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Ideal

Definition

Let k be a field. A subset I ⊂ k [x1, . . . , xn] is an ideal if it
satisfies:

(i) 0 ∈ I.

(ii) If f , g ∈ I, then f + g ∈ I.

(iii) If f ∈ I and h ∈ k [x1, . . . , xn], then h · f ∈ I.
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Basis

Definition

If f1, . . . , fs ∈ k [x1, ..., xn], then I = 〈f1, ..., fs〉 is an ideal of
k [x1, ..., xn]. We will call 〈f1, ..., fs〉 the ideal generated by
f1, ..., fs, where the polynomials f1, ..., fs form a basis of I.

By 〈f1, ..., fs〉 we mean that all of the elements in I can be
written as

∑n
i=1 ai fi where the ai are elements in the ring and

the fi are polynomials in the basis.
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Variety

When considering a collection of polynomials (f1, . . . , fs) in the
field k [x1, . . . , xn] we call the set of common zeroes the affine
variety of those polynomials.
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Variety

When considering a collection of polynomials (f1, . . . , fs) in the
field k [x1, . . . , xn] we call the set of common zeroes the affine
variety of those polynomials.

Affine varieties that consist of a finite collection of points are
described as being zero-dimensional
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Example

Let f1 = x − z, f2 = x + z − y , and f3 = x + y + z2 − 4.
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Example

Let f1 = x − z, f2 = x + z − y , and f3 = x + y + z2 − 4.

The ideal generated by these polynomials is written as
I =< x − z, x − y + z, x + y + z2 − 4 >.
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Example

Let f1 = x − z, f2 = x + z − y , and f3 = x + y + z2 − 4.

The ideal generated by these polynomials is written as
I =< x − z, x − y + z, x + y + z2 − 4 >.

And the variety of the set is V(I) = {(−4,−8,−4), (1, 2, 1)}.
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Example

Let f1 = x − z, f2 = x + z − y , and f3 = x + y + z2 − 4.

The ideal generated by these polynomials is written as
I =< x − z, x − y + z, x + y + z2 − 4 >.

And the variety of the set is V(I) = {(−4,−8,−4), (1, 2, 1)}.

Note that there are only two points where all three functions are
simultaneously zero. This means that
I =< x − z, x − y + z, x + y + z2 − 4 > is a zero dimensional
ideal.
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Monomial Ordering

Multivariable Notation is used throughout this paper to
describe monomials such that xα = xα1

1 xα2
2 . . . xαn

n .
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Monomial Ordering

Multivariable Notation is used throughout this paper to
describe monomials such that xα = xα1

1 xα2
2 . . . xαn

n .

Characteristics

Philip Benge, Valerie Burks, Nicholas Cobar Groebner Basis Conversion Using the FGLM Algorithm



Background
FGLM Algorithm

Conclusion

Monomial Ordering

Multivariable Notation is used throughout this paper to
describe monomials such that xα = xα1

1 xα2
2 . . . xαn

n .

Characteristics

· Total linear ordering on Z
n
≥0
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Monomial Ordering

Multivariable Notation is used throughout this paper to
describe monomials such that xα = xα1

1 xα2
2 . . . xαn

n .

Characteristics

· Total linear ordering on Z
n
≥0

· For monomials xα and xβ , if α > β and γ ∈ Z
n
≥0 then

xαxγ > xβxγ .
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Monomial Ordering

Multivariable Notation is used throughout this paper to
describe monomials such that xα = xα1

1 xα2
2 . . . xαn

n .

Characteristics

· Total linear ordering on Z
n
≥0

· For monomials xα and xβ , if α > β and γ ∈ Z
n
≥0 then

xαxγ > xβxγ .

· Well-ordering on Z
n
≥0.
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Lexicographic Order

In lexicographic, or lex, order, precedence between two
monomials is decided by the vector difference between the
n-tuples of their respective indices.
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Lexicographic Order

In lexicographic, or lex, order, precedence between two
monomials is decided by the vector difference between the
n-tuples of their respective indices.

x1x2
2 >lex x3

2 x4
3
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Lexicographic Order

In lexicographic, or lex, order, precedence between two
monomials is decided by the vector difference between the
n-tuples of their respective indices.

x1x2
2 >lex x3

2 x4
3

α = (1, 2, 0) and β = (0, 3, 4)
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Lexicographic Order

In lexicographic, or lex, order, precedence between two
monomials is decided by the vector difference between the
n-tuples of their respective indices.

x1x2
2 >lex x3

2 x4
3

α = (1, 2, 0) and β = (0, 3, 4)

α − β = (1,−1,−4)
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Graded Lexicographic Order

Graded Lexicographic (grlex) order classifies one monomial as
greater than another based on the total degree of each
monomial. If the degrees are equal, order reverts back to lex.
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Graded Lexicographic Order

Graded Lexicographic (grlex) order classifies one monomial as
greater than another based on the total degree of each
monomial. If the degrees are equal, order reverts back to lex.

x1x2
2 <grlex x3

2 x4
3 since

∑

αi = 3 and
∑

βi = 7
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Graded Reverse Lexicographic Order

Graded Reverse Lexicographic (grevlex) is similar to grlex, but
in the event of a tie, grevlex also looks at the n-vector
difference, but not like lex.
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Graded Reverse Lexicographic Order

Graded Reverse Lexicographic (grevlex) is similar to grlex, but
in the event of a tie, grevlex also looks at the n-vector
difference, but not like lex.

x3
1 x2

2 >grevlex x2x4
3 since

∑

αi =
∑

βi = 5 and
(3, 2, 0) − (0, 1, 4) = (3, 1,−4)
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Polynomial Terminology

Let f = 3x3y2 − x3y + x2 − y .
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Polynomial Terminology

Let f = 3x3y2 − x3y + x2 − y .

The multidegree of f , or multideg(f ) is the maximum n-tuple of
the monomials. multideg(f ) = (3, 2).
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Polynomial Terminology

Let f = 3x3y2 − x3y + x2 − y .

The multidegree of f , or multideg(f ) is the maximum n-tuple of
the monomials. multideg(f ) = (3, 2).

The leading coefficient of f is LC(f ) = amultideg(f ) ∈ k .
LC(f ) = 3
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Polynomial Terminology

Let f = 3x3y2 − x3y + x2 − y .

The multidegree of f , or multideg(f ) is the maximum n-tuple of
the monomials. multideg(f ) = (3, 2).

The leading coefficient of f is LC(f ) = amultideg(f ) ∈ k .
LC(f ) = 3

The leading monomial of f is LM(f ) = xmultideg(f ) (with
coefficient 1). LM(f ) = x3y2
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Polynomial Terminology

Let f = 3x3y2 − x3y + x2 − y .

The multidegree of f , or multideg(f ) is the maximum n-tuple of
the monomials. multideg(f ) = (3, 2).

The leading coefficient of f is LC(f ) = amultideg(f ) ∈ k .
LC(f ) = 3

The leading monomial of f is LM(f ) = xmultideg(f ) (with
coefficient 1). LM(f ) = x3y2

The leading term of f is LT (f ) = LC(f ) · LM(f ). LT (f ) = 3x3y2
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Groebner Basis

Definition

Fix a monomial order. A finite subset G = {g1, ..., gt} of an
ideal, I, is said to be a Groebner basis if < LT (g1), ..., LT (gt) >
= < LT (I) >.
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Groebner Basis

Definition

Fix a monomial order. A finite subset G = {g1, ..., gt} of an
ideal, I, is said to be a Groebner basis if < LT (g1), ..., LT (gt) >
= < LT (I) >.

Definition

A Groebner basis is call reduced if
1 LC(p) = 1 for all p ∈ G.
2 For all p ∈ G, no monomial of p lies in 〈LT (G − {p})〉.
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Groebner Basis

Definition

Fix a monomial order. A finite subset G = {g1, ..., gt} of an
ideal, I, is said to be a Groebner basis if < LT (g1), ..., LT (gt) >
= < LT (I) >.

Definition

A Groebner basis is call reduced if
1 LC(p) = 1 for all p ∈ G.
2 For all p ∈ G, no monomial of p lies in 〈LT (G − {p})〉.

This means that the leading term of any element of I must be
divisible by one of the LT (gi) for G to be a Groebner basis.
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Division Algorithm

Definition

Fix a monomial order > on Z
n
≥0, and let H = (h1, ..., hs) be an

ordered s-tuple of polynomials in k [x1, ..., xn].
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Division Algorithm

Definition

Fix a monomial order > on Z
n
≥0, and let H = (h1, ..., hs) be an

ordered s-tuple of polynomials in k [x1, ..., xn]. Then every
f ∈ k [x1, ..., xn] can be written as

f = a1h1 + ... + ashs + r ,

where ai , r ∈ k [x1, ..., xn],
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Division Algorithm

Definition

Fix a monomial order > on Z
n
≥0, and let H = (h1, ..., hs) be an

ordered s-tuple of polynomials in k [x1, ..., xn]. Then every
f ∈ k [x1, ..., xn] can be written as

f = a1h1 + ... + ashs + r ,

where ai , r ∈ k [x1, ..., xn], and either r = 0 or r is a linear
combination, with coefficients in k , of monomials, none of which
is divisible by any of LT (h1), ..., LT (hs).
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Division Algorithm

Definition

Fix a monomial order > on Z
n
≥0, and let H = (h1, ..., hs) be an

ordered s-tuple of polynomials in k [x1, ..., xn]. Then every
f ∈ k [x1, ..., xn] can be written as

f = a1h1 + ... + ashs + r ,

where ai , r ∈ k [x1, ..., xn], and either r = 0 or r is a linear
combination, with coefficients in k , of monomials, none of which
is divisible by any of LT (h1), ..., LT (hs). We will call r a
remainder of f on division by H. Furthermore if ai , hi 6= 0, then
we have

multideg(f ) ≥ multideg(aihi).
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Division Algorithm

EXAMPLE
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Example

Consider the ideal
I =< x2 + y2 + z2 − 2x , x3 − yz − x , x − y + 2z >.
Then the Groebner basis is,
G = {x − y + 2z, 2y2 − 4yz + 5z2 − 2y + 4z, 3yz2 + 4z3 −
10yz + 11z2, 375z4 + 974z3 − 1460yz + 144z2}.
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Example

Consider the ideal
I =< x2 + y2 + z2 − 2x , x3 − yz − x , x − y + 2z >.
Then the Groebner basis is,
G = {x − y + 2z, 2y2 − 4yz + 5z2 − 2y + 4z, 3yz2 + 4z3 −
10yz + 11z2, 375z4 + 974z3 − 1460yz + 144z2}.

A Groebner basis has many useful applications, one of which is
the "ideal membership" problem.
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Example

Consider the ideal
I =< x2 + y2 + z2 − 2x , x3 − yz − x , x − y + 2z >.
Then the Groebner basis is,
G = {x − y + 2z, 2y2 − 4yz + 5z2 − 2y + 4z, 3yz2 + 4z3 −
10yz + 11z2, 375z4 + 974z3 − 1460yz + 144z2}.

A Groebner basis has many useful applications, one of which is
the "ideal membership" problem.

Let f = 14xy − 2z + 3, Then dividing f by G = {g1, g2, g3, g4}
using the division algorithm yields
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Example

Consider the ideal
I =< x2 + y2 + z2 − 2x , x3 − yz − x , x − y + 2z >.
Then the Groebner basis is,
G = {x − y + 2z, 2y2 − 4yz + 5z2 − 2y + 4z, 3yz2 + 4z3 −
10yz + 11z2, 375z4 + 974z3 − 1460yz + 144z2}.

A Groebner basis has many useful applications, one of which is
the "ideal membership" problem.

Let f = 14xy − 2z + 3, Then dividing f by G = {g1, g2, g3, g4}
using the division algorithm yields f = 14y · g1 + 7 · g2 + r ,
where r = −35z2 + 14y − 30z + 3. Since r 6= 0, f /∈ I.
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Zero-Dimensional Ideals

A zero-dimensional ideal has a finite number of elements in its
variety.
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Zero-Dimensional Ideals

A zero-dimensional ideal has a finite number of elements in its
variety. Also if we have a zero-dimensional ideal, then for each

variable xi , there is a polynomial in the Groebner basis for I,
with a power of xi as a leading monomial.
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Zero-Dimensional Ideals

A zero-dimensional ideal has a finite number of elements in its
variety. Also if we have a zero-dimensional ideal, then for each

variable xi , there is a polynomial in the Groebner basis for I,
with a power of xi as a leading monomial.

Let I =< xy3 − x2, x3y2 − y > in R[x , y ]. Using grlex the
Groebner basis is G = {x3y2 − y , x4 − y2, xy3 − x2, y4 − xy}
and 〈LT (I)〉 =

〈

x3y2, x4, xy3, y4
〉
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Zero-Dimensional Ideals

Figure: 1
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FGLM Algorithm

The FGLM Algorithm - developed by J.C. Faugère, P. Gianni, D.
Lazard, and T. Mora
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FGLM Algorithm

The FGLM Algorithm - developed by J.C. Faugère, P. Gianni, D.
Lazard, and T. Mora

FGLM converts a Groebner basis for an ideal relative to a
certain monomial order to a Groebner basis for the same ideal
relative to a different monomial order
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FGLM Algorithm

The FGLM algorithm consists of three main parts.
(1) Main Loop: For this first step the user will take the current
input monomial xα, initially 1, and find xαG.
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FGLM Algorithm

The FGLM algorithm consists of three main parts.
(1) Main Loop: For this first step the user will take the current
input monomial xα, initially 1, and find xαG.

In the first case, xαG is linearly independent of the items in Blex .
In this event, xα is added to Blex .
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FGLM Algorithm

In the second case, if xαG is linearly dependent on the
remainders of the other members of Blex , then we have a linear
combination such that

xαG
−

∑

j

cjxα(j)
G

= 0

where xα(j) ∈ Blex and cj ∈ k .
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FGLM Algorithm

In the second case, if xαG is linearly dependent on the
remainders of the other members of Blex , then we have a linear
combination such that

xαG
−

∑

j

cjxα(j)
G

= 0

where xα(j) ∈ Blex and cj ∈ k .

This implies that g = xα −
∑

j cjxα(j) ∈ I. So we add g to the list
Glex as the last element,
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FGLM Algorithm

In the second case, if xαG is linearly dependent on the
remainders of the other members of Blex , then we have a linear
combination such that

xαG
−

∑

j

cjxα(j)
G

= 0

where xα(j) ∈ Blex and cj ∈ k .

This implies that g = xα −
∑

j cjxα(j) ∈ I. So we add g to the list
Glex as the last element, then Glex must be tested to see if it is
the desired Groebner basis.
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FGLM Algorithm

In the second case, if xαG is linearly dependent on the
remainders of the other members of Blex , then we have a linear
combination such that

xαG
−

∑

j

cjxα(j)
G

= 0

where xα(j) ∈ Blex and cj ∈ k .

This implies that g = xα −
∑

j cjxα(j) ∈ I. So we add g to the list
Glex as the last element, then Glex must be tested to see if it is
the desired Groebner basis.

To do this, we use the Termination Test, the second part of the
FGLM algorithm.
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FGLM Algorithm

(2) Termination Test: In the event that a new polynomial, g, was
added to Glex , the user must compute LT (g). If the leading
term of g is a power of xi , where xi is the greatest variable in
the new monomial ordering, then the algorithm terminates.
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FGLM Algorithm

(2) Termination Test: In the event that a new polynomial, g, was
added to Glex , the user must compute LT (g). If the leading
term of g is a power of xi , where xi is the greatest variable in
the new monomial ordering, then the algorithm terminates.

Otherwise, proceed to the third part of the algorithm, the Next
Monomial step.
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FGLM Algorithm

(3) Next Monomial: Replace the xα that has just been
processed with the next monomial with respect to the new
order which is not divisible by any of the leading terms of the
polynomials in Glex .
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FGLM Algorithm

(3) Next Monomial: Replace the xα that has just been
processed with the next monomial with respect to the new
order which is not divisible by any of the leading terms of the
polynomials in Glex .

The user repeats the steps of this algorithm until the conditions
are met for the Termination Test.
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FGLM Algorithm

Notice that whenever a polynomial g is added to Glex , its
leading term is LT (g) = xα with coefficient 1, hence each basis
element must be monic.
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FGLM Algorithm

Notice that whenever a polynomial g is added to Glex , its
leading term is LT (g) = xα with coefficient 1, hence each basis
element must be monic.

Also, because the leading term of each basis element is linearly
independent of the leading terms of all other elements, the
Groebner basis obtained from this algorithm must be reduced.
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Example of the FGLM Algorithm

Consider

I =< x2 + 2y2 − y − 2z, x2 − 8y2 + 10z − 1, x2 − 7yz >
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Example of the FGLM Algorithm

Consider

I =< x2 + 2y2 − y − 2z, x2 − 8y2 + 10z − 1, x2 − 7yz >

which has a graded reverse lexicographic Groebner basis

G = {980z2 − 18y − 201z + 13, 35yz − 4y + 2z − 1, 10y2 − y −
12z + 1, 5x2 − 4y + 2z − 1}.
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Example of the FGLM Algorithm

Consider

I =< x2 + 2y2 − y − 2z, x2 − 8y2 + 10z − 1, x2 − 7yz >

which has a graded reverse lexicographic Groebner basis

G = {980z2 − 18y − 201z + 13, 35yz − 4y + 2z − 1, 10y2 − y −
12z + 1, 5x2 − 4y + 2z − 1}.

We will now convert G into a lexicographic Groebner basis
using the FGLM algorithm.
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Example of the FGLM Algorithm

We start with the least variable in the monomial order, z,
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Example of the FGLM Algorithm

We start with the least variable in the monomial order, z,

Calculate the remainder of z0 under division by G,
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Conclusion

Example of the FGLM Algorithm

We start with the least variable in the monomial order, z,

Calculate the remainder of z0 under division by G,

Then increase the degree of z and find remainders under
division by G.
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Example of the FGLM Algorithm

We start with the least variable in the monomial order, z,

Calculate the remainder of z0 under division by G,

Then increase the degree of z and find remainders under
division by G.

We stop once we find a remainder that is linearly dependent
upon the other remainders.
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Example of the FGLM Algorithm

z0
G

= 1
G

= 1

zG = z

z2
G

= 9
490y + 201

980z − 13
980

z3
G

= 2817
480200y + 26653

960400z − 2109
960400
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Example of the FGLM Algorithm

z0
G

= 1
G

= 1

zG = z

z2
G

= 9
490y + 201

980z − 13
980

z3
G

= 2817
480200y + 26653

960400z − 2109
960400

Since z3
G

is a linear combination of 1
G

, zG, and z2
G

,
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Example of the FGLM Algorithm

z0
G

= 1
G

= 1

zG = z

z2
G

= 9
490y + 201

980z − 13
980

z3
G

= 2817
480200y + 26653

960400z − 2109
960400

Since z3
G

is a linear combination of 1
G

, zG, and z2
G

,

g1 = z3 −
313
980

z2 +
37

980
z +

1
490

is the first polynomial added to Glex .
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Example of the FGLM Algorithm

Since we added a polynomial to Glex ,
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Example of the FGLM Algorithm

Since we added a polynomial to Glex ,

the Next Monomial test tells us to consider the next monomial
in the order, y .
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Example of the FGLM Algorithm

We find y itself can be expressed as a linear combination of

y = 490
9 z2

G
− 67

6 zG + 13
18
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Example of the FGLM Algorithm

We find y itself can be expressed as a linear combination of

y = 490
9 z2

G
− 67

6 zG + 13
18

So

g2 = y −
490

9
z2 +

67
6

z −
13
18

is added to Glex .
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Example of the FGLM Algorithm

Now we move to the last monomial in the order, x.

xG = x

x2
G

= 4
5y − 2

5z + 1
5
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Example of the FGLM Algorithm

Now we move to the last monomial in the order, x.

xG = x

x2
G

= 4
5y − 2

5z + 1
5

Notice x2
G

can be expressed as a linear combination of yG and
zG
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Example of the FGLM Algorithm

Now we move to the last monomial in the order, x.

xG = x

x2
G

= 4
5y − 2

5z + 1
5

Notice x2
G

can be expressed as a linear combination of yG and
zG

So

g3 = x2 −
392

9
z2 +

28
3

z −
7
9

is the final function added to Glex
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Example of the FGLM Algorithm

Since x is the largest variable in our order, by the Termination
Test,

we now have a lexicographic Groebner basis for I

Glex =
{z3− 313

980z2+ 37
980z+ 1

490 , y− 490
9 z2+ 67

6 z− 13
18 , x2− 392

9 z2+ 28
3 z− 7

9}
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Lemma and Theorem

Lemma

(Dickson’s Lemma) Given an infinite list xα(1), xα(2), . . . of
monomials in k [x1, . . . , xn], there is an N ∈ N such that every
xα(i) is divisible by one of xα(1), . . . , xα(N).
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Lemma and Theorem

Lemma

(Dickson’s Lemma) Given an infinite list xα(1), xα(2), . . . of
monomials in k [x1, . . . , xn], there is an N ∈ N such that every
xα(i) is divisible by one of xα(1), . . . , xα(N).

Theorem
The algorithm described above terminates on every input
Groebner basis, G, that generates a zero-dimensional ideal I,
and correctly computes a lex Groebner basis, Glex , for I and the
lex monomial basis, Blex , for the quotient ring
A = k [x1, . . . , xn]/I.
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Proof

We observe that monomials are added to the list Blex in strictly
increasing lex order
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Conclusion

Proof

We observe that monomials are added to the list Blex in strictly
increasing lex order

so if Glex = {g1, . . . , gk}, then LT (g1) <lex . . . <lex LT (gk ).
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Conclusion

Proof

We observe that monomials are added to the list Blex in strictly
increasing lex order

so if Glex = {g1, . . . , gk}, then LT (g1) <lex . . . <lex LT (gk ).

when the Main Loop adds a new polynomial gk+1 to
Glex = {g1, . . . , gk}, the leading term LT (gk+1) is the input
monomial in the Main Loop
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Proof

Since the input monomials are provided by the Next Monomial
procedure, it follows that for all k ,

LT (gk+1) is divisible by none of LT (g1), . . . , LT (gk ).
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Proof

If the algorithm did not terminate for some input G, then the
Main Loop would be executed infinitely many times.

Philip Benge, Valerie Burks, Nicholas Cobar Groebner Basis Conversion Using the FGLM Algorithm



Background
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Conclusion

Proof

If the algorithm did not terminate for some input G, then the
Main Loop would be executed infinitely many times.

Cases:
1 Glex would contain an infinite list LT (g1), LT (g2), . . . of

monomials.
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Conclusion

Proof

If the algorithm did not terminate for some input G, then the
Main Loop would be executed infinitely many times.

Cases:
1 Glex would contain an infinite list LT (g1), LT (g2), . . . of

monomials.

2 Blex would contain infinitely many monomials xα(j) whose
remainders on division by G were linearly independent in
A.
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Proof

If:
1 : When applied to LT (g1), LT (g2), . . . , Dickson’s Lemma

would contradict the fact that LT (gk+1) is divisible by none
of LT (g1), . . . , LT (gk ).

Philip Benge, Valerie Burks, Nicholas Cobar Groebner Basis Conversion Using the FGLM Algorithm



Background
FGLM Algorithm

Conclusion

Proof

If:
1 : When applied to LT (g1), LT (g2), . . . , Dickson’s Lemma

would contradict the fact that LT (gk+1) is divisible by none
of LT (g1), . . . , LT (gk ).

2 : This would contradict the assumption that I is
zero-dimensional.

As a result, the algorithm always terminates if G generates a
zero-dimensional ideal I.
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Proof

We now suppose for a contradiction that there were some g ∈ I
such that LT (g) is not a multiple of any of the
LT (gi), i = 1, . . . , k .
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Conclusion

Proof

We now suppose for a contradiction that there were some g ∈ I
such that LT (g) is not a multiple of any of the
LT (gi), i = 1, . . . , k .

If LT (g) > LT (gk ) = xa1
1 , then one easily sees that LT (g) is a

multiple of LT (gk ).
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Proof

We now suppose for a contradiction that there were some g ∈ I
such that LT (g) is not a multiple of any of the
LT (gi), i = 1, . . . , k .

If LT (g) > LT (gk ) = xa1
1 , then one easily sees that LT (g) is a

multiple of LT (gk ).

But this case cannot occur, which means that
LT (gi) < LT (g) ≤ LT (gi+1) for some i < k .
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Proof

We now suppose for a contradiction that there were some g ∈ I
such that LT (g) is not a multiple of any of the
LT (gi), i = 1, . . . , k .

If LT (g) > LT (gk ) = xa1
1 , then one easily sees that LT (g) is a

multiple of LT (gk ).

But this case cannot occur, which means that
LT (gi) < LT (g) ≤ LT (gi+1) for some i < k .

It is easy to show that the non-leading monomials that appear
in g would have been included in Blex by the time LT (g) was
reached by the Next Monomial procedure
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Proof

Hence:
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Proof

Hence:

Glex is a lex Groebner basis for I.
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Conclusion

Proof

To find a monomial basis for A = k [x1, . . . , xn]/I, we need to find
all monomials not in 〈LT (g)〉 for all g ∈ Glex .
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Conclusion

Proof

To find a monomial basis for A = k [x1, . . . , xn]/I, we need to find
all monomials not in 〈LT (g)〉 for all g ∈ Glex .

But Blex contains all such monomials, so Blex forms a monomial
basis for the quotient ring as a k -vector space.
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Conclusion

Proof

To find a monomial basis for A = k [x1, . . . , xn]/I, we need to find
all monomials not in 〈LT (g)〉 for all g ∈ Glex .

But Blex contains all such monomials, so Blex forms a monomial
basis for the quotient ring as a k -vector space.

So Blex consists of all monomials determined by the Groebner
basis Glex . �
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Why Zero-Dimensional?

What if I were not zero dimensional?
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Why Zero-Dimensional?

What if I were not zero dimensional?

The Main Loop would never terminate.
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Conclusion

Why Zero-Dimensional?

What if I were not zero dimensional?

The Main Loop would never terminate.

We would need to know an upperbound on the resulting
Groebner basis.
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Conclusion

We use lexicographic order to solve systems of equations.
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Conclusion

We use lexicographic order to solve systems of equations.

It’s computationally expensive.
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Conclusion

We use lexicographic order to solve systems of equations.

It’s computationally expensive.

I =< x5 + y5 + z5 − 1, x3 + y3 + z2 − 1 >
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Conclusion

Conclusion

We use lexicographic order to solve systems of equations.

It’s computationally expensive.

I =< x5 + y5 + z5 − 1, x3 + y3 + z2 − 1 >

415 terms, total degree of 37, with a largest coefficient of
141,592,532,029,352
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Conclusion

We should find grevlex Groebner basis first.

Philip Benge, Valerie Burks, Nicholas Cobar Groebner Basis Conversion Using the FGLM Algorithm



Background
FGLM Algorithm

Conclusion

Conclusion

We should find grevlex Groebner basis first.

38 terms, total degree of 11, and the largest coefficient is 7
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Conclusion

Conclusion

We should find grevlex Groebner basis first.

38 terms, total degree of 11, and the largest coefficient is 7

Then use the FGLM algorithm.

Philip Benge, Valerie Burks, Nicholas Cobar Groebner Basis Conversion Using the FGLM Algorithm



Background
FGLM Algorithm

Conclusion

The End

The End
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