJF)JE(Z;,V)

FO™ (<, €, {<a, = < m(N) | ()70 = B}).
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As k(N) is available in Co(N)* as a constant (which isn’t crucial here, as k(N) can be defined

to be the unique ¢ with FCM)™ (¢, ¢)), this can obviously be expressed by a X;-formula over

Co(N)®@ without parameters. It was such a description of 7(N) that we were looking for. O
By induction on n, this implies:

n+1 _

Lemma 7.8. Let N be an active ps-structure of type I1I, n < w. Then wng(N)sq = we vy =
(0]

WPl s Z 1= Co(N 9] = [(Co(N) ], and for g € Z we have:

(a) A is 2 (Co(N)*1) in q, iff A is 2 (Co(N)10) in q.
(b) A 8 El(C()(N)sq) mn q, ZﬁA 8 El(C(](N)l’Q) mn q.

In particular, pe,(ny1o = Péynyar G5 ny1o = gy 0 Co(N)M0 ds sound iff Co(N)* is

sound, etc. In short: Co(N)Y? and Co(N)> are fine structurally equivalent.

Proof. Tt was shown in Lemma 7.7 already that Z := |Co(N)*| = |(Co(N))1?|. Tt also follows

from that lemma that wpéO(N)ﬁq = ngc”o(N))w’ and in particular that Hcl'o(N)sq = H(lc"O(N))l,m‘

Moreover, it shows that the assumptions of Lemma 6.1 are satisfied by Co(N)*@ and (Co(N))?.
It follows that all projecta of these structures coincide.

Moreover, Lemma 7.7 yields equivalents to Lemma 3.1, where no additional parameters are
needed, and M is replaced with (Co(N))*?, Co(N)*4, and N is replaced with Co(N ), Co(N))*?,
respectively. Correspondingly, one gets analogs of the succeeding Lemma 3.2, where again, M is
replaced with Co(N))™?, Co(N)*, and N is replaced with Co(N)*?, Co(N))!?, respectively, and
no additional parameters are needed. This obviously shows (a) and (b).

It follows from (a) that Co(N)*® and Co(N))"? are fine structurally equivalent. The analogous
statement is obviously also true of Co(N)* and Co(N)™?. O

This gives:

Lemma 7.9. Let N be a ps-structure of type Il and F'_an extender on N with critical point less
than s(N). Let @ : Co(N)** —% N. Let 7 : N — 3 N’ (assuming N’ is well-founded). Then
N = Co(N")™.

Proof. Tt was already shown that C, (N)®4 is fine structurally equivalent to NP (save the ad-
ditional constant x(N) that’s available in Co(N )*% — but this has no influence on the class of
functions used when forming the fine structural extender ultrapower). Moreover, §) € R}v. But
it is well-known that in this case, forming the *-extender ultrapower of a structure is the same
as forming the x-extender ultrapower of the reduct and then lifting the embedding the the full
structure, using the upwards extension of embeddings lemma (see [Zem02, p. 13]). O
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Z-1SC, 32
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