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Lecture Outline

Day 1 (13:00-16:15, August 27; Fuchu Campus):

Motivations; Importance of Data Analysis on Networks and Graphs
Basics (and Some History) of Fourier Analysis
Basics of Data Representation and Compression on Regular Lattices
via Linear Algebra and Fourier Analysis

Day 2 (13:00-18:00, August 28; Fuchu Campus):

Basics of Graph Theory, Graph Laplacian Eigenvalues/Eigenvectors
Graph partitioning
Multiscale Basis Dictionaries on Graphs and Networks
Applications (signal denoising, morphological analysis of neuronal
dendritic trees, etc.)
Discussions on potential agricultural applications including “Green and
Clean Food Productions” with participants
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Introduction

Introductory Remarks
For much more details of this part of the lecture, please check my course
website on “Harmonic Analysis on Graphs & Networks”:
http://www.math.ucdavis.edu/˜saito/courses/HarmGraph/
Good general references on the graph Laplacian eigenvalues are:

R. B. Bapat: Graphs and Matrices, Universitext, Springer, 2010.
F. R. K. Chung: Spectral Graph Theory, Amer. Math. Soc., 1997.
D. Cvetković, P. Rowlinson, & S. Simić: An Introduction to the Theory
of Graph Spectra, Vol. 75, London Mathematical Society Student
Texts, Cambridge Univ. Press, 2010.

As for the graph Laplacian eigenvectors, there are not too many books
(although there may be many papers); one of the good books is

T. Bıyıkoğlu, J. Leydold, & P. F. Stadler, Laplacian Eigenvectors of
Graphs, Lecture Notes in Mathematics, vol. 1915, Springer, 2007.

As for wavelet-like transforms on graphs, there are many recent publications
including those of my group. The following is a good survey paper:

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, & P.
Vandergheynst: “The emerging field of signal processing on graphs,”
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.
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Introduction

Today’s Goals

From my lecture on Day 1, we now know that the localized
orthonormal transform such as BDCT is quite effective to analyze
signals measured on a regular lattice (or equispaced grids).
Since the optimal window size (or length) to chop the input signal is
generally not known a priori, it would be better to develop multiscale
orthonormal transforms, which accommodate multiple window sizes.
Moreover, instead of regular lattices and grids, we now want to develop
such multiscale orthonormal transforms on graphs and networks.
To do so, we need to develop something equivalent to the cosine
functions on graphs and networks.
These turn out to be the eigenvectors of the so-called graph Laplacian
matrix defined on a given graph.
But first, we will go over the basics of graph theory for your
convenience.
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Basics of Graph Theory: Graph Laplacians
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Basics of Graph Theory: Graph Laplacians

Basic Definitions
A graph G consists of a set of vertices (or nodes) V and a set of edges
E connecting some pairs of vertices in V . We write G = (V ,E).
An edge connecting a vertex x ∈V and itself is called a loop.
For x, y ∈V , if ∃ more than one edge connecting x and y , they are
called multiple edges.
A graph having loops or multiple edges is called a multiple graph (or
multigraph); otherwise it is called a simple graph.

A multiple graph A simple graph

In this lecture, we shall only deal with simple graphs. So, when we say
a graph, we mean a simple graph.
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Basics of Graph Theory: Graph Laplacians

If two distinct vertices x, y ∈V are connected by an edge e, then x, y
are called the endpoints (or ends) of e, and x, y are said to be
adjacent, and we write x ∼ y . We also say an edge e is incident with x
and y , and e joins x and y .
The number of edges that are incident with x (i.e., have x as their
endpoint) = the degree (or valency) of x and write d(x) or dx .
If the number of vertices |V | <∞, then G is called a finite graph;
otherwise an infinite graph.
If each edge in E has a direction, G is called a directed graph or
digraph, and such E is written as E .

x

y

e

e = [x, y]
x

y

ē

ē = [y, x]

If e = [x, y], then x and y are called a tail and a head, respectively.
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Basics of Graph Theory: Graph Laplacians

If an edge e does not have a direction, we write e = (x, y).
If each edge e = (x, y) of G has a weight (normally positive), written as
we = wx y , then G is called a weighted graph. G is said to be
unweighted if we = const. for each e ∈ E , and normally we is set to 1.
A path from x to y in a graph G is a subgraph of G consisting of a
sequence of distinct vertices starting with x and ending with y such
that consecutive vertices are adjacent. A path starting from x that
returns to x (but is not a loop) is called a cycle.
For any two vertices in V , if ∃ a path connecting them, then such a
graph G is said to be connected. In the case of a digraph, it is said to
be strongly connected.
A tree is a connected graph without cycles, and is often denoted by T
instead of G. For a tree T , we have |E(T )| = |V (T )|−1, where | · |
denotes a cardinality of a set.
The length (or cost) `(P ) of a path P is the sum of its corresponding
edge weights, i.e., `(P ) :=∑

e∈E(P ) we . Let Px y be a set of all possible
paths from x to y in G. The graph distance from x to y is defined by
d(x, y) := inf

P∈Px y

`(P ).
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Basics of Graph Theory: Graph Laplacians

Clearly, for an undirected graph, we always have d(x, y) = d(y, x), but
that is not the case for a directed graph in general.
diam(G) := sup

x,y∈V
d(x, y) is called the diameter of G. Note that

diam(G) <∞⇐⇒ G is finite.
We say two graphs are isomorphic if ∃ a one-to-one correspondence
between the vertex sets such that if two vertices are joined by an edge
in one graph, the corresponding vertices are also joined by an edge in
the other graph.

isomorphic≈
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Basics of Graph Theory: Graph Laplacians

The complete graph Kn on n vertices is a simple graph that has all
possible

(n
2

)
edges.

K3 K4 K5

If all the vertices of a graph has the same degree, the graph is called
regular. Hence, Kn is regular.
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Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph

The adjacency matrix A = A(G) = (ai j ) ∈Rn×n , n = |V |, for an
unweighted graph G consists of the following entries:

ai j :=
{

1 if vi ∼ v j ;

0 otherwise.

Another typical way to define its entries is based on the similarity of
information at vi and v j :

ai j :=exp(−dist(vi , v j )2/ε2)

where dist is an appropriate distance measure (i.e., metric) defined in
V , and ε> 0 is an appropriate scale parameter. This leads to a
weighted graph. We will discuss later more about the weighted
graphs, how to determine weights, and how to construct a graph from
given datasets in general.
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Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph . . .

The degree matrix D = D(G) = diag(d1, . . . ,dn) ∈Rn×n is a diagonal
matrix whose entries are:

di = d(vi ) = dvi :=
n∑

j=1
ai j .

Note that the above definition works for both unweighted and
weighted graphs.
The transition matrix P = P (G) = (pi j ) ∈Rn×n consists of the following
entries:

pi j :=ai j /di if di 6= 0.

pi j represents the probability of a random walk from vi to v j in one
step:

∑
j pi j = 1, i.e., P is row stochastic.

AT = A, PT 6= P , P = D−1 A .
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Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph . . .

Let G be an undirected graph. Then, we can define several Laplacian
matrices of G:

L(G) :=D − A Unnormalized

Lrw(G) :=In −D−1 A = In −P = D−1L Normalized

Lsym(G) :=In −D− 1
2 AD− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

The signless Laplacian is defined as follows, but we will not deal with
this in this lecture: Q(G) :=D + A.
Graph Laplacians can also be defined for directed graphs; However,
there are many different definitions based on the types/classes of
directed graphs, and in general, those matrices are nonsymmetric. See,
e.g., Fan Chung: “Laplacians and the Cheeger inequality for directed
graphs,” Ann. Comb., vol. 9, no. 1, pp. 1–19, 2005, for an attempt to
symmetrize graph Laplacian matrices for strongly connected digraphs.
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Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph

C (V ) :={all functions defined on V }

C0(V ) :={ f ∈C (V ) |supp f is a finite subset of V }

supp f :={u ∈V | f (u) 6= 0}〈
f , g

〉
:=

∑
u∈V

f (u)g (u)〈
f , g

〉
# :=

∑
u∈V

d(u) f (u)g (u)

L2(V ) :=
{

f ∈C (V )
∣∣∣‖ f ‖# :=

√〈
f , f

〉
# <∞

}
Lemma 〈

P f , g
〉

# =
〈

f ,P g
〉

# ∀ f , g ∈L2(V );

‖P f ‖# ≤ ‖ f ‖# ∀ f ∈L2(V ).
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Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph . . .
Let f ∈L2(V ). Then

L f (vi ) = di f (vi )−
n∑

j=1
ai j f (v j ) =

n∑
j=1

ai j
(

f (vi )− f (v j )
)

.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (vi ) = f (vi )−
n∑

j=1
pi j f (v j ) = 1

di

n∑
j=1

ai j
(

f (vi )− f (v j )
)

.

Lsym f (vi ) = f (vi )− 1√
di

n∑
j=1

ai j√
d j

f (v j ) = 1√
di

n∑
j=1

ai j

 f (vi )√
di

− f (v j )√
d j

 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).
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Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph . . .

A function f ∈C (V ) is called harmonic if

L f = 0, Lrw f = 0, or Lsym f = 0.

A function f ∈C (V ) is called superharmonic at x ∈V if

L f (x) ≥ 0, Lrw f (x) ≥ 0, or Lsym f (x) ≥ 0.

These corresponds to:

f (vi ) ≥ 1

di

n∑
j=1

ai j f (v j ), f (vi ) ≥
n∑

j=1
pi j f (v j ), or f (vi ) ≥

n∑
j=1

ai j√
di

√
d j

f (v j ).

One can also generalize various analytic concepts such as Green’s
functions, Green’s identity, analytic functions, Cauchy-Riemann
equations, . . . , to the graph setting!
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Basics of Graph Theory: Graph Laplacians

Derivatives and Green’s Identity

Let C (E ) :={ϕ defined on E |ϕ(ē) =−ϕ(e),e ∈ E }. For f ∈C (V ), define the
derivative d f ∈C (E ) of f as

d f (e) = d f ([x, y]) := f (y)− f (x).

Theorem (The discrete version of Green’s first identity, Dodziuk 1984)

∀ f1, f2 ∈C0(V ),
〈

d f1,d f2
〉= 〈

Lrw f1, f2
〉

# =
〈

L f1, f2
〉

Corollary
L, Lrw, and Lsym are nonnegative operators, e.g.,〈

Lrw f , f
〉

# =
〈

L f , f
〉= 〈

d f ,d f
〉≥ 0.
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Basics of Graph Theory: Graph Laplacians

The Minimum Principle

Theorem (The discrete version of the minimum principle)

Let f ∈C (V ) be superharmonic at x ∈V . If f (x) ≤ miny∼x f (y), then
f (z) = f (x), ∀z ∼ x.

Proof. From the superharmonicity of f at x ∈V , we have

1

dx

∑
y∼x

ax y f (y) ≤ f (x).

On the other hand, from the condition of this theorem, we have

1

dx

∑
y∼x

ax y f (y) ≥ 1

dx

∑
y∼x

ax y f (x) = f (x).

Hence, we must have
1

dx

∑
y∼x

ax y f (y) = f (x). But this can happen only if
f (z) = f (x), ∀z ∼ x. ä
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Basics of Graph Theory: Graph Laplacians

Why Graph Laplacians?
We already know that the Laplacian eigenvalues and eigenfunctions are extremely
useful for general domains in Rd , e.g., see my paper:
- N. Saito: “Data analysis and representation using eigenfunctions of Laplacian on
a general domain,” Applied & Computational Harmonic Analysis, vol. 25, no. 1,
pp. 68–97, 2008.
The graph Laplacian eigenvalues reflect various intrinsic geometric and topological
information about the graph including connectivity or the number of separated
components; diameter; mean distance, . . .
- Fan Chung: Spectral Graph Theory, Amer. Math. Soc., 1997, says: “This
monograph is an intertwined tale of eigenvalues and their use in unlocking a
thousand secrets about graphs.”
Due to the time limitation, I will not be able to discuss the details on how the
graph Laplacian eigenvalues reveal the geometric and topological information of
the graph. For the details, please check the above book, the books listed in the
beginning of this section, and
- R. Merris: “Laplacian matrices of graphs: a survey,” Linear Algebra Appl., vol.
197/198, pp. 143–176, 1994.
- N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using eigenvalues of
graph Laplacians,” Japan SIAM Lett. vol. 1 pp. 13–16, 2009 (Invited paper).
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Basics of Graph Theory: Graph Laplacians

Why Graph Laplacians? . . .

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
Less studied than graph Laplacian eigenvalues
In this lecture, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Less studied than graph Laplacian eigenvalues
In this lecture, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Basics of Graph Theory: Graph Laplacians

A Simple Yet Important Example: A Path Graph



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1


︸ ︷︷ ︸

L(G)

=



1
2

2

. . .
2

1


︸ ︷︷ ︸

D(G)

−



0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0


︸ ︷︷ ︸

A(G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See G. Strang, “The
discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0,1, . . . ,n −1.
φk (`) = cos

(
πk

(
`+ 1

2

)
/n

)
, k,`= 0,1, . . . ,n −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. However, in general, the
notion of frequency is not well defined.
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Graph Laplacian Eigenvalues

Outline

1 Introduction
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Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues

In this review part, we only consider undirected and unweighted graphs
and their unnormalized Laplacians L(G) = D(G)− A(G). Let |V (G)| = n,
|E(G)| = m.
It is a good exercise to see how the statements change for the
normalized or symmetrically-normalized graph Laplacians.
Can show that L(G) is positive semi-definite.
Hence, we can sort the eigenvalues of L(G) as
0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G) and denote the set of these
eigenvalue by Λ(G).
mG (λ) := the multiplicity of λ.
Let I ⊂R be an interval of the real line. Then define
mG (I ) :=#{λk (G) ∈ I }.
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Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues . . .

Graph Laplacian matrices of the same graph are permutation-similar.
In fact, graphs G1 and G2 are isomorphic iff there exists a permutation
matrix Q such that

L(G2) =QTL(G1)Q.

rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. Easy to check that L(G) becomes mG (0)
diagonal blocks, and the eigenspace corresponding to the zero
eigenvalues is spanned by the indicator vectors of each connected
component.
In particular, λ1 6= 0, i.e., mG (0) = 1 iff G is connected.
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) :=λ1(G), viewing it as a quantitative measure of connectivity.
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Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues . . .

Denote the complement of G (in Kn) by Gc .

The Petersen graph and its complement in K10 (from Wikipedia)

Then, we have
L(G)+L(Gc ) = L(Kn) = nIn − Jn ,

where Jn is the n ×n matrix whose entries are all 1.
We also have:

Λ(Gc ) = {0,n −λn−1(G),n −λn−2(G), . . . ,n −λ1(G)}.
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Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues . . .

From the above, we can see that

λmax(G) =λn−1(G) ≤ n,

and mG (n) = mGc (0)−1.
On the other hand, Grone and Merris showed in 1994

λmax(G) =λn−1(G) ≥ max
1≤ j≤n

d j +1.

Let G be a connected graph and suppose L(G) has exactly k distinct
eigenvalues. Then

diam(G) ≤ k −1.
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Graph Laplacian Eigenfunctions

Basic Properties of GL Eigenfunctions

If G = (V ,E), |V | = n, is connected, then λ0 = 0, a(G) =λ1 > 0.
We already know that the eigenfunction corresponding to λ0 = 0 is
φ0 = 1n .
Hence, φ j corresponding to λ j > 0, j = 1, . . . ,n−1, must be orthogonal
to 1n :

∑
x∈V φ j (x) = 0, i.e., it must oscillate.

If φ(x) = 0, then (Lφ)(x) =λφ(x) = 0. Hence,
∑

y∼x Lx yφ(y) = 0.

Theorem (Grover (1990); Gladwell & Zhu (2002))

An eigenfunction of L(G) cannot have a nonnegative local minimum or a
nonpositive local maximum.

Proof. Suppose φ(x) is a local minimum of φ with φ(x) ≥ 0. Then, ∀y ∼ x,
φ(x)−φ(y) < 0. Now, recall Lφ(x) =∑

y∼x ax y (φ(x)−φ(y)) =λφ(x) ≥ 0
where ax y ≥ 0 is the x y-th entry of the adjacency matrix A(G). These
contradicts each other. ä
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Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If 0�λ< n is an eigenvalue of L(G), then any eigenfunction affording λ
takes the value 0 on every vertex of degree n −1.

Proof. Let v ∈V be a vertex with d(v) = n −1. Then,
Lφ(v) = (n −1)φ(v)−∑

u 6=vφ(u) =λφ(v). But, φ⊥ 1n , so∑
u 6=vφ(u) =−φ(v). This leads to: nφ(v) =λφ(v). Since 0�λ� n, we

must have φ(v) = 0. ä

Theorem (Merris (1998))

Let (λ,φ) be an eigenpair of L(G). If φ(u) =φ(v), then (λ,φ) is also an
eigenpair of L(G ′) where G ′ is the graph obtained from G by either deleting
or adding the edge e = (u, v) depending on whether or not e ∈ E(G).
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Localization Phenomena of Eigenvectors

A Peculiar Phase Transition Phenomenon

We observed an interesting phase transition phenomenon on the behavior
of the eigenvalues of graph Laplacians defined on dendritic trees.

(a) RGC #100

(b) Eigenvalues of RGC #100
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Localization Phenomena of Eigenvectors

A Peculiar Phase Transition Phenomenon . . .
We have observed that this value 4 is critical since:

the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Localization Phenomena of Eigenvectors

We know why such localization/phase transition occurs =⇒ See our
article for the detail: Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries
around graph Laplacian eigenvalue 4,” Linear Algebra & Its Applications,
vol. 438, no. 8, pp. 3231–3246, 2013.

Any physiological consequence? Importance of branching vertices?
Many such eigenvector localization phenomena have been reported:
Anderson localization, scars in quantum chaos, . . .
See also an interesting related work for more general setting and for
application in numerical linear algebra: I. Krishtal, T. Strohmer, & T.
Wertz: “Localization of matrix factorizations,” Foundations of Comp. Math.,
to appear, 2014.

Our point is that eigenvectors corresponding to high eigenvalues are
quite sensitive to topology and geometry of the underlying domain and
cannot really be viewed as high frequency oscillations unless the
underlying graph is a simple unweighted path.
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Localization Phenomena of Eigenvectors

Even a simple path, if edges are weighted, localization tends to occur.

A simple yet weighted path

We want to control such eigenvector localizations by ourselves rather
than dictated by the topology and geometry of the graphs!
This leads us to the development of the multiscale basis dictionaries
on graphs.
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering
Goal: split the vertices V into two subsets, X and X c .

Plan: minimize the RatioCut function1,

RatioCut(X , X c ) :=cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) :=

∑
vi∈X

v j∈X c

ai j

Dividing by the number of nodes ensures that the partitions are of roughly
the same size ⇒ we do not simply cleave a small number of nodes
Dividing by the volume of nodes instead of the number of nodes leads to the
popular Normalized Cut (NCut) of Shi and Malik2

1L. Hagen & A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2J. Shi & J. Malik: “Normalized cuts and image segmentation”, IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

1 Define f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f subject to f defined as above
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Graph Partitioning via Spectral Clustering

f TL f = 1

2

N∑
i , j=1

ai j ( fi − f j )2

= 1

2

∑
vi∈X

v j∈X c

ai j

(√
|X c |
|X | +

√
|X |
|X c |

)2

+ 1

2

∑
vi∈X c

v j∈X

ai j

(
−

√
|X c |
|X | −

√
|X |
|X c |

)2

= cut(X , X c )

( |X c |
|X | + |X |

|X c | +2

)
= cut(X , X c )

( |X |+ |X c |
|X | + |X |+ |X c |

|X c |

)
= |V |RatioCut(X , X c )
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

1 Define f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f subject to f defined as above

Unfortunately, this problem is NP hard (i.e., at least as hard as solving any
Nondeterministic Polynomial time problem) . . .
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Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

1 Define f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f subject to f defined as above

Unfortunately, this problem is NP hard (i.e., at least as hard as solving any
Nondeterministic Polynomial time problem) . . .Relax!
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

A couple things to note about f :
f ⊥ 1 ⇔ ∑

fi = 0

N∑
i=1

fi =
∑

vi∈X

√
|X c |
|X | −

∑
vi∈X c

√
|X |
|X c |

= |X |
√

|X c |
|X | − |X c |

√
|X |
|X c | = 0

‖ f ‖ =
p

N

‖ f ‖2 =
N∑

i=1
f 2

i

= |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = N
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

If we relax our previous definition of f and simply require that (i) f ⊥ 1
and (ii) ‖ f ‖ =

p
N , then we get the relaxed minimization problem1:

min
f ∈RN

f TL f subject to f ⊥ 1, ‖ f ‖ =
p

N

By the Rayleigh-Ritz Theorem, the solution is given by φ1 (scaled as
necessary), where φ1 is the eigenvector corresponding to the second
smallest eigenvalue of L.
φ1 is known as the Fiedler vector and is often used to partition a
graph into two subsets.
von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Lrw :=I −D−1W , over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, pp. 395–416, 2007.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 44 / 85



Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

If we relax our previous definition of f and simply require that (i) f ⊥ 1
and (ii) ‖ f ‖ =

p
N , then we get the relaxed minimization problem1:

min
f ∈RN

f TL f subject to f ⊥ 1, ‖ f ‖ =
p

N

By the Rayleigh-Ritz Theorem, the solution is given by φ1 (scaled as
necessary), where φ1 is the eigenvector corresponding to the second
smallest eigenvalue of L.
φ1 is known as the Fiedler vector and is often used to partition a
graph into two subsets.
von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Lrw :=I −D−1W , over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, pp. 395–416, 2007.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 44 / 85



Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

If we relax our previous definition of f and simply require that (i) f ⊥ 1
and (ii) ‖ f ‖ =

p
N , then we get the relaxed minimization problem1:

min
f ∈RN

f TL f subject to f ⊥ 1, ‖ f ‖ =
p

N

By the Rayleigh-Ritz Theorem, the solution is given by φ1 (scaled as
necessary), where φ1 is the eigenvector corresponding to the second
smallest eigenvalue of L.
φ1 is known as the Fiedler vector and is often used to partition a
graph into two subsets.
von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Lrw :=I −D−1W , over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, pp. 395–416, 2007.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 44 / 85



Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

If we relax our previous definition of f and simply require that (i) f ⊥ 1
and (ii) ‖ f ‖ =

p
N , then we get the relaxed minimization problem1:

min
f ∈RN

f TL f subject to f ⊥ 1, ‖ f ‖ =
p

N

By the Rayleigh-Ritz Theorem, the solution is given by φ1 (scaled as
necessary), where φ1 is the eigenvector corresponding to the second
smallest eigenvalue of L.
φ1 is known as the Fiedler vector and is often used to partition a
graph into two subsets.
von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Lrw :=I −D−1W , over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, pp. 395–416, 2007.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 44 / 85



Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V (G) is a maximal
connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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Graph Partitioning via Spectral Clustering

Example of Graph Partitioning
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Figure: The MN road network
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Figure: The MN road network partitioned via the Fiedler vector of Lrw
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 2
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 3
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 4
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 5
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 6
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 7
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Multiscale Basis Dictionaries
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1 Introduction

2 Basics of Graph Theory: Graph Laplacians

3 A Brief Review of Graph Laplacian Eigenvalues

4 Graph Laplacian Eigenfunctions

5 Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors

6 Graph Partitioning via Spectral Clustering

7 Multiscale Basis Dictionaries

8 Hierarchical Graph Laplacian Eigen Transform (HGLET)

9 Generalized Haar-Walsh Transform (GHWT)

10 Best-Basis Algorithm for HGLET & GHWT

11 Signal Denoising Experiments

12 Discussions on Potential Agricultural Applications

13 Summary & References

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 48 / 85



Multiscale Basis Dictionaries

Motivation: Building Multiscale Basis Dictionaries

Wavelets have been quite successful on regular domains
They have been extended to irregular domains ⇒ “2nd Generation
Wavelets” including graphs, e.g.:

Coifman and Maggioni (2006): diffusion wavelets; Bremer et al.
(2006): diffusion wavelet packets
Jansen, Nason, and Silverman (2008): Adaptation of the lifting scheme
to graphs
Hammond, Vandergheynst, and Gribonval (2011): Spectral graph
wavelet transforms (via spectral graph theory)
. . .

Key difficulties:
The notion of frequency is ill-defined on graphs and the Fourier
transform is not properly defined on graphs
Hence, the use of graph Laplacian eigenvectors, which can be viewed as
“cosines” on graphs, has been quite popular
However, they exhibit peculiar behaviors depending on topology and
structure of given graphs!
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Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

1 Recursively partition the graph

m These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

2 Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Outline

1 Introduction

2 Basics of Graph Theory: Graph Laplacians

3 A Brief Review of Graph Laplacian Eigenvalues

4 Graph Laplacian Eigenfunctions

5 Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors

6 Graph Partitioning via Spectral Clustering

7 Multiscale Basis Dictionaries

8 Hierarchical Graph Laplacian Eigen Transform (HGLET)

9 Generalized Haar-Walsh Transform (GHWT)

10 Best-Basis Algorithm for HGLET & GHWT

11 Signal Denoising Experiments

12 Discussions on Potential Agricultural Applications

13 Summary & References

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 51 / 85



Hierarchical Graph Laplacian Eigen Transform (HGLET)

Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of
the block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

1 Generate an orthonormal basis for the entire graph ⇒ Laplacian
eigenvectors (Notation is φ j

k,l with j = 0)

2 Partition the graph using the Fiedler vector φ j
k,1

3 Generate an orthonormal basis for each of the partitions ⇒ Laplacian
eigenvectors

4 Repeat...

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]

[
φ2

0,0φ
2
0,1 · · ·φ2

0,N 2
0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,N 2
1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,N 2
2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,N 2
3−1

]
...
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

For an unweighted path graph, this exactly yields a dictionary of the
multiscale BDCT-II
Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand ⇒
best-basis algorithm, local discriminant basis algorithm, . . .

A union of bases on disjoint subsets is obviously orthonormal[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]
[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

][
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]
[
φ2

0,0 · · · φ2
0,N 2

0−1

][
φ2

1,0 · · · φ2
1,N 2

1−1

][
φ2

2,0 · · · φ2
2,N 2

2−1

][
φ2

3,0 · · · φ2
3,N 2

3−1

]
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0,0 φ1
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0−1
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φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1
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φ2

0,0 · · · φ2
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0−1
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1,0 · · · φ2
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1−1

][
φ2

2,0 · · · φ2
2,N 2

2−1

][
φ2

3,0 · · · φ2
3,N 2

3−1
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Generalized Haar-Walsh Transform (GHWT)
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Generalized Haar-Walsh Transform (GHWT)

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the
classical Haar and Walsh-Hadamard Transforms, and it generates basis
vectors that are piecewise-constant on their support.

The algorithm proceeds as follows...
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Generalized Haar-Walsh Transform (GHWT)

1 Generate a full recursive partitioning of the graph ⇒ Fiedler vectors
2 Generate an orthonormal basis for level jmax (the finest level) ⇒

scaling vectors on the single-node regions
As with HGLET, the notation is ψ j

k,l
3 Using the basis for level jmax, generate an orthonormal basis for level

jmax−1 ⇒ scaling and Haar-like vectors
4 Repeat... Using the basis for level j , generate an orthonormal basis for

level j −1 ⇒ scaling , Haar-like, and Walsh-like vectors

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,N−2 ψ0
0,N−1

]
...[

ψ
jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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Generalized Haar-Walsh Transform (GHWT)

Remarks

For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions
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Remarks
For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0
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Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure:

This reorganization gives us more options for choosing a good basis
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Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

Figure: Default dictionary; i.e., coarse-to-fine

This reorganization gives us more options for choosing a good basis
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2,1
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1,1 ψ1
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1,2
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0,0 ψ0

0,1 ψ0
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0,3 ψ0
0,4 ψ0

0,5

Figure: Reordered & regrouped dictionary; i.e., fine-to-coarse

This reorganization gives us more options for choosing a good basis
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Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 1
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Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 3, Region k = 2, l = 2
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Generalized Haar-Walsh Transform (GHWT)

Computational Complexity: HGLET vs. GHWT

Recursive Partitioning (RP) via Fiedler vectors costs from O(N log N )
to O(N 2) depending on an input graph
Given a recursive partitioning with O(log N ) levels, the computational
cost of the GHWT is O(N log N ) whereas that of the HGLET is O(N 3)

The following table shows the results of our numerical experiments
computed on a desktop PC (CPU: 16 GB RAM, 3.2 GHz Clock
Speed):

Dataset N jmax RP HGLET GHWT
Dendritic Tree 1154 13 0.49 s 0.99 s 0.07 s

MN Road Network 2640 14 0.76 s 10.57 s 0.18 s
Facebook Graph 4039 46 18.10 s 57.15 s 1.17 s
Brain Mesh Data 127083 21 164.18 s N/A 11.59 s
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Generalized Haar-Walsh Transform (GHWT)

Related Work

The following articles also discussed the Haar-like transform on graphs and
trees, but not the Walsh-Hadamard transform on them:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

2 F. Murtagh, “The Haar wavelet transform of a dendrogram,” J.
Classification, vol. 24, pp. 3–32, 2007.

3 A. Lee, B. Nadler, and L. Wasserman, “Treelets–an adaptive
multi-scale basis for sparse unordered data,” Ann. Appl. Stat., vol. 2,
pp. 435–471, 2008.

4 M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi
supervised learning,” in Proc. 27th Intern. Conf. Machine Learning (J.
Fürnkranz et al. eds.), pp. 367–374, Omnipress, Haifa, 2010.

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 62 / 85



Best-Basis Algorithm for HGLET & GHWT

Outline

1 Introduction

2 Basics of Graph Theory: Graph Laplacians

3 A Brief Review of Graph Laplacian Eigenvalues

4 Graph Laplacian Eigenfunctions

5 Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors

6 Graph Partitioning via Spectral Clustering

7 Multiscale Basis Dictionaries

8 Hierarchical Graph Laplacian Eigen Transform (HGLET)

9 Generalized Haar-Walsh Transform (GHWT)

10 Best-Basis Algorithm for HGLET & GHWT

11 Signal Denoising Experiments

12 Discussions on Potential Agricultural Applications

13 Summary & References

saito@math.ucdavis.edu (UC Davis) TUAT Intensive Course August 28, 2014 63 / 85



Best-Basis Algorithm for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.

We generalize this approach, developing and implementing an algorithm for
selecting the basis from the dictionary of HGLET / GHWT bases that is
“best” for approximation.

As before, we require a cost functional J . For example:

J (x) = ‖x‖p :=
(

n∑
i=1

|xi |p
)1/p

0 < p ≤ 1

For our denoising experiments in the following pages, we used p = 0.1.
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According to cost functional J , this is the best basis for approximation.
With the GHWT bases, we can run the best-basis algorithm on both the
default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.

With the GHWT bases, we can run the best-basis algorithm on both the
default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT bases, we can run the best-basis algorithm on both the
default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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Signal Denoising Experiments
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Signal Denoising Experiments

Original Signal vs. Noisy Signal
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(a) Original signal: mutilated Gaussian
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(b) Noisy signal: SNR = 5dB, i.e.,
Noise energy≈ 0.3162×Signal energy
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Signal Denoising Experiments

Denoising Algorithm

1 Construct the HGLET / GHWT dictionaries on the noisy signal
2 Choose a particular basis either automatically (e.g., the best basis) or

manually (e.g., a basis at the fixed scale)
3 Soft-threshold the expansion coefficients, i.e.,

Sort the expansion coefficients in non-increasing order of magnitude
Specify a magnitude threshold, T , via the “elbow” selection algorithm
Soft-threshold the coefficients c:

dST(i ) =
{

sign(c(i )) · (|c(i )|−T ) if |c(i )| > T

0 otherwise

Note: keep all scaling coefficients intact
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Signal Denoising Experiments

Preliminary Results (Lrw’s for Recursive Partitioning)

Transform SNR (dB) Coefficients Kept (%)
GHWT c2f BB 10.20 24.43
GHWT f2c BB 10.09 1.40
GHWT j = 6 13.47 3.87

GHWT j = 0 (= Walsh) 9.81 1.63
Haar 0 ≤ j ≤ jmax = 14 10.99 1.63

Haar 0 ≤ j ≤ 6 12.03 2.43
HGLET BB (L) 10.15 24.32
HGLET j = 6 (L) 14.01 3.49
HGLET j = 0 (L) 11.06 1.33
HGLET BB (Lrw) 4.85 95.33
HGLET j = 6 (Lrw) 11.79 4.48
HGLET j = 0 (Lrw) 11.18 2.69
HGLET BB (Lsym) 5.65 30.84
HGLET j = 6 (Lsym) 6.40 5.54
HGLET j = 0 (Lsym) 5.60 3.15
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Signal Denoising Experiments

Preliminary Results (Lrw’s for Recursive Partitioning) . . .
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Signal Denoising Experiments

Preliminary Results (L’s for Recursive Partitioning)

Transform SNR (dB) Coefficients Kept (%)
GHWT c2f BB 9.75 25.30
GHWT f2c BB 10.77 1.33
GHWT j = 6 12.81 4.40

GHWT j = 0 (= Walsh) 10.05 1.37
Haar 0 ≤ j ≤ jmax = 14 11.29 1.48

Haar 0 ≤ j ≤ 6 11.63 2.43
HGLET BB (L) 9.93 26.25
HGLET j = 6 (L) 13.29 3.98
HGLET j = 0 (L) 11.06 1.33
HGLET BB (Lrw) 5.02 98.07
HGLET j = 6 (Lrw) 11.56 4.21
HGLET j = 0 (Lrw) 11.18 2.69
HGLET BB (Lsym) 5.24 27.35
HGLET j = 6 (Lsym) 6.11 5.27
HGLET j = 0 (Lsym) 5.60 3.15
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Signal Denoising Experiments

Observations

Overall, the bases at the fixed level j = 6 performed best for this
dataset whereas the best bases performed relatively poor.
This is because at j = 6 the partition turned out to be just right for
removing noise: small enough to capture details, but large enough to
drown out noise.
The best bases with the sparsity criterion with `0.1 norm seem to have
adjusted to noises.
Results were not overly sensitive between the recursive partitioning
based on the Fiedler vectors of L matrices and Lrw matrices.
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Discussions on Potential Agricultural Applications

Discussions on Potential Agricultural Applications

What kind of sensor networks are currently being used for “Green and
Clean Food Productions”?
What kind of sensor networks should be used “Green and Clean Food
Productions” in the future?
What are the aspects/features of measured data you want to obtain?
What kind of mathematical and software tools do you need to extract
such information?
How will you utilize such information for “Green and Clean Food
Productions”?
What would be the cost of deploying such sensor networks in the
fields?
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Discussions on Potential Agricultural Applications

Report on Potential Agricultural Applications of Graph Data
Analysis

Write your thoughts on a potential agricultural application of the
concepts and tools you learned from my lectures (you can further
elaborate some of the topics and questions raised in the previous page)
Submit your via email to saito@math.ucdavis.edu

Page limit: 5 pages or less
File Format: PDF (preferrable) or MS Word
Deadline: 5pm, September 15, 2014
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Summary & References

Summary
Although graph Laplacian eigenvectors have been popular as replacement of
the Fourier (or DCT) basis on a graph, the analogy takes us only so far due
to their sensitivity to the geometry and topology of underlying graphs.
We developed multiscale basis dictionaries on graphs and networks: HGLET
and GHWT. We also developed a corresponding best-basis algorithm.
The HGLET is a generalization of Hierarchical Block Discrete Cosine
Transforms originally developed for regularly-sampled signals and images.
The GHWT is a generalization of the Haar Transform and the
Walsh-Hadamard Transform.
Both of these transforms allow us to choose an orthonormal basis suitable
for the task at hand, e.g., approximation, classification, regression, . . .
They may also be useful for regularly-sampled signals, e.g., can deal with
signals of non-dyadic length; adaptive segmentation, . . .
Developing harmonic analysis tools for directed graphs will be challenging
=⇒ our idea: use distance matrix + SVD instead; to be continued!
Connect to lots of interesting mathematics and applications: harmonic
analysis, discrete mathematics, mathematical physics, PDEs, differential
geometry, signal & image processing, statistics, . . .
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References

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains:

My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”
My Course Slides on “Harmonic Analysis on Graphs and Networks”
Talk slides of the minisymposia on Laplacian Eigenfunctions at:
ICIAM 2007, Zürich (Organizers: NS, Mauro Maggioni); SIAM
Imaging Science Conference 2008, San Diego (Organizers: NS,
Xiaomin Huo); IPAM 5-day Workshop 2009, UCLA (Organizers: Peter
Jones, Denis Grebenkov, NS); SIAM Annual Meeting 2013, San Diego
(Organizers: Chiu-Yen Kao, Braxton Osting, NS).
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Summary & References

The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/˜saito/publications/

N. Saito & J.-F. Remy: “The polyharmonic local sine transform: A new tool
for local image analysis and synthesis without edge effect,” Applied &
Computational Harmonic Analysis, vol. 20, no. 1, pp. 41-73, 2006.
N. Saito: “Data analysis and representation using eigenfunctions of
Laplacian on a general domain,” Applied & Computational Harmonic
Analysis, vol. 25, no. 1, pp. 68–97, 2008.
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using
eigenvalues of graph Laplacians,” Japan SIAM Letters, vol. 1, pp. 13–16,
2009.
Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries around graph Laplacian
eigenvalue 4,” Linear Algebra & Its Applications, vol. 438, no. 8, pp.
3231–3246, 2013.
J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” Japan
SIAM Letters, vol. 6, pp. 21–24, 2014.
J. Irion & N. Saito: “The generalized Haar-Walsh transform,” Proc. 2014
IEEE Workshop on Statistical Signal Processing, pp. 488-491, 2014.
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Thank you very much for your attention!
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