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Abstract. It is well-known that the square principle �𝜆 entails the existence

of a non-reflecting stationary subset of 𝜆+, whereas the weak square principle
�*

𝜆 does not. Here we show that if 𝜇cf(𝜆) < 𝜆 for all 𝜇 < 𝜆, then �*
𝜆 entails the

existence of a non-reflecting stationary subset of 𝐸𝜆+

cf(𝜆)
in the forcing extension

for adding a single Cohen subset of 𝜆+.

It follows that indestructible forms of simultaneous stationary reflection
entail the failure of weak square. We demonstrate this by settling a question

concerning the subcomplete forcing axiom (SCFA), proving that SCFA entails
the failure of �*

𝜆 for every singular cardinal 𝜆 of countable cofinality.

1. Introduction

Write 𝐸𝜇
𝜒 := {𝛼 < 𝜇 | cf(𝛼) = 𝜒}, and likewise 𝐸𝜇

>𝜒 := {𝛼 < 𝜇 | cf(𝛼) > 𝜒}.

Definition 1.1 (Trace). For a regular uncountable cardinal 𝜇 and a stationary
subset 𝑆 ⊆ 𝜇, let Tr(𝑆) := {𝛼 ∈ 𝐸𝜇

>𝜔 | 𝑆 ∩ 𝛼 is stationary in 𝛼}.

If Tr(𝑆) is nonempty, then we say that 𝑆 reflects. Otherwise, we say that 𝑆 is
non-reflecting.

Definition 1.2 (Simultaneous reflection). The principle Refl(𝜃, 𝑆) asserts that for
every sequence ⟨𝑆𝑖 | 𝑖 < 𝜃⟩ of stationary subsets of 𝑆, the set

⋂︀
𝑖<𝜃 Tr(𝑆𝑖) is

nonempty.

Definition 1.3 (Square). For an infinite cardinal 𝜆 and a nonzero cardinal 𝜇 ≤ 𝜆,
�𝜆,𝜇 asserts the existence of a sequence ⟨𝐶𝛿 | 𝛿 < 𝜆+⟩ such that:

(1) for all 𝛿 ∈ acc(𝜆+), 𝐶𝛿 is a club in 𝛿 of order-type ≤ 𝜆;
(2) |{𝐶𝛿 ∩ 𝛾 | 𝛿 < 𝜆+ & sup(𝐶𝛿 ∩ 𝛾) = 𝛾}| ≤ 𝜇 for all 𝛾 < 𝜆+.

Remark 1. Here, acc(𝑥) := {𝛿 ∈ 𝑥 | sup(𝑥 ∩ 𝛿) = 𝛿 > 0}.
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2 WEAK SQUARE AND STATIONARY REFLECTION

The strongest principle �𝜆,1 is denoted by �𝜆, and the weakest principle �𝜆,𝜆

is denoted by �*
𝜆. By Fodor’s lemma, �𝜆 entails the failure of Refl(𝑆, 1) for every

stationary 𝑆 ⊆ 𝜆+. More generally:

Fact 1.4 (Cummings and Magidor, [2, Lemma 2.1, 2.2]). For all infinite cardinals
𝜇 < 𝜆:

(1) �𝜆,𝜇 entails the failure of Refl(cf(𝜆), 𝑆) for every stationary 𝑆 ⊆ 𝜆+;
(2) If 𝜇 < cf(𝜆), then �𝜆,𝜇 entails the failure of Refl(1, 𝑆) for every stationary

𝑆 ⊆ 𝜆+.

In contrast, by Theorem 12.1 of [1], �*
ℵ𝜔

is compatible with Refl(𝜃, 𝑆) holding
for every 𝜃 < ℵ𝜔 and every stationary 𝑆 ⊆ ℵ𝜔+1. The purpose of this note is to

show that while �*
𝜆 does not imply the failure of Refl(1, 𝐸𝜆+

cf(𝜆)), it does imply it in

some forcing extension. To be more precise:

Theorem A. Suppose 𝜆 is a singular cardinal, and 𝜇cf(𝜆) < 𝜆 for all 𝜇 < 𝜆.
If �*

𝜆 holds, then in the generic extension by Add(𝜆+, 1), there exists a non-

reflecting stationary subset of 𝐸𝜆+

cf(𝜆).

Remark 2. Here, Add(𝜅, 𝜃) stands for Cohen’s notion of forcing for adding 𝜃 many
subsets of 𝜅. Specifically, conditions are functions 𝑓 : 𝑎 → 2, with 𝑎 ⊆ 𝜅 × 𝜃 and
|𝑎| < 𝜅. A condition 𝑓 extends 𝑔 iff 𝑓 ⊇ 𝑔.

Theorem A implies that various forcing axioms and large cardinal axioms that
may be preserved by Cohen forcing entail the failure of weak square. Proofs in this
vein will go through the following consequence of Theorem A.

Corollary A. Suppose 𝜃 < 𝜅 are regular cardinals, and there exists a notion of
forcing P such that:

(1) P does not change cofinalities,
(2) VP |= 𝜅𝜃 = 𝜅,

and for every Q̇ such that P forces that Q̇ is a <𝜅-directed closed notion of forcing:

(3) VP*Q̇ |= Refl(𝜃,𝐸𝜇
𝜃 ) for every regular cardinal 𝜇 > 𝜅.

Then �*
𝜆 fails for every cardinal 𝜆 > 𝜅 of cofinality 𝜃.

In this paper, we provide an application to the subcomplete forcing axiom
(SCFA), answering Question 2.12 of [4] in the affirmative, by proving:

Corollary B. SCFA entails that �*
𝜆 fails for every singular cardinal 𝜆 of countable

cofinality.

2. Weak square vs. reflection

Definition 2.1. Suppose 𝜆 is an uncountable cardinal and 𝑆 ⊆ 𝜆+ is stationary.

(1) ♢*(𝑆) asserts the existence of a sequence ⟨𝒜𝛿 | 𝛿 ∈ 𝑆⟩ such that:
(a) for every 𝛿 ∈ 𝑆, 𝒜𝛿 ⊆ 𝒫(𝛿) and |𝒜𝛿| ≤ 𝜆;
(b) for every subset 𝑍 of 𝜆+, the following set is nonstationary:

{𝛿 ∈ 𝑆 | ∀𝐴 ∈ 𝒜𝛿(𝐴 ̸= 𝑍 ∩ 𝛿)} .

(2) ♣*(𝑆) asserts the existence of a sequence ⟨𝒜𝛿 | 𝛿 ∈ 𝑆⟩ such that:
(a) for every 𝛿 ∈ 𝑆, 𝒜𝛿 ⊆ [𝛿]<𝜆 and |𝒜𝛿| ≤ 𝜆;
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(b) for every cofinal subset 𝑍 of 𝜆+, the following set is nonstationary:

{𝛿 ∈ 𝑆 | ∀𝐴 ∈ 𝒜𝛿(sup(𝐴 ∩ 𝑍) < 𝛿)} .
Fact 2.2. Suppose 𝜆 is a singular cardinal, and �*

𝜆 holds.

If every stationary subset of 𝐸𝜆+

cf(𝜆) reflects, then ♣*(𝜆+) holds.

Proof. By Corollaries 3.12 and 2.15 of [11]. �

Let CH𝜆 stand for the assertion that 2𝜆 = 𝜆+. The following is a slight refinement
of Theorem 1.6 of [11]. We use the notation cf(𝑋,⊇) for the least 𝜅 such that there
is a set 𝐷 ⊆ 𝑋 of cardinality 𝜅 that is cofinal in (𝑋,⊇), meaning that for every
𝑎 ∈ 𝑋, there is a 𝑏 ∈ 𝐷 with 𝑏 ⊆ 𝑎.

Lemma 2.3. Suppose 𝜃 < 𝜆 are infinite cardinals, 𝑆 ⊆ 𝐸𝜆+

𝜃 is stationary, and
cf([𝜇]𝜃,⊇) ≤ 𝜆 for all 𝜇 ∈ [𝜃, 𝜆). Then ♣*(𝑆) + CH𝜆 iff ♢*(𝑆).

Proof. We focus on the forward implication. As cf([𝜇]𝜃,⊇) ≤ 𝜆 for all 𝜇 ∈ [𝜃, 𝜆),
for each 𝐴 ∈ 𝒫(𝜆+) with 𝜃 ≤ |𝐴| < 𝜆, let 𝒟𝐴 be cofinal in the poset ([𝐴]𝜃,⊇), with
|𝒟𝐴| ≤ 𝜆. As CH𝜆 holds, let ⟨𝑋𝛽 | 𝛽 < 𝜆+⟩ be an enumeration of [𝜆+]≤𝜆 such that
every element is enumerated cofinally often. For every set 𝐵 ⊆ 𝜆+, denote

(𝐵)* :=
⋃︁

{𝑋𝛽 | 𝛽 ∈ 𝐵}.

Let ⟨𝒜𝛿 | 𝛿 ∈ 𝑆⟩ be a ♣*(𝑆)-sequence. For each 𝛿 ∈ 𝑆, let:

ℬ𝛿 := {(𝐵)* | ∃𝐴 ∈ 𝒜𝛿(𝐵 ∈ 𝒟𝐴)} ∩ 𝒫(𝛿).

Clearly, |ℬ𝛿| ≤ 𝜆. Thus, to see that ⟨ℬ𝛿 | 𝛿 ∈ 𝑆⟩ is a ♢*(𝑆)-sequence, let 𝑋 be
an arbitrary subset of 𝜆+. We shall find a club 𝐶 ⊆ 𝜆+ such that 𝑋 ∩ 𝛿 ∈ ℬ𝛿 for
all 𝛿 ∈ 𝑆 ∩ 𝐶.

Recalling that for every 𝑥 ∈ [𝜆+]≤𝜆, {𝛽 < 𝜆+ | 𝑥 = 𝑋𝛽} is cofinal in 𝜆+, we may
fix a strictly increasing function 𝑓 : 𝜆+ → 𝜆+ such that for all 𝛼 < 𝜆+:

𝑋𝑓(𝛼) = 𝑋 ∩ 𝛼.

As 𝑌 := Im(𝑓) is a cofinal subset of 𝜆+, and 𝐷 := {𝛿 < 𝜆+ | 𝑓 [𝛿] ⊆ 𝛿} is a club
in 𝜆+, we may find some sparse enough cofinal subset 𝑍 of 𝑌 such that for any pair
𝛽 < 𝛽′ of elements from 𝑍, there exists some 𝛿 ∈ 𝐷 with 𝛽 < 𝛿 < 𝛽′.

Next, fix a club 𝐶 ⊆ 𝜆+ such that for all 𝛿 ∈ 𝑆 ∩ 𝐶, there exists some 𝐴 ∈ 𝒜𝛿

with sup(𝐴 ∩ 𝑍) = 𝛿.
Let 𝛿 ∈ 𝑆 ∩ 𝐶 be arbitrary. Fix some 𝐴 ∈ 𝒜𝛿 such that sup(𝐴 ∩ 𝑍) = 𝛿. By

cf(𝛿) = 𝜃, let us fix a cofinal subset 𝐴′ of 𝐴∩𝑍 of order-type 𝜃. As 𝐴′ ∈ [𝐴]𝜃, and 𝒟𝐴

is cofinal in ([𝐴]𝜃,⊇), let us fix some 𝐵 ∈ 𝒟𝐴 with 𝐵 ⊆ 𝐴′. As |𝐵| = 𝜃 = otp(𝐴′),
we infer that sup(𝐵) = sup(𝐴′) = 𝛿. As 𝐵 ⊆ 𝐴′ ⊆ 𝐴 ⊆ 𝑍 ⊆ 𝑌 = Im(𝑓), we infer
the existence of some 𝑎 ⊆ 𝜆+ such that 𝑓 � 𝑎 is an order-preserving bijection from
𝑎 to 𝐵. By 𝐵 ⊆ 𝑍 and the choice of 𝑍, for any pair of ordinals 𝛼 < 𝛼′ from 𝑎,
there exists some 𝛿 ∈ 𝐷 such that 𝑓(𝛼) < 𝛿 < 𝑓(𝛼′). As 𝛿 ∈ 𝐷 implies 𝑓 [𝛿] ⊆ 𝛿,
this means that 𝛼 ≤ 𝛿 ≤ 𝛼′. Consequently, sup(𝑎) = sup(𝐵) = 𝛿, so that

(𝐵)* =
⋃︁

{𝑋𝛽 | 𝛽 ∈ 𝐵} =
⋃︁

{𝑋𝑓(𝛼) | 𝛼 ∈ 𝑎} = 𝑋 ∩ sup(𝑎) = 𝑋 ∩ 𝛿.

So 𝑋 ∩ 𝛽 = (𝐵)* ∈ ℬ𝛿, and we are done. �

Recall that log𝜆(𝜆+) stands for the least cardinal 𝜃 such that 𝜆𝜃 > 𝜆. The
following is a refinement of Theorem 3.2 of [3], which itself builds on an idea from
[12, p. 387].



4 WEAK SQUARE AND STATIONARY REFLECTION

Lemma 2.4. Suppose 𝜆 is an infinite cardinal, and 𝒜⃗ = ⟨𝒜𝛿 | 𝛿 ∈ 𝐸𝜆+

𝜃 ⟩ is

a ♢*(𝐸𝜆+

𝜃 )-sequence, for 𝜃 := log𝜆(𝜆+). Then in VAdd(𝜆+,1), 𝒜⃗ is no longer a

♢*(𝐸𝜆+

𝜃 )-sequence.

Proof. For simplicity, we identify Add(𝜆+, 1) with the collection <𝜆+

𝜆, ordered by
inclusion.

In V, fix a bijection 𝜋 : 𝜆+ ↔ 𝜆+×𝜆, and let 𝐷 := {𝛿 < 𝜆+ | 𝜋[𝛿] = 𝛿×𝜆}, so that
𝐷 is a club in 𝜆+. Towards a contradiction, suppose that 𝐺 is Add(𝜆+, 1)-generic

over V, and V[𝐺] |= 𝒜⃗ is a ♢*(𝐸𝜆+

𝜃 )-sequence.
Work in V[𝐺]. Let 𝑔 :=

⋃︀
𝐺 be the generic function from 𝜆+ to 𝜆, and then put

𝑍 := 𝜋−1[𝑔]. Fix a club 𝐶 ⊆ 𝜆+ such that for all 𝛿 ∈ 𝐸𝜆+

𝜃 ∩𝐶, we have 𝑍 ∩ 𝛿 ∈ 𝒜𝛿.
Without loss of generality, we may assume that 𝐶 = 𝐶 ∩𝐷.

Work back in V. Fix a condition 𝑝 ∈ 𝐺, a nice name 𝐶̇ for 𝐶, and a canonical

name 𝑍̇ for 𝑍, such that 𝑝 forces: 𝐶̇ ⊆ 𝐷, and 𝑍̇ ∩ 𝛿 ∈ 𝒜𝛿 for all 𝛿 ∈ 𝐸𝜆+

𝜃 ∩ 𝐶̇.
We shall now define a sequence ⟨(𝛽ℓ, ⟨(𝑝𝑠, 𝛿𝑠) | 𝑠 ∈ ℓ𝜆⟩) | ℓ ≤ 𝜃⟩ in such a way

that:

(1) For any 𝑠 ∈ ≤𝜃𝜆, 𝑝𝑠 is a condition extending 𝑝, forcing that 𝛿𝑠 is in 𝐶;
(2) For all 𝑠 ⊆ 𝑡 from ≤𝜃𝜆, we have 𝑝𝑠 ⊆ 𝑝𝑡;
(3) For all ℓ < 𝜃, 𝑠 ∈ ℓ𝜃, and 𝑖 < 𝜆:

(a) 𝛽ℓ ≤ 𝛿𝑠 < 𝛽ℓ+1 < 𝛿𝑠a⟨𝑖⟩ and 𝛿𝑠a⟨𝑖⟩ ∈ 𝐷;
(b) 𝛽ℓ+1 ∈ dom(𝑝𝑠a⟨𝑖⟩) and 𝑝𝑠a⟨𝑖⟩(𝛽ℓ+1) = 𝑖.

The definition is by recursion on ℓ ≤ 𝜃:
I Let 𝛽0 := 0, and find some condition 𝑝∅ ⊇ 𝑝 along with an ordinal 𝛿∅, such

that 𝑝∅ 
 𝛿∅ ∈ 𝐶̇.
I Suppose that ℓ < 𝜃, and that ⟨(𝛽𝑙, ⟨(𝑝𝑠, 𝛿𝑠) | 𝑠 ∈ 𝑙𝜆⟩) | 𝑙 ≤ ℓ⟩ has already been

defined. Put 𝛽ℓ+1 := sup{dom(𝑝𝑠), 𝛿𝑠 | 𝑠 ∈ ℓ𝜆}+1. By ℓ < 𝜃, we have |ℓ𝜆| < 𝜆+, so
that 𝛽ℓ+1 < 𝜆+. For all 𝑠 ∈ ℓ𝜆 and 𝑖 < 𝜆, define 𝑝𝑖𝑠 : 𝛽ℓ+1 + 1 → 𝜆 by stipulating:

𝑝𝑖𝑠(𝛼) :=

{︃
𝑝𝑠(𝛼), if 𝛼 ∈ dom(𝑝𝑠);

𝑖, otherwise.

Next, since 𝐶̇ is a name for an unbounded subset of 𝜆+, find an ordinal 𝛿𝑠a⟨𝑖⟩ > 𝛽ℓ+1

and a condition 𝑝𝑠a⟨𝑖⟩ extending 𝑝𝑖𝑠 such that 𝑝𝑠a⟨𝑖⟩ 
 𝛿𝑠 ∈ 𝐶̇.

I Suppose that ℓ ∈ acc(𝜃 + 1), and that ⟨(𝛽𝑙, ⟨(𝑝𝑠, 𝛿𝑠) | 𝑠 ∈ 𝑙𝜆⟩) | 𝑙 < ℓ⟩ has
already been defined. Put 𝛽ℓ := sup𝑙<ℓ 𝛽𝑙. For every 𝑠 ∈ ℓ𝜆, let 𝑝𝑠 :=

⋃︀
{𝑝𝑠�𝑙 | 𝑙 < ℓ}

and 𝛿𝑠 := sup{𝛿𝑠�𝑙 | 𝑙 < ℓ}. By ℓ < 𝜃+ ≤ 𝜆+, 𝑝𝑠 is a condition. Since 𝐶̇ is a name

for a closed subset of 𝜆+, we have 𝑝𝑠 
 𝛿𝑠 ∈ 𝐶̇. Also, it is clear that 𝛿𝑠 = 𝛽ℓ.
This completes the construction.

Put 𝛿 := 𝛽𝜃, so that 𝛿 ∈ 𝐸𝜆+

𝜃 ∩ 𝐷. For each 𝑠 ∈ 𝜃𝜆, put 𝑍𝑠 := 𝜋−1[𝑝𝑠]. By

dom(𝑝𝑠) = 𝛿 ∈ 𝐷, we have 𝑝𝑠 
 𝑍̇∩𝛿 = 𝑍𝑠 and 𝑝𝑠 
 𝛿 ∈ 𝐶̇. By Clause (3)(b) above,
for any distinct 𝑠, 𝑡 ∈ 𝜃𝜆, we have 𝑝𝑠 ̸= 𝑝𝑡 and 𝑍𝑠 ̸= 𝑍𝑡, so since |𝒜𝛿| < 𝜆+ ≤ 𝜆𝜃,
we may find some 𝑠 ∈ 𝜃𝜆 such that 𝑍𝑠 /∈ 𝒜𝛿. However, this contradicts the fact
that 𝑝𝑠 extends 𝑝. �

We are now ready to prove the theorem mentioned in the Introduction.

Theorem A. Suppose 𝜆 is a singular cardinal, and 𝜇cf(𝜆) < 𝜆 for all 𝜇 < 𝜆.
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If �*
𝜆 holds, then in the generic extension by Add(𝜆+, 1), there exists a non-

reflecting stationary subset of 𝐸𝜆+

cf(𝜆).

Proof. Suppose that �*
𝜆 holds. Let 𝐺 be Add(𝜆+, 𝜆++)-generic over V. For all

𝛼 ≤ 𝜆++, let 𝐺𝛼 denote the induced generic for Add(𝜆+, 𝛼).

Claim 2.4.1. All of the following hold true in V[𝐺]:

(1) cf([𝜇]cf(𝜆),⊇) < 𝜆 for all 𝜇 ∈ [cf(𝜆), 𝜆);
(2) log𝜆(𝜆+) = cf(𝜆);
(3) CH𝜆;

(4) ¬♢*(𝐸𝜆+

cf(𝜆)).

Proof. (1) As Add(𝜆+, 𝜆++) does not add new subsets of 𝜆, we have in V[𝐺] that
cf([𝜇]cf(𝜆),⊇) ≤ 𝜇cf(𝜆) < 𝜆 for all 𝜇 ∈ [cf(𝜆), 𝜆).

(2) As Add(𝜆+, 𝜆++) does not add new subsets of 𝜆, we have in V[𝐺] that

𝜆<cf(𝜆) =
∑︁
𝜇<𝜆

𝜇<cf(𝜆) ≤
∑︁
𝜇<𝜆

𝜇cf(𝜆) = 𝜆,

so that log𝜆(𝜆+) ≥ cf(𝜆). By König’s lemma, log𝜆(𝜆+) ≤ cf(𝜆).
(3) By Exercise G4 of [9, S VII], V[𝐺𝛼] |= CH𝜆 for all nonzero 𝛼 ≤ 𝜆++.

(4) Suppose not. Fix a ♢*(𝐸𝜆+

cf(𝜆))-sequence, 𝒜⃗ = ⟨𝒜𝛿 | 𝛿 ∈ 𝐸𝜆+

cf(𝜆)⟩ in V[𝐺]. As

𝒜⃗ has hereditary cardinality less than 𝜆++, there exists an infinite 𝛼 < 𝜆++ such

that 𝒜⃗ ∈ V[𝐺𝛼]. However, By Lemma 2.4, 𝒜⃗ is no longer a ♢*(𝐸𝜆+

cf(𝜆))-sequence in

𝑉 [𝐺𝛼+1], let alone in V[𝐺]. This is a contradiction. �

It now follows from Lemma 2.3 that V[𝐺] |= ¬♣*(𝐸𝜆+

cf(𝜆)). In particular, V[𝐺] |=
¬♣*(𝜆+). As V and V[𝐺] have the same cardinal structure up to 𝜆+ (including), it
follows that V[𝐺] |= �*

𝜆, and we infer from Fact 2.2 that in V[𝐺], there exists a non-

reflecting stationary subset 𝑆 of 𝐸𝜆+

cf(𝜆). As 𝑆 has hereditary cardinality less than

𝜆++, there exists some infinite 𝛼 < 𝜆++ such that 𝑆 ∈ V[𝐺𝛼]. Since |𝛼| ≤ 𝜆+, we
get that Add(𝜆+, 𝛼) is isomorphic to Add(𝜆+, 1). Since Add(𝜆+, 1) is homogeneous,
this shows that, over our ground model, Add(𝜆+, 1) adds a non-reflecting stationary

subset of 𝐸𝜆+
cf(𝜆). �

Remark 3. The preceding improves Theorem 3.15 of [11].

It is easy to see that Corollary A is a consequence of the following.

Corollary 2.5. Suppose 𝜆 > 𝜅 > 𝜃 = cf(𝜆) are infinite cardinals, and there exists
a notion of forcing P such that:

(1) P does not change cofinalities;
(2) VP |= 𝜅𝜃 = 𝜅;

(3) VP*Add(𝜆+,1) |= Refl(𝜃,𝐸𝜇
𝜃 ) for every regular cardinal 𝜇 with 𝜆 > 𝜇 > 𝜅.

Then �*
𝜆 fails.

Proof. Towards a contradiction, suppose that �*
𝜆 holds.

Work in VP. By Clause (1), �*
𝜆 holds.

Claim 2.5.1. 𝜇𝜃 < 𝜆 for all 𝜇 < 𝜆.
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Proof. Suppose not. As 𝜆 is a limit cardinal, let 𝜇 be the least regular cardinal < 𝜆
to satisfy 𝜇𝜃 ≥ 𝜆. By König’s lemma, then, 𝜇𝜃 > 𝜆. By Clause (2), 𝜃 < 𝜅 < 𝜇 < 𝜆.

For every limit ordinal 𝛼 < 𝜇, fix a strictly increasing and continuous function
𝑐𝛼 : cf(𝛼) → 𝛼 whose range is cofinal in 𝛼. Let ⟨𝑆𝑖 | 𝑖 < 𝜇⟩ be some partition of 𝐸𝜇

𝜃

into pairwise disjoint sets. For every 𝐵 ⊆ 𝜇, let (𝐵)* := {𝑖 < 𝜇 | 𝐵 ∩ 𝑆𝑖 ̸= ∅}. Put

𝒫 := {(𝑐𝛼[𝐴])* | 𝛼 ∈ 𝐸𝜇
>𝜔, 𝐴 ∈ [cf(𝛼)]𝜃}.

By minimality of 𝜇, for every regular uncountable cardinal 𝜒 < 𝜇, we have
𝜒𝜃 < 𝜆. Consequently, |𝒫| ≤ 𝜆. Thus, to meet a contradiction, it suffices to show
that [𝜇]𝜃 ⊆ 𝒫.

To this end, let 𝐼 ∈ [𝜇]𝜃 be arbitrary. As Add(𝜆+, 1) adds no new subsets
of 𝜇, we infer from Clause (3) the existence of an ordinal 𝛼 ∈

⋂︀
𝑖∈𝐼 Tr(𝑆𝑖). As

Im(𝑐𝛼) is a club in 𝛼, we have Im(𝑐𝛼) ∩ 𝑆𝑖 ̸= ∅ for all 𝑖 ∈ 𝐼. For all 𝑖 ∈ 𝐼, pick
𝛼𝑖 ∈ Im(𝑐𝛼) ∩ 𝑆𝑖, and let 𝐴 := {𝑐−1

𝛼 (𝛼𝑖) | 𝑖 ∈ 𝐼}. Evidently, 𝐴 ∈ [cf(𝛼)]𝜃, so that
𝐼 = (𝑐𝛼[𝐴])* ∈ 𝒫. �

It now follows from Theorem A that VP*Add(𝜆+,1) |= ¬Refl(1, 𝐸𝜆+

cf(𝜆)), contra-

dicting Clause (3). �

3. An application: SCFA and weak square

Recall that the forcing axiom for a class Γ of forcing notions says that whenever
P ∈ Γ and ∆ is a collection of dense subsets of P with |∆| ≤ 𝜔1, there is a filter over
P that is ∆-generic, that is, that meets every set in ∆. The most well-known forcing
axioms are Martin’s axiom MA𝜔1 (the forcing axiom for the class of c.c.c. forcing),
the proper forcing axiom PFA (the forcing axiom for the class of proper forcing
notions), and Martin’s Maximum MM (the forcing axiom for the class of forcing
notions which preserve stationary subsets of 𝜔1). The first author has recently
studied forcing axioms and other forcing principles for the class of subcomplete
forcing notions, a forcing class that was introduced by Jensen in [8], and we will
use the methods of Section 2 to determine precisely the effects of the subcomplete
forcing axiom, SCFA, on the extent of weak square principles. A similar project for
MM was carried out by Cummings and Magidor in [2], where the authors proved
the following result:

Fact 3.1 (Cummings and Magidor, [2, Theorem 1.2]). Assume MM holds, and let
𝜆 be an uncountable cardinal.

(1) If cf(𝜆) = 𝜔, then �*
𝜆 fails.

(2) If cf(𝜆) = 𝜔1, then �𝜆,𝜇 fails for every 𝜇 < 𝜆.
(3) If cf(𝜆) ≥ 𝜔2, then �𝜆,𝜇 fails for every 𝜇 < cf(𝜆).

Note that, in addition, MM implies the failure of �*
𝜔1

. To see this, recall that by
a theorem of Baumgartner (see [13, Thm. 7.7]), PFA (and hence MM) implies that
there is no 𝜔2-Aronszajn tree, while �*

𝜔1
is equivalent to the existence of a special

𝜔2-Aronszajn tree.
To show that their result is optimal, Cummings and Magidor also proved the

following.
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Fact 3.2 (Cummings and Magidor, [2, Theorem 1.3]). It is consistent that MM
holds and for all cardinals 𝜆 > 𝜔1:

1

(1) If cf(𝜆) = 𝜔1, then �*
𝜆 holds.

(2) If cf(𝜆) ≥ 𝜔2, then �𝜆,cf(𝜆) holds.

The main motivation for investigating the forcing axiom for the class of subcom-
plete forcing is that on the face of it, this class is very different from the other
forcing classes considered, because subcomplete forcing does not add reals. Jensen
[7], [6] proved the consistency of SCFA, starting from a model of ZFC with a super-
compact cardinal, by adapting the Baumgartner proof of the consistency of PFA
from the same assumption, exploiting the fact, proven in [8], [6], that subcomplete
forcing is iterable with revised countable support. Since subcomplete forcing does
not add reals, it follows that SCFA is compatible with the continuum hypothesis,
while the other forcing axioms imply the failure of CH. In fact, SCFA is even con-
sistent with ♢. However, SCFA does not imply CH, since MM implies SCFA+¬CH.
It is maybe a little surprising, then, that SCFA turns out to have many of the same
consequences MM has. Thus, Jensen showed [7], [6] that SCFA implies the singular
cardinal hypothesis and the failure of �𝜅 for every uncountable cardinal 𝜅.

It was observed by the first author in [4, Theorem 2.7 and Observation 2.8] that
it follows from Jensen’s work that SCFA implies the principle Refl(𝜔1, 𝐸

𝜇
𝜔) for every

regular cardinal 𝜇 > 𝜔1, and hence, by Fact 1.4, that Clauses (2) and (3) of Fact 3.1
are also consequences of SCFA, see [4, Theorem 2.11]. However, it was left open
whether SCFA implies the failure of �*

𝜆 when 𝜆 is a singular cardinal of countable
cofinality, see [4, Question 2.12].

In order to answer this question, we will establish a version for subcomplete
forcing of a well-known result of Larson [10, Theorem 4.3], asserting that Martin’s
Maximum is preserved by <𝜔2-directed closed forcing. The point is that Fact 3.1
admits the following abstract generalization:

Theorem 3.3. Assume 2ℵ0 < ℵ𝜔 and that for every <ℵ𝜔+1-directed closed notion
of forcing Q, we have VQ |= Refl(𝜔1, 𝐸

𝜇
𝜔) for every regular cardinal 𝜇 > 𝜔1.

Let 𝜆 be an uncountable cardinal.

(1) If cf(𝜆) = 𝜔, then �*
𝜆 fails.

(2) If cf(𝜆) = 𝜔1, then �𝜆,𝜇 fails for every 𝜇 < 𝜆.
(3) If cf(𝜆) ≥ 𝜔2, then �𝜆,𝜇 fails for every 𝜇 < cf(𝜆).

Proof. (1) Fix an arbitrary singular cardinal 𝜆 of countable cofinality. We verify
that Corollary 2.5 applies with 𝜅 := 2ℵ0 , 𝜃 := ℵ0, and P the trivial forcing. Evi-
dently, VP |= 𝜅𝜃 = 𝜅. As 𝜆 ≥ ℵ𝜔 and Q := P*Add(𝜆+, 1) is <𝜆+-directed closed, we

have VP*Add(𝜆+,1) |= Refl(𝜔1, 𝐸
𝜇
𝜔) for every regular cardinal 𝜇 > 𝜔1. In particular,

VP*Add(𝜆+,1) |= Refl(𝜔,𝐸𝜇
𝜔) for every regular cardinal 𝜇 with 𝜆 > 𝜇 > 𝜅.

(2) By Fact 1.4(1).
(3) By Fact 1.4(2). �

Before we can prove that SCFA is preserved by <𝜔2-directed closed forcing, we
need some terminology.

1There is a slight inaccuracy in the original formulation of [2, Theorem 1.3], where it is not
required that 𝜆 > 𝜔1, and as a result it is claimed that MM is consistent with �*

𝜔1
, which is not

true, as pointed out above.
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Definition 3.4. A transitive set 𝑁 (usually a model of ZFC−) is full if there is an
ordinal 𝛾 such that 𝐿𝛾(𝑁) |= ZFC− and 𝑁 is regular in 𝐿𝛾(𝑁), meaning that if
𝑥 ∈ 𝑁 , 𝑓 ∈ 𝐿𝛾(𝑁) and 𝑓 : 𝑥 −→ 𝑁 , then Im(𝑓) ∈ 𝑁 .

Definition 3.5. For a poset P, 𝛿(P) is the minimal cardinality of a dense subset
of P.

Definition 3.6. Let 𝑁 = 𝐿𝐴
𝜏 = ⟨𝐿𝜏 [𝐴],∈, 𝐴 ∩ 𝐿𝜏 [𝐴]⟩ be a ZFC− model, 𝜀 an

ordinal and 𝑋 ∪ {𝜀} ⊆ 𝑁 . Then 𝐶𝑁
𝜀 (𝑋) is the smallest 𝑌 ≺ 𝑁 (with respect to

inclusion) such that 𝑋 ∪ 𝜀 ⊆ 𝑌 .

Note that models 𝑁 of the form described in the previous definition have defina-
ble Skolem-functions, so that the definition of 𝐶𝑁

𝜀 (𝑋) makes sense. The following
concept was introduced in [5].

Definition 3.7. Let 𝜀 be an ordinal. A forcing P is 𝜀-subcomplete if there is a
cardinal 𝜃 > 𝜀 which verifies the 𝜀-subcompleteness of P, which means that P ∈ 𝐻𝜃,
and for any ZFC− model 𝑁 = 𝐿𝐴

𝜏 with 𝜃 < 𝜏 and 𝐻𝜃 ⊆ 𝐿𝜏 [𝐴], any 𝜎 : 𝑁̄ ≺ 𝑁
such that 𝑁̄ is countable, transitive and full and such that P, 𝜃, 𝜀 ∈ Im(𝜎), any
𝐺̄ ⊆ P̄ which is P̄-generic over 𝑁̄ , and any 𝑠 ∈ Im(𝜎), the following holds. Letting
𝜎(⟨𝑠, 𝜃, P̄⟩) = ⟨𝑠, 𝜃,P⟩, there is a condition 𝑝 ∈ P such that whenever 𝐺 ⊆ P is
P-generic over V with 𝑝 ∈ 𝐺, there is in V[𝐺] a 𝜎′ such that

(1) 𝜎′ : 𝑁̄ ≺ 𝑁 ,
(2) 𝜎′(⟨𝑠, 𝜃, P̄, 𝜀⟩) = ⟨𝑠, 𝜃,P, 𝜀⟩,
(3) (𝜎′)“𝐺̄ ⊆ 𝐺,
(4) 𝐶𝑁

𝜀 (Im(𝜎′)) = 𝐶𝑁
𝜀 (Im(𝜎)).

Using this terminology, subcompleteness is a special case of 𝜀-subcompleteness.
Essential subcompleteness was introduced in [5].

Definition 3.8. A poset P is subcomplete iff P is 𝛿(P)-subcomplete. P is essentially
subcomplete iff P is 𝜀-subcomplete, for some 𝜀.

Increasing 𝜀 weakens the condition of being 𝜀-subcomplete, but if a forcing P
is 𝜀-subcomplete, for an 𝜀 > 𝛿(P), then P is forcing equivalent to a subcomplete
forcing, where we say that two forcing notions are forcing equivalent if they give
rise to the same forcing extensions. In fact, it is shown in [5] that the class of
essentially subcomplete forcing notions is the closure of the class of subcomplete
forcing notions under forcing equivalence.

Definition 3.9. Let P be a notion of forcing, and 𝑝 ∈ P a condition. Then P≤𝑝 is
the restriction of P to {𝑞 | 𝑞 ≤P 𝑝}.

Lemma 3.10. Let P be 𝜀-subcomplete and 𝑝 ∈ P. Then P≤𝑝 is 𝜀-subcomplete.

Proof. Let 𝜃 verify the 𝜀-subcompleteness of P. To show that P≤𝑝 is 𝜀-subcomplete,
let 𝑁 = 𝐿𝐴

𝜏 , 𝜃 < 𝜏 , 𝑁̄ countable and full and 𝜎 : 𝑁̄ ≺ 𝑁 with P≤𝑝, 𝜃, 𝜀 ∈ Im(𝜎). By
the argument of [6, p. 116], we may also assume that P, 𝑝 ∈ Im(𝜎). Let 𝑠 ∈ Im(𝜎)
be given. Further, let 𝑠 = 𝜎−1(𝑠), 𝜃 = 𝜎−1(𝜃), 𝜀 = 𝜎−1(𝜀), P̄ = 𝜎−1(P) and
𝑝 = 𝜎−1(𝑝), so that 𝜎(P̄≤𝑝) = P≤𝑝. Finally, let 𝐺̄ be P̄≤𝑝-generic over 𝑁̄ . Then 𝐺̄
generates a filter 𝐻̄ = {𝑞 ∈ P̄ | ∃𝑟 ∈ 𝐺̄ 𝑟 ≤ 𝑞} that is P̄-generic over 𝑁̄ . Since 𝜃
verifies the 𝜀-subcompleteness of P, there is a condition 𝑟 ∈ P such that whenever
𝐻 is P-generic over V, then in V[𝐻], there is a 𝜎′ such that

(1) 𝜎′ : 𝑁̄ ≺ 𝑁 ,
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(2) 𝜎′(𝑠, 𝜃, P̄, 𝑝) = ⟨𝑠, 𝜃,P, 𝑝⟩,
(3) (𝜎′)“𝐻̄ ⊆ 𝐻,
(4) 𝐶𝑁

𝜀 (Im(𝜎′)) = 𝐶𝑁
𝜀 (Im(𝜎)).

Note that it follows from (2) and (3) that 𝑝 ∈ 𝐻. In particular, 𝑟 is compatible
with 𝑝. Letting 𝑟′ ≤ 𝑝, 𝑟, it follows that 𝑟′ ∈ P≤𝑝, and whenever 𝐺 is P≤𝑝-generic
over V with 𝑟′ ∈ 𝐺, then there is a 𝜎′ in V[𝐺] such that

(1’) 𝜎′ : 𝑁̄ ≺ 𝑁 ,
(2’) 𝜎′(𝑠, 𝜃, P̄≤𝑝) = ⟨𝑠, 𝜃,P≤𝑝⟩,
(3’) (𝜎′)“𝐺̄ ⊆ 𝐺,
(4’) 𝐶𝑁

𝜀 (Im(𝜎′)) = 𝐶𝑁
𝜀 (Im(𝜎)).

This is because if 𝐺 is as described, then it generates an 𝐻 which is P-generic, and
since 𝑟′ ∈ 𝐺, it follows that 𝑟 ∈ 𝐻. Thus, there is a 𝜎′ ∈ V[𝐻] that satisfies (1)-(4).
But V[𝐻] = V[𝐺], and it follows that 𝜎′ satisfies (1’)-(4’). �

Corollary 3.11. If P is subcomplete and 𝑝 ∈ P, then P≤𝑝 is 𝛿(P)-subcomplete.

Note that in the situation of this corollary, since 𝛿(P≤𝑝) may be smaller than
𝛿(P), we do not necessarily know that P≤𝑝 is subcomplete. We are now ready to
prove the requisite preservation property of SCFA.

Lemma 3.12. SCFA is preserved by <𝜔2-directed closed forcing.

Proof. The basic idea of the proof of [10, Theorem 4.3] goes through, but matters
are slightly complicated by dealing with subcomplete forcing.

Let P be <𝜔2-directed closed, and assume that SCFA holds. Let 𝐺 be P-generic

over V, and in V[𝐺], let Q be a subcomplete forcing, and let ∆⃗ = ⟨∆𝜉 | 𝜉 < 𝜔1⟩ be

a sequence of dense subsets of Q. We have to show that there is a ∆⃗-generic filter
for Q in V[𝐺].

Assume, towards a contradiction, that there is no filter in V[𝐺] which meets the

sets in the sequence ∆⃗, and let ∆̇ be a P-name for ∆⃗. Let 𝑝 ∈ P be a condition

which forces that ∆⃗ has the properties described above, and that there is no ∆̇-
generic filter. By Corollary 3.11, P≤𝑝 is 𝛿(P)-subcomplete, and in particular, it is
essentially subcomplete.

If 𝐻 ⊆ P≤𝑝 is generic for P≤𝑝, then let us write 𝐻 ′ for the filter over P generated
by 𝐻, that is, 𝐻 ′ = {𝑟 ∈ P | ∃𝑞 ∈ 𝐻 𝑟 ≥ 𝑞}. It follows that 𝐻 ′ is P-generic,
because if 𝐷 ⊆ P is dense, then 𝐷 ∩ P≤𝑝 is dense in P≤𝑝. Moreover, if 𝐼 ⊆ P
is a P-generic filter containing 𝑝, then 𝐻 := 𝐼 ∩ P≤𝑝 is a generic filter over P≤𝑝,
and 𝐼 = 𝐻 ′. There is a simple recursive procedure to translate any P-name 𝜏 to a
P≤𝑝-name 𝜏 ′ in such a way that whenever 𝐼 and 𝐻 are as just described, it follows
that 𝜏 𝐼 = (𝜏 ′)𝐻 . This can be achieved by the recursive definition

𝜏 ′ = {⟨𝜎′, 𝑞⟩ | 𝑞 ≤ 𝑝 ∧ ∃𝑟 ≥ 𝑞 ⟨𝜎, 𝑟⟩ ∈ 𝜏}.

It is then clear that for every formula 𝜙(𝜏0, . . . , 𝜏𝑛−1) of the forcing language for P,
and for every 𝑞 ≤ 𝑝, we have that

𝑞 
P 𝜙(𝜏0, . . . , 𝜏𝑛−1) ⇐⇒ 𝑞 
P≤𝑝
𝜑(𝜏 ′0, . . . , 𝜏

′
𝑛−1).

To see this, from left to right, assume that 𝐻 is a P≤𝑝-generic filter with 𝑞 ∈ 𝐻. We
know that then, 𝐼 = 𝐻 ′ is P-generic and 𝑞 ∈ 𝐻 ′, and so, by assumption, in V[𝐻 ′],

𝜑(𝜏𝐻
′

0 , . . . , 𝜏𝐻
′

𝑛−1) holds. Moreover, 𝐻 = 𝐼∩P≤𝑝, and so, we know that V[𝐻 ′] = V[𝐻]
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and 𝜏𝐻
′

𝑖 = (𝜏 ′𝑖)
𝐻 , for 𝑖 < 𝑛, and hence, V[𝐻] |= 𝜑((𝜏 ′0)𝐻 , . . . , (𝜏 ′𝑛−1)𝐻), which means

that 𝑞 
P≤𝑝
𝜑(𝜏 ′0, . . . , 𝜏

′
𝑛−1). The converse follows similarly.

Thus, we can replace the P-names ∆̇ and Q̇ with the translated P≤𝑝-names ∆̇′

and Q̇′, and we then know that 𝑝 = 1P≤𝑝
forces with respect to P≤𝑝 that Q̇′ is a

subcomplete forcing notion, ∆̇′ is an 𝜔1-sequence of dense subsets of Q̇′ and there
is no ∆̇′-generic filter.

For 𝜁 < 𝜔1, define a dense subset 𝐷𝜁 ⊆ P≤𝑝 * Q̇′ by setting

𝐷𝜁 = {⟨𝑞, 𝜎⟩ ∈ P≤𝑝 * Q̇′ | 𝑝 
P≤𝑝
𝜎 ∈ ∆̇′

𝜁
}.

Since P≤𝑝 is essentially subcomplete and P≤𝑝 forces that Q̇′ is (essentially) subcom-

plete, it follows that P≤𝑝 * Q̇′ is essentially subcomplete (by [5, Theorem 2.9]). By
[5, Lemma 2.6], SCFA implies the forcing axiom for essentially subcomplete forcing

notions, and so, there is in V a filter 𝐹 in P≤𝑝 * Q̇′ that meets 𝐷𝜁 , for every 𝜁 < 𝜔1.
It is now straightforward to construct a subset 𝐹 ⊆ 𝐹 such that

(1) the cardinality of 𝐹 is at most 𝜔1,
(2) for every 𝜁 < 𝜔1, 𝐹 ∩𝐷𝜁 ̸= ∅,
(3) for all 𝑠, 𝑡 ∈ 𝐹 , there is a 𝑢 ∈ 𝐹 such that 𝑢 ≤ 𝑠, 𝑡.

The collection of the first coordinates of conditions in 𝐹 is a directed subset of P≤𝑝

of size at most 𝜔1, so by <𝜔2-directedness, we may choose a condition 𝑞 such that
for every ⟨𝑟, 𝜎⟩ ∈ 𝐹 , we have that 𝑞 ≤ 𝑟. Letting 𝐹 = {⟨𝜎, 𝑟⟩ | ⟨𝑟, 𝜎⟩ ∈ 𝐹}, we claim

now that 𝑞 forces with respect to P≤𝑝 that 𝐹 generates a ∆̇′-generic filter over Q̇′.

To see this, let 𝐻 be P≤𝑝-generic with 𝑞 ∈ 𝐻. First, let’s check that 𝐹𝐻 generates

filter. Let 𝑎, 𝑏 ∈ 𝐹𝐻 . It suffices to show that there is a 𝑐 ∈ 𝐹𝐻 with 𝑐 ≤ 𝑎, 𝑏. Let
⟨𝜎1, 𝑟1⟩, ⟨𝜎2, 𝑟2⟩ ∈ 𝐹 be such that 𝑎 = 𝜎𝐻

1 , 𝑏 = 𝜎𝐻
2 and 𝑟1, 𝑟2 ∈ 𝐻. By (3), there is a

condition ⟨𝑟3, 𝜎3⟩ ∈ 𝐹 with ⟨𝑟3, 𝜎3⟩ ≤ ⟨𝑟1, 𝜎1⟩, ⟨𝑟2, 𝜎2⟩. This means that 𝑟3 ≤ 𝑟1, 𝑟2
and 𝑟3 forces that 𝜎3 ≤ 𝜎1, 𝜎2. Since we made sure that 𝑞 ≤ 𝑟1, 𝑟2, 𝑟3 and 𝑞 ∈ 𝐻, it
follows that 𝑐 = 𝜎𝐻

3 ≤ 𝑏, 𝑐 and 𝑐 ∈ 𝐹𝐻 . Finally, if 𝜉 < 𝜔1, then since 𝐹 ∩𝐷𝜉 ̸= ∅,

there is a ⟨𝑟, 𝜎⟩ ∈ 𝐹 with 𝑟 
 𝜎 ∈ ∆̇𝜉, so that, since ⟨𝜎, 𝑟⟩ ∈ 𝐹 , 𝑞 ≤ 𝑟 and 𝑞 ∈ 𝐻,

we get that 𝜎𝐻 ∈ 𝐹𝐻 ∩ (∆̇′)𝐻𝜉 .

This contradicts our assumption that 𝑝 forces that there is no ∆̇′-generic filter
over Q̇′. �

As a result, we arrive at the following complete description of the effects of SCFA
on weak square principles, in particular, answering Question 2.12 of [4].

Corollary 3.13. Assume SCFA holds, and let 𝜆 be an uncountable cardinal.

(1) If cf(𝜆) = 𝜔, then �*
𝜆 fails.

(2) If cf(𝜆) = 𝜔1, then �𝜆,𝜇 fails for every 𝜇 < 𝜆.
(3) If cf(𝜆) ≥ 𝜔2, then �𝜆,𝜇 fails for every 𝜇 < cf(𝜆).

Proof. By [7], [6], SCFA implies that 2ℵ1 = ℵ2,2 so that 2ℵ0 < ℵ𝜔. As poin-
ted out earlier, SCFA implies Refl(𝜔1, 𝐸

𝜇
𝜔) for every regular cardinal 𝜇 > 𝜔1. In

particular, by Lemma 3.12, for every <ℵ𝜔+1-directed closed notion of forcing Q,
VQ |= Refl(𝜔1, 𝐸

𝜇
𝜔) for every regular cardinal 𝜇 > 𝜔1. Now, appeal to Theo-

rem 3.3. �

2In fact, one can show that SCFA entails ♢(𝐸𝜔2
𝜔1 ).
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Thus, we have proved Corollary B. Note that Corollary 3.13 is optimal in the
following sense (see the discussion before Question 2.12 in [4]).

Fact 3.14 ([4]). It is consistent that SCFA holds and for every uncountable cardinal
𝜆, the following hold:

(1) If cf(𝜆) = 𝜔1, then �*
𝜆 holds.

(2) If cf(𝜆) ≥ 𝜔2, then �𝜆,cf(𝜆) holds.

Remark 4. The preceding is witnessed by a model of SCFA + CH. Thus, unlike
Fact 3.2, Clause (1) of the preceding does apply to 𝜆 = 𝜔1 (since CH =⇒ �*

𝜔1
.)
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