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ABSTRACT. The boustrophedon transform is a sequence operation de-
veloped in the study of alternating permutations. This paper looks into
its construction and explores the relations between the two by develop-
ing a bijection between paths on the triangle used in the construction
of the transform and alternating permutations on [n].

1. INTRODUCTION

The boustrophedon transform of a sequence (a,,) produces a sequence (b,)
by populating a triangle in the following manner:

To,0
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Tvo —— Ti1

s s

Tog «—— T — 1o

\ \ \

T30 —— 131 T3 T33
S S S S
Tyy Ty3 Tyo Tyq Typ

where the numbers T}, ,, (kK > n > 0) are defined
Tk,O = ag (k’ 2 0)
Tin = Thn-1+ Th—1k—n (k> n>0).
Now,

bn = 1Lnmn-
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We could rewrite the above triangle as follows:

ao

N

ap —— by

s s

by —— To1 —— a2

N\ N\ N

a3 —— T3 T3 b3
S S S S
by Ty3 Tyo Ty a4

We begin counting the rows of the triangle from the topmost, zeroth row,
downward to the n'* row. Let bg=ag populate the top row of the triangle.
The odd indexed terms of (a,) form the left-most entries of the odd rows of
the triangle, while the odd indexed terms of (b,,) form the right-most entries
of the odd rows. Similarly, the even indexed terms of (a,) populate the
right-most entries of the even rows and the even indexed terms of (b,,) form
the left-most entries of the even rows.

Each entry in an odd row is the sum of the term to its left and the term in
the preceding row to its upper left. Each even rowed entry is the sum of the
term to its right and the term in the preceding row to its upper right. The
arrows in the above diagram illustrate the zig-zag pattern of the transform.
This is where the boustrophedon moniker originates.

We can view this triangle as a directed graph by taking {7}, | K > n > 0}
as the set of vertices and the arrows as directed edges. For example,

Top

)

Tvo —— 11

/ v

Top ¢—— Tr1 — Ty

N\ N\ \

T30 —— 13,1 » 132 133
/ / / S
Tyy € Ty3 € Tyo Ty Tap

shows a path from Tpo to T4 4 by the arrows in red. We occasionally de-
note the vertex T}, by the ordered pair (k,n). This digraph is called the
boustrophedon graph.

The boustrophedon transform developed as a generalization of the Seidel-
Entringer-Arnold method of calculating alternating permutations as seen in
[1]. An alternating permutation of the set [n] is an arrangement of those
numbers into an order cq,...,c, such that no element ¢; is between c¢;_1
and c; 41 for any value of ¢ and ¢; < c2. In other words, ¢; < ¢4 if ¢ is
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odd and ¢; > ¢;41 if i is even. We use DU (n) to denote the set of down-up
permutations on [n], that is to say, 0 = 0103...0, where o; € [n] for all
1 <i < n and with o1 > 09, 09 < 03, 03 > 04, and so forth. In this paper,
we show that there is a bijection between the set of all paths from (0,0)
to (n,n) in the boustrophedon graph and the set DU(n) of all down-up
permutations on [n], and we further explore the boustrophedon transform
by using umbral calculus on a more general transformation of sequences.

2. EXAMPLES
We now explore several examples using the boustrophedon transform.

Example 1. The boustrophedon transform of the sequence (1,0,0,0,...)
generates the Euler numbers as seen in Figure 1.

1
0 1
1 1 0
0 1 2 2
5 ) 4 2 0

FIGURE 1. Triangle generated by (1,0,0,0,...)

Example 2. The boustrophedon transform of the Catalan numbers gener-
ates the sequence (D,,) = (1, 3,10, 37,149, 648, 3039, 15401, 84619, 505500, . . .)
as shown in Figure 2.

1
2 3
10 8 )
14 24 32 37
149 135 111 79 42

FI1GURE 2. Triangle generated by the Catalan numbers
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Example 3. Applying the boustrophedon transform successively to the Eu-

ler numbers yields the sequence (B,,) = (1, 2,4, 10, 32,122, 544, 2770, 15872,101042, . . .)
as seen in Figure 3. This sequence is in fact that of the number of zig-zag
permutations on n.

1
1 2
4 3 1
2 6 9 10
32 30 24 15 )

FIiGURE 3. Triangle generated by the Euler numbers

Example 4. The sequence of Euler numbers, or up/down numbers, is given
by the EGF, E(x) = tanz + secz, with the first few terms being 1, 1, 1,
2, 5, 16, 61, 272, 1385, 7936, 50521. These numbers are notable for n > 2;
they are half the number of alternating permutations on [n].

n
Example 5. Taking b,, = Z (Z) ai. to be the binomial transform of a se-
k=0
quence (ay), we can show that the boustrophedon transform of the sequence
(tn) of all 1’s is simply the binomial transform of the Euler numbers. Let
(tn) be the sequence of all 1’s and (s,,) its boustrophedon transform. Then
we have that

n

Sp = Z <Z> trEn, k.

k=0

Since t; = 1 for all k, we have
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n
Setting ¢ = n — k yields s, = Z (n) FE;, which is the binomial transform
i
i=0
of the Euler numbers.

3. THE PATH-PERMUTATION BIJECTION THEOREM

We seek to constructively establish a bijection between the set of paths
from (0,0) to (n,n) in the boustrophedon graph and DU (n). This bijection
relies on the following lemma.

Lemma 3.1. Counting Principle: Suppose i > 1,7 > 1,i+j < n and
T <22 <3< < Tp—1 < Tp. Then x; < Tp_jy1.

Proof. Suppose to the contrary that there exists some z; > ,—;41. Then
i>n—j4+1and 1+ 7 >n+ 1, which is a contradiction. [l

Theorem 3.2. Let S, be the set of all paths in the boustrophedon graph
starting at (0,0) and ending at (n,n). Then there exists a bijection

¢: S, — DU(n).

Proof. (=) Consider a path in S,,. For each 7,1 < i < n, define f(i) to
be the vertex where the path enters row ¢. Let  be the number of edges
traversed by the path in row . Then there is a downward arrow from (7, f(i)+
x;) to (i + 1, f(i+ 1)), and hence f(i) +z; + f(i+ 1) =i+ 1. Since x; > 0,

(1) FO) + fi+1) <i+1

We can define an element o = o109 - - - 0, € DU (n) inductively as follows.

Let 01 = n— f(n)+1and oo = f(n—1). Then oy is the f(n)" element of
1 <2< 3<---<n counting from the right and o is the f(n—1)" element
counting from the left. By the counting principle, o1 and o9 are defined and
o2 < 01. Suppose we have defined 010203 - - - 02; so that o1 ---0g; is down-
up and let y(1) < y(2) < --- < y(n — 25 + 1) be all the ordered elements of
[n)\ {01,029, ,02j—1}. Then o9; is the f(n — 2j + 1)*® element from the
left, that is, 02 = f(n—2j+1). Define 2541 to be the f(n—2j)" element of
n]\{o1,02,...,00j—1} from the right. So 09j41 = y(n—2j+1—f(n—2j5)+1).
Since f(n —2j) + f(n —2j+1) < n—2j+1, we have 09; < 09541 by the
counting principle.

Now let 2(1) < 2(2) < 2(3) < - -+ < z(n — 2j) be all the ordered elements
of [n] \ {o1,---,09;}. Since we have removed only oy; from the previous
list, and o9; < 09;41, it follows that og;; is still the f(n — 2j)th element
from the right. That is, o9; = z(n — 25 — f(n — 2j) + 1). Define o912
to be the f(n — 25 — 1)™ element of [n]\{o1,...,02j} from the left. So
09j+2 = f(n —2j — 1), and since f(n —2j — 1) + f(n — 2j) < n— 2j, the
counting principle implies 0912 < 02;41. Thus we have defined an element
of DU (n).
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(<) Given a permutation o = o103 ---0, € DU(n), define the set of pairs
{(¢, f(£))|1 < ¢ < n} by the equations

(2) fn=2j) =n+1-[oi:0i>091,i <25} — 0511

(3) fn =25 —1) = 0912 — {01 : 03 < 0gj42,1 <25 + 1},

where 0 < j < ”T“ This set of pairs uniquely determines a path in the
boustrophedon graph by taking each pair (¢, f(¢)) to be the vertex at which

it enters the /%" row. To verify that this actually determines such a path, it
suffices to show that f(¢) # 0 for 1 </ < n. So we have

f(n—2j)=n+1—|{0;:0; > 09j41,1 < 2j}| — 02541,
and since 02;41 = k for some k < n, it follows that

f(n—2j):n+1—‘{0120i>k,i<2j}|—k‘
Sntl—(n—k)—k
=1.

Similarly, we have
f(n — 2j — 1) = 02542 — | {O‘Z' o < O'2j+2,i < 2j + 1} |,
and since 09542 = k for some k < n, it follows that

fn=2—-1)=k—|{o;:0, <k,i<2j+1}
>k—(k—1)
=1.

By construction, applying the function ¢ to this path results in the given
permutation o. O

Example 6. Consider the permutation o = 316274958. We map o to a set
of vertices, fixing a path on the boustrophedon graph, using equations (2)
and (3).From this we obtain f(1) =1, f(2) =1,f(3) =1,f(4) =1, f(5) =
3,f(6) = 1,f(7) = 4,f(8) = 1,f(9) = 7. Applying ¢ to this path, we
generate the permutation with o1 = 3,00 = 1,03 = 6,04 = 2,05 = 7,06 =
4,07 = 9,08 = 5,09 = 8, giving us our starting permutation o = 316274958.
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Ty,0

Tho—T11
To 0615 1—T>
T3 0—>131—>130—13 3

.
Tyge—Ty 3Ty 06Ty 1—T4p
N N\ Y] N N

T50—151—150—T5 3=T5 4—>T5 5
. . 7
Ts6—165—16,4 TQS&;‘(—Tﬁ,2(—T6,1<7T6,0
N N N N N N

/T7,0 /T7,1 /T7,2 /T7,3 T7 4=——=T7 5—T7 6—>17 7
Ty g1 715 15 515 41§ 3——TR 06—T3 1+—T3
N N N N N Nt ~N N

~N
Ty o—T91—T92—T93—T9 4— Ty 5— 19 6——T9 7—>T9 8—>T9 9

FIGURE 4. The path corresponding to Example 6

Example 7. Now consider o = 827361549. From equations (2) and (3), we
obtain f(1) = 1,f(2) = 1,f(3) = 2,f(4) = 1, f(5) = 2,f(6) = 2, f(7) =
2, f(8) = 2,f(9) = 2, which corresponds to the path shown in Figure 5.
Then applying ¢ to this path, we generate the permutation given by o1 =
8,02 = 2,0’3 = 7,04 = 3,0’5 = 6,0’6 = 1,0’7 = 5,0’8 = 4,09 = 9. So
o = 827361549, which is our starting permutation.

Ty,0
Ty o—111
T2,2/<—T2,1<—T2,0
/713,0*>T3,1—>T3,2—)T3,3

Ty ge—Ty 36Ty 06Ty 1—T1p
N\ N N \ N
/Ts,oﬁTal—>T5,2—)T5,3—)T5,4—>T5,5
To6—16,5—T6,4—>163¢6—1T620—1T51—715,0
N Y| N ~N ~N ~ ~N
/T7,0—>T7,1—>T7,2—)T7,3—)T7,4—)T7,5—)T7,6—>T7,7
Ty g—1Tg 7¢—1T3 54—13 5415 46—T3 36—Tg 2—T5 1—T3 ¢
N Y| N N ~N ~N ~ ~N ~N

Ty 0—T91—T920=—T9 319 4—T9 5—>1T9 6—>T9 7—>T9 s—>T9 9

FIGURE 5. The path corresponding to Example 7
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4. UMBRAL RULES

We now give a brief overview of umbral methods before applying them to
the boustrophedon transform. Let (a,) be a sequence of real numbers. The
exponential generating function (EGF) of (a,) is given by the formal power

series
oo

a
Az) = Z g,
() .
n=0
Substituting a™ for a, in the above equation, we obtain
o) [e.e] n
DT S
n! n!
n=0 n=0

This substitution gives a closed form for A(z). The mapping a, — a" is
known as the umbral substitution. We denote it by a, — A™, where A is
understood as an indeterminate called the umbra of (a,,) to reduce confusion.

We can view the umbral substitution as a linear functional. Let R[A]
denote the ring of polynomials in the indeterminate A with real coefficients,
understood as a vector space over R. Define the linear functional

L:R[A] >R
on the basis {A"|n > 0} of R[A] by
L(A™) = ay,.

Given sequences (a,) and (b,), we define the umbral substitution L :
R[A, B] — R on the basis {A"B™ : n,m > 0} by L(A"B™) = a,by,. We
observe here that L(A"B™) = L(A™)L(B™). We can define the umbral sub-
stitutions for any number of sequences in a similar way. From this definition,
we obtain the following rules:

(1) If (an) is a sequence with EGF A(z), then A(z) = L(e4?).
dk
2) &
(2) dzk
(3) If C(x) = A(x)B(x), where A(z), B(z), and C(x) are the EGFs of
the sequences (ay,), (by), and (cy,) respectively, then ¢, = L((A+B)").

The first two rules require that we extend L to the space R[[A]] of formal
power series.

A(z) = L(AFeA?).

Let (E,) be the sequence of Euler numbers. Theorem 3.2 implies that
the number of down-up permutations on [n] is equal to the number of paths
from (0,0) to (n,n) in the boustrophedon graph. From this, the following
equation for the boustrophedon transform can be derived:

n

(4) b= <Z> axEr .

k=0
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We now introduce a general transformation before proving results of the
boustrophedon transform. Let (a,) and (¢,,) be fixed sequences of real num-
bers and define a new sequence (s,) by the transformation.

(5) Sp = kzn:_o <Z> ACro-

We now prove a general result relating the umbrae of these sequences.

Proposition 4.1. Let A, C, and S be umbrae corresponding to (a,), (cy),
and (sy), respectively. Then L(A™) = L((S — C)™) for alln > 1.

Proof.

From the binomial theorem (see Proposition 6.1 in the Appendix), it follows
that

L(S")=L((A+CO)").
Since {S™|n > 0} is a basis for R[S], it follows that L(p(S)) = L(p(A+ C))

d
because if p(S) = Z a,S*, then
k=0
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So consider the polynomial p(S) = (S — C)". Then L(p(S)) = L(p(A+ C))
implies that L((S — C)") = L((A+C — C)") = L(A™). Thus we obtain the
relation L(A™) = L((S — C)"). O

‘We now derive the inverse of this transformation.

Proposition 4.2. The inverse of the transformation (5) is given by the

equation
n
. (n
Qy, = Z(—l)" k(k:) SkCr—k-

k=0
Proof. By Proposition 4.1, we have
ap, = L(A™)
=L((S-0C)")

I
M-

0

We obtain the following corollary for the inverse boustrophedon transform
by taking the sequence (c¢;,) to be the Euler numbers (E,,).

Corollary 4.3. The inverse of the boustrophedon transform (4) is given by

the equation
n

an =Y (~1)" (Z) b By

k=0
forn>1.

Proposition 4.4. The EGF of the sequence of Euler numbers (E,) is given
by E(x) = tanx + sec x.

Proof. Let E and F' be independent umbrae of (E,,). Then L(E") =F,, and
L(F™)=E,. Let f(z) denote the EGF of (E,). Then

f(x)=L(e")=L(e™).



UMBRAL CALCULUS AND THE BOUSTROPHEDON TRANSFORM 11

n

It can be shown that 2E,11 = Z (
k=0

n

k) FEiFE, _1, which implies that

for n > 1. Thus, 2L(E"™!) = L((E+ F)") for n > 1. Multiplying both sides
by —7: and summing over n € N, we obtain

n=1 n=1

Equivalently,

D(§ o (S )

n=0

but

of <i Entlan B E) Y (i En+1xn) B 2L(E)

|
= n! = n!
o0
En n
—9L (E x ) —92E,
n!
n—0
= 2L(EeP®) -2
— 2f,($) - 27
and
o0 o0
(E + F)"z" (E + F)"z"
A ) B B
n=0 n=0
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So 2f'(z) — 2 = (f(z))? — 1. Rearranging the terms, we obtain the initial
value problem given by

{ 2f'(z) = (f(x))® +1

f0)=1
which has solution f(z) = tan (£ + Z) = tanz = secx (see Propositions 6.2
and 6.3 in the Appendix). Therefore, F(z) = tanx + sec z. O

Corollary 4.5. Let (a,) be a sequence with boustrophedon transform (by,).
Let A(z) and B(z) be their respective EGFs. Then B(x)=A(x)(tan x+ sec x).

Proof.

5. CONCLUSION

The properties of the boustrophedon transform are readily explored through
umbral methods. An exploration of the transform’s properties yields the es-
tablishment of a bijection between the paths of the boustrophedon triangle
and the set of alternating permutations on [n|. Further research remains
to be done on transforms similar to the boustrophedon transform and on
the boustrophedon transform of sequences not explored here (although most
sequences in the OEIS.org database were addressed during our research).

The first 200 terms of the boustrophedon transform of the sequence de-
fined by ar = 2Ei4+1 + Ek, where Fj is the kth Euler up/down number,
sequence A104854 in the OEIS.org database, match the sequence defined
as the number of permutations of [n| with fewer than two interior elements
having values lying between the values of their neighbors, sequence A226435
in the database. This implies that the sequences might be the same, but
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further research into sequence A226435 is needed before a proof can be at-
tempted.

Furthermore, there may be other combinations of the sequence of Euler
up/down numbers that, when the boustrophedon transform is taken, result
in combinatorially significant results. Specifically, more research is needed
to determine if a general solution to the set of sequences t(n, k) defined as
the number of permutations of [n] with fewer than k interior elements having
values lying between the values of their neighbors can be expressed using the
boustrophedon transform of a combination of the Euler up/down numbers.

6. APPENDIX

n

Proposition 6.1. (z +y)" = Z <Z> ifkyn_k-
k=0

Proof.

Proposition 6.2. The initial value problem

2f'(2) = (f(2))* +1
f(0)=1
has solution f(x) = tan (% + 7).

Proof. Setting f(x) = y, we get 2% =92+ 1. So ygd_{l = %‘. Integrating

both sides gives arctan(y) = 5 + C. So y = tan(§ + C). Since f(0) =1, we
have 1 = tan(C') which implies C' = 7. Thus y = tan(5 + 7). O

Proposition 6.3. tan (% + %) =tanz + secz.

Proof. By the angle sum formula for the tangent function,

o <x 7'r> _ tan(3) + tan(})

2 * 4) " 1- tan(5) tan(%)
_ tan(3) +1
1 —tan(%)
Using the double-angle formula for the tangent function, we get
2tan(%)

tangy = ———2- .
1 —tan?(%)
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2t

Now let ¢ = tan(5). Through substitution it follows that tanz = = and
tan (% + %) = % Using the Pythagorean theorem, we get
(262 + (1 — 3?2 = (2 4+ 1)
So we have tanx = % and secx= f_t% Then it follows that
tanx +secx = tQj + i
1—-t2 1—+¢
_(t+1)?
1—t2
t+1
Tt
B x m
= tan (5 + Z) .
Therefore, tan (% + %) = tanz + secx. O

6.1. Mathematica Code for searching the OEIS.org database.

(* The OEIScrape module has been adapted from code

freely available at:

http : //www.brotherstechnology.com/objects/OEIS_Automated_Seach.nb*)

(* Instructions for acquiring seqtranslib.m available at
http : //oeis.org/seqtranslib.html *)
<< seqtranslib.m;

(* stripped.txt available at http : //oeis.org/stripped.gz*)
SequenceList = Import|“stripped”, “CSV”];

OEIScrape[seq_List]:=
Module[{urlSuffix, data, url, sorry, strike, rfound, results,
pages, resultPage, p, bingo}, {

urlSuffix = {};

Do[urlSuffix = urlSuffix <> ToString@seq|[k]] <> “%2C%20”,
{k, 1, Length@seq}|;

data = Import[url = “http://oeis.org/search?q=" <> urlSuffix];

Do[{
sorry = 0;

strike = StringCases[data, “Sorry”|; sorry = Length@strike;
Iffsorry > 0, {

If[VerboseAll==True, Print[“Sequence: ”, SequenceList|[n]][[1]],
“Found no matches.”], Null], Break[]}, Null];
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If[Length@StringCases[data, DigitCharacter.. ~~ _ ~~ “result found”] == 0,
rfound = StringCases[data, DigitCharacter.. ~~ _ ~~ “results found”],
rfound = StringCases[data, DigitCharacter.. ~~ _ ~~ “result found”]];
results = ToExpression@StringCases|[rfound, (DigitCharacter..)|[[1, 1]];

If[Or[VerboseAll == True, VerboseResults = True]|,
Print[“Sequence: ”, SequenceList[[n]][[1]], “ Found ”,
results, “ matches ], Null];

AppendTo[OutputList, {n, SequenceList[[n]][[1]], results, PostSeq}]

3 {1}]

]

Off[General::partw];
Off[FetchURL::httperr];
Off[StringCases::strse];

FirstSequence = 1;
LastSequence = 200;

(*Setthelevelofoutput : VerboseAllreturnstheresultof
everysequence, VerboseResultsreturnsonlythematched
sequences(onlyifVerboseAllisFalse)*)

VerboseAll = False;

VerboseResults = True;

OutputFileName = “Matchlist.txt”
OutputList = {};

MemoryConstrained|

Dol{

PreSeq = Range[15];

Do[PreSeq|[i — 1]] = SequenceList|[[n]][[#]], {2, 2, 16}];
OEIScrape[PostSeq = BoustrophedonBisTransform[PreSeq]];
}, {n, FirstSequence, LastSequence}],

500434656]

Print[“Sequence search complete.”]
Export[OutputFileName, OutputList, “CSV”];

6.2. Mathematica code that explores patterns in the sequences.

(* This code uses the OEIS seqtranslib library
found at http : //oeis.org/seqtranslib.html*)
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(* Import the sequence transfrom library *)
<< seqtranslib.m

(* Define an input sequence *)

(* this can be a sequence in generic or specified form *)
inputTable = Table[1, {n, 10}];

inputSeq = {inputTable/.List — Sequence};

(* Apply the transform *)

outputSeq = BoustrophedonBisTransform|[inputSeq];
Print[“Input Sequence:”, inputSeq];
Print[“Transformed Sequence: ”, outputSeq];
primeTable = {2,3,5,7,11};

p[x]:=primeTable[[z]];

(*(Checkfor mod patternswherekisthedivisor()

6 = (0 mod 3),3 ~= k)*)

(* added stuff to check mod powers of primes *)

(* the formating could be better *)

triangular ArrayLayout|triArray _List, opts___]:=

Module[{n = Length[triArray|}, Graphics[]MapIndexed|Text
[Style[#1, Large], {Sqrt[3](n — 1 + #2.{-1,2}),

3(n — First[#2] + 1) }/2]&, triArray, {2}], opts]];

triangleSeq = {{inputSeq([1]]}, {inputSeq[[2]],
outputSeq[[2]]}, {outputSeq[[3]], inputSeq|[3]]
+outputSeq([2]], inputSeq([3]]}, {inputSeq([4]],
inputSeq|[4]] + outputSeq|[3]], inputSeq|[4]]+
outputSeq|[3]] + inputSeq|[[3]] + outputSeq[[2]],
outputSeq[[4]]}, {outputSeq[[5]], inputSeq|[5]]
+outputSeq[[4]] + inputSeq[[4]] + outputSeq|[3]]
+inputSeq([[3]] + outputSeq[[2]] + inputSeq|[[4]]+
outputSeq|[3]], inputSeq[[5]] + outputSeq[[4]]+
inputSeq[[4]] + outputSeq|[[3]] + inputSeq|[3]]+
outputSeq|[2]], inputSeq[[5]] + outputSeq[[4]],
inputSeq([5]]}}

triangular ArrayLayout|triangleSeq]

“pre transform”

premodTransformTable = Column|[Table[{ “\n”, p[z], k,
Mod|[inputSeq, p[z]"k]}, {z, 1,5}, {k, 1, 10}]]

“post transform”

postmodTransformTable = Column[Table[{ “\n”, p[z],
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k, Mod|[outputSeq, p[z] K]}, {z, 1,5}, {k, 1,10}]]

“pre Transform”

premodTransformTable = Column[Table[{k, Mod[inputSeq, k] },
{k,2,10}]]

“post Transform”

postmodTransformTable = Column[Table[{k, Mod[outputSeq, k]},

{k,2,10}]]

(*prettyselfexplanatory, messwiththesequence*)
modifiedInput = inputSeq + outputSeq
modifiedOutput = outputSeq — inputSeq

(*runbackthroughttheprevioustwothingsbutwithm
odifiedsequences*)

“pre transform”

premodTransformTable = Column|[Table[{ “\n”, p[z], k,
Mod[modifiedInput, p[z] k]}, {z, 1,5}, {k, 1, 10}]]

“post transform”

postmodTransformTable = Column[Table[{ “\n”, p[z], k,
Mod[modifiedOutput, p[z]"k]}, {z, 1,5}, {k, 1, 10}]]

“pre Transform”

premodTransformTable = Column[Table[{k, Mod[modifiedInput,
kl}, {k,2,10}]]

“post Transform”

postmodTransformTable = Column[Table[{k, Mod[modifiedOutput,

kl}, {k,2,10}]]
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