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Lecture Outline

Day 1 (13:00-16:15, August 27; Fuchu Campus):

Motivations; Importance of Data Analysis on Networks and Graphs
Basics (and Some History) of Fourier Analysis
Basics of Data Representation and Compression on Regular Lattices
via Linear Algebra and Fourier Analysis

Day 2 (13:00-18:00, August 28; Fuchu Campus):

Basics of Graph Theory, Graph Laplacian Eigenvalues/Eigenvectors
Graph partitioning
Multiscale Basis Dictionaries on Graphs and Networks
Applications (signal denoising, morphological analysis of neuronal
dendritic trees, etc.)
Discussions on potential agricultural applications including “Green and
Clean Food Productions” with participants
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Motivations

Motivations: Why Graphs and Networks?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)
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Motivations

Motivations: Why Graphs & Networks?

Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels’ for data sampled on the regular lattices.
Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful! E.g., Nonlocal means image
denoising of Buades-Coll-Morel.
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Motivations

An Example of Sensor Networks

Figure: Volcano monitoring sensor network architecture of Harvard Sensor
Networks Lab
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Motivations

An Example of Social Networks

Figure: Through the courtesy of Prof. Fan Chung, UC San Diego
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Motivations

An Example of Biological Networks

Figure: From E. Bullmore and O. Sporns, Nature Reviews Neuroscience, vol. 10,
pp.186–198, Mar. 2009.
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Motivations

Another Biological Example: Retinal Ganglion Cells
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Motivations

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, ’95)
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Motivations

A Typical Neuron (from Wikipedia)
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Motivations

Mouse’s RGC as a Graph
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Motivations

The Roadmap

In order to deal with such Data Analysis on Graphs and Networks, we need
to understand how to represent (digital) data and manipulate (e.g.,
compress, filter, . . . ) them in general. This requires some basic knowledge
on:

Fourier Analysis, in particular, Fourier series, and its discrete version
Linear Algebra, in particular, basis vectors, change of bases, linear
transformations, eigenvalues and eigenvectors, and singular value
decomposition (SVD)
Graph Theory terminology

For Day 1, we will review the basics of Fourier Analysis and Linear Algebra,
mainly, from the viewpoint of Data Representation and Approximation.
Day 2 will start by reviewing the basics of Graph Theory and then discuss
the key tools for Data Representation and Analysis on Graphs and
Networks.
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Basics of Fourier Analysis

Outline

1 Motivations

2 Basics and Some History of Fourier Analysis (through the view of 1D
Wave Equation)

3 Basics of Data Representation and Compression on Regular Lattice via
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Basics of Fourier Analysis

The 1D Wave Equation
Around mid 18 C, d’Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.

Consider a perfectly elastic and flexible string of length `.
ρ(x): a mass density; T (x): the tension of the string at x ∈ [0,`].
If u(x, t ) is the vertical displacement of the string at location x ∈ [0,`]
and time t ≥ 0, then the string vibrates according to the 1D wave

equation (a.k.a. the string equation): ρ(x)
∂2u

∂ t 2 = ∂

∂x

(
T (x)

∂u

∂x

)

(a) Jean d’Alembert
(1717–1783)

(b) Leonhard Euler
(1707–1783)

(c) Daniel Bernoulli
(1700–1782)
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Basics of Fourier Analysis

Importance of the Boundary and Initial Conditions

From now on, for simplicity, we assume the uniform density and
constant tension, i.e., ρ(x) ≡ ρ, T (x) ≡ T .
Under this assumption, the above wave equation simplifies to:

ut t = c2uxx c ≡√
T /ρ.

The 1D wave equation above has infinitely many solutions.
Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.
One possibility: both ends of the string are held fixed all the time =⇒
the Dirichlet BC: u(0, t ) = u(`, t ) = 0, ∀t ≥ 0.
As for the IC, let u(x,0) = f (x) (initial position); ut (x,0) = g (x) (initial
velocity), ∀x ∈ [0,`]. What we have then is:

ut t = c2uxx for x ∈ (0,`) and t > 0;
u(0, t ) = u(`, t ) = 0 for t ≥ 0;
u(x,0) = f (x), ut (x,0) = g (x) for x ∈ [0,`].

(1)
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Basics of Fourier Analysis

Various Boundary Conditions
The Dirichlet BC: both ends are fixed:

u(0, t ) = u(`, t ) = 0.

The Neumann BC: both ends are free to move transversally:

ux (0, t ) = ux (`, t ) = 0.

The Robin (a.k.a. impedance) BC: a linearly restorative transverse
force is applied at both ends:

a0u(0, t )+b0ux (0, t ) = a`u(`, t )+b`ux (`, t ) = 0, ai 6= 0 6= bi , i = 0,`.

(a) J.P.G.L. Dirichlet
(1805–1859)

(b) Carl Neumann
(1832–1925)

(c) Gustave Robin
(1855–1897)
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Basics of Fourier Analysis

Behavior of the String u(x, t )

Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, t ) = X (x)T (t ).
Plugging X (x)T (t ) into the (1), we get:

X T ′′ = c2X ′′T =⇒ X ′′

X
= T ′′

c2T
= k,

where k must be a constant.
This leads to the following ODEs:

X ′′−k X = 0 with X (0) = X (`) = 0, (2)

T ′′− c2kT = 0 (3)

Eqn. (2) is the simplest example of the Laplacian eigenvalue problem.
The characteristic equation of (2), i.e., r 2 −k = 0, must be analyzed
carefully.
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Basics of Fourier Analysis

Solving ODEs
Case I: k > 0 =⇒ r =±pk; hence

X (x) = Ae
p

kx +Be−
p

kx or A cosh(
p

kx)+B sinh(
p

kx).

Applying the BC X (0) = X (`) = 0 yields A = B = 0, thus the
case of k > 0 is not feasible.

Case II: k = 0 =⇒ X ′′ = 0 =⇒ X (x) = Ax +B , which again leads to
X (x) ≡ 0.

Case III: k < 0. Set k =−ξ2 and ξ> 0. Then the characteristic
equation becomes r 2 +ξ2 = 0, i.e., r =±iξ. Therefore we get

X (x) = A cos(ξx)+B sin(ξx)

By the BC X (0) = X (`) = 0, we get:{
X (0) = 0 =⇒ A = 0
X (`) = B sin(ξ`) = 0 =⇒ ξ= nπ

` , ∀n ∈N
Note n = 0 leads to X (x) ≡ 0 in this case, so it should not be
included.
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Basics of Fourier Analysis

Forming the Solution

Hence we have X (x) = B sin(
nπ

`
x), and for convenience, by setting

B =
√

2

`
, let us define

Xn(x) =ϕn(x) :=
√

2

`
sin

(nπ

`
x
)

.

Similarly, by T ′′ =−ξ2c2T we obtain the family of solutions

Tn(t ) = an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)

.

Now, for each n ∈N, the function

un(x, t ) = Tn(t ) ·ϕn(x) =
{

an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)}√

2

`
sin

(nπ

`
x
)

satisfies (1).
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Basics of Fourier Analysis

Forming the Solution . . .

Hence, by the Superposition Principle,

u(x, t ) =
∞∑

n=1
un(x, t ) =

∞∑
n=1

{
an cos

(nπc

`
t
)
+bn sin

(nπc

`
t
)}
ϕn(x) (4)

is a general solution with yet undetermined coefficients an and bn .
Next, we specify the coefficients an and bn by matching (4) with the
ICs in (1). Thus we get

u(x,0) = f (x) =
∞∑

n=1
anϕn(x) =

∞∑
n=1

an

√
2

`
sin

(nπ

`
x
)

How can we compute {an}, {bn}?
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Basics of Fourier Analysis

An Orthonormal Basis

It turns out that

{
ϕn (x) =

√
2

`
sin

( nπ

`
x
)}

n∈N
form an orthonormal basis of the

space of square integrable (= finite energy) functions denoted by L2[0,`].
In other words, every finite energy function f (x) defined on [0,`] can be written as
a linear combination of {ϕn (x)}n∈N, i.e.,

f (x) ∼ a1ϕ1(x)+·· ·+anϕn (x)+·· ·
Note that this linear combination may have infinite terms, and L2[0,`] is an
example of the so-called (infinite dimensional) Hilbert space where the notion of
the inner product can be defined:

〈
f , g

〉
:=∫ `

0 f (x) g (x)dx.
Then, you can show easily that {ϕn }n∈N form an orthonormal set (an exercise!):

〈
ϕn ,ϕn′

〉= δnn′ :=
{

1 if n = n′;
0 otherwise,

where δn,n′ is called Kronecker’s delta.
In an infinite dimensional Hilbert space, a general orthonormal set does not
necessarily form a basis. However, one can show that {ϕn }k∈N forms a complete
orthonormal set (= an orthonormal basis) of L2[0,`].
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Basics of Fourier Analysis

An Orthonormal Basis . . .

Why such an orthonormal basis is important?
Because it allows us to write any f ∈ L2[0,`] as a linear combination of
{ϕn(x)}n∈N:

f (x) ∼ a1ϕ1(x)+·· ·+anϕn(x)+·· ·
Moreover, computing the coefficients {an} is relatively easy: take the
inner product of both sides with f with ϕk , (i.e., multiply ϕk to the
both sides and integrate it) gives us:〈

f ,ϕk
〉 = 〈

a1ϕ1 +·· ·+akϕk +·· ·+anϕn +·· ·,ϕk
〉

= 〈
a1ϕ1,ϕk

〉+·· ·+〈
akϕk ,ϕk

〉+·· ·+〈
anϕn ,ϕk

〉+·· ·
= a1

〈
ϕ1,ϕk

〉+·· ·+ak
〈
ϕk ,ϕk

〉+·· ·+an
〈
ϕn ,ϕk

〉+·· ·
= a1 ·δ1,k +·· ·+ak ·δk,k +·· ·+an ·δn,k +·· ·
= a1 ·0+·· ·+ak ·1+·· ·+an ·0+·· ·
= ak
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Basics of Fourier Analysis

Forming the Solution . . .

Similarly, ut (x,0) = g (x) =
∞∑

n=1

nπc

`
bn

√
2

`
sin

(nπ

`
x
)

.

Note that
nπc

`
bn = 〈

g ,ϕn
〉=⇒ bn = `

nπc

〈
g ,ϕn

〉
.

Finally, we obtain the particular solution:

u(x, t ) =
∞∑

n=1

{〈
f ,ϕn

〉
cos

(nπc

`
t
)
+ `

nπc

〈
g ,ϕn

〉
sin

(nπc

`
t
)}
ϕn(x),

which satisfies (1) completely including both BC & IC.

Figure: Jean Baptiste Joseph Fourier (1768–1830)
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Basics of Fourier Analysis

Numerical Simulations

Using MATLAB®, I simulated the solutions of 1D wave equation
under the Dirichlet BC with the following parameters: `= 1(m);
c = 1(m/s), g (x) ≡ 0(m/s).
Then two initial displacements were considered: f (x) = sin2(πx) and
f (x) = e−(x−0.5)2/0.01.
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Basics of Fourier Analysis

Remarks

Need to check if our solution makes sense physically. Notice that

c2 = T

ρ
=⇒ the sound frequency =

nπ

`

√
T

ρ
.

Hence, ` is short, T is high, and ρ is small (thin), then such a string
generates a high frequency tone.
On the other hand, if ` is long, T is low, and ρ is large (thick), then it
generates a low frequency tone.
Note that the Neumann BC imposes

ux (0, t ) = ux (`, t ) = 0 ∀t > 0.

This leads to the Fourier cosine series expansions of f and g . Note
that the Neumann problem allows the solution u0(x, t ) = a0 = const.
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Basics of Fourier Analysis

Numerical Simulations under the Neumann BC

Now, let’s do the simulation of the 1D wave equation under the
Neumann BC with the same parameters as before: `= 1(m);
c = 1(m/s), g (x) ≡ 0(m/s).
Again the same two initial displacements were considered:
f (x) = sin2(πx) and f (x) = e−(x−0.5)2/0.01.
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Basics of Fourier Analysis

Remarks . . .

Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

−X ′′ = ξ2X with X (0) = X (`) = 0. (5)

Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with the domain Ω= (0,`).
More importantly, we obtained two objects, namely:

Eigenvalues: λD
n =

(nπ

`

)2
n ∈N;

Eigenfunctions: ϕD
n (x) =

√
2

`
sin

(√
λD

n x

)
n ∈N.

In the case of the Neumann-Laplacian, we got

Eigenvalues: λN
n =

(nπ

`

)2
n ∈N0 :={0}∪N;

Eigenfunctions: ϕN
n (x) =

√
2

`
cos

(√
λN

n x

)
n ∈N0.
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Basics of Fourier Analysis

Remarks . . .

We see that in either BCs, {λn}∞n=1 contains geometric information of
the domain Ω= (0,`).
For instance, the size of the first eigenvalue, λ1 = (π/`)2 tells us the
volume of Ω (i.e., the length ` of Ω in 1D).
Under our assumption of constant tension and constant density,

small λ1 ⇐⇒ long `
large λ1 ⇐⇒ short `

Furthermore, the set {ϕn}∞n=1 forms an orthonormal basis for L2(Ω), so
the eigenfunctions allows us to analyze functions living on Ω.
Next, we will discuss how to represent a signal sampled on a regular
lattice (or grids), i.e., a discrete signal instead of a signal in the
continuum [0,`].
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Basic Linear Algebra

Outline

1 Motivations

2 Basics and Some History of Fourier Analysis (through the view of 1D
Wave Equation)

3 Basics of Data Representation and Compression on Regular Lattice via
Linear Algebra
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Wave Equation)

3 Basics of Data Representation and Compression on Regular Lattice via
Linear Algebra

Motivations: Matrix/Vector Representations of Datasets
Discrete Cosine Transform (DCT)
Principal Component Analysis (PCA)
Block Discrete Cosine Transform (BDCT)
Comments on Real Audio Compression
The Roadmap to Graphs & Networks
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Basic Linear Algebra Motivations

Discrete Signal Representation

Let f = ( f1, . . . , fn)T ∈Rn be a vector representing a digital data (e.g., a
segment of left channel of your favorite song in an mp3 file).
We will not discuss the important Analog-to-Digital Conversion
(including quantization) in this lecture due to the time limitation.
As an example music signal, here is the one with n = 800,791 for a
little more than 18 seconds. The sampling rate is the standard 44.1
kHz (i.e., 44,100 samples per second).

Figure:
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Basic Linear Algebra Motivations

Discrete Signal Representation . . .

Such a vector f ∈Rn can be represented exactly using the linear
combination of the standard (or canonical) basis of Rn :

f = ( f1, . . . , fn)T = f1e1 +·· ·+ fnen ,

where ek = (0, . . . ,0,1
↑
k

,0, . . . ,0)T, k = 1, . . . ,n.

We can write the above in the matrix-vector form:

f = In f ,

where In :=[e1|e2| · · · |en] ∈Rn×n , the n ×n identity matrix.
Suppose we want to approximate/compress the original signal with
n′(¿ n) samples.
We will discuss two very simple approximation methods below.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 36 / 75



Basic Linear Algebra Motivations

Discrete Signal Representation . . .

Such a vector f ∈Rn can be represented exactly using the linear
combination of the standard (or canonical) basis of Rn :

f = ( f1, . . . , fn)T = f1e1 +·· ·+ fnen ,

where ek = (0, . . . ,0,1
↑
k

,0, . . . ,0)T, k = 1, . . . ,n.

We can write the above in the matrix-vector form:

f = In f ,

where In :=[e1|e2| · · · |en] ∈Rn×n , the n ×n identity matrix.
Suppose we want to approximate/compress the original signal with
n′(¿ n) samples.
We will discuss two very simple approximation methods below.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 36 / 75



Basic Linear Algebra Motivations

Discrete Signal Representation . . .

Such a vector f ∈Rn can be represented exactly using the linear
combination of the standard (or canonical) basis of Rn :

f = ( f1, . . . , fn)T = f1e1 +·· ·+ fnen ,

where ek = (0, . . . ,0,1
↑
k

,0, . . . ,0)T, k = 1, . . . ,n.

We can write the above in the matrix-vector form:

f = In f ,

where In :=[e1|e2| · · · |en] ∈Rn×n , the n ×n identity matrix.
Suppose we want to approximate/compress the original signal with
n′(¿ n) samples.
We will discuss two very simple approximation methods below.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 36 / 75



Basic Linear Algebra Motivations

Discrete Signal Representation . . .

Such a vector f ∈Rn can be represented exactly using the linear
combination of the standard (or canonical) basis of Rn :

f = ( f1, . . . , fn)T = f1e1 +·· ·+ fnen ,

where ek = (0, . . . ,0,1
↑
k

,0, . . . ,0)T, k = 1, . . . ,n.

We can write the above in the matrix-vector form:

f = In f ,

where In :=[e1|e2| · · · |en] ∈Rn×n , the n ×n identity matrix.
Suppose we want to approximate/compress the original signal with
n′(¿ n) samples.
We will discuss two very simple approximation methods below.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 36 / 75



Basic Linear Algebra Motivations

I. Linear Approximation
Only retain the first n′ coordinates, i.e., set fk = 0 for k > n′.

Figure:

Clearly, this approximation/compression strategy is not efficient for a signal
represented in the standard basis!

Aja: the first 100,000 samples
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Basic Linear Algebra Motivations

I. Linear Approximation
Only retain the first n′ coordinates, i.e., set fk = 0 for k > n′.
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Figure: The first n′ = 100,000 coefficients are retained (only 12.5% of the whole
coefficients)

Clearly, this approximation/compression strategy is not efficient for a signal
represented in the standard basis!

Aja: the first 100,000 samples
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Basic Linear Algebra Motivations

I. Linear Approximation
Only retain the first n′ coordinates, i.e., set fk = 0 for k > n′.
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Figure: The red portion represents lost samples

Clearly, this approximation/compression strategy is not efficient for a signal
represented in the standard basis!

Aja: the first 100,000 samples
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I. Linear Approximation
Only retain the first n′ coordinates, i.e., set fk = 0 for k > n′.
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Clearly, this approximation/compression strategy is not efficient for a signal
represented in the standard basis!

Aja: the first 100,000 samples
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Basic Linear Algebra Motivations

II. Nonlinear Approximation
Sort the absolute value of the coefficients in a nondecreasing order, i.e.,
| f(1)| ≥ | f(2)| ≥ · · · ≥ | f(n)|; then set f(k) for k > n′.

Figure:

This nonlinear approximation is a bit better than the linear one; yet it is
still not good!

Aja: the largest 100,000 samples
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Basic Linear Algebra Motivations

II. Nonlinear Approximation
Sort the absolute value of the coefficients in a nondecreasing order, i.e.,
| f(1)| ≥ | f(2)| ≥ · · · ≥ | f(n)|; then set f(k) for k > n′.
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Figure: The 100,000 largest coefficients are retained (only 12.5% of the whole
coefficients)

This nonlinear approximation is a bit better than the linear one; yet it is
still not good!

Aja: the largest 100,000 samples
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Basic Linear Algebra Motivations

II. Nonlinear Approximation
Sort the absolute value of the coefficients in a nondecreasing order, i.e.,
| f(1)| ≥ | f(2)| ≥ · · · ≥ | f(n)|; then set f(k) for k > n′.
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Figure: The red portion represents lost samples

This nonlinear approximation is a bit better than the linear one; yet it is
still not good!

Aja: the largest 100,000 samples
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Basic Linear Algebra Motivations

II. Nonlinear Approximation
Sort the absolute value of the coefficients in a nondecreasing order, i.e.,
| f(1)| ≥ | f(2)| ≥ · · · ≥ | f(n)|; then set f(k) for k > n′.
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This nonlinear approximation is a bit better than the linear one; yet it is
still not good!

Aja: the largest 100,000 samples
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Basic Linear Algebra Motivations

Signal Representation via a General Basis
Suppose there is another basis of Rn , say, {u1, . . . ,un} ⊂Rn .
A set of vectors {u1, . . . ,un} ⊂Rn forms a basis of Rn

def.⇐⇒ {u1, . . . ,un} are linearly independent and any vector f ∈Rn can be
written as a linear combination of these basis vectors.
Let the linear combination coefficients be {c1, . . . ,cn} such that

f = c1u1 +·· ·+cnun =U c ,

where U = [u1| · · · |un] ∈Rn×n and c = (c1, . . . ,cn)T ∈Rn are called the
basis matrix and the expansion coefficient vector of f relative to U ,
respectively.
Given an input signal f ∈Rn and a basis {u1, . . . ,un} ⊂Rn , how to
compute the expansion coefficients {c1, . . . ,cn}?
In general, one needs to solve the linear system of equation f =U c
numerically, i.e., c =U−1 f . Normally, solving such a system
numerically (or equivalently computing U−1 and multiplying it to f )
costs O(n3), very expensive, in particular, for large n.
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Basic Linear Algebra Motivations

Signal Representation via an Orthonormal Basis
However, if the basis vectors {u1, . . . ,un} form an orthonormal basis of
Rn , then we can reduce the computational cost to O(n2).
Let

〈
x , y

〉
:=yTx = x1 y1 +·· ·+xn yn be the standard inner (or dot or

scalar) product in Rn .
The orthonormality of the vectors {u1, . . . ,un} means〈

ui ,u j
〉= δi j (Kronecker’s delta)=

{
1 if i = j ;

0 otherwise.

If {u1, . . . ,un} is an orthonormal basis of Rn , then we simplify the
computation of the expansion coefficients:〈

f ,u j
〉 = 〈

c1u1 +·· ·+c j u j +·· ·+cnun ,u j
〉

= 〈
c1u1,u j

〉+·· ·+〈
c j u j ,u j

〉+·· ·+〈
cnun ,u j

〉
= c1

〈
u1,u j

〉+·· ·+c j
〈

u j ,u j
〉+·· ·+cn

〈
un ,u j

〉
= c1 ·0+·· ·+c j ·1+·· ·+cn ·0

= c j
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c1u1 +·· ·+c j u j +·· ·+cnun ,u j
〉

= 〈
c1u1,u j

〉+·· ·+〈
c j u j ,u j

〉+·· ·+〈
cnun ,u j

〉
= c1

〈
u1,u j

〉+·· ·+c j
〈

u j ,u j
〉+·· ·+cn

〈
un ,u j

〉
= c1 ·0+·· ·+c j ·1+·· ·+cn ·0

= c j
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Basic Linear Algebra Motivations

Signal Representation via an Orthonormal Basis . . .

If {u1, . . . ,un} form an orthonormal basis of Rn , then the basis matrix
U is called an orthogonal matrix in Rn , i.e., UTU =UUT = In .
Therefore, there is no need to compute U−1 since U−1 =UT if U is an
orthogonal matrix.
Consequently, we can compute the expansion coefficient vector c by
c =UT f !!
This is a simple matrix-vector multiplication (with a matrix transpose
operation), which costs O(n2) in general.
Clearly, the standard basis of Rn , {e1, . . . ,en}, is an orthonormal basis
but these basis vectors are very localized.
Other examples of orthonormal bases include: Discrete Fourier Basis;
Discrete Cosine Basis; Discrete Sine Basis; Discrete Wavelet Basis;
Principal Component Analysis (PCA) Basis (a.k.a. Karhunen-Loève
Basis), . . .
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Basic Linear Algebra Discrete Cosine Transform

Outline

1 Motivations

2 Basics and Some History of Fourier Analysis (through the view of 1D
Wave Equation)

3 Basics of Data Representation and Compression on Regular Lattice via
Linear Algebra

Motivations: Matrix/Vector Representations of Datasets
Discrete Cosine Transform (DCT)
Principal Component Analysis (PCA)
Block Discrete Cosine Transform (BDCT)
Comments on Real Audio Compression
The Roadmap to Graphs & Networks
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Basic Linear Algebra Discrete Cosine Transform

A Few Words on Bases in the Continuum

Let’s briefly return to the continuous setting of the 1D wave equation
with the Neumann BC.
Then, recall the basis functions in this case are:

ϕk (x) :=


1p
`

if k = 0;√
2
` cos

(
πkx
`

)
, if k > 0.

where k ∈N0 :={0}∪N= {0,1, . . .} represents the frequency.

Just like

{√
2

`
sin

(
kπx

`

)}
k∈N

, the above {ϕk (x)}k∈N0 also form an

orthonormal basis of L2[0,`]. In other words, every finite energy
function defined on [0,`] can be written as a linear combination of
{ϕk (x)}k∈N0 .
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Basic Linear Algebra Discrete Cosine Transform

Discrete Cosine Transform (DCT)
Let’s discretize ϕk (x) at the regularly sampled points x j :=(

j + 1
2

)
∆x,

j = 0,1, . . . ,n −1, where ∆x := `
n is called the sampling rate.

Then, the resulting vector (for k > 0) is:

ϕk (x j ) :=
√

2

`
cos

(
πkx j

`

)
=

√
2

`
cos

(
πk( j + 1

2 )

n

)
= 1p

∆x
·
√

2

n
cos

(
πk( j + 1

2 )

n

)
By defining ϕk :=p∆x

(
ϕk (x0), · · · ,ϕk (xn−1)

)T ∈Rn , we have:〈
ϕk ,ϕk ′

〉
L2[0,`] =

∫ `

0
ϕk (x)ϕk ′(x)dx

≈
n−1∑
j=0

ϕk (x j )ϕk ′(x j )∆x The Midpoint Rule!

=
n−1∑
j=0

p
∆xϕk (x j )

p
∆xϕk ′(x j )

= 〈
ϕk ,ϕk ′

〉
Rn = δkk ′

Hence, ≈ above turns out to be exact = !!
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Basic Linear Algebra Discrete Cosine Transform

The First 10 vectors ϕ0, . . . ,ϕ9
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Basic Linear Algebra Discrete Cosine Transform

Discrete Cosine Transform (DCT) . . .
One can show that {ϕ0, . . . ,ϕn−1} form an orthonormal basis of Rn .
Hence, the Discrete Cosine Basis matrix, Φ :=[

ϕ0| · · · |ϕn−1

] ∈Rn×n is
an orthogonal matrix.
Hence, we can write a given vector f as a linear combination of
{ϕ0, . . . ,ϕn−1}, i.e., f =Φc , and the expansion coefficient vector c can
be computed by c =ΦT f .
Normally, it would take O(n2) to compute c , but in this case, thanks
to the special properties of these basis vectors, one can compute c in
O(n logn) based on the Fast Fourier Transform (FFT) algorithm!
The process of transforming an input vector to the expansion
coefficients relative to the Discrete Cosine Basis is referred to as
Discrete Cosine Transform (DCT); or DCT-Type II to be more precise.
See, e.g., G. Strang: “The discrete cosine transform,” SIAM Review,
vol. 41, pp. 135–147, 1999, for the details.
Let’s see how the quality of approximation changes if we use
{ϕ0, . . . ,ϕn−1} instead of {e1, . . . ,en}.
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The process of transforming an input vector to the expansion
coefficients relative to the Discrete Cosine Basis is referred to as
Discrete Cosine Transform (DCT); or DCT-Type II to be more precise.
See, e.g., G. Strang: “The discrete cosine transform,” SIAM Review,
vol. 41, pp. 135–147, 1999, for the details.
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Basic Linear Algebra Discrete Cosine Transform

I. Linear Approximation with DCT
Compute c =ΦT f ; set ck = 0 for k > n′; and then multiply Φ to the
modified coefficient vector.

Figure:

Clearly, this approximation with DCT is much more efficient than using the
standard basis!
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Figure: The first 100,000 DCT coefficients are retained (only 12.5% of the whole
coefficients): Aja: the first 100,000 DCT coefficients

Clearly, this approximation with DCT is much more efficient than using the
standard basis!
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I. Linear Approximation with DCT
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Figure: Diff. from the original: Aja: the last 700,791 DCT coefficients
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Basic Linear Algebra Discrete Cosine Transform

I. Linear Approximation with DCT
Compute c =ΦT f ; set ck = 0 for k > n′; and then multiply Φ to the
modified coefficient vector.

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

Figure: Diff. from the original: Aja: the last 700,791 DCT coefficients

Clearly, this approximation with DCT is much more efficient than using the
standard basis!

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 47 / 75


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton17'){ocgs[i].state=false;}}



Basic Linear Algebra Discrete Cosine Transform

II. Nonlinear Approximation with DCT
Compute c =ΦT f ; set ck = 0 for k > n′; sort the absolute value of the
coefficients in a nondecreasing order, i.e., |c(1)| ≥ |c(2)| ≥ · · · ≥ |c(n)|; then set
c(k) for k > n′; then multiply Φ to the modified coefficient vector.

Figure:

This nonlinear approximation sounds sharper and solid than the linear one;
and a way better than the standard basis!!
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This nonlinear approximation sounds sharper and solid than the linear one;
and a way better than the standard basis!!
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Basic Linear Algebra Discrete Cosine Transform

II. Nonlinear Approximation with DCT
Compute c =ΦT f ; set ck = 0 for k > n′; sort the absolute value of the
coefficients in a nondecreasing order, i.e., |c(1)| ≥ |c(2)| ≥ · · · ≥ |c(n)|; then set
c(k) for k > n′; then multiply Φ to the modified coefficient vector.
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Figure: Diff. from the original: Aja: the smallest 700,791 DCT coefficients

This nonlinear approximation sounds sharper and solid than the linear one;
and a way better than the standard basis!!
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Basic Linear Algebra Discrete Cosine Transform

II. Nonlinear Approximation with DCT
Compute c =ΦT f ; set ck = 0 for k > n′; sort the absolute value of the
coefficients in a nondecreasing order, i.e., |c(1)| ≥ |c(2)| ≥ · · · ≥ |c(n)|; then set
c(k) for k > n′; then multiply Φ to the modified coefficient vector.
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This nonlinear approximation sounds sharper and solid than the linear one;
and a way better than the standard basis!!
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Basic Linear Algebra Discrete Cosine Transform

Remarks on DCT

The basis vectors of the DCT have physical meaning, i.e., frequencies
of their oscillations.
Hence, the size of each expansion coefficient tells you the amount of
the ‘cosine waves’ of the corresponding frequency in an input signal.
As already mentioned, it is a fast transform with O(n logn) complexity.
The faster the decay of the expansion coefficients is (as the frequency
increases), the smoother an input signal is.
The decay of the expansion coefficients w.r.t. DCT is generally faster
than those using the Discrete Fourier Transform (DFT) and the
Discrete Sine Transform (DST) due to the differences in the boundary
conditions satisfied by these transforms:

DCT: the Neumann BC (the ends are free to move);
DFT: the periodic BC;
DST: the Dirichlet BC (the ends are tied to 0).

The boundary points of real signals are often neither periodic nor tied
to 0 !!
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Basic Linear Algebra Principal Component Analysis

Outline

1 Motivations

2 Basics and Some History of Fourier Analysis (through the view of 1D
Wave Equation)

3 Basics of Data Representation and Compression on Regular Lattice via
Linear Algebra

Motivations: Matrix/Vector Representations of Datasets
Discrete Cosine Transform (DCT)
Principal Component Analysis (PCA)
Block Discrete Cosine Transform (BDCT)
Comments on Real Audio Compression
The Roadmap to Graphs & Networks
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Basic Linear Algebra Principal Component Analysis

Data-Adaptive Bases

The previous bases we considered (the standard basis, and the DCT
basis) are not data adaptive.
The (full) basis vectors are the same regardless of input vectors.
The data adaptivity showed up only when we applied nonlinear
approximation of the input vector.
Now, we shall consider a truly data-adaptive basis, i.e., the basis
vectors totally depends on an input vector.
The set of basis vectors computed in Principal Component Analysis
(PCA) (a.k.a. Karhunen-Loève Transform (KLT)) is one such example.
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Basic Linear Algebra Principal Component Analysis

Basic Assumptions
The starting point of PCA is to assume an underlying stochastic
process F = (F1, . . . ,Fn)T ∈Rn where each Fi is a random variable and
F obeys a probability law described by the probability density function
(pdf), say, pF ( f1, . . . , fn).
Observed data (or a set of input signals) are viewed as realizations of
this stochastic process.
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Figure: Ten realization of some stochastic process
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Basic Linear Algebra Principal Component Analysis

Motivations
Let { f 1, . . . , f N } ⊂Rn be the N realization (or observations) of the
stochastic process F .
The case of N > n is called the classical case while the case of N < n
is called the neoclassical case.
A database of similar objects (e.g., a music database or a face image
database) can be viewed as a collection of realizations from some
(complicated) stochastic process.
What is a good basis to represent and efficiently approximate such
realizations as a whole?
To answer that question, let us first consider the covariance (≈
correlation) between i th and j th entries of the process F :

ΓF (i , j ) :=E[
(Fi −EFi )(F j −EF j )

]
,

where E is the mathematical expectation.
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Basic Linear Algebra Principal Component Analysis

Derivation of PCA

Since we are dealing with the N realizations instead of infinitely many
realizations, we need to replace the above mathematical expectations
by the so-called sample estimates that are computable using those N
realizations.
The sample estimate of ΓF is:

Γ̂F := 1

N

N∑
j=1

f j f T

j − f f
T

,

where f := 1

N

N∑
j=1

f j is the sample mean of this process.

Let’s define the data matrix F :=[
f 1| · · · | f N

] ∈Rn×N .

Then, Γ̂F = 1

N
F F T− f f

T
.
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Basic Linear Algebra Principal Component Analysis

Derivation of PCA . . .
Suppose we want to find a data-adaptive orthonormal basis of Rn such
that the realizations of the process F as a whole ( i.e., on average)
can be best approximated by n′(¿ n) coordinates in the sense of the
mean-squared error.
Let W = [w 1| · · · |w n] be an orthogonal matrix in Rn and let G =W TF ,
i.e.,

F =W G =G1w 1 +·· ·+Gn w n .

Suppose we retain {G1, . . . ,Gn′} and replace {Gn′+1, . . . ,Gn} by some
predetermined constants {αn′+1, . . . ,αn}, and view

F (n′) :=
n′∑

k=1
Gk w k +

n∑
k=n′+1

αk w k ,

as an approximation to F .
The error of this approximation is of course

∆F :=F −F (n′) =
n∑

k=n′+1
(Gk −αk )w k
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Basic Linear Algebra Principal Component Analysis

Derivation of PCA . . .

Hence, the mean-squared error is:

Err(αn′+1, . . . ,αn) := E
[‖∆F‖2] where ‖ ·‖ is the 2-norm in Rn

= E
[
(∆F )T∆F

]
= E

[
n∑

k=n′+1

n∑
l=n′+1

(Gk −αk )(Gl −αl )wT

k w l

]

= E

[
n∑

k=n′+1
(Gk −αk )2

]
since wT

k w l = δkl .

We want to find {αk }n
k=n′+1 that minimize Err(αn′+1, . . . ,αn).

Let {α∗
n′+1, . . . ,α∗

n} be the minimizer of Err(αn′+1, . . . ,αn). Then, α∗
k

should satisfy

∂Err(αn′+1, . . . ,αn)

∂αk
=−2E(Gk −αk ) = 0,

which easily leads to α∗
k = E[Gk ] = E[

wT

k F
]
, k = n′+1, . . . ,n.
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Basic Linear Algebra Principal Component Analysis

Derivation of PCA . . .

Hence, we have:
Err

(
α∗

n′+1, . . . ,α∗
n

) = E

[
n∑

k=n′+1

(Gk −α∗
k )2

]

=
n∑

k=n′+1

E
[
(Gk −E[Gk ])2]

=
n∑

k=n′+1

E
[(

wT
k (F −E[F ])

)2
]

=
n∑

k=n′+1

E
[(

wT
k (F −E[F ])

) (
wT

k (F −E[F ])
)T]

=
n∑

k=n′+1

E
[

wT
k (F −E[F ]) (F −E[F ])T w k

]
=

n∑
k=n′+1

wT
kE

[
(F −E[F ]) (F −E[F ])T

]
w k

=
n∑

k=n′+1

wT
kΓF w k
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Basic Linear Algebra Principal Component Analysis

Derivation of PCA . . .

Finally, let’s find {w k }n
k=n′+1 ⊂Rn that minimize the above

Err
(
α∗

n′+1, . . . ,α∗
n

)
subject to wT

k w k = 1, k = n′+1, . . . ,n.
To do so, we use the Lagrange multipliers, {λn′+1, . . . ,λn} ⊂R:

Ẽrr
(
α∗

n′+1, . . . ,α∗
n

)
:= Err

(
α∗

n′+1, . . . ,α∗
n

)− n∑
k=n′+1

λk
(
wT

k w k −1
)

=
n∑

k=n′+1

{
wT

kΓF w k −λk
(
wT

k w k −1
)}

.

w k minimizing the above should satisfy:

∂Ẽrr
(
α∗

n′+1, . . . ,α∗
n

)
∂w k

= 2ΓF w k −2λk w k = 0,

which leads to the following eigenvalue problem:

ΓF w k =λk w k , k = n′+1, . . . ,n.
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k w k = 1, k = n′+1, . . . ,n.
To do so, we use the Lagrange multipliers, {λn′+1, . . . ,λn} ⊂R:

Ẽrr
(
α∗

n′+1, . . . ,α∗
n

)
:= Err

(
α∗

n′+1, . . . ,α∗
n

)− n∑
k=n′+1

λk
(
wT

k w k −1
)

=
n∑

k=n′+1

{
wT

kΓF w k −λk
(
wT

k w k −1
)}

.

w k minimizing the above should satisfy:

∂Ẽrr
(
α∗

n′+1, . . . ,α∗
n

)
∂w k

= 2ΓF w k −2λk w k = 0,

which leads to the following eigenvalue problem:

ΓF w k =λk w k , k = n′+1, . . . ,n.
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Derivation of PCA . . .

Since n′ was arbitrary as long as 1 ≤ n′ ≤ n, W = [w 1| · · · |w n] ∈Rn×n

the best basis matrix in the mean-squared error sense should satisfy:

ΓF w k =λk w k , k = 1, . . . ,n, i.e., ΓF W =WΛ, Λ :=diag(λ1, . . . ,λn).

Let WPCA ∈Rn×n be the above eigenvector matrix W . Analyzing the
input process F not in the standard basis but in the eigenvector basis
is called the Principal Component Analysis. The transformed process
G =W T

PCAF =: F PCA are called the Principal Componenets of F .
PCA provides the decorrelated coordinates as follows:

ΓF PCA = E
[
(F PCA −E[F PCA]) (F PCA −E[F PCA])T

]
= E

[
W T

PCA (F −E[F ]) (F −E[F ])T WPCA
]

= W T

PCAΓF WPCA︸ ︷︷ ︸
=WPCAΛ

=W T

PCAWPCA︸ ︷︷ ︸
=In

Λ=Λ,

i.e., E
[
(FPCA,i −EFPCA,i )(FPCA, j −EFPCA, j )

]=λiδi j .
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Basic Linear Algebra Principal Component Analysis

Remarks on PCA

PCA is also known as the Karhunen-Loève Transform (KLT).
In practice, the above covariance matrix ΓF must be replaced by the
sample covariance matrix Γ̂F based on the available observations
{ f 1, . . . , f N }.
Note that in the classical setting of n ¿ N (e.g., the census), the
quality of the sample covariance matrix Γ̂F is good whereas in the
neoclassical setting of n À N (e.g., image databases), that quality is
poor.
This implies that under the neoclassical setting, the PCA may not be
effective; in fact, only the first N −1 basis vectors are meaningful.
In practice, it would be best to use the Singular Value Decomposition
(SVD) of the data matrix F instead of using the eigenvalue
decomposition of the sample covariance matrix Γ̂F .
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Basic Linear Algebra Principal Component Analysis

An Example PCA using the Music Signal

Let’s return to our music signal f with n = 800,791 samples.
If we view this whole signal as a single realization N = 1 of the
stochastic process F ∈Rn , then the sample mean and covariance
matrix are meaningless since the former is the signal itself and the
latter is 0 matrix.
Hence, one possibility is to chop this signal into N À 1 equal segments
each of which contains n/N samples. Then consider these N vectors
as the N realizations of the process F ∈Rn/N .
Let’s take N = 941. Then n/N = 851 =: m.
We can increase N > 941 if we allow the segments to overlap.
For example, we can randomly select N = 10,000 starting locations in
the index range between 1 and 799,941(= 800,791−850).
A big question remains: is it reasonable to view these N segments as
N realizations of a single stochastic process F ∈Rm?
Nonetheless, let’s proceed!
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Basic Linear Algebra Principal Component Analysis

Ten Segments of the Music Signal
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Figure: Each segment starts at a random location and contains m = 851 samples

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 62 / 75



Basic Linear Algebra Principal Component Analysis

PCA-based Approximation of the Music Signal

Randomly pick the N = 10,000 starting locations of the segments each
of which has m = 851 samples of the left channel of the Music Signal.
Compute the mean vector f ∈Rm .

Subtract the mean vector from each column of the data matrix
F ∈Rm×N , i.e., compute the centered data matrix F̃ :=F − f 1T.
Compute WPCA ∈Rm×m of F̃ via SVD.
Chop the original signal into N = 941 mutually exclusive segments of
length m = 851, and multiply W T

PCA with each segment to compute the
principal components (i.e., expansion coefficients) of that segment,
which gives us m ×N = 800,791 principal components.
Do the linear and nonlinear approximations as before.
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Basic Linear Algebra Principal Component Analysis

The First 10 PCA Basis Vectors
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Basic Linear Algebra Principal Component Analysis

I. Linear Approximation with PCA
In each segment, only retain the first k principal components out of m
components, which gives us k×N principal components in total; Increment
or decrement k at some segments to have the n′ total retained principal
components; reconstruct all the segments from the retained components.

Figure:

This approximation with PCA is better than that with the global DCT!
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In each segment, only retain the first k principal components out of m
components, which gives us k×N principal components in total; Increment
or decrement k at some segments to have the n′ total retained principal
components; reconstruct all the segments from the retained components.

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

Figure: The first 100,000 principal components are retained (only 12.5% of the
whole coefficients): Aja: the first 100,000 PC’s

This approximation with PCA is better than that with the global DCT!
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Basic Linear Algebra Principal Component Analysis

I. Linear Approximation with PCA
In each segment, only retain the first k principal components out of m
components, which gives us k×N principal components in total; Increment
or decrement k at some segments to have the n′ total retained principal
components; reconstruct all the segments from the retained components.
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Basic Linear Algebra Principal Component Analysis

I. Linear Approximation with PCA
In each segment, only retain the first k principal components out of m
components, which gives us k×N principal components in total; Increment
or decrement k at some segments to have the n′ total retained principal
components; reconstruct all the segments from the retained components.
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Figure: Diff. from the original: Aja: the remaining 700,791 PC’s

This approximation with PCA is better than that with the global DCT!
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Basic Linear Algebra Principal Component Analysis

II. Nonlinear Approximation with PCA
Only retain the n′ largest principal components (in absolute value) of all
the segments; reconstruct all the segments from the retained components.

Figure:

This nonlinear approximation is the best so far!
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Basic Linear Algebra Principal Component Analysis

II. Nonlinear Approximation with PCA
Only retain the n′ largest principal components (in absolute value) of all
the segments; reconstruct all the segments from the retained components.
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Figure: Diff. from the original: Aja: the smallest 700,791 PC’s

This nonlinear approximation is the best so far!
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Basic Linear Algebra Principal Component Analysis

II. Nonlinear Approximation with PCA
Only retain the n′ largest principal components (in absolute value) of all
the segments; reconstruct all the segments from the retained components.
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Figure: Diff. from the original: Aja: the smallest 700,791 PC’s

This nonlinear approximation is the best so far!
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Basic Linear Algebra Principal Component Analysis

Further Remarks on PCA

Computing PCA/KLT by chopping a given music signal and using the
resulting basis for approximation/compression is not computationally
efficient; storing the basis vectors also costs the storage space.
If the underlying stochastic process obeys the (high-dimensional)
Gaussian (or normal) distribution, then PCA/KLT provides not only
the decorrelated coordinates but also the statistically-independent
coordinates!
Again, the quality of the PCA/KLT performance depends on the
number of available realizations N and the dimension of the process n.
The classical setting of n ¿ N is favorable for PCA/KLT.
The mean-squared error minimization is a mathematical convenience;
it may not be necessarily the best criterion in terms of perceptual
quality assessed by humans.
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

Outline

1 Motivations

2 Basics and Some History of Fourier Analysis (through the view of 1D
Wave Equation)

3 Basics of Data Representation and Compression on Regular Lattice via
Linear Algebra

Motivations: Matrix/Vector Representations of Datasets
Discrete Cosine Transform (DCT)
Principal Component Analysis (PCA)
Block Discrete Cosine Transform (BDCT)
Comments on Real Audio Compression
The Roadmap to Graphs & Networks

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 27, 2014 68 / 75



Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

Block Discrete Cosine Transform (BDCT)

Applying DCT locally on the chopped segments is much more efficient
in computation; and the basis vectors do not need to be stored (can
be computed on the fly thanks to the FFT-based DCT algorithm).
This transform is called the Block Discrete Cosine Transform (BDCT).
The 2D version of the BDCT is the de facto standard adopted in the
popular JPEG Image Compression Standard.
Using BDCT makes more sense than using the global DCT since many
signals and images change their characteristics locally; this property is
often called non-stationarity =⇒ Discrete Wavelet Transforms also
allow such localized analysis.

Table:
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

Block Discrete Cosine Transform (BDCT)
Applying DCT locally on the chopped segments is much more efficient
in computation; and the basis vectors do not need to be stored (can
be computed on the fly thanks to the FFT-based DCT algorithm).
This transform is called the Block Discrete Cosine Transform (BDCT).
The 2D version of the BDCT is the de facto standard adopted in the
popular JPEG Image Compression Standard.
Using BDCT makes more sense than using the global DCT since many
signals and images change their characteristics locally; this property is
often called non-stationarity =⇒ Discrete Wavelet Transforms also
allow such localized analysis.

Method Linear Nonlinear
STD 0.7923 0.4955

DCT (global) 0.1292 0.0941
PCA (local) 0.0985 0.0357
BDCT (local) 0.1291 0.0267

Table: Approximation errors measured in the relative `2 error
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

Block Discrete Cosine Transform (BDCT)
Applying DCT locally on the chopped segments is much more efficient
in computation; and the basis vectors do not need to be stored (can
be computed on the fly thanks to the FFT-based DCT algorithm).
This transform is called the Block Discrete Cosine Transform (BDCT).
The 2D version of the BDCT is the de facto standard adopted in the
popular JPEG Image Compression Standard.
Using BDCT makes more sense than using the global DCT since many
signals and images change their characteristics locally; this property is
often called non-stationarity =⇒ Discrete Wavelet Transforms also
allow such localized analysis.

Method Linear Nonlinear
STD 2.022 6.099

DCT (global) 17.77 20.53
PCA (local) 20.13 28.95
BDCT (local) 17.78 31.47

Table: Approximation errors measured in the Signal-to-Noise Ratio (dB)
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

I. Linear Approximation with BDCT
In each segment, only retain the first k BDCT coefficients out of m
coefficient, which gives us k ×N BDCT coefficients in total; Increment or
decrement k at some segments to have the n′ total retained BDCT
coefficients; reconstruct all the segments from the retained coefficients.

Figure:

This approximation with BDCT is better than that with the global DCT!
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I. Linear Approximation with BDCT
In each segment, only retain the first k BDCT coefficients out of m
coefficient, which gives us k ×N BDCT coefficients in total; Increment or
decrement k at some segments to have the n′ total retained BDCT
coefficients; reconstruct all the segments from the retained coefficients.
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Figure: The first 100,000 principal components are retained (only 12.5% of the
whole coefficients): Aja: the first 100,000 BDCT coeff’s

This approximation with BDCT is better than that with the global DCT!
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

I. Linear Approximation with BDCT
In each segment, only retain the first k BDCT coefficients out of m
coefficient, which gives us k ×N BDCT coefficients in total; Increment or
decrement k at some segments to have the n′ total retained BDCT
coefficients; reconstruct all the segments from the retained coefficients.
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Figure: Diff. from the original: Aja: the remaining 700,791 BDCT coeff’s

This approximation with BDCT is better than that with the global DCT!
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

I. Linear Approximation with BDCT
In each segment, only retain the first k BDCT coefficients out of m
coefficient, which gives us k ×N BDCT coefficients in total; Increment or
decrement k at some segments to have the n′ total retained BDCT
coefficients; reconstruct all the segments from the retained coefficients.
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Figure: Diff. from the original: Aja: the remaining 700,791 BDCT coeff’s

This approximation with BDCT is better than that with the global DCT!
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

II. Nonlinear Approximation with BDCT
Only retain the n′ largest principal components (in absolute value) of all
the segments; reconstruct all the segments from the retained components.

Figure:

This nonlinear approximation is the best among all the experiments I
conducted for this lecture!
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Figure: The largest 100,000 principal components are retained (only 12.5% of the
whole coefficients): Aja: the largest 100,000 BDCT coeff’s

This nonlinear approximation is the best among all the experiments I
conducted for this lecture!
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Basic Linear Algebra Block Discrete Cosine Transform (BDCT)

II. Nonlinear Approximation with BDCT
Only retain the n′ largest principal components (in absolute value) of all
the segments; reconstruct all the segments from the retained components.
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Figure: Diff. from the original: Aja: the smallest 700,791 BDCT coeff’s

This nonlinear approximation is the best among all the experiments I
conducted for this lecture!
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Basic Linear Algebra Comments on Real Audio Compression

Reality of Audio Compression

The real compression method used in the mp3 standard is quite involved:
Processing by the so-called Modified DCT (DCT-Type IV with
half-overlap and a smoothing window) to reduce the edge effects.
Quantization of the expansion coefficients using psychoacoustic models
Efficient encoding of the resulting quantized coefficients (e.g., the
Huffman coding; the arithmetic coding, . . . )
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Basic Linear Algebra The Roadmap to Graphs & Networks

The Roadmap to Graphs & Networks

Usual digital signals and images are recorded on the so-called regular
lattice.
All these great harmonic analysis tools (DCT, Wavelets, . . . ) have
been developed on data recorded on such regular lattices.
Now, due to the advent of sensor technology and social network
infrastructure, more and more data are recorded on quite irregular and
non-lattice sample points, which can be represented by graphs and
networks.
A big question: How can we transfer those harmonic analysis tools for
data recorded on graphs and networks?
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