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Chapter 0

Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing
{x|φ(x)} for the class of x such that φ(x). We also write:

{t(x1, . . . , xn)|φ(x1, . . . , xn)}, (where e.g.
t(x1, . . . , xn) = {y|ψ(y, x1, . . . , xn)})

for:
{y|

∨
x1, . . . , xn(y = t(x1, . . . , xn) ∧ φ(x1, . . . , xn))}

We also write

P(A) = {z|z ⊂ A}, A ∪B = {z|z ∈ A ∨ z ∈ B}
A ∩B = {z|z ∈ A ∧ z ∈ B},¬A = {z| /∈ A}

(2) Our notation for ordered n–tuples is ⟨x1, . . . , xn⟩. This can be defined
in many ways and we don’t specify a definition.

(3) An n–ary relation is a class of n–tuples. The following operations are
defined for all classes, but are mainly relevant for binary relations:

dom(R) =: {x|
∨
y⟨y, x⟩ ∈ R}

rng(R) =: {y|
∨
x⟨y, x⟩ ∈ R}

R ◦ P = {⟨y, x⟩|
∨
z|⟨y, z⟩ ∈ R ∧ ⟨z, x⟩ ∈ P}

R↾A = {⟨y, x⟩|⟨y, x⟩ ∈ R ∧ x ∈ A}
R−1 = {⟨y, x⟩|⟨x, y⟩ ∈ R}

We write R(x1, . . . , xn) for ⟨x1, . . . , xn⟩ ∈ R.

(4) A function is identified with its extension or field — i.e. an n–ary
function is an n+ 1–ary relation F such that∧

x1 . . . xn
∧
z
∧
w((F (z, x1, . . . , xn) ∧ F (w, x1, . . . , xn))

→ z = w)

1



2 CHAPTER 0. PRELIMINARIES

F (x1, . . . , xn) then denotes the value of F at x1, . . . , xn.

(5) "Functional abstraction" ⟨tx1,...,xn |φ(x1, . . . , xn)⟩ denotes the function
which is defined and takes value tx1,...,xn whenever φ(x1, . . . , xn) and
tx1,...,xn is a set:

⟨tx1,...,xn |φ(x1, . . . , xn)⟩ =:
{⟨y, x1, . . . , xn⟩|y = tx1,...,xn ∧ φ(x1, . . . , xn)},

where e.g. tx1,...,xn = {z|ψ(z, x1, . . . , xn)}.

(6) Ordinal numbers are defined in the usual way, each ordinal being iden-
tified with the set of its predecessors: α = {ν|ν < α}. The nat-
ural numbers are then the finite ordinals: 0 = ∅, 1 = {0}, . . . , n =
{0, . . . , n − 1}. On is the class of all ordinals. We shall often em-
ploy small greek letters as variables for ordinals. (Hence e.g. {α|φ(α)}
means {x|x ∈ On∧φ(x)}.) We set:

supA =:
⋃
(A ∩On), inf A =:

⋂
(A ∩On)

lubA =: sup{α+ 1|α ∈ A}.

(7) A note on ordered n–tuples. A frequently used definition of ordered
pairs is:

⟨x, y⟩ =: {{x}, {x, y}}.

One can then define n–tuples by:

⟨x⟩ =: x, ⟨x1, x2, . . . , xn⟩ =: ⟨x1, ⟨x1, . . . , xn⟩⟩.

However, this has the disadvantage that every n + 1–tuple is also an
n–tuple. If we want each tuple to have a fixed length, we could instead
identify the n–tuples with vector of length n — i.e. functions with
domain n. This would be circular, of course, since we must have a
notion of ordered pair in order to define the notion of "function". Thus,
if we take this course, we must first make a "preliminary definition" of
ordered pairs — for instance:

(x, y) =: {{x}, {x, y}}

and then define:

⟨x0, . . . , xn−1⟩ = {(x0, 0), . . . , (xn−1, n− 1)}.

If we wanted to form n–tuples of proper classes, we could instead iden-
tify ⟨A0, . . . , An−1⟩ with:

{⟨x, i⟩|(i = 0 ∧ x ∈ A0) ∨ . . . ∨ (i = n− 1 ∧ x ∈ An−1)}.
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(8) Overhead arrow notation. The symbol x⃗ is often used to donate a
vector ⟨x1, . . . , xn⟩. It is not surprising that this usage shades into what
I shall call the informal mode of overhead arrow notation. In this mode
x⃗ simply stands for a string of symbols x1, . . . , xn. Thus we write f(x⃗)
for f(x1, . . . , xn), which is different from f(⟨x1, . . . , xn⟩). (In informal
mode we would write the latter as f(⟨x⃗⟩).) Similarly, x⃗ ∈ A means that
each of x1, . . . , xn is an element of A, which is different from ⟨x⃗⟩ ∈ A.
We can, of course, combine several arrows in the same expression. For
instance we can write f(g⃗(x⃗)) for f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Similarly we can write f(
−→
g(x⃗)) or f(g⃗(x⃗)) for

f(g1(x1,1, . . . , x1,p1), . . . , gm(xm,1, . . . , xm,pm)).

The precise meaning must be taken from the context. We shall often
have recourse to such abbreviations. To avoid confusion, therefore, we
shall use overhead arrow notation only in the informal mode.

(9) A model or structure will for us normally mean an n+1–tuple ⟨D,A1, . . . , An⟩
consisting of a domain D of individuals, followed by relations on that
domain. If φ is a first order formula, we call a sequence v1, . . . , vn of
distinct variables good for φ iff every free variable of φ occurs in the se-
quence. If M is a model, φ a formula, v1, . . . , vn a good sequence for φ
and x1, . . . , xn ∈M , we write: M |= φ(v1, . . . , vn)[x1, . . . , xn] to mean
that φ becomes true in M if vi is interpreted by xi for i = 1, . . . , n.
This is the satisfaction relation. We assume that the reader knows how
to define it. As usual, we often suppress the list of variables, writing
only M |= φ[x1, . . . , xn]. We may sometimes indicate the variables
being used by writing e.g. φ = φ(v1, . . . , vn).

(10) ∈–models. M = ⟨D,E,A1, . . . , An⟩ is an ∈–model iff E is the restric-
tion of the ∈–relation to D2. Most of the models we consider will be
∈–models. We then write ⟨D,∈, A1, . . . , An⟩ or even ⟨D,A1, . . . , An⟩
for ⟨D,∈ ∩D2, A1, . . . , An⟩. M is transitive iff it is an ∈–model and D
is transitive.

(11) The Levy hierarchy. We often write
∧
x ∈ yφ for

∧
x(x ∈ y → φ),

and
∨
x ∈ yφ for

∨
x(x ∈ y ∧ φ). Azriel Levy defined a hierarchy of

formulae as follows:

A formula is Σ0 (or Π0) iff it is in the smallest class Σ of formulae such
that every primitive formula is in Σ and

∧
v ∈ uφ,

∨
v ∈ uφ are in Σ

whenever φ is in Σ and v, u are distinct variables.

(Alternatively, we could introduce
∧
v ∈ u,

∨
v ∈ u as part of the

primitive notation. We could then define a formula as being Σ0 iff it
contains no unbounded quantifiers.)
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The Σn+1 formulae are then the formulae of the form
∨
vφ, where φ

is Πn. The Πn+1 formulae are the formulae of the form
∧
vφ when φ

is Σn.

If M is a transitive model, we let Σn(M) denote the set of relations on
M which are definable by a Σn formula. Similarly for Πn(M). We say
that a relation R is Σn(M)(Πn(M)) in parameters p1, . . . , pm iff

R(x1, . . . , xn)↔ R′(x1, . . . , xn, p1, . . . , pm)

and R′ is Σn(M)(Πn(M)). Σ1(M) then denotes the set of relations
which are Σ1(M) in some parameters. Similarly for Π1(M).

(12) Kleene’s equation sign. An equation ’L ≃ R’ means: ’The left side is
defined if and only if everything on the right side is defined, in which
case the sides are equal’. This is of course not a strict definition and
must be interpreted from case to case.

F (x⃗) ≃ G(H1(x⃗), . . . ,Hn(x⃗)) obviously means that the function F is
defined at ⟨x1, . . . , xn⟩ iff each of the Hi is defined at ⟨x⃗⟩ and G is
defined at ⟨H1(x⃗), . . . ,Hn(x⃗)⟩, in which case equality holds.

The recursion schema of set theory says that, given a function G, there
is a function F with:

F (y, x⃗) ≃ G(y, x⃗, ⟨F (z, x⃗)|z ∈ y⟩).

This says that F is defined at ⟨y, x⃗⟩ iff F is defined at ⟨z, x⃗⟩ for all
z ∈ y and G is defined at ⟨y, x⃗, ⟨F (z, x⃗)|z ∈ y⟩⟩, in which case equality
holds.

(13) By the recursion theorem we can define:

TC(x) = x ∪
⋃
z∈x

TC(z)

(the transitive closure of x)

rn(x) = lub{rn(z)|z ∈ x}

(the rank of x).

(14) By a normal ultrafilter on κ we mean an ultrafilter U on P(κ) with
the property that whenever f : κ → κ is regressive modulo U (i.e.
{ν|f(ν) < ν} ∈ U), then there is α < κ such that {ν|f(ν) < ν} ∈ U .
Each normal ultrafilter determines an elementary embedding π of V
into an inner model W . Letting

D = the class of functions f with domain κ,

we can characterize the pair ⟨W,π⟩ uniquely by the conditions:
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• π : V ≺W and crit(π) = κ

• W = {π(f)(κ) | f ∈ D}
• π(f)(κ) ∈ π(g)(κ)↔ {ν|f(ν) ∈ g(ν)} ∈ U .

U can then be recovered from π by:

U = {x ⊂ κ|κ ∈ π(x)}.

We shall call ⟨W,π⟩ the extension of V by U . W can be defined from
U by the well known ultrapower construction: We first define a "term
model" D = ⟨D,∼=, ∈̃⟩ by:

f ∼= g ↔: {ν|f(ν) = g(ν)} ∈ U
f ∈̃g ↔: {ν|f(ν) = g(ν)} ∈ U.

D is an equality model in the sense that ∼= is not the identity relation
but rather a congruence relation for D. We can then factor D by ∼=,
getting an identity model D\ ∼=, whose are the equivalence classes:

[x] = {y|y ∼= x}

D\ ∼= turns out to be isomorphic to an inner model W . If σ is the
isomorphism, we can define π by:

π(x) = σ([constx])

where constx is the constant function x defined on κ. W is then called
the ultrapower of V by U . π is called the canonical embedding .

(15) (Extenders) The normal ultrafilter is one way of coding an embedding
of V into an inner model by a set. However, many embeddings cannot
be so coded, since π(κ) ≤ 2κ whenever ⟨W,π⟩ is the extension by U . If
we wish to surmount this restriction, we can use extenders in place of
ultrafilters. (The extenders we shall deal with are also known as "short
extenders".)

An extender F at κ maps
⋃
n<ω

P(un) into
⋃
n<ω

P(λn) for a λ > u.

It engenders an embedding π of V into an inner model W characterized
by:

• π : V ≺W, crit(π) = )̨

• Every element of W has the form π(f)(α⃗) where α1, . . . , αn < λ
and f is a function with domain κn

• π(f)(α⃗) ∈ π(g)(α⃗)↔ ⟨α⃗⟩ ∈ π({⟨ξ⃗⟩|f(ξ⃗) ∈ g(ξ⃗)})
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F is then recoverable from ⟨W,π⟩ by:

F (X) = π(X) ∩ λn for X ⊂ κn.

The concept "F is an extender" can be defined in ZFC, but we defer
that to Chapter 3. If ⟨W,π⟩ is as above, we call it the extension
of V by F . We also call W the ultrapower of V by F and π the
canonical embedding. ⟨W,π⟩ can be obtained from F by a "term
model" construction analogous to that described above.

(16) (Large Cardinals)

Definition 0.0.1. We call a cardinal κ strong iff for all β > κ there
is an extender F such that if ⟨W,π⟩ is the extension of V by F , then
Vβ ⊂W .

Definition 0.0.2. Let A be any class. κ is A–strong iff for all β > κ
there is F such that letting ⟨W,π⟩ be the extension of V by F , we
have:

A ∩ Vβ = π(A) ∩ Vβ.

These concepts can of course be relativized to Vτ in place of V when
τ is strongly inaccessible. We then say that κ is strong (or A–strong)
up to τ .)

Definition 0.0.3. τ is Woodin iff τ is strongly inaccessible and for
every A ⊂ Vτ there is κ < τ which is A-strong up to τ .

(17) (Embeddings)

Definition 0.0.4. Let M,M ′ be ∈–structures and let π be a structure
preserving embedding of M into M ′. We say that π is Σn–preserving
(in symbols: π :M →Σn M

′) iff for all Σn formulae we have:

M |= φ[a1, . . . , an]↔M ′ |= φ[π(a1), . . . , (an)]

for a1, . . . , an ∈ M . It is elementary (in symbols: π : M ≺ M ′ or
π : M →Σω M ′) iff the above holds for all formulae φ of the M -
language. It is easily seen that π is elementary iff it is Σn–preserving
for all n < ω.

We say that π is cofinal iff M ′ =
⋃
u∈M π(u).

We note the following facts, which we shall occasionally use:

Fact 1 Let π :M →Σ0 M
′ cofinally. Then π is Σ1–preserving.

Fact 2 Let π :M →Σ0 M
′ cofinally, where M is a ZFC− model. Then

M ′ is a ZFC− model and π is elementary.
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Fact 3 Let π :M →Σ0 M
′ cofinally where M ′ is a ZFC− model. Then

M is a ZFC− model and π is elementary.

We call an ordinal κ the critical point of an embedding π : M → M ′

(in symbols: κ = crit(π)) iff π ↾κ = id and π(κ) > κ.
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Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging
generalization of recursion theory — which dealt with “effective” functions
and relations on ω — to transfinite domains. This, in turn, gave the impetus
for the development of fine structure theory, which became a basic tool of
inner model theory. We therefore begin with a discussion of Kripke and
Platek’s work, in which ω is replaced by an arbitrary “admissible” structure.

1.1.1 Introduction

Ordinary recursion theory on ω can be developed in three different ways. We
can take the notion of algorithm as basic, defining a recursive function on ω
to be one given by an algorithm. Since, however, we have no definition for the
general notion of algorithm, this approach involves defining a special class
of algorithms and then convincing ourselves that “Church’s thesis” holds —
i.e. that every function generated by an algorithm is, in fact, generated by
one which lies in our class. Alternatively we can take the notion of calculus
as basic, defining an n–ary relation R on ω to be recursively enumerable
(r.e.) if for some calculus involving statements of the form “R(i1, . . . , in)”
(i1, . . . , in < ω), R is the set of tuples ⟨i1, . . . , in⟩ such that “R(i1, . . . , in)”
is provable. R is then recursive if both it and its complement are r.e. A
function defined on ω is recursive if it is recursive as a relation. But again,
since we have no general definition of calculus, this involves specifying a
special class of calculi and appealing to the appropriate form of Church’s
thesis.

9
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A third alternative is to base the theory on definability , taking the r.e. re-
lation as those which are definable in elementary number theory by one of
a certain class of formulae. This approach has often been applied, but char-
acterizing the class of defining formula tends to be a bit unnatural. The
situation changes radically, however, if we replace ω by the set H = Hω of
heredetarily finite sets. We consider definability over the structure ⟨H,∈⟩,
employing the familiar Levy hierarchy of set theoretic formulae:

Π0 = Σ0 =: formulae in which all quantifiers are bounded

Σn+1 =: formulae
∨
xφ where φ is Πn

Πn+1 =: formulae
∧
xφ where φ is Σn.

We then call a relation on H r.e. (or H–r.e.) iff it is definable by a Σ1

formula. Recalling that ω ⊂ H it then turns out that a relation on ω is
H–r.e. iff it is r.e. in the classical sense. Moreover, there is an H–recursive
map π : H ↔ ω such that A ⊂ H is H–r.e. iff π′′A is r.e. in the classical
sense.

This suggests a very natural way of relativizing recursion theory to transfinite
domains. Let N = ⟨|N |,∈, A1, . . . , An⟩ be any transitive structure. We first
define:

Definition 1.1.1. A relation on N is Σn(N) (in the parameters p1, . . . , pn ∈
N) iff it is N–definable (in p⃗) by a Σn formula. It is ∆n(N) (in p⃗) if both it
and its completement are Σn(N) (in p⃗). It is Σn(N) iff it is Σn(N) in some
parameters. Similarly for ∆n(N).

Following our above example of N = ⟨H,∈⟩, it is natural to define a relation
on N as being N–r.e. iff it is Σ1(N), and N–recursive iff it is ∆1(N). A
partial function F on N is N–r.e. iff it is N–r.e. as a relation. F is N–
recursive as a function iff it is N–r.e. and dom(F ) is ∆1(N).

(Note that Σ1(⟨H,∈⟩) = Σ1(⟨H,∈⟩), which will not hold for arbitrary N .)

However, this will only work for anN satisfying rather strict conditions since,
when we move to transfinite structures N , we must relativize not only the
concepts “recursive” and “r.e.”, but also the concept “finite”. In the theory of
H the finite sets were simply the elements of H.

Correspondingly we define:

u is N–finite iff u ∈ N.

But there are certain basic properties which we expect any recursion theory
to have. In particular:
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• If A is recursive and u is finite, then A ∩ u is finite.

• If u is finite and F : u→ N is recursive, then F ′′u is finite.

Those transitive structures N = ⟨|N |,∈ A1, . . . , An⟩ which yield a satis-
factory recursion theory are called admissible. An ordinal α is then called
admissible iff Lα is admissible. The admissible structures were character-
ized by Kripke and Platek as those transfinite structures which satisfy the
following axioms:

(1) ∅, {x, y},
⋃
x are sets

(2) The Σ0 axiom of subsets:

x ∩ {z|φ(z)} is a set

(where φ is any Σ0–formula)

(3) The Σ0 axiom of collection:∧
x ∈ u

∨
y φ(x, y)→

∨
v
∧
x ∈ u

∨
y ∈ v φ(x, y),

(where φ is any Σ0–formula).

Note. Kripke–Platek set theory (KP) consists of the above axioms together
with the axiom of extensionality and the full axiom of foundation (i.e. for all
formulae, not just the Σ0 ones). This axiom can be stated as:∧

y(
∧
x ∈ yφ(x) −→ φ(y)) −→

∧
yφ(y)

and is also known as the axiom of induction.
Note. Although the definability approach is the one most often employed in
transfinite recursion theory, the approaches via algorithms and calculi have
also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above.
In the following let M = ⟨|M |,∈ Aa, . . . , An⟩ be admissible.

Lemma 1.1.1. Let u ∈M . Let A be ∆1(M). Then A ∩ u ∈M .

Proof: Let Ax ↔
∨
yA0yx;¬Ax ↔

∨
yA1yx, where A0, A1 are Σ0(M).

Then
∧
x ∈ u

∨
y(A0yx ∨A1yx). Hence there is v ∈M such that∧

x ∈ u
∨
y ∈ v(A0yx ∨A1yx). QED

Before verifying the second criterion we prove:
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Lemma 1.1.2. M satisfies:∧
x ∈ u

∨
y1 . . . ynφ(x, y⃗)→

∨
u
∧
x ∈ u

∨
y1 . . . yn ∈ vφ(x, y⃗)

for Σ0–formulae φ.

Proof. Assume
∧
x ∈ u

∨
y1 . . . ynφ(x, y⃗). Then∧

x ∈ u
∨
w
∨
y1 . . . yn ∈ wφ(x, y⃗)︸ ︷︷ ︸

Σ0

.

Hence there is v′ ∈ M such that
∧
x ∈ u

∨
w ∈ v′

∨
y1 . . . yn ∈ wφ(x, y⃗).

Take v =
⋃
v′. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Let u ∈ M,u ⊂ dom(F ), where F is a Σ1(M) function.
Then F ′′u ∈M .

Proof. Let y = F (x) ↔
∨
zF ′zyx, where F ′ is a Σ0(M) relation. Then∧

x ∈ u
∨
z, yF ′zyx. Hence there is v ∈M such that∧

x ∈ u
∨
z, y ∈ vF ′zyx. Hence F ′′u = v ∩ {y|

∨
x ∈ u

∨
z ∈ vF ′zxy}.

QED (Lemma 1.1.3)

Assuming the admissibility of M , we immediately get from Lemma 1.1.2:

Lemma 1.1.4. Let φ(y, x⃗) be a Σ1–formula. Then
∨
yφ(y, x⃗) is uniformly

Σ1 in M .

Note. “Uniformly” is a word which recursion theorists like to use. Here it
means that M |=

∨
yφ(y, x⃗)↔ Ψ(x⃗) for a Σ1 formula Ψ which depends only

on φ and not on the choice of M .

Lemma 1.1.5. Let φ(y, x⃗) be Σ1. Then
∧
y ∈ uφ(y, x⃗) is uniformly Σ1 in

M .

Proof. Let φ(y, x⃗) =
∨
zφ′(z, y, x), where φ′ is Σ0. Then∧

y ∈ uφ(y, x⃗)↔
∨
v
∧
y ∈ u

∨
z ∈ vφ′(z, y, x)︸ ︷︷ ︸
Σ0

in M . QED (Lemma 1.1.5)

Lemma 1.1.6. Let φ0(x⃗), φ1(x⃗) be Σ1. Then (φ0(x⃗)∧φ1(x⃗)), (φ0(x⃗)∨φ1(x⃗))
are uniformly Σ1 in M .
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Proof. Let φi(x⃗) =
∨
yiφ

′
i(yi, x⃗) where without loss of generality y0 ̸= y1.

Then
(φ0(x⃗) ∧ φ1(x⃗))↔

∨
y0

∨
y1(φ

′
0(y0, x) ∧ φ′

1(y1, x)).

Similarly for ∨. QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let φ1, . . . , φn be Σ1–formulae. Let Ψ be formed from φ1, . . . , φn
using only conjunction, disjunction, existence quantification and bounded
universal quantification. Then Ψ(x1, . . . , xm) is uniformly Σ1(M)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. R ⊂Mn is Σ1(M) in the parameter ∅ iff it is Σ1(M) in no
parameter.

Proof. Let R(x⃗)↔ R′(∅, x⃗). Then

R(x⃗)↔
∨
z(R′(z, x⃗) ∧

∧
y ∈ zy ̸= y).

QED (Lemma 1.1.8)
Note. R is in fact uniformly Σ1(M) in the sense that its Σ1 definition
depends only on the original Σ1 definition of R from ∅, and not on M .

Lemma 1.1.9. Let R(y1, . . . , yn) be a relation which is Σ1(M) in the the
parameter p. For i = 1, . . . , n let fi(x1, . . . , xm) be a partial function on M
which (as a relation) is Σ1(M) in p. Then the following relation is uniformly
Σ1(M) in p:

R(f1(x⃗), . . . , fn(x⃗))↔:
∨
y1 . . . yn(

n∧
i=1

yi = fi(x⃗) ∧R(y⃗)).

This follows by Lemma 1.1.7. (“Uniformly” again means that the Σ1 defini-
tion depends only on the Σ1 definition of R, f1, . . . , fn.)

Similarly:

Lemma 1.1.10. Let f(y1, . . . , yn), gi(x1, . . . , xm)(i = 1, . . . , n) be partial
functions which are Σ1(M) in p, then the function h(x⃗) ≃ f(g(x⃗)) is uni-
formly Σ1(M) in p.

Proof.

z = h(x⃗)↔
∨
y1 . . . yn(

n∧
i=1

yi = gi(x⃗) ∧ z = f(y⃗)).

QED (Lemma 1.1.10)
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Lemma 1.1.11. Let fi(x⃗) be a function which is Σ1(M) in p(i = 1, . . . , n).
Let Ri(x⃗)(i = 1, . . . , n) be mutually exclusive relations which are Σ1(M) in
p. Then the function

f(x⃗) ≃ fi(x⃗) if Ri(x⃗)

is uniformly Σ1(M) in p.

Proof.

y = f(x⃗)↔
n∨
i=1

(y = fi(x⃗) ∧Ri(x⃗)).

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic
functions to M are Σ1(M).

Lemma 1.1.12. The following functions are uniformly Σ1(M):

(a) f(x) = x, f(x) = ∪x, f(x, y) = x ∪ y, f(x, y) = x ∩ y, f(x, y) = x \ y
(set difference)

(b) f(x) = Cn(x), where C0(x) = x,Cn+1(x) = Cn(x) ∪
⋃
Cn(x)

(c) f(x1, . . . , xn) = {x1, . . . , xn}

(d) f(x) = i (where i < ω)

(e) f(x1, . . . , xn) = ⟨x1, . . . , xn⟩

(f) f(x) = dom(x), f(x) = rng(x), f(x, y) = x′′y, f(x, y) = x↾y,
f(x) = x−1

(g) f(x1, . . . , xn) = x1 × x2 × . . .× xn

(h) f(x) = (x)ni where (⟨z0, . . . , zn−1⟩)ni = zi and (u)ni = ∅ in all other
cases

(i) f(x, z) = x[z] =


x(z) if x is a function
and z ∈ dom(x)
∅ otherwise.

Proof. We display sample proofs. (a) is straightforward. (b) follows by
induction on n. To see (c), y = {x1, . . . , xn} can be expressed by the Σ0–
statement

x1, . . . , xn ∈ y ∧
∧
z ∈ y(z = x1 ∨ . . . ∨ z = xn).
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(d) follows by induction on i, since

0 = ∅, i+ 1 = i ∪ {i}.

The proof of (e) depends on the precise definition of ⟨x1, . . . xn⟩. If we want
each tuple to have a unique length, then the following definition recommends
itself: First define a notion of ordered pair by: (x, y) =: {{x}, {x, y}} Then
(x, y) is a Σ1 function. Then if ⟨x1, . . . , xn⟩ =: {(x1, 0), . . . , (xn, n− 1)}, the
conclusion is immediate.

For (f) we display the proof that dom(x) is a Σ1 function. Note that
x, y ∈ Cn(⟨x, y⟩) for a sufficient n. But since every element of dom(x) is
a component of a pair lying in x, it follows that dom(x) ⊂ Cn(x) for a
sufficient n. Hence y = dom(x) can be expressed as:∧

z ∈ y
∨
w⟨w, z⟩ ∈ x ∧

∧
z, w ∈ Cn(x)(⟨w, z⟩ ∈ x→ z ∈ y).

To see (g), note that y = x1 × . . .× xn can be expressed by:∧
z1 ∈ x1 . . .

∧
zn ∈ xn⟨z1, . . . , zn⟩ ∈ y

∧
∧
w ∈ y

∨
z1 ∈ x1 . . .

∨
zn ∈ xnw = ⟨z1, . . . , zn⟩.

To see (h) note that, for sufficiently large m, y = (x)ni can be expressed by:∨
z0 . . . zn−1(x = ⟨z0, . . . , zn−1⟩ ∧ y = zi)
∨(y = ∅ ∧

∧
z0 . . . zn−1 ∈ Cm(x)x ̸= ⟨z0, . . . , zn−1⟩)

(i) is similarly straightforward. QED (Lemma 1.1.12)

The recursion theorem of classical recursion theory says that if g(n,m) is
recursive on ω and f : ω → ω is defined by:

f(0) = k, f(n+ 1) = g(n, f(n)),

then f is recursive. The point is that the value of f at any n is determined by
its values at smaller numbers. Working with H instead of ω we can express
this in the elegant form:

Let g : ω ×H → ω be Σ1.
Then f : ω → ω is Σ1, where f(n) = g(n, f ↾n).

If we take g : H2 → H, then f will be Σ1 where f(x) = g(x, f ↾x) for x ∈ H.
We can even take g as being a partial function on H2. Then f is Σ1 where:

f(x) ≃ g(x, ⟨f(z)|z ∈ x⟩).
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(This means that f(x) is defined if and only if f(z) is defined for z ∈ x and
g is defined at ⟨x, f ↾x⟩, in which case the above equality holds.)

We now prove the same thing for an arbitrary admissible M . If f is a partial
Σ1 function and x ⊂ dom(f), we know by Lemma 1.1.3 that f ′′x ∈M . But
then f ↾x ∈ M , since f∗(z) ≃ ⟨f(z), z⟩ is a Σ1 function with x ⊂ dom(f∗),
and f∗′′x = f ↾ x. The recursion theorem for admissibles M = ⟨|M |,∈
, A1, . . . , An⟩ then reads:

Lemma 1.1.13. Let G(y, x⃗, u) be a Σ1(M) function in the parameter p.
Then there is exactly one function F (y, x⃗) such that

F (y, x⃗) ≃ G(y, x⃗, ⟨F (z, x⃗)|z ∈ y⟩).

Moreover, F is uniformly Σ1(M) in p (i.e. the Σ1 definition depends only
on the Σ1 definition of G.)

Proof. We first show existence. Set:

Γx⃗ =: {f ∈M |f is a function ∧ dom(f) is
transitive ∧

∧
y ∈ dom(f)f(y) = G(y, x⃗, f ↾y)}

Set Fx⃗ =
⋃

Γx⃗;F = {⟨y, x⃗⟩|y ∈ Fx⃗}. Then F is Σ1(M) in p uniformly.

(1) F is a function.

Proof. Suppose not. Then for some x⃗ there are f, f ′ ∈ Γx⃗, y ∈
dom(f) ∩ dom(f ′) such that f(y) ̸= f ′(y). Let y be ∈–minimal with
this property. Then f ↾ y = f ′ ↾ y. But then f(y) = G(y, x⃗, f ↾ y) =
G(y, x⃗, f ′ ↾y) = f ′(y). Contradiction! QED (1)

Hence F (y, x⃗) = f(y) if y ∈ dom(f) and f ∈ Γx⃗.

(2) Let ⟨y, x⃗⟩ ∈ dom(F ). Then y ⊂ dom(Fx⃗), ⟨y, x⃗, ⟨F (z, x⃗)|z ∈ y⟩⟩ ∈
dom(G) and

F (y, x⃗) = G(y, x⃗, ⟨F (z, x⃗)|z ∈ y⟩).

Proof. Let y ∈ dom(f), f ∈ Γx⃗. Then

F (y, x⃗) = f(y) = G(y, x⃗, f ↾x)
= G(y, x⃗, ⟨F (z, x⃗)|z ∈ y⟩).

QED (2)

(3) Let y ⊂ dom(Fx⃗), ⟨y, x⃗, Fx⃗ ↾y⟩ ∈ dom(G). Then y ∈ dom(Fx⃗).

Proof. By our assumption:
∧
z ∈ y

∨
f(f ∈ Γx⃗ ∧ z ∈ dom(f)). Hence

there is u ∈M such that∧
z ∈ y

∨
f ∈ u(f ∈ Γx⃗ ∧ z ∈ dom(f)).
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Set: f ′ =
⋃
(u ∩ Γx⃗). Then f ′ ∈ Γx⃗ and y ⊂ dom(f ′). Moreover

f ′ ↾ y = Fx⃗ ↾ y. Set f ′′ = f ′ ∪ {⟨G(y, x⃗, f ′ ↾ y), y⟩}. Then f ′′ ∈ Γx⃗ and
y ∈ dom(f ′′), where f ′′ ⊂ Fx⃗. QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof
of (1): Let F ∗ satisfy the same condition. Set F ∗

x⃗ (y) ≃ F ∗(y, x⃗). Suppose
F ∗ ̸= F . Then F ∗

x⃗ (y) ̸≃ Fx⃗(y) for some x⃗, y. Let y be ∈–minimal such that
F ∗
x⃗ (y) ̸≃ Fx⃗(y). Then F ∗

x⃗ ↾y = Fx⃗ ↾y. Hence

F ∗
x⃗ (y) ≃ G(y, x⃗, ⟨F

∗
x⃗ (z)|z ∈ y⟩)

≃ G(y, x⃗, ⟨Fx⃗(z)|z ∈ y⟩)
≃ Fx⃗(y).

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure TC(x) of a set x is recursively definable
by: TC(x) = x∪

⋃
z∈x TC(z). Similarly, the rank rn(x) of a set is definable

by rn(x) = lub{rn(z)|z ∈ x}. Hence:

Corollary 1.1.14. TC, rn are uniformly Σ1(M).

The successor function sα = α+ 1 on the ordinals is defined by:

sx =

{
x ∪ {x} if x ∈ On
undefined if not

which is Σ1. The function α+ β is defined by:

α+ 0 = α
α+ sν = s(α+ ν)
α+ λ =

⋃
ν<λ α+ ν for limit λ.

This has the form:

x+ y ≃ G(y, x, ⟨x+ z|z ∈ y⟩).

Similarly for the function x · y, xy, . . . etc. Hence:

Corollary 1.1.15. The ordinal functions α + 1, α + β, αβ, . . . etc. are uni-
formly Σ1(M).

We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Let G be as in Lemma 1.1.13. Let h : M → M be Σ1(M)
in p such that {⟨x, y⟩|x ∈ h(y)} is well founded. There is a unique F such
that

F (y, x⃗) ≃ G(y, x⃗, ⟨F (z, x⃗)|x ∈ h(y)⟩).
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Moreover, F is uniformly1 Σ1(M) in p.

The proof is exactly like that of Lemma 1.1.13, using minimality in the
relation {⟨x, y⟩|x ∈ h(y)} in place of ∈–minimality. We now consider the
structure of “really finite” sets in an admissible M .

Lemma 1.1.17. Let u ∈ Hω. The class u and the constant function
f(x) = u are uniformly Σ1(M).

Proof. By ∈–induction on u: Let u = {z1, . . . , zn}.

x ∈ u↔
n∨
i=1
x = zi

x = u↔
∧
y ∈ x y ∈ u ∧

n∧
i=1
zi ∈ x.

QED

x ∈ ω is clearly a Σ0 condition. But then:

Lemma 1.1.18. Let ω ∈ M . Then the constant function f(x) = ω is
uniformly Σ1(M).

Proof.

x = ω ↔ (
∧
z ∈ xz ∈ ω ∧ ∅ ∈ x ∧

∧
z ∈ xz ∪ {z} ∈ x)

(where ’z ∈ ω’ is Σ0) QED

Lemma 1.1.19. The class Fin and the function f(x) = Pω(x) are uniformly
Σ1(M), where Fin = {x ∈M |x < ω},Pω(x) = P(x) ∩ Fin.

Proof.

x ∈ Fin ↔
∨
n ∈ ω

∨
ff : n↔ x

y = Pω(x) ↔
∧
u ∈ y(u ⊂ x ∧ u ∈ Fin) ∧ ∅ ∈ y∧

∧
∧
z ∈ x{z} ∈ y ∧

∧
u, v ∈ yu ∪ v ∈ y.

We must show that Pω(x) ∈ M . If ω /∈ M , then rn(x) < ω for all x ∈ M ,
Hence M = Hω is closed under Pω. If ω ∈M , there is Σ1(M) f defined by

f(0) = {{z}|z ∈ x}, f(n+ 1) = {u ∪ v|⟨u, v⟩ ∈ f(n)2}.

Then Pω(x) =
⋃
f ′′ω ∈M . QED (Lemma 1.1.19)

But then:
1(“uniformly” meaning, of course, that the Σ1 definition of F depends only on the Σ1

definition of G, h.)
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Lemma 1.1.20. If ω ∈M , then Hω ∈M and the constant function f(x) =
Hω is uniformly Σ1(M).

Proof. Hω ∈ M , since there is a Σ1(M) function g defined by g(0) =
∅, g(n + 1) = Pω(g(n)). Then Hω =

⋃
g′′ω ∈ M and f(x) = Hω is Σ1(M)

since g and the constant function ω are Σ1(M). QED (Lemma 1.1.20)

1.1.3 The constructible hierarchy

We recall Gödel’s definition of the constructible hierarchy ⟨Lr|r ∈ On⟩:

L0 = ∅
Lν+1 = Def(Lν)
Lλ =

⋃
ν<λ

Lν for limit λ,

where Def(u) is the set of all z ⊂ u which are ⟨u,∈⟩–definable in parameters
from u (taking Def(∅) = {∅}). (Note that if u is transitive, then u ⊂ Def(u)
and Def(u) is transitive.) Gödel’s constructible universe is then L =:

⋃
ν∈On

Lν .

By fairly standard methods one can show:

Lemma 1.1.21. Let ω ∈M . Then the function f(u) = Def(u) is uniformly
Σ1(M).

We omit the proof, which is quite lengthy. It involves “arithmetizing” the
language of first order set theory by identifying formulae with elements of ω
or Hω, and then showing that the relevant syntactic and semantic concepts
are M–recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let ω ∈ M . The function f(α) = Lα is uniformly
Σ1(M).

The constructible hierarchy over a set u is defined by:

L0(u) = TC({u})
Lν+1(u) = Def(Lν(u))
Lλ(u) =

⋃
ν<λ

Lν(u) for limit λ.

Obviously:
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Corollary 1.1.23. Let ω ∈ M . The function f(u, α) = Lα(u) is uniformly
Σ1(M).

The constructible hierarchy relative to classes A1, . . . , An is defined by:

L0[A⃗] = ∅
Lν+1[A⃗] = Def(Lν [A⃗], A⃗)

Lλ[A⃗] =
⋃
ν<λ

Lν [A⃗] for limit λ,

where Def(U,A1, . . . , An) is the set of all z ⊂ u which are
⟨u,∈, A1 ∩ u, . . . , An ∩ u⟩–definable in parameters from u.

Much as before we have:

Lemma 1.1.24. Let ω ∈M . Let A1, . . . , An be ∆1(M) in the parameter p.
Then the function f(u) = Def(u,A1, . . . , An) is uniformly Σ1(M) in p.

Corollary 1.1.25. Let ω ∈ M . Let A1, . . . , An be as above. Then the
function f(α) = Lα[A⃗] is uniformly Σ1(M) in p.

(In particular, if M = ⟨|M |,∈, A1, . . . , An⟩. Then f(α) = Lα[A⃗] is uniformly
Σ1(M).)

(One could, of course, also define Lα(u)[A⃗] and prove the corresponding
results.)

Any well ordering r of a set u induces a well ordering of Def(u), since each
element of Def(u) is defined over ⟨u,∈⟩ by a tuple ⟨φ, x1, . . . , xn⟩, where φ
is a formula and x1, . . . , xn are elements of u which interpret free variables
of φ. If u is transitive (hence u ⊂ Def(u)), we can also arrange that the well
ordering, which we shall call < (u, r), is an end extension of r. The function
< (u, r) is uniformly Σ1. If we then set:

<0= ∅, <ν+1=< (Lν , <ν)
<λ=

⋃
ν<λ

<ν for limit λ,

it follows that <ν is a well ordering of Lν for all ν. Moreover <α is an end
extension of <ν for ν < α.

Similarly, if A is Σ1(M) in p, there is a hierarchy <Aν (ν ∈ On∩M) such that
<Aν well orders Lν [A] and the function f(ν) =<Aν is Σ1(M) in p (uniformly
relative to the Σ1 definition of A).

By Corollary 1.1.25 we easily get:



1.1. ADMISSIBILITY 21

Lemma 1.1.26. Let M = ⟨|M |,∈, A1, . . . , An⟩ be admissible. Let α =
On∩M . Then ⟨Lα[A⃗],∈, A⃗⟩ is admissible.

Proof: Set: LA⃗ν = ⟨Lα[A⃗],∈, A⃗⟩. Axiom (1) holds trivially in LA⃗ν .

To verify the Σ0–axiom of subsets, let B be Σ0(L
A⃗
α ). Let u ∈ LA⃗α .

Claim u ∩B ∈ LA⃗α .

Proof: Pick ν < α such that u ∈ LA⃗ν and B is Σ0 in parameters from LA⃗ν .
By Σ0–absoluteness we have:

u ∩B ∈ Def(LA⃗ν ) = LA⃗ν+1 ⊂ LA⃗α .

QED (Claim)

We now prove Σ0–collection. Let Rxy be a Σ0–relation. Let u ∈ LA⃗α such
that

∧
x ∈ u

∨
yRxy.

Claim
∨
v ∈ LA⃗α

∧
x ∈ u

∨
y ∈ vRxy.

For each x ∈ u let g(x) be the least ν < α such that x ∈ LA⃗ν . Then g is in
Σ1(M) and u ⊂ dom(g). Hence δ = sup g′′u < α and∧

x ∈ u
∨
y ∈ LA⃗δ Rxy.

QED (Lemma 1.1.26)

Definition 1.1.2. Let α be an ordinal.

• α is admissible iff Lα is admissible

• α is admissible in A1, . . . , An ⊂ iff LA⃗α =: ⟨Lα[A⃗],∈ A⃗⟩ is admissible

• f : αn → α is α–recursive (in A⃗) iff f is Σ1(Lα)(Σ1(L
A⃗
α ))

• R ⊂ αn is r.e. (in A⃗) iff R is Σ1(Lα)(Σ1(L
A⃗
α )).

Note. The theory of α–recursive functions and relations on an admissible
α has been built up without references to Lα, using a formalized notion of
α–bounded calculus (Kripke) or α–bounded algorithm (Platek).

Similarly for α–recursiveness in A1, . . . , An, taking the Ai as "oracles".
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A transitive structure M = ⟨|M |,∈ A⃗⟩ is called strongly admissible iff, in
addition to the Kripke–Platek axioms, it satisfies the Σ1 axiom of subsets:

x ∩ {z|φ(z)} is a set (for Σ1 formulae φ).

Kripke defines the projectum δα of an admissible ordinal α to be the least
δ such that A ∩ δ /∈ Lα for some Σ1(Lα) set A. He shows that δα = α iff
α is strongly admissible. He calls α projectible iff δα < α. There are many
projectible admissibles — e.g. δα = ω if α is the least admissible greater
than ω. He shows that for every admissible α there is a Σ1(Lα) injection fα
of Lα into δα.

The definition of projectum of course makes sense for any α ≥ ω. By
refinements of Kripke’s methods it can be shown that fα exists for every
α ≥ ω and that δα < α whenever α ≥ ω is not strongly admissible. We shall
— essentially — prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions

f : V n → V

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though — just as in §1 — we shall suppress some
proofs.

Definition 1.2.1. f : V n → V is a primitive recursive (pr) function iff it is
generated by successive application of the following schemata:

(i) f(x⃗) = xi (here x⃗ is x1, . . . , xn)

(ii) f(x⃗) = {xi, xj}

(iii) f(x⃗) = xi \ xj

(iv) f(x⃗) = g(h1(x⃗), . . . , hm(x⃗))
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(v) f(y, x⃗) =
⋃
z∈y

g(z, x⃗)

(vi) f(y, x⃗) = g(y, x⃗, ⟨f(z, x⃗)|z ∈ y⟩)

We also define:

Definition 1.2.2. R ⊂ V n is a primitive recursive relation iff there is a
primitive recursive function r such that R = {⟨x⃗⟩|r(x⃗) ̸= ∅}.

(Note It is possible for a function on V to be primitive recursive as a relation
but not as a function!)

We begin by developing some elementary consequences of these definitions:

Lemma 1.2.1. If f : V n → V is primitive recursive and k : n→ m, then g
is primitive recursive, where

g(x0, . . . , xm−1) = f(xk(0), . . . , xk(n−1)).

Proof. By (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) f(x⃗) =
⋃
xj

(b) f(x⃗) = xi ∪ xj

(c) f(x⃗) = {x⃗}

(d) f(x⃗) = n, where n < ω

(e) f(x⃗) = ⟨x⃗⟩

Proof.

(a) By (i), (v), Lemma 1.2.1, since
⋃
xj =

⋃
z∈xj

z

(b) xi ∪ xj =
⋃
{xi, xj}

(c) {x⃗} = {x1} ∪ . . . ∪ {xm}

(d) By in induction on n, since 0 = x \ x, n+ 1 = n ∪ {n}

(e) The proof depends on the precise definition of n–tuple. We could for in-
stance define ⟨x, y⟩ = {{x}, {x, y}} and ⟨x1, . . . , xn⟩ = ⟨x1, ⟨x2, . . . , xn⟩⟩
for n > 2.
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If, on the other hand, we wanted each tuple to have a unique length, we
could call the above defined ordered pair (x, y) and define:

⟨x1, . . . , xn⟩ = {(x1, 0), . . . , (xn, n− 1)}.

QED (Lemma 1.2.2)
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Lemma 1.2.3. (a) /∈ is pr

(b) If f : V n → V,R ⊂ V n are primitive recursive, then so is

g(x⃗) =

{
f(x⃗) if Rx⃗
∅ if not

(c) R ⊂ V n is primitive recursive iff its characteristic functions χR is a
primitive recursive function

(d) If R ⊂ V n is primitive recursive so is ¬R =: V n \R

(e) Let fi : V n → V,Ri ⊂ V n be pr(i = 1, . . . ,m) where R1, . . . , Rm are

mutually disjoint and
m⋃
i=1
Ri = V n. Then f is pr where:

f(x⃗) = fi(x) when Rix⃗.

(f) If Rzx⃗ is primitive recursive, so is the function

f(y, x⃗) = y ∩ {z|Rzx⃗}

(g) If Rzx⃗ is primitive recursive so is
∨
z ∈ yRzx⃗

(h) If Rix⃗ is primitive recursive (i = 1, . . . ,m), then so is
m∨
i=1
Rix⃗

(i) If R1, . . . , Rn are primitive recursive relations and φ is a Σ0 formula,
then {⟨x⃗⟩|⟨V,R1, . . . , Rn⟩ |= φ[x⃗]} is primitive recursive.

(j) If f(z, x⃗) is primitive recursive, then so are:

g(y, x⃗) = {f(z, x⃗) : z ∈ y}
g′(y, x⃗) = ⟨f(z, x⃗) : z ∈ y⟩

(k) If R(z, x⃗) is primitive recursive, then so is

f(y, x⃗) =


That z ∈ y such that Rzx⃗ if exactly
one such z ∈ y exists;
∅ if not.

Proof.

(a) x /∈ y ↔ {x} \ y ̸= ∅

(b) Let Rx⃗↔ r(x⃗) ̸= ∅. Then g(x⃗) =
⋃

z∈r(x⃗)
f(x⃗).
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(c) χr(x⃗) =
{

1 if Rx⃗
0 if not

(d) χ¬R(x⃗) = 1 \ χR(x⃗)

(e) Let f ′i(x⃗) =
{
fi(x⃗) if Rix⃗
∅ if not

Then f(x⃗) = f ′i(x⃗) ∪ . . . ∪ f ′m(x⃗).

(f) f(y, x⃗) =
⋃
z∈y

h(z, x⃗), where:

h(z, x⃗) =

{
{z} if Rzx⃗
∅ if not

(g) Let Pyx⃗↔:
∨
z ∈ yRzx⃗. Then χP (x⃗) =

⋃
z∈y

χR(z, x⃗).

(h) Let Px⃗↔
m∨
i=1
Rix⃗. Then

XP (x⃗) = XR1 ∪ . . . ∪XRn(x⃗).

(i) is immediate by (d), (g), (h)

(j) g(y, x⃗) =
⋃
z∈y
{f(z, x⃗)}, g′(y, x⃗) =

⋃
z∈y
{⟨f(z, x⃗), z⟩}

(k) R′zux⃗ ↔: (z ∈ u ∧ Rzx⃗ ∧
∧
z′ ∈ u(z ̸= z′ → ¬Rz′x⃗)) is primitive

recursive by (i). But then:

f(y, x⃗) =
⋃

(y ∩ {z|R′zyx⃗})

QED (Lemma 1.2.3)

Lemma 1.2.4. Each of the functions listed in §1 Lemma 1.1.12 is primitive
recursive.

Proof. (a)
⋃
x =

⋃
z∈x z, x∪y =

⋃
{x, y}, x∩y, x\y are primitive recursive

by Lemma 1.2.3 (f).

(b)–(e) follow by computation from (a).

(g) x1 × x2 × · · · × xn = fnn (x⃗)

• fn0 (x⃗) = {⟨x⃗⟩}

• fni+1(x⃗) =
⋃
z∈xi f

n
i (x0, . . . , xi−1, z, xi+1, . . . , xn)
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(f) then follows by Lemma 1.2.3 (f), since for sufficient n we have:

• dom(x) = Cn(x) ∩ {z |
∨
w ∈ Cn(x)⟨w, z⟩x}

• rng(x) = Cn(x) ∩ {z |
∨
w ∈ Cn(x)⟨z, w⟩ ∈ x}

• x”y = Cn(x) ∩ {u |
∨
z, w ∈ Cn(y)(u = ⟨z, w⟩ ∈ x ∧ w ∈ y)}

• x−1 = Cn(x) ∩ {u |
∨
z, w ∈ Cn(x)(⟨z, w⟩ ∈ x ∧ u = ⟨w, z⟩)}

(h), (i) then follow by Lemma 1.2.3 (f).

QED (Lemma 1.2.4)

Note Up until now we have only made use of the schemata (i) – (v). This
will be important later. The functions and relations obtainable from (i)
– (v) alone are called rudimentary and will play a significant role in fine
structure theory. We shall use the fact that Lemmas 1.2.1 – 1.2.3 hold with
"rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions TC(x), rn(x) are primitive recursive.

The proof is the same as before (§1 Corollary 1.1.14).

Definition 1.2.3. f : Onn×V m → V is primitive recursive iff f ′ is primitive
recursive, where

f ′(y⃗, x⃗) =

{
f(y⃗, x⃗) if y1, . . . , yn ∈ On
∅ if not

As before:

Lemma 1.2.6. The ordinal function α+1, α+ β, α · β, αβ, . . . are primitive
recursive.

Definition 1.2.4. Let f : V n+1 → V .

fα(α ∈ On) is defined by:

f0(y, x⃗) = y
fα+1(y, x⃗) = f(fα(y, x⃗), x⃗)
fλ(y, x⃗) =

⋃
r<λ

f r(y, x⃗) for limit λ.

Then:
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Lemma 1.2.7. If f is primitive recursive, so is g(α, y, x⃗) = fα(y, x⃗).

There is a strengthening of the recursion schema (vi) which is analogous to
§1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let h : V → V be primitive recursive. h is manageable
iff there is a primitive recursive σ : V → On such that

x ∈ h(y)→ σ(x) < σ(y).

(Hence the relation x ∈ h(y) is well founded.)

Lemma 1.2.8. Let h be manageable. Let g : V n+2 → V be primitive recur-
sive. Then f : V n+1 → V is primitive recursive, where:

f(y, x⃗) = g(y, x⃗, ⟨f(z, x⃗)|z ∈ h(y)⟩).

Proof. Let σ be as in the above definition. Let |x| = lub{|y||y ∈ h(x)} be
the rank of x in the relation y ∈ h(x). Then |x| ≤ σ(x). Set:

Θ(z, x⃗, u) =
⋃
{⟨g(y, x⃗, z ↾h(y)), y⟩|y ∈ u ∧ h(y) ⊂ dom(z)}.

By induction on α, if u is h–closed (i.e. x ∈ u→ h(x) ⊂ u), then:

Θα(∅, x⃗, u) = ⟨f(y, x⃗)|y ∈ u ∧ |y| < α⟩

Set h̃(v) = v ∪
⋃
z∈v

h(z). Then h̃α({y}) is h–closed for α ≥ |y|. Hence:

f(y, x⃗) = Θσ(y)+1(∅, x⃗, h̃σ(y)({y}))(y).

QED (Lemma 1.2.8)

Corresponding to §1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let u ∈ Hω. The constant function f(x) = u is primitive
recursive.

Proof: By ∈–induction on u. QED

As we shall see, the constant function f(x) = ω is not primitive recursive,
so the analog of §1 Lemma 1.1.18 fails. We say that f is primitive recursive
in the parameters p1, . . . , pmH:

f(x⃗) = g(x⃗, p⃗), where g is primitive recursive.

In place of §1 Lemma 1.1.19 we get:
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Lemma 1.2.10. The class Fin and the function f(x) = Pω(x) are primitive
recursive in the parameter ω.

Proof: Let f be primitive recursive such that f(0, x) = {∅} ∪ {{z}|z ∈ x},
f(n+1, x) = {u∪ v|⟨u, v⟩ ∈ f(n, x)2}. Then Pω(x) =

⋃
n∈ω

f(n, x). But then:

x ∈ Fin↔
∨
n ∈ ω

∨
g ∈

⋃
n<ω

Pnω(x× ω)g : n↔ x.

QED

Corollary 1.2.11. The constant function f(x) = Hω is primitive recursive
in the parameter ω.

Proof: Hω =
⋃
n<ω

Pnω(∅). QED

Corresponding to Lemma 1.1.21 of §1 we have:

Lemma 1.2.12. The function Def(u) is primitive recursive in the parameter
ω.

The proof involves carrying out the proof of §1 Lemma 1.1.21 (which we also
omitted) while ensuring that the relevant classes and functions are primitive
recursive. We give not further details here (though filling in the details can
be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:

Corollary 1.2.13. The function f(α) = Lα is primitive recursive in ω.

Similarly:

Lemma 1.2.14. The function f(α, x) = Lα(x) is primitive recursive in ω.

Lemma 1.2.15. Let A ⊂ V be primitive recursive in the parameter p. Then
f(α) = LAα is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in
the class A ⊂ V (or in the classes A1, . . . , An ⊂ V ).

We define:

Definition 1.2.6. Let A1, . . . , An ⊂ V . The function f : V n → V is
primitive recursive in A1, . . . , An iff it is obtained by successive applications
of the schemata (i) – (vi) together with the schemata:

f(x) = χAi(x)(i = 1, . . . , n).
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A relation R is primitive recursive in A1, . . . , An iff

R = {⟨x⃗⟩|f(x⃗) ̸= 0}

for a function f which is primitive recursive in A1, . . . , An.

It is obvious that all of the previous results hold with "primitive recursive in
A1, . . . , An" in place of "primitive recursive".

By induction on the defining schemata of f we can show:

Lemma 1.2.16. Let f be primitive recursive in A1, . . . , An, where each
Ai is primitive recursive in B1, . . . , Bm. Then f is primitive recursive in
B1, . . . , Bm.

The proof is by induction on the defining schemata leading from A1, . . . , An
to f . The details are left to the reader. It is clear, however, that this proof is
uniform in the sense that the schemata which give in f from B1, . . . , Bm are
not dependent on B1, . . . , Bm or A1, . . . , An, but only on the schemata which
lead from A1, . . . , An to f and the schemata which led from B1, . . . , Bm to
Ai(i = 1, . . . , n).

This will be made more precise in §1.2.2

1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discus-
sion must ostensibly be carried out in second order set theory. However, we
can translate it into ZF by talking about primitive recursive definitions. By
a primitive recursive definition we mean a finite sequence of equations of the
form (i) – (vi) such that:

• The function variable on the left side does not occur in a previous
equation in the sequence

• every function variable on the right side occurs previously on the left
side with the same number of argument places.

We assume that the language in which we write these equation has been
arithmetized — i.e. formulae, terms, variables etc. have been identified in a
natural way with elements of ω (or at least Hω).

Every primitive recursive definition s defines a function Fs. If s = ⟨s0, . . . , sn−1⟩,
then Fs = Fn−1

s , where F is interprets the leftmost function variable of si.
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This is defined in a straightforward way. If e.g. si is "f(y, x⃗) =
⋃
z∈y

g(z, x⃗)"

and g was leftmost in sj , then we get

F i(y, x⃗) =
⋃
z∈y

F j(z, x⃗).

Let PD be the class of primitive recursive definitions. In order to define
{⟨x, s⟩|s ∈ PD ∧ x ∈ Fs} in ZF we proceed as follows:

Let s = ⟨s0, . . . , sn−1⟩ ∈ PD. Let M be any admissible structure. By
induction we can then define ⟨F i,Ms |i < n⟩ where F is a function on Mni (ni
being the number of argument places). By admissibility we know that F is
exists and is defined on all of Mni . We then set: FMs = Fn−1,M

s . This defines
the set ⟨FMs |s ∈ PD⟩. If M ⊆ M ′ and M ′ is also admissible, it follows by
any induction on i < n that F i,M = F i,M

′
↾M . Hence FMs ⊂ FM

′
s . We can

then set:
Fs =

⋃
{FMs |M is admissible}.

Note that by §1, each FMs has a uniform Σ1 definition φs which defines
FMs over every admissible M . It follows that φs defines Fs in V . Thus
we have won an important absoluteness result: Every primitive recursive
function has a Σ1 definition which is absolute in all inner models, in all
generic extensions of V , and indeed, in all admissible structures M = ⟨|M |,∈
⟩. This absoluteness phenomenon is perhaps the main reason for using the
theory of primitive recursive functions in set theory. Carol Karp was the first
to notice the phenomenon — and to plumb its depths. She proved results
going well beyond what I have stated here, showing for instance that the
canonical Σ1 definition can be so chosen, that Fs ↾M is the function defined
over M by φs whenever M is transitive and closed under primitive recursive
function. She also improved the characterization of such M : Call an ordinal
α nice if it is closed under each of the function:

f0(α, β) = α+ β; f1(α, β) = α · β, f2(α, β) = αβ . . . etc.

(More precisely: fi+1(α, β) = f̃βi (α) for i ≥ 1, where f̃i(α) = fi(α, α), gβ(α)
is defined by: g0(α) = α, gβ+1(α) = g(gβ(α)), gλ(α) = sup

v<λ
gv(α) for limit λ.)

She showed that Lα is primitive recursively closed iff α is nice. Moreover,
Lα[A1, . . . , An] is closed under functions primitive recursive in A1, . . . , An iff
α is nice.

Primitive recursiveness in classes A1, . . . , An can also be discussed in terms of
primitive recursive definitions. To this end we appoint new designated func-
tion variable ȧi(i = 1, . . . , n), which will be interpreted by χAi(i = 1, . . . , n).
By a primitive recursive definition in ȧ1, . . . , ȧn we mean a sequence of equa-
tion having either the form (i) – (vi), in which ȧ1, . . . , ȧn do not appear, or
the form
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(*) f(x1, . . . , xp) = ȧi(xj)(i = 1, . . . , n, j = 1, . . . , p)

We impose our previous two requirements on all equations not of the form
(*).

If s = ⟨s0, . . . , sn−1⟩ is a pr definition in ȧ1, . . . , ȧn, we successively define
F i,A1,...,An
s (i < n) as before, setting F i,A⃗s (x1, . . . , xp) = XAi(xj) if si has the

form (*). We again set F A⃗s = Fn−1,A⃗
s . The fact that {⟨x, s⟩|x ∈ F A⃗s } is

uniformly ⟨V,∈, A1, . . . , An⟩ definable is shown essentially as before:

Given an admissible M = ⟨|M |,∈, a1, . . . , an⟩ we define F i,Ms , FMs = Fn−1,M
s

as before, restricting to M . The existence of the total function F i,Ms follows
as before by admissibility. Admissibility also gives a canonical Σ1 definition
φs such that

y = FMs (x⃗)↔M |= φs[y, x⃗].

(Thus FMs is uniformly Σ1 regardless of M .) If M,M ′ are admissibles of
the same type and M ⊆ M ′ (i.e. M is structurally included in M ′), then
FMs = FM

′
s ↾M . Thus we can let FA1,...,An

s be the union of all FMs such that
M = ⟨|M |,∈, A1∩|M |, . . . , An∩|M |⟩ is admissible. φs then defines F A⃗s over
⟨V, A⃗⟩. (Here, Karp refined the construction so as to show that F A⃗s ↾M = FMs
whenever M = ⟨|M |,∈, A1 ∩ |M |, . . . , An ∩ |M |⟩ is transitive and closed
under function primitive recursive in A1, . . . , An. It can also be shown that
M = ⟨|M |,∈, A1, . . . , An⟩ is closed under functions primitive recursive in
A1, . . . , An iff |M | is primitive recursive closed and M is amenable, (i.e.
x ∩Ai ∈M for all x ∈M , v = 1, . . . , n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let Ai ⊂
V be primitive recursive in B1, . . . , Bm with primitive recursive def si in
ḃ1, . . . , ḃm (i = 1, . . . ,m). Let f be primitive recursive in A1, . . . , An with
primitive recursive definition s in ȧ1, . . . , ȧn. Then f is primitive recursive
in B1, . . . , Bn by a primitive recursive definition s′ in ḃ1, . . . , ḃm. s′ is uniform
in the sense that it depends only on s1, . . . , sn and s, not on B1, . . . , Bm. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

s1, . . . , sm, s 7→ s′

with the following property: Let B1, . . . , Bm be any classes. Let si define gi
from B⃗(i = 1, . . . , n). Set: Ai = {x|gi(x) ̸= 0} in i = 1, . . . , n. Let f be the
function defined by s from A⃗. Then s′ defines f from B⃗.

Note ⟨Hω,∈⟩ is an admissible structure; hence Fs ↾Hω = fHω
s . This shows

that the constant function ω is not primitive recursive, since ω /∈ Hω. It



1.3. ILL FOUNDED ZF− MODELS 33

can be shown that f : ω → ω is primitive recursive in the sense of ordinary
recursion theory iff

f∗(x) =

{
f(x) if x ∈ ω
0 if not

is primitive recursive over Hω. Conversely, there is a primitive recursive map
σ : Hω ↔ ω such that f : Hω → Hω is primitive recursive over Hω iff σfσ−1

is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded ZF− models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF− (where the language of ZF− may contain predicates other than ∈).
Let A = ⟨A,∈A, B1, . . . , Bn⟩ be such a model. For X ⊂ A we of course
write A|X = ⟨X,∈A ∩X2, . . .⟩. By the well founded core of A we mean
the set of all v ∈ A such that ∈A ∩C(x)2 is well founded, where C(x) is
the closure of {x} under ∈A. Let wfc(A) be the restriction A|C of A to
its well founded core C. Then wfc(A) is a well founded structure satisfying
the axiom of extensionality, and is, therefore, isomorphic to a transitive
structure. Hence A is isomorphic to a structure A′ such that wfc(A′) is
transitive (i.e. wfc(A′) = ⟨A′,∈,m⟩ where A′ is transitive). We call such A′

grounded , defining:

Definition 1.3.1. A = ⟨A,∈A, . . .⟩ is grounded iff wfc(A) is transitive.

Note. Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity — in quite another sense
— is an important concept in inner model theory.

By the argument just given, every consistent set of sentences in ZF− has a
grounded model. Clearly

(1) ω ⊂ wfc(A) if A is grounded.

For any ZF− model A we have:

(2) If x ∈ A and {z|z ∈A x} ⊂ wfc(A), then x ∈ wfc(A).

Proof: C(x) = {x} ∪
⋃
{C(z)|z ∈A x}. QED

By Σ0–absoluteness we have:
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(3) Let A be grounded. Let φ be Σ0 and let x1, . . . , xn ∈ wfc(A). Then

wfc(A) |= φ[x⃗]↔ A |= φ[x⃗].

By ∈–induction on x ∈ wfc(A) it follows that the rank function is
absolute:

(4) rn(x) = rnA(x) for x ∈ wfc(A) if A is grounded.

The converse also holds:

(5) Let rnA(x) ∈ wfc(A). Then x ∈ wfc(A).

Proof: Let r = rnA(x). Then r is an ordinal by (3). Assume that r is the
least counterexample. Then rnA(z) < r for z ∈A x. Hence {z|z ∈A x} ⊂
wfc(A) and x ∈ wfc(A) by (2).

Contradiction! QED

We now prove:

Lemma 1.3.1. Let A be grounded. Then wfc(A) is admissible.

Proof: Axiom (1) and axiom (2) (Σ0–subsets) follow trivially from (3). We
verify the axiom of Σ0 collection. Let R(x, y) be Σ0(wfc(A)). Let u ∈ wfc(A)
such that

∧
x ∈ u

∨
yR(x, y). It suffices to show:

Claim:
∨
v
∧
x ∈ u

∨
y ∈ vR(x, y).

Let R′ be Σ0(A) by the same definition in the same parameters as R. Then
R = R′∩wfc(A)2 by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is r ∈ OnA such that r /∈ wfc(A). Hence

A |= rn(y) < r for all y ∈ wfc(A)

by (4). Hence there is an r ∈ OnA such that

(6)
∧
x ∈ u

∨
y(R′(x, y) ∧ A |= rn(y) < r)

Since A models ZF−, there must be a least such r. But then:

(7) r ∈ wfc(A).
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Since by (2) there would otherwise be an r′ such that A |= r′ < r and
r′ /∈ wfc(A). Hence (6) holds for r′, contradicting the minimality of r.

QED (7)

But there is w such that

(8)
∧
x ∈ u

∨
y ∈ w(R′(x, y) ∧ rn(y) < r).

Let A |= v = {y ∈ w|rn(y) < r}. Then rnA(v) ≤ r. Hence rnA(v) ∈ wfc(A)
and v ∈ wfc(A) by (5). But:∧

x ∈ u
∨
y ∈ vRxy.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let δ = On∩wfc(A). Then Lδ(u) is admissible whenever
u ∈ wfc(A).

Corollary 1.3.3. LAδ = ⟨Lδ[A], A ∩ Lδ[A]⟩ is admissible whenever A ∈
Σω(A) (since ⟨A, A⟩ is a ZF− model.

Note. It is clear from the proof of lemma 1.3.1 that we can replace ZF−

by KP (Kripke–Platek set theory). In this form Lemma 1.3.1 is known as
Ville’s Lemma.

1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain infinitary
(but M–finite) languages in countable admissible structures M . In so doing,
he created a powerful and flexible tool for set theory, which we shall utilize
later in this book. In this chapter we give an introduction to Barwise’s work.

1.4.1 Syntax

Let M be admissible. Barwise developed a first order theory in which ar-
bitrary M–finite conjunction and disjunction are allowed. The predicates,
however, have only a (genuinely) finite number of argument places and there
are no infinite strings of quantifiers. In order that the notion "M–finite"
have a meaning for the symbols in our language, we must "arithmetize" the
language — i.e. identify its symbols with objects in M . There are many ways
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of doing this. For the sake of definitness we adopt a specific arithmetization
of M–finitary first order logic:

Predicates: For each x ∈ M and each n such that 1 ≤ n < ω we appoint
an n–ary predicate Pnx =: ⟨0, ⟨n, x⟩⟩.

Constants: For each x ∈M we appoint a constant cx =: ⟨1, x⟩.

Variables: For each x ∈M we appoint a variable vx =: ⟨2, x⟩.

Note The set of variables must be M–infinite, since otherwise a single for-
mula might exhaust all the variables.

We let P 2
0 be the identity predicate =̇ and also reserve P 2

1 as the ∈–predicate
(∈̇).

By a primitive formula we mean Pt1 . . . tn =: ⟨3, ⟨P, t1, . . . , tn⟩⟩ where P is
an n–ary predicate and t1, . . . , tn are variables or constants.

We then define:

¬φ =: ⟨4, φ⟩, (φ ∨ ψ) =: ⟨5, ⟨φ,ψ⟩⟩,

(φ ∧ ψ) =: ⟨6, ⟨φ,ψ⟩⟩, (φ→ ψ) =: ⟨7, ⟨φ,ψ⟩⟩,

(φ↔ ψ) =: ⟨8, ⟨φ,ψ⟩⟩,
∧
vφ = ⟨9, ⟨v, φ⟩⟩,∨

vφ = ⟨10, ⟨v, φ⟩⟩.

The infinitary conjunctions and disjunctions are∧∧
f =: ⟨11, f⟩,

∨∨
f =: ⟨12, f⟩.

The set Fml of first order M–formulae is then the smallest set X which
contains all primitive formulae, is closed under ¬,∧,∨,→,↔, and such that

• If v is a variable and φ ∈ X, then
∧
vφ ∈ X and

∨
vφ ∈ X.

• If f = ⟨φi|i ∈ I⟩ ∈ M and φi ∈ X for i ∈ I, then
∧∧

f ∈ X and∨∨
f ∈ X.

(In this case we also write:∧∧
i∈I

φi =:
∧∧

f,
∨∨
i∈I

φi =:
∧∧

f.

If B ∈M is a set of formulae we may also write:
∧∧

B for
∧∧
φ∈B

φ.)
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It turns out that the usual syntactical notions are ∆1(M), including: Fml,
Const (set of constants), V bl (set of variables), Sent (set of all sentences),
as are the functions:

Fr(φ) = The set of free variables in φ
φ(v/t) ≃ the result of replacing occurences of the variable v by t (where
t ∈ V bl∪Const), as long as this can be done without a new occurence
of t being bound by a quantifier in φ (if t is a variable).

That V bl, Const are ∆1 (in fact Σ0) is immediate. The characteristic func-
tion X of Fml is definable by a recursion of the form:

X(x) = G(x, ⟨X(z)|z ∈ TC(x))

where G :M2 →M is ∆1. (This is an instance of the recursion schema in §1
Lemma 1.1.16. We are of course using the fact that any proper subformula
of φ lies in TC(φ).)

Now let h(φ) be the set of immediate subformulae of φ (e.g. h(¬φ) = {φ},
h(
∧∧
i∈I
φi) = {φi|i ∈ I}, h(

∧
vφ) = {φ} etc.) Then h satisfies the condition in

§1 Lemma 1.1.16. It is fairly easy to see that

Fr(φ) = G(φ, ⟨F (x)|x ∈ h(φ)⟩)

where G is a Σ1 function defined on Fml. Then Sent = {φ|Fr(φ) = ∅}.

To define φ(v/t) we first define it on primitive formulae, which is straightfor-
ward. We then set:

(φ ∧ ψ)(v/t) ≃ (φ(v/t) ∧ ψ(v/t)) (similarly for ∧,→,↔)

¬φ(v/t) ≃ ¬(φ(v/t))

(
∧∧
i∈I
φi)(

v/t) ≃
∧∧
i∈I

(φi(
v/t)) similarly for

∨∨
.

(
∧
uφ)(v/t) ≃


∧
uφ if u = v∧
u(φ(v/t)) if u ̸= v, t

otherwise undefined
(similarly for

∨
)

This has the form:

φ(v/t) ≃ G(φ, v, t⟨X(v/t)|X ∈ h(φ)⟩),

where G is Σ1(M). The domain of the function f(φ, v, t) = φ(v/t) is ∆1(M),
however, so f is M–recursive.
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(We can then define:

φ(v1,...,vn/t1, . . . , tn) = φ(v1/w1) . . . (
vn/wn)(

w1/t1) . . . (
wn/tn)

where v1, . . . , vn is a sequence of distinct variables and w1, . . . , wn is any
sequence of distinct variables which are different from v1, . . . , vn, t1, . . . , tn
and do not occur bound or free in φ. We of cours follow the usual conventions,
writing φ(t1, . . . , tn) for φ(v1,...,vn/t1, . . . , tn), taking v1, . . . , vn as known.)

M–finite predicate logic has the axioms:

• all instances of the usual propositional logic axiom schemata (enough
to derive all tautologies with the help of modus ponens).

•
∧∧
i∈U

φi → φj , φj →
∨∨
i∈U

φi (j ∈ U ∈M)

•
∧
xφ→ φ(x/t), φ(x/t)→

∨
xφ

• x=̇y → (φ(x)↔ φ(y))

The rules of inference are:

• φ,φ→ψ
ψ (modus ponens)

• φ→ψ
φ→

∧
xψ if x /∈ Fr(φ)

• ψ→φ∨
xψ→φ if x /∈ Fr(φ)

• φ→ψi(i∈u)
φ→

∧∧
ψi

(u ∈M)

• ψi→φ(i∈u)∨∨
ψi→φ (u ∈M)

We say that φ is provable from a set of sentences A iff φ is in the smallest set
which contains A and the axioms and is closed under the rules of inference.
We write A ⊢ φ to mean that φ is provable from A. ⊢ φ means the same as
∅ ⊢ φ.

However, this definition of provability cannot be stated in the 1st order lan-
guage of M and rather misses the point which is that a provable formula
should have an M–finite proof. This, as it turns out, will be the case when-
ever A is Σ1(M). In order to state and prove this, we must first formalize the
notion of proof. Because we have not assumed the axiom of choice to hold
in our admissible structure M , we adopt a somewhat unorthodox concept of
proof:
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Definition 1.4.1. By a proof from A we mean a sequence ⟨pi|i < α⟩ such
that α ∈ On and for each i < α, pi ⊂ Fml and whenever ψ ∈ pi, then either
ψ ∈ A or ψ is an axiom or ψ follows from

⋃
h<i

ph by a single application of

one of the rules.

Definition 1.4.2. p = ⟨pi|i < α⟩ is a proof of φ from A iff p is a proof from
A and φ ∈

⋃
i<α

pi.

(Note that this definition does not require a proof to be M–finite.)

It is straightforward to show that φ is provable iff it has a proof. However,
we are more interested in M–finite proofs. If A is Σ1(M) in a parameter
q, it follows easily that {p ∈ M |p is a proof from A} is Σ1(M) in the same
parameter. A more interesting conclusion is:

Lemma 1.4.1. Let A be Σ1(M). Then A ⊢ φ iff there is an M–finite proof
of φ from A.

Proof: (←) trivial. We prove (→)

Let X = the set of φ such that there is p ∈M which proves φ from A.

Claim: {φ|A ⊢ φ} ⊂ X.

Proof: We know that A ⊂ X and all axioms lie in X. Hence it suffices to
show that X is closed under the rules of proof. This must be demonstrated
rule by rule. As an example we show:

Claim: Let φ→ ψi be in X for i ∈ u. Then φ→
∧∧
i∈u
ψi ∈ X.

Proof: Let P (p, φ) mean: p is a proof of φ from A. Then P is Σ1(M). We
have assumed:

(1)
∧
i ∈ u

∨
P P (p, φ→ ψi).

Now let P (p, x)↔
∨
zP ′(z, p, x) where P ′ is Σ0. We then have:

(2)
∧
i ∈ u

∨
p
∨
zP ′(z, p, φ→ ψi).

Hence there is v ∈M with:

(3)
∧
i ∈ u

∨
p, z ∈ vP ′(z, p, φ→ ψi).

Set: w = {p ∈ v|
∨
i ∈ u

∨
z ∈ vP ′(z, p, φ→ ψi)}

Set: α =
⋃
p∈w

dom(p). For i < α set:

qi =
⋃
{pi|p ∈ w ∧ i ∈ dom(p)}
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Then q = ⟨qi|i < α⟩ ∈M is a proof.

? But then q∩{φ −→
∧∧
i∈U

ψi} is a proof of φ −→
∧∧
i∈U

ψi. Hence φ −→
∧∧
i∈U

ψi ∈

X.
QED (Lemma 1.4.1)

From this we get the M–finiteness lemma:

Lemma 1.4.2. Let A be Σ1(M). Then A ⊢ φ iff there is a ⊂ A such that
a ∈M and a ⊢ φ.

Proof: (←) is trivial. We prove (→). Let p ∈ M be a proof of φ from A.
Set:

a = the set of ψ such that for some i ∈ dom(p), ψ ∈ pi and ψ is neither an
axiom nor follows from

⋃
l<i

pl by an application of a single rule.

Then a ⊂ A, a ∈M , and p is a proof of φ from a. QED (Lemma 1.4.2)

Another consequence of Lemma 1.4.1 is:

Lemma 1.4.3. Let A be Σ1(M) in q. Then {φ|A ⊢ φ} is Σ1(M) in the
same parameter (uniformly in the Σ1 definition of A).

Proof: {φ|A ⊢ φ} = {φ|
∨
p ∈M p proves φ from A}.

Corollary 1.4.4. Let A be Σ1(M) in q. Then "A is consistent" is Π1(M)
in the same parameter (uniformly in the Σ1 definition of A).

"p proves φ from u" is uniformly Σi(M). Hence:

Lemma 1.4.5. {⟨u, φ⟩|u ∈M ∧ u ⊢ φ} is uniformly Σ1(M).

Corollary 1.4.6. {⟨u ∈M |u is consistent} is uniformly Π1(M).

Note. Call a proof p strict iff pi = 1 for i ∈ dom(p). This corresponds to
the more usual notion of proof. If M satisfies the axiom of choice in the
form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with
"strict proof" in place of "proof". We leave this to the reader.
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1.4.2 Models

We will not normally employ all of the predicates and constants in our M–
finitary first order logic, but cut down to a smaller set of symbols which we
intend to interpret in a model. Thus we define a language to be a set L of
predicates and constants. By a model of L we mean a structure:

A = ⟨|A|, ⟨tA|t ∈ L⟩⟩

such that |A| ≠ ∅, PA ⊂ |A|n whenever P is an n–ary predicate, and cA ∈ |A|
whenever c is a constant. By a variable assignment we mean a partial map
of f of the variables into A. The satisfaction relation A |= φ[f ] is defined in
the usual way, where A |= [f ] means that the formula φ becomes true in A
if the free variables of φ are interpreted by the assignment f . We leave the
definition to the reader, remarking only that:

A |=
∧∧
i∈u
φi[f ]↔

∧
i ∈ u A |= φi[f ]

A |=
∨∨
i∈u
φi[f ]↔

∨
i ∈ u A |= φi[f ]

We adopt the usual conventions of model theory, writing A = ⟨|A|, tA1 , . . .⟩ if
we think of the predicates and constants of L as being arranged in a fixed
sequence t1, t2, . . .. Similarly, if φ = φ(v1, . . . , vn) is a formula in which at
most the variables v1, . . . , vn occur free, we write A |= φ[a1, . . . , an] for:

A |= φ[f ] where f(vi) = ai for i = 1, . . . , n.

If φ is a sentence we write: A |= φ. If A is a set of sentences, we write A |= A
to mean: A |= φ for all φ ∈ A.

Proof: The correctness theorem says that if A is a set of L sentences and
A |= A, then A is consistent. (We leave this to the reader.)
Barwise’s Completeness Theorem says that the converse holds whenever our
admissible structure is countable:

Theorem 1.4.7. Let M be a countable admissible structure. Let L be an
M–language and let A be a set of statements in L. If A is consistent in
M–finite predicate logic, then L has a model A such that A |= A.

Proof: (Sketch)
We make use of the following theorem of Rasiowa and Sikorski: Let B be
a Boolean algebra. Let Xi ⊂ B(i < ω) be such that the Boolean union⋃
Xi = bi exists in the sense of B. Then B has an ultrafilter U such that

bi ∈ U ↔ Xi ∩ U ̸= ∅ for i < ω.
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(Proof. Successively choose ci(i < ω) by: c0 = 1, ci+1 = ci ∩ b ̸= 0, where
b ∈ Xi∪{¬bi}. Let U = {a ∈ B|

∨
i(ci ⊂ a)}. Then U is a filter and extends

to an ultrafilter on B.)

Extend the language L by adding an M–infinite set C of new constants. Call
the extended language L∗. Set:

[φ] =: {ψ|A ⊢ (ψ ↔ φ)}

for L∗–sentences φ. Then

B =: {[φ]|φ ∈ SentL∗}

is the Lindenbaum algebra of L∗ with the defining equations:

[φ] ∪ [ψ] = [φ ∨ ψ], [φ] ∩ [ψ] = [φ ∧ ψ],¬[φ] = [¬φ]⋃
i∈U

[φi] = [
∧∧
i∈U

φi](i ∈ u),
⋂
i∈U

[φi] = [
∧∧
i∈U

φi](i ∈ u)⋃
c∈C

[φ(c)] = [
∨
vφ(v)],

⋂
c∈C

[φ(c)] = [
∧
vφ(v)].

The last two equations hold because the constants in C, which do not occur in
the axiomA, behave like free variables. By Rasiowa and Sikorski there is then
an ultrafilter U on B which respects the above operations. We define a model
A = ⟨|A|, ⟨tA|t ∈ L⟩⟩ as follows: For c ∈ C set [c] =: {c′ ∈ C|[c = c′] ∈ U}.
If P ∈ L is an n–place predicate, set:

PA([c1], . . . , [cn])↔: [Pc1, . . . , cn] ∈ U.

If t ∈ L is a constant, set:

tA = [c] where c ∈ C, [t = c] ∈ U.

A straightforward induction then shows:

A |= φ[[c1], . . . , [cn]↔ [φ(c1, . . . , cn)] ∈ U

for formulae φ = φ(v1, . . . , vn) with at most the free variables v1, . . . , vn. In
particular, A |= φ↔ [φ] ∈ U for L∗–statements φ. Hence A |= A.

QED (Theorem 1.4.7)

Combining the completeness theorem with the M–finiteness lemma, we get
the well known Barwise compactness theorem:

Corollary 1.4.8. Let M be countable. Let L be a language. Let A be a
Σ1(M) set of sentences in L. If every M–finite subset of A has a model,
then so does A.
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1.4.3 Applications

Definition 1.4.3. By a theory or axiomatized language we mean a pair
L = ⟨L0, A⟩ such that L0 is a language and A is a set of L0–sentences. We
say that A models L iff A is a model of L0 and A |= A. We also write L ⊢ φ
for: (φ ∈ FmlL0 and A ⊢ φ). We say that L = ⟨L0, A⟩ is Σ1(M) (in p) iff
L0 is ∆1(M) (in p) and A is Σ1(M) (in p). Similarly for: L is ∆(M) (in p).

We now consider the class of axiomatized languages containing a fixed pred-
icate ∈̇, the special constants x(x ∈M) (we can set e.g. x = ⟨1, ⟨0, x⟩⟩), and
the basic axioms:

• Extensionality

•
∧
v(v∈̇x↔

∨∨
z∈x

v=̇z) for x ∈M .

(Further predicates, constants, and axioms are allowed of course.) We call
any such theory an "∈–theory". Then:

Lemma 1.4.9. Let A be a grounded model of an ∈–theory L. Then xA =
x ∈ wfc(A) for x ∈M .

In an ∈–theory L we often adopt the set of axioms ZFC− (or more precisely
ZFC−

L ). This is the collection of all L–sentences φ such that φ is the universal
quantifier closure of an instance of the ZFC− axiom schemata — but does
not contain infinite conjunctions or disjunctions. (Hence the collection of all
subformulae is finite.) (Similarly for ZF−, ZFC, ZF .)

(Note If we omit the sentences containing constants, we get a subset B ⊂
ZFC− which is equivalent to ZFC− in L. Since each element of B contain
at most finitely many variables, we can restrict further to the subset B′ of
sentences containing only the variables vi(i < ω). If ω ∈ M and the set
of predicates in L is M–finite, then B′ will be M–finite. Hence ZFC− is
equivalent in L to the statement

∧∧
B′.)

We now bring some typical applications of ∈–theories. We say that an ordinal
α is admissible in a ⊂ α iff ⟨Lα[a],∈, a⟩ is admissible.

Lemma 1.4.10. Let α > ω be a countable admissible ordinal. Then there is
a ⊂ ω such that α is the least ordinal admissible in a.

This follows straightforwardly from:
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Lemma 1.4.11. Let M be a countable admissible structure. Let L be a
consistent Σ1(M) ∈–theory such that L ⊢ ZF−. Then L has a grounded
model A such that A ̸= wfc(A) and On∩wfc(A) = On∩M .

We first show that lemma 1.4.11 implies lemma 1.4.10. Take M = Lα. Let
L be the M–theory with:

Predicate: ∈̇

Constants: x(x ∈M), ȧ

Axioms: Basic axioms +ZFC− + β is not admissible in ȧ(β ∈M)

Then L is consistent, since ⟨Hω1 ,∈, a⟩ is a model, where a is any a ⊂ ω
which codes a well ordering of type ≥ α. Let L be a grounded model of L
such that wfc(A) ̸= A and On∩wfc(A) = α. Then wfc(A) is admissible by
§3. Hence so is Lα[a] where a = ȧA. QED

Note This is a very typical application in that Barwise theory hands us an ill
founded model, but our interest is entirely concentrated on its well founded
part.

Note Pursuing this method a bit further we can use lemma 1.4.11 to prove:
Let ω < α0 < . . . < αn−1 be a sequence of countable admissible ordinals.
There is a ⊂ ω such that αi = the i–th α < ω which is admissible in
a(1 = 0, . . . , n− 1).

We now prove lemma 1.4.11 by modifying the proof of the completeness
theorem. Let Γ(v) be the set of formulae: v ∈ On, v > β(β ∈ On∧M). Add
an M–infinite (but ∆1(M)) set E of new constants to L. Let L′ be L with
the new constants and new axioms: Γ(e) (e ∈ E). Then L′ is consistent,
since any M–finite subset of the axioms can be modeled in an arbitrary
grounded model A of L by interpreting the new constants as sufficiently
large elements of α. As in the proof of completeness we then add a new
class C of constants which is not M–finite. We assume, however, that C is
∆1(M). We add no further axioms, so the elements of C behave like free
variables. The so–extended language L′′ is clearly Σ1(M).

Now set:
∆(v) =: {v /∈ On} ∪

⋃
β∈M
{v ≤ β} ∪

⋃
e∈E
{e < v}.

Claim Let c ∈ C. Then
⋃
{[φ]|φ ∈ ∆(c)} = 1 in the Lindenbaum algebra of

L′′.
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Proof: Suppose not. Then there is ψ such that A ⊢ φ→ ψ for all φ ∈ ∆(c)
and A ∪ {¬ψ} is consistent, where L′′ = ⟨L′′

0, A⟩. Pick an e ∈ E which does
not occur in ψ. Let A∗ be the result of omitting the axioms Γ(e) from A.
Then A∗ ∪ {¬ψ} ∪ Γ(e) ⊢ c ≤ e. By the finiteness lemma there is β ∈ M
such that A∗ ∪ {¬ψ} ∪ {β ≤ e} ⊢ c ≤ e. But e behaves here like a free
variable, so A∗ ∪ {¬ψ} ⊢ c ≤ β. But A ⊃ A∗ and A ∪ {¬ψ} ⊢ β < c. Hence
A ∪ {¬ψ} ⊢ β < β and A ∪ {¬ψ} is inconsistent.
Contradiction! QED (Claim)

Now let U be an ultrafilter on the Lindenbaum algebra of L′′ which respects
both two operations listed in the proof of the completeness theorem and the
unions

⋃
{[φ]|φ ∈ ∆(c)} for c ∈ C. Let X = {φ|[φ] ∈ U}. Then as before,

L′′ has a grounded model A, all of whose elementes have the form cA for
c ∈ C and such that:

A |= φ iff φ ∈ X

for L′′–statements φ. But then for each x ∈ A we have either x /∈ OnA or
x < β for a β ∈ On∩M or eA < v for all e ∈ E. In particular, if x ∈ OnA
and x > β for all β ∈ On∩M , then there is eA < x in A. But β < eA for all
β ∈ On∩M . Hence OnA \OnM has no minimal element in A.

QED (Lemma 1.4.11)

Another typical application is:

Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W , U
is a normal measure on κ. Let τ > κ be regular in W . Set: M = ⟨HW

τ , U⟩.
Assume that M is countable in V . Then for any α ≤ κ there is M = ⟨H,U⟩
such that

• M |= U is a normal measure on κ for a κ ∈M

• M iterates to M in α many steps.

(Hence M is iterable, since M is.)

Proof: The case α = 0 is trivial, so assume α > 0. Let δ be least such that
Lδ(M) is admissible. Let L be the ∈–theory on Lδ(M) with:

Predicate: ∈̇

Constants: x(x ∈ Lδ(M)), Ṁ

Axiom: • Basic axioms +ZFC−

• Ṁ = ⟨Ḣ, U̇⟩ |= (ZFC− + U̇ is a normal measure on a κ < Ḣ)
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• Ṁ iterates to M in α many steps.

It will suffice to show:

Claim L is consistent.

We first show that the claim implies the theorem. Let A be a grounded model
of L. Then Lδ(M) ⊂ wfc(A). Hence M,M ∈ wfc(A), where M = ṀA. But
then in A there is an iteration ⟨M i|i ≤ α⟩ of M to M . By absoluteness
⟨M i|i ≤ α⟩ really is such an iteration. QED

We now prove the claim.

Case 1 α < κ
Iterate ⟨W,U⟩ α many times, getting ⟨Wi, Ui⟩(i ≤ α) with iteraton maps
πi,j . Then π0,α(α) = α. Set Mi = π0,i(M). Then ⟨Mi|i ≤ α⟩ is an iteration
of M with iteration maps πi,j ↾Mi. But Mα = π0,α(M). Hence ⟨Hκ+ ,M⟩
models π0,α(L). But then π0,α(L) is consistent. Hence so is L. QED

Case 2 α = κ
Iterate ⟨W,U⟩ β many times, where π0,β(κ) = β. Then ⟨Mi|i ≤ β⟩ iterates
M to Mβ in β many steps. Hence ⟨Hκ+ ,M⟩ models π0,β(L). Hence π0,β(L)
is consistent and so is L. QED (Lemma 1.4.12)

Barwise theory is useful in situations where one is given a transitive struc-
ture Q and wishes to find a transitive structure Q with similar properties
inside an inner model. Another tool, which is often used in such situations,
is Schoenfield’s lemma, which, however, requires coding Q by a real. Unsur-
prizingly, Schoenfield’s lemma can itself be derived from Barwise theory. We
first note the well known fact that every Σ1

2 condition on a real is equivalent
to a Σ1(Hω1) condition, and conversely. Thus it suffices to show:

Lemma 1.4.13. Let Hω1 |= φ[a], a ⊂ ω, where φ is Σ1. Then:

Hω1 |= φ[a] in L(a).

Proof: Let φ =
∨
zψ, where ψ is Σ0. Let Hω1 |= ψ[z, a] where

rn(z) = δ < α < ω1 and α is admissible in a. Let L be the language on
Lα(a) with:

Predicate: ∈̇

Constants: x(x ∈ Lα(a))

Axioms: Basic axioms +ZFC− +
∨
z(ψ(z, a) ∧ rn(z) = δ).
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Then L is consistent, since ⟨Hω1 , a⟩ is a model. We cannot necessarily chose
α such that it is countable in L(a), however. Hence, working in L(a), we
apply a Skolem–Löwenheim argument to Lα(a), getting countable α, δ, π
such that π : Lα(a) ≺ Lα(a) and π(δ) = δ. Let L be defined from δ
over Lα(a) as L was defined from δ over Lα(a). Then L is consistent by
corollary 1.4.4. Since Lα(a) is countable in L(a), L has a grounded model
A ∈ L(a). But then there is z ∈ A such that A |= ψ[z, a] and rnA(z) = δ.
Thus rn(z) = β ∈ wfc(A) and z ∈ wfc(A). Thus wfc(A) |= ψ[z, a], where
wfc(A) ⊂ Hω1 in L(a). Hence Hω1 |= φ[a] in L(a). QED
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Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the
way the constructable hierarchy grows. There are many natural questions.
We know for instance by Gödel’s condensation lemma that there are count-
able γ such that Lγ models ZFC− + ω1 exists. This means that some β < γ
is a cardinal in Lγ but not in L. Hence there is a subset b ⊂ β lying in L
but not in Lγ . Hence there must be a least α > γ such that such a subset
lies in Lα+1 = Def(Lα). What happens there, and what do such α look like?
It turns out that there is then a Σω(Lα) injection of Lα into β, and that α
can be anything — even a successor ordinal. The body of methods used to
solve such questions is called fine structure theory .

In chapter 1 we developed an elaborate body of methods for dealing with
admissible structures. In order to deal with questions like the above ones,
we must try to adapt these methods to an arbitrary Lα. A key concept in
this endeavor is that of amenability :

Definition 2.1.1. A transitive structure M = ⟨|M |,∈, A1, . . . , An⟩ is amen-
able iff Ai ∩ x ∈M for all x ∈M , i = 1, . . . , n.

Omitting almost all proofs, we now sketch the fine structural demonstration
that if β < α and b ⊂ β is a Σω(Lα) set with b /∈ Lα, then there is a Σω(Lα)
injection of Lα into β. Given any structure of the formM = ⟨Lα, B1, . . . , Bn⟩
we define its projectum to be the least ρ such that there is A ⊂ Lρ such that
A is Σ1(M) and A /∈ M . (Thus ⟨Lρ, A⟩ is amenable whenever A ⊂ Lρ is
Σ1(M).) It turns out that, whenever ρ is the projectum of Lα, then there is
a Σ1(Lα) injection of Lα into ρ. Now suppose that b is Σ1(Lα), where α, β, b

49
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are as above. Let ρ0 be the projectum of Lα and let f0 be a Σ1(Lα) injection
of Lα into ρ0. Clearly ρ0 ≤ β, so f0 injects Lα into β. Now suppose that b
is Σ2(Lα) but not Σ1(Lα).

If p0 ≤ β the result follows as before, so suppose β < ρ0. By the existence
of f0 there is an A0 ⊂ ρ0 which completely codes Lα and f0. The structure
N0 = ⟨Lρ0 , A0⟩ is then called a reduct of Lα. It then follows that any set
a ⊂ Lρ0 is Σn(N

0) if and only if it is Σn+1(Lα). In particular b is Σ1(N
0)

and b /∈ N0. Hence ρ1 ≤ β, where ρ1 is the projectum of N0. It turns
out, however, that in very many respects N0 behaves exactly like an Lα. In
particular there is a Σ1(N

0) injection f1 of N0 into ρ1. Thus f1 ◦ f0 is a
Σω(Lα) injection of Lα into β.

Now suppose that b is Σ3(Lα) but not Σ2(Lα) and that β < ρ1. Then b
is Σ2(N

0) and we can repeat the above proof, using N0 in place of Lα.
This gives us a reduct N1 of N0 and a Σ1(N

1) injection f2 of N1 into the
projectum ρ2 of N1. But b is Σ1(N

1) and b /∈ N1. Hence ρ2 ≤ β. f2 ◦f1 ◦f0
is then a Σω(Lα) injection of Lα into β. Proceeding in this way, we see that
if b is Σn+1(Lα), then there is a Σω(Lα) map f = fn ◦ . . . ◦ f0 injecting Lα
into β. But b is Σn+1 for some n.

The first proof of the above result was due to Hilary Putnam and did not use
the full fine structure analysis we have just outlined. However, our analysis
yielded many new insights; giving for instance the first proof that Lα is Σn
uniformizable for all n ≥ 1. (I.e. every Σn relation is uniformizable by a Σn
function.)

Not long afterwards fine structure theory was used to prove some deep global
properties of L, such as:

L |= □β for all infinite cardinals β.

It was also used to prove the covering lemma for L. That, in turn, led to
extended versions of fine structure theory which could be used to analyze
larger inner models, in which some large cardinals could be realized. (Here,
however, the fine structure theory was needed not only to analyze the inner
model, but even to define it in the first place.)

Carrying out the above analysis of L requires a very fine study of definability
over an arbitrary Lα. In order to achieve this, however, one must overcome
some formidable technical obstacles which arise from Gödel’s definition of
the constructible hierarchy: At successors α, Lα is not even closed under
ordered pairs, let alone other basic set functions like unit set, crossproduct
etc. One solution is to employ the theory of rudimentary functions in an
auxiliary role. These functions, which were discovered by Gandy and Jensen,
are exactly the functions which are generated by the schemata for primitive
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recursive functions when the recursion schema is omitted. (Cf. the remark
following chapter 1, §2, Lemma 1.2.4). If rn(xi) < γ for i = 1, . . . , n and f is
rudimentary, then rn(f(x1, . . . , xn)) < γ + ω. All reasonable "elementary"
set theoretic functions are rudimentary. If α is a limit ordinal, then Lα
is closed under rudimentary functions. If α is a successor, then closing Lα
under rudimentary functions yields a transitive structure L∗

α of rank α+ω. It
then turns out that every Σω(L

∗
α) definable subset of Lα is already Σω(Lα),

and conversely. Hence we can, in effect, replace the rather weak definability
theory of Lα by the rather nice definability theory of L∗

α. (This method was
used in [JH], except that L∗

α was given a different but equivalent definition,
since the rudimentary functions were not yet known.) It turns out that ifN is
transitive and rudimentarily closed, and Rud(N) is defined to be the closure
of N ∪ {N} under rudimentary functions, then P(N) ∩ Rud(N) = Def(N).
This suggests an alternative version of the constructible hierarchy in which
every level is rudimentarily closed. We shall index this hierarchy by the class
Lm of limit ordinals, setting:

Jω = Hω = Rud(∅)

Jα+ω = Rud(Jα) for α ∈ Lm

Jλ =
⋃
ν<λ

Jν for λ a limit p.t. of Lm.

Note. Setting J =
⋃
α
Jα, we have: J = L. In fact Jα = Lα whenever α is pr

closed.

Note. This indexing was introduced by Sy Friedman. In [FSC] we indexed
by all ordinals, so that our Jωα corresponds to the Jα of [FSC]. The usage
in [FSC] has been followed by most authors. Nonetheless, we here adopt
Friedman’s usage, which seems to us more natural, since we then have: α =
rn(Jα) = On∩Jα.

In the following section, we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. f : V n → V is a rudimentary (rud) function iff it is
generated by successive applications of schemata (i) – (v) in the definition
of primitive recursive in chapter 1, §2.

A relation R ⊂ V n is rud iff there is a rud function f such that: Rx⃗ ↔
f(x⃗) = 1. In chapter 1, §1.2 we established that:
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Lemma 2.2.1. Lemmas 1.2.1 – 1.2.4 of chapter 1, §1.2 hold with ’rud’ in
place of ’pr’.

Note. Our definition of ’rud function’, like the definition of ’pr function’ is
ostensibly in second order set theory, but just as in chapter 1, §1.2 we can
work in ZFC by talking about rud definitions. The notion of rud definition
is defined like that of pr definition, except that instances of schema (vi) are
not allowed. As before, we can assign to each rud definition s a rud function
Fs : V

n → V with the property that FMs = Fs ↾M whenever M is admissible
and FMs : Mn → M is the function on M defined by s. But then if M is
transitive and closed under rud functions, it follows by induction on the
length of s that there is a unique FMs = Fs ↾M .

A rudimentary function can raise the rank of its arguments by at most a
finite amount:

Lemma 2.2.2. Let f : V n → V be rud. Then there is p < ω such that

f(x⃗) ⊂ Pp(TC(x1 ∪ . . . ∪ xn)) for all x1, . . . , xn.

(Hence rn(fx⃗) ≤ max{rn(x1), . . . , rn(xn)}+ p and
⋃p f(x⃗) ⊂ TC(x1 ∪ . . .∪

xn).)

Proof: Call any such p sufficient for f . Then if p is sufficient, so is every
q ≥ p. By induction on the defining schemata for f , we prove that f has
a sufficient p. If f is given by an initial schema, this is trivial. Now let
f(x⃗) = h(g1(x⃗), . . . , gm(x⃗)). Let p be sufficient for h and q be sufficient for
gi(i = 1, . . . ,m). It follows easily that p + q is sufficient for f . Now let
f(y, x⃗) =

⋃
z∈y

g(z, x⃗), where p is sufficient for g. It follows easily that p is

sufficient for f . QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every Σ0 relation
is rud. We now prove the converse. In fact we shall prove a stronger result.
We first define:

Definition 2.2.2. f : V n → V is simple iff whenever R(z, y⃗) is a Σ0 relation,
then so is R(f(x⃗), y⃗).

The simple functions are obviously closed under composition. The simplicity
of a function f is equivalent to the conjunction of the two conditions:

(i) x ∈ f(y⃗) is Σ0

(ii) If A(z, u⃗) is Σ0, then
∧
z ∈ f(x⃗)A(z, u⃗) is Σ0,
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for given these we can verify by induction on the Σ0 definition of R that
R(f(x⃗), y⃗) is Σ0.
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata
of f that f is simple. The proof is left to the reader. QED

In particular:

Corollary 2.2.4. Every rud function f is Σ0 as a relation. Moreover f ↾U
is uniformly Σ0(U) whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is Σ0.

We now list some facts which follow easily from the foregoing lemmas.

Fact 1. Let f : V n → V such that z ∈ f(x⃗) is a Σ0 relation. If there is
a rudimentary function g such that f(x⃗) ⊂ g(x⃗), then f is a rudimentary
function.

Proof. Lemma 2.2.1 and Lemma 1.2.3 we have: f(x⃗) = g(x⃗)∩{z | z ∈ f(x⃗)}.
QED(Fact 1)

Fact 2. Let f : V n → V such that y = f(x⃗) is a Σ0 relation. If there is
a rudimentary function g such that f(x⃗) ∈ g(x⃗), then f is a rudimentary
function.

Proof. z ∈ f(x⃗) is Σ0, since it is expressed by:
∨
y ∈ g(x⃗)z ∈ y. But then

f(x⃗) ⊂
⋃
g(x⃗). QED(Fact 2)

Definition 2.2.3.

Γ(u) =: u ∪
⋃
u ∪ {{x, y} | x, y ∈ u}∪

{x ∪ y | x, y ∈ u} ∪ {x ∩ y | x, y ∈ u} ∪ {x \ y | x, y ∈ u}.

Definition 2.2.4. We define rudimentary function C∗
n (n < ω) by: C∗

0 (u) =
u, C∗

n+1(u) = Γ(C∗
n(u)).

Fact 3. Let n < ω. If p < ω is sufficiently large, then for all n we have:

• If x1, . . . , xn ∈ u, then ⟨x1, . . . , xn⟩ ∈ C∗
p(u)

• If ⟨x1, . . . , xn⟩ ∈ u, then x1, . . . , xn ∈ C∗
p(u).



54 CHAPTER 2. BASIC FINE STRUCTURE THEORY

In Chapter 1, §2 we relativized the concept ’pr’ to ’pr in A1, . . . , An’. We
can do the same thing with ’rud’.

Definition 2.2.5. Let Ai ⊂ V (i = 1, . . . ,m). f : V n → V is rudimentary
in A1, . . . , An (rud in A1, . . . , An) if and only if it is obtained by successive
applications of the schemata (i) – (v) and:

f(x) = χAi(x) (i = 1, . . . , n)

where χA is the characteristic function of A.

Lemma 2.2.1 and 2.2.2 obviously hold with ’rud in A1, . . . , An’ in place of
’rud’. Lemma 2.2.3 and its corollaries do not hold, however, since e.g. the
relation {x} ∈ A is not Σ0 in A.

However, we do get:

Lemma 2.2.6. Every function rud in A1, . . . , An is obtainable as a compo-
sition of rud function, and the functions

f(x) = Ai ∩ x(i = 1, . . . , n).

Proof: Let RC be the set of such compositions. More precisely, RC is the
set of functions obtainable from rud function by successive application of the
schemata:

• f(x⃗) = Ai ∩ g(x⃗) (i = 1, . . . , n)

• f(x⃗) = g(⃗h(x⃗))

It suffices to show:

Claim. If g is in RC, then so is:

f(u, x⃗) =
⋃
z∈u

g(z, x⃗).

We define:

Definition 2.2.6. Let f : V n → V be in RC. f is viable if and only the
function:

f∗(u) = f ↾(u ∩ TPn)

is in RC, where TPn =the class of all n-tuples ⟨x1, . . . , xn⟩.
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Then:

(1) If f is viable, then f ′ is in RC, where

f ′(u, x⃗) =
⋃
z∈u

f(z, x⃗).

Proof. Set k(u, x⃗) = {⟨z x⃗⟩ | z ∈ u}. Then k is rud. But f∗(u, x⃗) = f ↾
k(u, x⃗). Hence

⋃
rng(f∗(u, x⃗)) = f ′(u, x⃗). QED(1)

Hence it suffices to show:

Claim. Every f in RC is viable.

We prove this by induction on the defining schemata of f . We show:

(A) Every rud function is viable

(B) If g(x⃗) is viable, so is f(x⃗) = Ai ∩ g(x⃗)

(C) If g(y1, . . . , yn) is viable and hi(x⃗) is viable for i = 1, . . . , n, then
f(x⃗) = g(⃗h(x⃗)) is viable.

We first prove (A). Let f(x1, . . . , xn) be rud. Set fn0 (u, x⃗) = {⟨f(x⃗), ⟨x⃗⟩⟩}.
We then recursively define:

fni+1(u, xi+1, . . . , xn) =
⋃
z∈u

fni (u, z, xi+1, . . . , xn)

for i < n. Then fnn (u) = f ↾un and f∗(u) = fnn (u)↾u. QED(A)

We now prove (B). Set k(a,w) = {⟨a ∩ y, x⟩ | ⟨y, x⟩ ∈ w}. Then k is
rudimentary. To see this, note that x ∈ k(a,w) is Σ0, since:

z ∈ k(a,w) ⇐⇒
∨
y, x ∈ C∗

n(w)(z = ⟨a ∩ y, x⟩ ∧ ⟨y, x⟩ ∈ w)

for sufficient n. ut k(a,w) ⊂ C∗
n({a,w}) for sufficient n. But

k(a, f∗(u)) = {⟨a ∩ f(x⃗), ⟨x⃗⟩⟩ | ⟨x⃗⟩ ∈ u}.

Set: f̃(u)0 :
⋃
rng(f∗) =

⋃
⟨x⃗⟩∈u f(x⃗). Let a = Ai ∩ f̃(u). Then:

k(a, f∗(u) = {⟨Ai ∩ f(x⃗), ⟨x⃗⟩⟩ | ⟨x⃗⟩ ∈ u}
= f∗Ai

(u) where fAi(x⃗) = Ai ∩ f(x⃗).

Hence f∗Ai
(u) lies in RC and fAi is viable. QED(B)
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We now prove (C). Let f(x⃗) = g(⃗h(x⃗), where g is m-ary anf hi is n-ary for
i = 1, . . . ,m. Set:

y = k(w⃗) ⇐⇒
∨
z⃗, x(y = ⟨⟨z⃗⟩, x⟩ ∧

m∧
i=1

⟨zi, x⟩ ∈ wi),

where the existence quantifier can be bounded by C∗
p({w⃗}) for sufficient p,

and: k(w⃗) ∈ C∗
p({w⃗}) for sufficient p. But:

k(h∗1(u), . . . , h
∗
m(u)) = {⟨h1(x⃗), . . . , hm(x⃗), ⟨x⃗⟩⟩ | ⟨x⃗⟩ ∈ u ∩ TPm}.

Set: k̃(u) = rng(k(h∗1(u), . . . , h
∗
m(u))). Then:

k̃(u) = {⟨h1(x⃗), . . . , hm(x⃗)⟩ | ⟨x⃗⟩ ∈ u ∩ TPm}.

Hence:
prod(g∗(u), h̃(u)) = f ↾u ∩ TPn = f∗(u),

where:
prod(w, v) = {⟨y, z rg |

∨
x(⟨y, x⟩ ∈ w ∧ ⟨x, z⟩ ∈ v)}.

But u = prod(w, v) is Σ0 since it is expressed by:∨
y, x ∈ C∗

P (u)
∨
z ∈ C∗

p(v))⟨y, x⟩ ∈ w ∧ ⟨x, z⟩ ∈ v)

for sufficient p. Moreover: prod(w, v) ⊂ C∗
p({w, v}) for sufficient p. Hence

prod is a rud function and f∗ lies in RC. Hence f is viable.

QED (Lemma 2.2.6)

Definition 2.2.7. X is rudimentarily closed (rud closed) if and only if it
is closed under rudimentary functions. ⟨M,A1, . . . , An⟩ is rud closed if and
only if M is closed under functions rudimentary in A1, . . . , An.

If M = ⟨|M |, A1, . . . , An⟩ is transitive and rud closed, then it is amenable,
since it is closed under f(x) = x ∩A. By lemma 2.2.6 we then have:

Corollary 2.2.7. Let M = ⟨|M |A1, . . . , An⟩ be transitive. M is rud closed
iff it is amenable and |M | is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. Every function f which is rud in A is Σ1 in A as a
relation. Moreover f ↾U is Σ1(⟨U,A∩U⟩) by the same Σ1 definition whenever
⟨U,A∩U⟩ is transitive and rud closed. (Similarly for "rud in A1, . . . , An".)
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Proof: f is obtained from rud functions by successive application of the
schemata:

• f(x⃗) = A ∩ g(x⃗)

• f(x⃗) = g(⃗h(x⃗)).

The result follows by induction on these schemata. QED (Corollary 2.2.8)

In Chapter 1 §2.2 we extended the notion of "pr definition" so as to deal
with functions pr in classes A1, . . . , An. We can do the same for rudimentary
functions:

We appoint new designated function variables ȧ1, . . . , ȧn and define the set
of rud definitions in a1, . . . , an exactly as before, except that we omit the
schema (vi). Given A1, . . . , An we can, exactly as before, assign to each
rud definition s in ȧ1, . . . , ȧn a function FA1,...,An

s are then exactly the func-
tions rud in A1, . . . , An. Since lemma 2.2.6 (and with it, corollary 2.2.8) is
proven by induction on the defining schemata, its proof implicitly defines an
algorithm which assigns to each s a Σ1 formula φs which defines F A⃗s .

Corresponding to chapter 1 §1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let f be rud in A1, . . . , An, where each Ai is rud in B1, . . . , Bm.
Then f is rud in B1, . . . , Bm.

The proof is again by induction on the defining schemata. It shows, in fact
that f is uniformly rud in B⃗ in the sense that its rud definition from B⃗
depends only on its rud definition from A⃗ and the rud definition of Ai from
B⃗ (i = 1, . . . , n).

We also note:

Lemma 2.2.10. Let π : M →Σ0 M , where M,M are rud closed. Then
π preserves rudimentarity in the following sense: Let f be defined from the
predicates of M by the rud definition s. Let f be defined from the predicates
of M by s. Then π(f(x⃗)) = f(π(x⃗)) for x1, . . . , xn ∈M .

Proof: Let φs be the canonical Σ1 definition. Then M |= φs[y, x⃗] → M |=
φs[π(y), π(x⃗)] by Σ0–preservation. QED (Lemma 2.2.10)

We now define:

Definition 2.2.8.
rud(U) =: The closure of U under rud functions
rudA1,...,An(U) =: The closure of U under functions rud in A1, . . . , An
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(Hence rud(U) = rud∅(U).)

Lemma 2.2.11. If U is transitive, then so is rud(U).

Proof: Let W = rud(U). Let Q(x) mean: TC({x}) ⊂W . By induction on
the defining schemata of f we show:

(Q(x1) ∧ . . . ∧Q(xn))→ Q(f(x1, . . . , xn))

for x1, . . . , xn ∈ W . The details are left to the reader. But x ∈ U → Q(x)
and each z ∈W has the form f(x⃗) where f is rud and x1, . . . , xn ∈ U . Hence
TC({z}) ⊂W for z ∈W . QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is rudA⃗(U).

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and W = rud(U). Then the restriction
of any Σ0(W ) relation to U is Σ0(U).

Proof: Let R be Σ0(W ). Let R(x⃗) ↔ R′(x⃗, p⃗) where R′ is Σ0(W ) and
p1, . . . , pn ∈ W . Let pi = fi(z⃗), where fi is rud and z1, . . . , zn ∈ U . Then
for x1, . . . , xm ∈ U :

R(x⃗) ↔ R′(x⃗, f⃗(z⃗))
↔ R′′(x⃗, z⃗)

where R′′ is Σ0(U), by lemma 2.2.3. QED (Lemma 2.2.13)

We now define:

Definition 2.2.9. Let U be transitive.

Rud(U) =: rud(U ∪ {U})
RudA⃗(U) =: rudA⃗(U ∪ {U})

Then Rud(U) is a proper transitive extension of U . By Lemma 2.2.13:

Corollary 2.2.14. Def(U) = P(U) ∩ Rud(U) if U ̸= ∅ is transitive.

Proof: If A ∈ Def(U), then A is Σ0(U ∪ {U}). Hence A ∈ Rud(U). Con-
versely, if A ∈ Rud(U), then A is Σ0(U ∪ {U}) by lemma 2.2.13. It follows
easily that A ∈ Def(U). QED (Corollary 2.2.14)
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Note. To see that A ∈ Def(U), consider the ∈–language augmented by a
new constant U̇ which is interpreted by U . We assign to every Σ0 formula
φ in this language a first order formula φ′ not containing U̇ such that for all
x1, . . . , xn ∈ U :

U ∪ {U} |= φ[x⃗]↔ U |= φ′[x⃗].

(Here xi is taken to interpret vi where v1, . . . , vn is an arbitrarily chosen
sequence of distinct variables, including all variables which occur free in φ.)
We define φ′ by induction on φ. For primitive formulae we set first:

(v ∈ w)′ = v ∈ w, (v ∈ U̇)′ = v = v,

(U̇ ∈ v)′ = v ̸= v, (U̇ ∈ U̇) =
∨
v v ̸= v.

For sentential combinations we do the obvious thing:

(φ ∧ ψ)′ = (φ′ ∧ ψ′), (¬φ)′ = ¬φ′,

etc. Quantifiers are treated as follows:

(
∧
v ∈ wφ)′ =

∧
v ∈ wφ′

(
∧
v ∈ U̇φ)′ =

∧
vφ′

Given finitely many rud functions s1, . . . , sp we say that they constitute a
basis for the rud function iff every rud function is obtainable by successive
application of the schemata:

• f(x1, . . . , xn) = xj (j = 1, . . . , n)

• f(x⃗) = si(g1(x⃗), . . . , gm(x⃗)) (i = 1 . . . , p)

Note that if s1, . . . , sp is a basis, then rud(U) is simply the closure of U
under the finitely many functions s1, . . . , sp. We shall now prove the Basis
Theorem, which says that the rud functions possess a finite basis. We first
define:

Definition 2.2.10. (x, y) =: {{x}, {x, y}}; (x) = x,
(x1, . . . , xn) = (x1, (x2, . . . , xn)) for n ≥ 2.

(Note: Our "official" notation for n–tuples is ⟨x1, . . . , xn⟩. However, we
have refrained from specifying its definition. Thus we do not know whether
(x⃗) = ⟨x⃗⟩.)

We also set:
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Definition 2.2.11.

x⊗ y = {(z, w)|z ∈ x ∧ w ∈ y}
dom∗(x) = {z|

∨
y(y, z) ∈ x}

x∗z = {y|(y, z) ∈ x}

Theorem 2.2.15. The following functions form a basis for the rud function:

F0(x, y) = {x, y}
F1(x, y) = x \ y
F2(x, y) = x⊗ y
F3(x, y) = {(u, z, v)|z ∈ x ∧ (u, v) ∈ y}
F4(x, y) = {(u, v, z)|z ∈ x ∧ (u, v) ∈ y}
F5(x, y) =

⋃
x

F6(x, y) = dom∗(x)
F7(x, y) = {(z, w)|z, w ∈ x ∧ z ∈ w}
F8(x, y) = {x∗z|z ∈ y}

Proof: The proof stretches over several subclaims. Call a function f good
iff it is obtainable from F0, . . . , F8 by successive applications of the above
schemata. Then every good function is rud. We must prove the converse.
We first note:

Claim 1 The good functions are closed under composition — i.e. if g, h1, . . . , hn
are good, then so is f(x⃗) = g(⃗h(x⃗)).

Proof: Set G = the set of good function g(y1, . . . , yv) such that whenever
hi(x⃗) is good for i = 1, . . . , r, then so is f(x⃗) = g(⃗h(x⃗)). By a straightforward
induction on the defining schemata it is easily shown that all good functions
are in G. QED (Claim 1)

Claim 2 The following functions are good:

{x, y}, x \ y, x⊗ y, x ∪ y =
⋃
{x, y},

x ∩ y = x \ (x \ y), {x1, . . . , xn} = {x1} ∪ . . . ∪ {xn},

Cn(u) = u ∪
⋃
u ∪ . . . ∪

n︷ ︸︸ ︷⋃
. . .

⋃
u, (x1, . . . , xn)

(since (x1, . . . , xn) is obtained by iteration of F0.) By an ∈–formula we
mean a first order formula containing only ∈̇ as a non logical predicate. If
φ = φ(v1, . . . , vn) is any ∈–formula in which at most the distinct variables
(v1, . . . , vn) occur free, set:

tφ(u) =: {(x1, . . . , xn)|x⃗ ∈ u ∧ ⟨u,∈⟩ |= φ[x⃗]}.

Note. We follow the usual convention of suppressing the list of variables.
We should, of course, write: tφ,v1,...,vn(u).
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Note. Recall our convention that x⃗ ∈ u means that xi ∈ u for i = 1, . . . , n.

Then tφ is rud. We claim:

Claim 3 tφ is good for every ∈–formula φ.

Proof:

(1) It holds for φ = vi ∈ vj (1 ≤ i < j ≤ n)

Proof: For i = 2, 3 set:

F 0
i (u,w) = w, Fm+1

i (u,w) = Fi(u, F
m
i (u,w))

then Fmi is good for all m. For m ≥ 1 we have:

Fm2 (u,w) = {(x1, . . . , xm, z)|x⃗ ∈ u ∧ z ∈ w}
Fm3 (u,w) = {(y, x1, . . . , xm, z)|x⃗ ∈ u ∧ (y, z) ∈ w}

We also set
u(m)= {(x1, . . . , xm)|x⃗ ∈ u}

= Fm−1
2 (u, u)

If j = n, then

tφ(u)= {(x1, . . . , xn)|x⃗ ∈ u ∧ xi ∈ xj}
= F i−1

2 (u, Fn−i−1
3 (u, F7(u, u))).

Now let n > j. Noting that:

F4(u
(m), w) = {(y, z, x1, . . . , xm)|x⃗ ∈ u ∧ (y, z) ∈ w},

we have:

tφ(u) = F i−1
2 (u, F j−i−1

3 (u, F4(u
(n−j), F7(u, u)))).

QED (1)

(2) It holds for φ = vi ∈ vi.

Proof: tφ(w) = ∅ = w \ w.

(3) If it holds for φ = φ(v1, . . . , vn), then for ¬φ.

Proof:
t¬φ(w) = (w(n) \ tφ(w)).

QED (3)
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(4) If it holds for φ,ψ, then for φ ∧ ψ, φ ∨ ψ. (Hence for φ → ψ, φ ↔ ψ
by (3).)

Proof:

tφ∨ψ(w) = tφ(w) ∪ tψ(w) =
⋃
{tφ(w), tψ(w)}

tφ∧ψ(w) = tφ(w) ∩ tψ(w), where x ∩ y = (x \ (x \ y)).

QED (4)

(5) If it holds for φ = φ(u, v1, . . . , vn), then for
∧
uφ,

∨
u φ.

Proof:
t∨uφ(w) = F6(tφ(ω), tφ(ω)) hence
t∧uφ(w) = t¬

∨
u¬φ(w) by (3)

QED (5)

(6) It holds for φ = vi = vj (i, j ≤ n).
Proof: Let ψ(v1, . . . , vn) =

∧
z(z ∈ vi ↔ z ∈ vj). Then for (x⃗) ∈ U (n)

we have:
(x⃗) ∈ tψ(u ∪

⋃
u)↔ xi = xj ,

since xi, xj ⊂ (u ∪
⋃
u). Hence

tφ(u) = u(n) ∩ tψ(u ∪
⋃
u).

QED (6)

(7) It holds for φ = vj ∈ vi (i < j)

Proof:
vj ∈ vi ↔

∨
u(u = vj ∧ u ∈ vi).

We apply (6), (5) and (4). QED (7)

But then if φ(v1, . . . , vn) = Qu1, . . . Qunψ(u⃗, v⃗) is any formula in prenex
normal form, we apply (1), (2), (6), (7) and (3), (4) to see that tψ is good.
But then tφ is good by iterated applications of (5). QED (Claim 3)

In our application we shall use the function tφ only for Σ0 formulae φ. We
shall make strong use of the following well known fact, which can be proven
by induction on n.

Fact Let φ = φ(v1, . . . , vm) be a Σ0 formula in which at most n quantifiers
occur. Let u be any set and let x1, . . . , xm ∈ u. Then V |= φ[x⃗]↔ Cn(u) |=
φ[x⃗].

Definition 2.2.12. Let f : V n → V be rud. f is verified iff there is a good
f∗ : V → V such that f ′′Un ⊂ f∗(U) for all sets U . We then say that f∗

verifies f .
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Claim 4 Every verified function is good.

Proof: Let f be verified by f∗. Let φ be the Σ0 formula: y = f(x1, . . . , xn).
For sufficient m we know that for any set u we have:

y = f(x⃗)↔ (y, x⃗) ∈ tφ(Cm(u ∪ f∗(u)))
for y, x⃗ ∈ u ∪ f∗(u).

Define a good function F by:

F (u) =: (f∗(u)⊗ u(n)) ∩ tφ(Cm(u ∪ f∗(u))).

Then F (u) is the set of (f(x⃗), x⃗) such that x⃗ ∈ u. In particular, if u =
{x1, . . . , xn}, then:

F8(F ({x⃗}), {(x⃗)}) = {f(x⃗)}

and f(x⃗) =
⋃
F8(F ({x⃗}), {(x⃗)}). QED (Claim 4)

Thus it remains only to prove:

Claim 5 Every rud function is verified.

Proof: We proceed by induction on the defining schemata of f .

Case 1 f(x⃗) = xi
Take f∗(u) = u = u \ (u \ u).

Case 2 f(x⃗) = xi \ xj
Let φ be the formula z ∈ x \ y. Then for z, x, y ∈ v we have

z ∈ x \ y ↔ v |= φ[z, x, y]

↔ (z, x, y) ∈ tφ(v).

But x, y ∈ u→ x \ y ⊂
⋃
u. Hence for all x, y, u and all z we have:

z ∈ x \ y ↔ (z, x, y) ∈ tφ(u ∪
⋃
u).

Hence:

f ′′un ⊂ {x \ y|x, y ∈ u} = F8(tφ(u ∪
⋃
u), u(2)).

QED (Case 2)

Case 3 f(x⃗) = {xi, xj}
Then f ′′un = {{x, y}|x, y ∈ u} =

⋃
u(2). QED (Case 3)

Case 4 f(x⃗) = g(⃗h(x⃗))
Let h∗i verify hi and g∗ verify g. Then f∗(u) = g∗(

⋃
i
h∗i (u)) verifies f .

QED (Case 4)
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Case 5 f(y, x⃗) =
⋃
z∈y

g(z, x⃗). Let g∗ verify g. Let φ = φ(w, y, x⃗) be the Σ0

formula:
∨
z ∈ y w ∈ g(z, x⃗). For sufficient m we have:∨
z ∈ y w ∈ g(z, x⃗)↔ (w, y, x⃗) ∈ tφ(Cm(u ∪

⋃
g∗(u)))

for all w, y, x⃗ ∈ u ∪
⋃
g∗(u).

Set F (u) = tφ(Cm(u ∪
⋃
g∗(u))). Then g(z, x⃗) ⊂

⋃
g∗(u) whenever

y, x⃗ ∈ u and z ∈ y. Hence

F (u)∗(y, x⃗) =
⋃
z∈y

g(z, x⃗)

for y, x⃗ ∈ u. Hence

f ′′un+1 ⊂ F8(F (u), u
(n+1)).

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let A1, . . . , An ⊂ V . Then F0, . . . , F8 together with the
functions ai(x) = x ∩ Ai(i = 1, . . . , n) form a basis for the functions which
are rudimentary in A1, . . . , An.

Let M = ⟨|M |,∈, A1, . . . , An⟩. ‘|=M ’ denotes the satisfaction relation for M
and ’|=Σn

M ’ denotes its restriction to Σn formulae. We can make good use of
the basis theorem in proving:

Lemma 2.2.17. |=Σ0
M is uniformly Σ1(M) over transitive rud closed M =

⟨|M |,∈, A1, . . . , An⟩.

Proof: We shall prove it for the case n = 1, since the extension of our proof
to the general case is then obvious. We are then given: M = ⟨|M |,∈, A⟩.
By a variable evaluation we mean a function e which maps a finite set of
variables of the M–language into |M |. Let E be the set of such evaluations.
If e ∈ E, we can extend it to an evaluation e∗ of all variables by setting:

e∗(v) =

{
e(v) if v ∈ dom(e)
∅ if not

|=M φ[e] then means that φ becomes true in M if each free variable v in φ
is interpreted by e∗(v).

We assume, of course, that the first order language of M has been "arithme-
tized" in a reasonable way — i.e. the syntactic objects such as formulae and
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variables have been identified with elements of Hω in such a way that the
basic syntactic relations and operations become recursive. (Without this the
assertion we are proving would not make sense.) In particular the set V bl of
variables, the set Fml of formulae, and the set Fml0 of Σ0–formulae are all
recursive (i.e. ∆1(Hω)). We first note that every Σ0(M) relation is rud, or
equivalently:

(1) Let φ be Σ0. Let v1, . . . , vn be a sequence of distinct variables contain-
ing all variables occuring free in φ. There is a function f uniformly
rud in A such that

|=M φ[e]↔ f(e∗(v1), . . . e
∗(vn)) = 1

for all e ∈ E.

Proof: By induction on φ. We leave the details to the reader.
QED (1)

The notion A–good is defined like "good" except that we now add the
function F9(x, y) = x ∩ A to our basis. By Corollary 2.2.16 we know
that every function rud in A is A–good. We now define in Hω an
auxiliary term language whose terms represent the A–good function.
We first set: Ḟi(x, y) =: ⟨i, ⟨x, y⟩⟩ for i = 0, . . . , 9: ẋ = ⟨10, x⟩. The set
Tm of Terms is then the smallest set such that

• v̇ is a term whenever v ∈ V bl
• If t, t′ are terms, then so is Ḟi(t, t′) for i = 0, . . . , 9.

Applying the methods of Chapter 1 to the admissible set Hω it follows
easily that the set Tm is recursive (i.e. ∆1(Hω)). Set

C(t) ≃: The smallest set C such that the term t ∈ C and C is closed
under subterms (i.e. Ḟi(s, s′) ∈ C → s, s′ ∈ C).

Then C(t) ∈ Hω for t ∈ Tm, and the function C(t) is recursive (hence
∆1(Hω)). Since V bl is recursive, the function
V bl(t) ≃: {v ∈ V bl|v̇ ∈ C(t)} is recursive.

We note that:

(2) Every recursive relation on Hω is uniformly Σ1(M).

Proof: It suffices to note that: Hω is uniformly Σ1(M), since

x ∈ Hω ↔
∨
f
∨
u
∨
nφ(f, u, n, x)

where φ is the Σ0 formula: f is a function ∧ u is transitive
∧n ∈ ω ∧ f : n↔ u ∧ x ∈ u. QED (2)



66 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Given e ∈ E we recursively define an evaluation ⟨e(t)|t ∈ Tm⟩ by:

e(v̇) = e∗(v) for v ∈ V bl
e(Ḟi(t, s)) = Fi(e(t), e(s)).

Then:

(3) {⟨y, e, t⟩|e ∈ E ∧ t ∈ Tm ∧ y = e(t)} is uniformly Σ1(M).

Proof: Let e ∈ E, t ∈ Tm. Then y = e(t) can be expressed in M by:∨
g
∨
u
∨
v(u = C(t) ∧ v = V bl(t) ∧ φ(y, e, u, v, y, t))

where φ is the Σ0 formula:

(g is a function ∧dom(g) = u ∧
∧
x ∈ v x ∈ u

∧
∧
x ∈ v((x ∈ dom(e) ∧ g(ẋ) = e(x))∨
∨(x /∈ dom(e) ∧ g(ẋ) = ∅))

∧
9∧
i=0

∧
t, s, i ∈ u(t = Ḟi(s, s

′)→

→ g(t) = Fi(g(s), y(s
′′)

∧y = g(t))

QED (3)

(4) Let f(x1, . . . , xn) be A–good. Let v1, . . . , v′n be any sequence of distinct
variables. There is t ∈ Tm such that

f(e∗(v1), . . . , e
∗(vn)) = e(t)

for all e ∈ E.

Proof: By induction on the defining schemata of f . If f(x⃗) = xi,
we take t = v̇i. If e∗(v⃗)) = e(si) for e ∈ E(i = 0, 1), and f(x⃗) =
Fi(g0(x⃗), g1(x⃗)), we set t = Ḟi(s0, s1). Then

e(t) = Fi(e(s0), e(s1)) = Fi(g0(x⃗), g1(x⃗)) = f(x⃗).

QED (4)

But then:

(5) Let φ be a Σ0 formula. There is t ∈ Tm such thatM |= φ[e]↔ e(t) = 1
for all e ∈ E.

Proof: Let v1, . . . , vn be a sequence of distinct variables containing all
variables which occur free in φ. Then

M |= φ[e]↔M |= φ[e∗(v1), . . . , e
∗(vn)]
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for all e ∈ E. Set

(∗) f(x⃗) =
{

1 if M |= φ[x⃗]
0 if not.

Then f is rudimentary, hence A–good. Let t ∈ Tm such that

(∗∗) f(e∗(v1), . . . , e∗(vn)) = e(t).

Then: M |= φ[e]↔ e(t) = 1. QED (5)

(5) is, however, much more than an existence statement, since our
proofs are effective: Clearly we can effectively assign to each Σ0 formula
φ a sequence v(φ) = ⟨v1, . . . , vn⟩ of distinct variables containing all
variables which occur free in φ. But the proof that the f defined by
(∗) is rud in fact implicity defines a rud definition Dφ such that Dφ

defines such an f = fDφ over any rud closed M = ⟨M,∈, A⟩. The
proof that f is A–good is by induction on the defining schemata and
implicitly defines a term t = Tφ which satisfies (∗∗) over any rud closed
M . Thus our proofs implicitly describe an algorithm for the function
φ 7→ Tφ. Hence this function is recursive, hence uniformly Σ1(M).
But then Σ0 satisfaction can be defined over M by:

M |= φ[e]↔: e(Tφ) = 1.

QED (Lemma 2.2.17)

Corollary 2.2.18. Let n ≥ 1. |=Σn
M is uniformly Σn(M) for transitive rud

closed structures M = ⟨|M |,∈, A1, . . . , An⟩.

(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets U = ⟨U,∈⟩ reads:

Lemma 2.2.19. Let U = ⟨U,∈⟩ be transitive and rud closed. Let X ≺Σ1 U .
Then there is an isomorphism π : U

∼←→ X, where U is transitive and rud
closed. Moreover, π(f(x⃗)) = f(π(x⃗)) for all rud functions f .

Proof: X satisfies the extensionality axiom. Hence by Mostowski’s isomor-
phism theorem there is π : U

∼←→ X, where U is transitive. Now let f be
rud and x1, . . . , xn ∈ U . Then there is y′ ∈ X such that y′ = f(π(x⃗)), since
X ≺Σ1 U . Let π(y) = y′. Then y = f(x⃗), since the condition ’y = f(x⃗)’ is
Σ0 and π is Σ1–preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = ⟨|M |,∈, A1, . . . , An⟩ is much
weaker, however. We state it for the case n = 1.
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Lemma 2.2.20. Let M = ⟨|M |,∈, A⟩ be transitive and rud closed. Let
X ≺Σ1 M . There is an isomorphism π : M

∼←→ X, where M = ⟨|M |,∈, A⟩
is transitive and rud closed. Moreover:

(a) π(A ∩ x) = A ∩ π(x) for x ∈ M̄ .

(b) Let f be rud in A. Let f be characterized by: f(x⃗) = f0(x⃗, A ∩ f1(x⃗)),
where f0, f1 are rud. Set: f(x⃗) =: f0(x⃗, A ∩ f1(x⃗)). Then:

π(f(x⃗)) = f(π(x⃗)).

The proof is left to the reader.

2.3 The Jα hierarchy

We are now ready to introduce the alternative to Gödel’s constructible hier-
archy which we had promised in §1. We index it by ordinals from the class
Lm of limit ordinals.

Definition 2.3.1.

Jω = Rud(∅)
Jβ+ω = Rud(Jβ) for β ∈ Lm
Jλ =

⋃
γ<λ

Jγ for λ a limit point of Lm

It can be shown that L =
⋃
α
Jα and, indeed, that Lα = Jα for a great many

α (for instance closed α). Note that Jω = Lω = Hω.

By §2 Corollary 2.2.14 we have:

P(Jα) ∩ Jα+ω = Def(Jα),

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J–hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between Jα and ⟨Jα,∈⟩.

Lemma 2.3.1. rn(Jα) = On∩Jα = α.

Proof: By induction on α ∈ Lm. For α = ω it is trivial. Now let α = β+ω,
where β ∈ Lm. Then β = On∩Jβ ∈ Def(Jβ) ⊂ Jα. Hence β + n ∈ Jα for



2.3. THE Jα HIERARCHY 69

n < ω by rud closure. But rn(Jα) ≤ β + ω = α since Jα is the rud closure
of Jα ∪ {Jα}. Hence On∩Jα = α = rn(Jα).

If α is a limit point of Lm the conclusion is trivial. QED (Lemma 2.3.1)

To make our notation simpler, define

Definition 2.3.2. Lm∗ = the limit points of Lm.

It is sometimes useful to break the passage from Jα to Jα+ω into ω many
steps. Any way of doing this will be rather arbitrary, but we can at least do
it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem
2.2.15) to prove:

Lemma 2.3.2. There is a rud function s : V → V such that for all U :

(a) U ⊂ s(U)

(b) rud(U) =
⋃
n<ω

sn(U)

(c) If U is transitive, so is s(U).

Proof: Define rud functions Gi(i = 0, 1, 2, 3) by:

G0(x, y, z) = (x, y)
G1(x, y, z) = (x, y, z)
G2(x, y, z) = {x, (y, z)}
G3(x, y, z) = x∗y

Set:

s(U) =: U ∪
9⋃
i=0

FUi U
2 ∪

3⋃
i=0

GUi U
3.

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let a ∈ s(U). We claim: a ⊂ s(U). There are 14 cases: a ∈ U, a = Fi(x, y)
for an i = 0, . . . , 8, where x, y ∈ U , and a = Gi(x, y, z) where x, y, z ∈ U
and i = 0, . . . , 3. Each of the cases is quite straightforward. We give some
example cases:

• a = F (x, y) = x ⊗ y. If z ∈ a, then z = (x′, y′) where x′ ∈ x, y′ ∈ y.
But then x′, y′ ∈ U by transitivity and z = G0(x

′, y′, x′) ∈ s(U).

• a = F3(x, y) = {(w, z, v)|z ∈ x ∧ (u, v) ∈ y}. If a′ = (w, z, v) ∈ a, then
w, z, v ∈ U by transitivity and a′ = G1(w, z, v) ∈ s(U).
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• a = F8(x, y). If a′ ∈ a, then a′ = x∗z where z ∈ y. Hence z ∈ U by
transitivity and a′ = G3(x, z, z) ∈ s(U).

• a = G0(x, y, z) = {{x}, {x, y}}. Then a ⊂ F ′′
0 U

2 ⊂ s(U).

• a = G1(x, y, z) = (x, y, z) = {{x}, {x, (y, z)}}. Then {x} = F0(x, x) ∈
s(U) and {x, (y, z)} = G2(x, y, z) ∈ s(U). QED (Lemma 2.3.2)

If we then set:

Definition 2.3.3. S(U) = s(U ∪ {U}) we get:

Corollary 2.3.3. S is a rud function such that

(a) U ∪ {U} ⊂ S(U)

(b)
⋃
n<ω

Sn(U) = Rud(U)

(c) If U is transitive, so is S(U).

We can then define:

Definition 2.3.4.
S0 = ∅
Sν+1 = S(Sν)
Sλ =

⋃
ν<λ

Sν for limit λ.

Obviously then: Jγ = Sγ for γ ∈ Lm. (It would be tempting to simply
define Jν = Sν for all ν ∈ On. We avoid this, however, since it could lead to
confusion: At successors ν the models Sν do not have very nice properties.
Hence we retain the convention that whenever we write Jα we mean α to be
a limit ordinal.)

Each Jα has Σ1 knowledge of its own genesis:

Lemma 2.3.4. ⟨Sν |ν < α⟩ is uniformly Σ1(Jα).

Proof: y = Sν ↔
∨
f(φ(f) ∧ y = f(ν)), where φ(f) is the Σ0 formula:

f is a function ∧dom(f) ∈ On∧f(0) = ∅
∧
∧
ξ ∈ dom(f)(ξ + 1 ∈ dom(f)→ f(ξ + 1) = S(f(ξ)))

∧
∧
λ ∈ dom(f |(λ is a limit → f(λ) =

⋃
f ′′λ).
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Thus it suffices to show that the existence quantifier can be restricted to Jα
— i.e.

Claim ⟨Sν |ν < τ⟩ ∈ Jα for τ < α.

Case 1 α = ω is trivial.

Case 2 α = β + ω, β ∈ Lm.
Then ⟨Sν |ν < β⟩ ∈ Def(Jβ) ⊂ Jα. Hence Sβ =

⋃
ν<β

Sν ∈ Jα. By rud

closure it follows that Sβ+n ∈ Jα for n ⊂ w. Hence S ↾ ν ∈ Jα for
ν < α. QED (Case 2)

Case 3 α ∈ Lm∗.
This case is trivial since if ν < β ∈ α ∩ Lm. Then S ↾ν ∈ Jβ ⊂ Jα.

QED (Lemma 2.3.4)

We now use our methods to show that each Jα has a uniformly Σ1(Jα) well
ordering. We first prove:

Lemma 2.3.5. There is a rud function w : V → V such that whenever r
is a well ordering of u, then w(u, r) is a well ordering of s(u) which end
extends r.

Proof: Let r2 be the r–lexicographic ordering of u2:

⟨x, y⟩r2⟨z, w⟩ ↔ (xrz ∨ (x = z ∧ yrw)).

Let r3 be the r–lexicographic ordering of u3. Set:

u0 = u, u1+i = F ′′
i u

2 for i = 0, . . . , 8, u10+i = G′′
i u

3 for i = 0, . . . , 3.

Define a well ordering wi of ui as follows: w0 = r, For i = 0, . . . , 9 set

xw1+iy ↔
∨
a, b ∈ u2(x = Fi(a) ∧ y = Fi(b)∧

∧ar2b ∧
∧
a′ ∈ u2(a′r2a→ x ̸= Fi(a

′))∧
∧
∧
b′ ∈ u2(b′r2b→ y ̸= Fi(b

′)))

For i = 0, . . . , 3 let w10+i have the same definitions with Gi in place of Fi
and u3, r3 in place of u2, r2.

We then set:

w = w(u) = {⟨x, y⟩ ∈ s(u)2|
13∨
i=0

((xwiy ∧ x, y /∈
⋃
h<i

un)∨

∨(x ∈
⋃
h<i un ∧ y /∈

⋃
n<i

un))}



72 CHAPTER 2. BASIC FINE STRUCTURE THEORY

(where
⋃
h<0

un = ∅). QED (Lemma 2.3.5)

If r is a well ordering of u, then

ru = {⟨x, y⟩|⟨x, y⟩ ∈ r ∨ (x ∈ u ∧ y = u)}

is a well ordering of u ∪ {u} which end extends r. Hence if we set:

Definition 2.3.5. W (u, r) =: w(u ∪ {u}, ru).

We have:

Corollary 2.3.6. W is a rud function such that whenever r is a well order-
ing of u, then W (u, r) is a well ordering of S(u) which end extends r.

If we then set:

Definition 2.3.6.
<S0= ∅
<Sν+1=W (Sν , <Sν )
<Sλ

=
⋃
ν<λ

<Sν for limit λ,

it follows that <Sα is a well ordering of Sα which end extends <Sν for all
ν < α.

Definition 2.3.7. <α=<Jα=:<Sα for α ∈ Lm.

Then <α is a well ordering of Jα for α ∈ Lm.

By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. ⟨<Sν |ν < α⟩ is uniformly Σ1(Jα).

Proof:
y =<Sν↔

∨
f
∨
g(φ(f) ∧ ψ(f, g) ∧ y = g(ν))

where φ is as in the proof of Lemma 2.3.4 and ψ is the Σ0 formula:

g is a function ∧dom(g) = dom(f)
∧g(0 = ∅ ∧

∧
ξ ∈ dom(g)|ξ + 1 ∈ dom(g)→

→ g(ξ + 1) =W (f(ξ), g(ξ)))
∧
∧
λ ∈ dom(g) (λ is a limit → g(λ) =

⋃
g′′λ).

Just as before, we show that the existence quantifiers can be restricted to
Jα. QED (Lemma 2.3.7)

But then:
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Corollary 2.3.8. <α=
⋃
ν<α

<Sν is a well ordering of Jα which is uniformly

Σ1(Jα). Moreover <α end extends <ν for ν ∈ Lm, ν < α.

Corollary 2.3.9. uα is uniformly Σ1(Jα), where uα(x) ≃ {z|z <α x}.

Proof:
y = uα(x)↔

∨
ν(x ∈ Sν ∧ y = {z ∈ Sν |z <Sν x})

QED (Corollary 2.3.9)

Note. We shall often write <Jα for <α. We also write <∞ or <J or <L for⋃
α∈On

<α. Then <L well orders L and is an end extension of <α.

We obtain a particularly strong form of Gödel’s condensation lemma:

Lemma 2.3.10. Let X ≺Σ1 Jα. Then there are α, π such that π : Jα
∼←→ X.

Proof: By §2 Lemma 2.2.19 there is rud closed U such that U is transitive
and π : U

∼←→ X. Note that the condition

S(f, ν)↔: f = ⟨Sξ|ξ < ν⟩

is Σ0, since:

S(f, ν)↔ (f is a function ∧
∧dom(f) = ν ∧ f(0) = ∅ if 0 < ν∧∧
ξ ∈ dom(f)(ξ + 1 ∈ dom(f)→
→ f(ξ + 1) = S(f(ξ)))).

Let α = On∩U and let ν < α. Let π(ν) = ν. Then f = ⟨Sξ|ξ < ν⟩ ∈ X
since X ≺Σ1 Jα. Let π(f) = f . Then f = ⟨Sξ|ξ < ν⟩, since S(f, ν). But
then Jα =

⋃
ξ<α

Sξ ⊂ U . But since π is Σ1 preserving we know that

x ∈ U→
∨
f, ν ∈ U(S(f, ν) ∧ x ∈ Uf ′′ν)

→ x ∈ Jα.

QED (Lemma 2.3.10)

Corollary 2.3.11. Let π ↾ Jα : Jα →Σ1 Jα. Then:

(a) ν < τ ↔ π(ν) < π(τ) for ν, τ < α.

(b) x <L y ↔ π(x) <L π(y) for x, y ∈ Jα.
Hence:
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(c) ν ≤ π(ν) for ν < α.

(d) x ≤L π(x) for x ∈ Jα.

Proof: (a), (b) follow by the fact that < ∩J2
α and <L ∩J2

α =<α are uni-
formly Σ1(Jα). But if π(ν) < ν, then ν, π(ν), π2(ν), . . . would form an infinite
decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED
(Corollary 2.3.11)

2.3.1 The JAα –hierarchy

Given classes A1, . . . , An one can generalize the previous construction by
forming the constructible hierarchy ⟨JA1,...,An

α |α ∈ Lim⟩ relativized to A1, . . . , An.
We have this far dealt only with the case n = 0. We now develop the case
n = 1, since the generalization to n > 1 is then entirely straightforward.
(Moreover the case n = 1 is sufficient for most applications.)

Definition 2.3.8. Let A ⊂ V . ⟨JAα |α ∈ Lm⟩ is defined by:

JAα = ⟨Jα[A],∈, A ∩ Jα[A]⟩
Jω[A] = RudA(∅) = Hω

Jβ+ω[A] = RudA(Jβ) for β ∈ Lm

Jλ[A] =
⋃
ν<λ

Jν [A] for λ ∈ Lm∗

Note. A ∩ Jα[A] is treated as an unary predicate.

Thus every JAα is rud closed. We set

Definition 2.3.9.
L[A] = J [A] =

⋃
α∈On

Jα[A];

LA = JA = ⟨L[A],∈, A ∩ L[A]⟩.

Note. that Jα[∅] = Jα for all α ∈ Lm.

Repeating the proof of Lemma 1.1.1 we get:

Lemma 2.3.12. rn(JAα ) = On∩JAα = α.

We wish to break JAα+ω into ω smaller steps, as we did with Jα+ω. To this
end we define:

Definition 2.3.10. SA(u) = S(u) ∪ {A ∩ u}.
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Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. SA is a function rud in A such that whenever u is transi-
tive, then:

(a) u ∪ {u} ∪ {A ∩ u} ⊂ S(u)

(b)
⋃
n<ω

(SA)n(u) = RudA(u)

(c) S(u) is transitive.

Proof: (a) is immediate. (c) holds, since S(u) is transitive, a ⊂ S(u) and
A ∩ u ⊂ u. (b) holds since S(u) ⊃ u is transitive and A ∩ u ⊂ u. But if we
set: U =

⋃
n<ω(S

A)n(u), then U is rud closed and ⟨U,A ∩ U⟩ is amenable.
QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.
SA0 = ∅
SAα+1 = SA(SAα )

SAλ =
⋃
ν<λ

SAν for limit λ.

We again have: Jα[A] = SAα for α ∈ Lm. A close imitation of the proof of
Lemma 2.3.4 gives:

Lemma 2.3.14. ⟨SAν |ν < α⟩ is uniformly Σ1(J
A
α ).

Proof: This is exactly as before except that in the formula φ(f) we replace
S(f(ν)) by SA(f(ν)). But this is Σ0(J

A
α ), since:

x ∈ SA(u)↔ (x ∈ S(u) ∨ x = A ∩ u),

hence:
y =SA(u)↔

∧
z ∈ y z ∈ SA(u)

∧
∧
z ∈ S(u)z ∈ y ∧

∨
z ∈ y z = A ∩ u.

QED (Lemma 2.3.14)

We now show that JAα has a uniformly Σ1(J
A
α ) well ordering, which we call

<Aα or <JA
α

.

Set:
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Definition 2.3.12.

WA(u, r) ={⟨x, y⟩|⟨x, y⟩ ∈W (u, r)∨
(x ∈ S(u) ∧ y = A ∩ u /∈ S(u))}

If u is transitive and r well orders u, then WA(u, r) is a well ordering of
SA(u) which end extends r.

We set:

Definition 2.3.13.

<A0 = ∅
<Aν+1=WA(SAν , <

A
ν )

<Aλ=
⋃
ν<λ

<Aν for limit < .

Then <Aν is a well ordering of SAν which end extends <Aξ for ξ < ν. In
particular <Aα well orders JAα for α ∈ Γ. We also write: <JA

α
=:<Aα . We set:

<LA=<JA=<A∞=:
⋃
ν<∞

<Aν .

Just as before we get:

Lemma 2.3.15. ⟨<Aν |ν < α⟩ is uniformly Σ1(J
A
α ).

The proof is left to the reader. Just as before we get:

Lemma 2.3.16. <Aα and f(u) = {z|z <Aα u} are uniformly Σ1(J
A
α ).

Up until now almost everything we proved for the Jα hierarchy could be
shown to hold for the JAα hierarchy. The condensation lemma, however, is
available only in a much weaker form:

Lemma 2.3.17. Let X ≺Σ1 J
A
α . Then there are α, π,A such that

π : JAα
∼←→ X.

Proof: By Lemma 2.2.19 there is ⟨U,A⟩ such that π : ⟨U,A⟩ ∼←→ X and
⟨U,A⟩ is rud closed. As before, the condition

SA(f, ν)↔ f = ⟨SAξ |ν < ξ⟩

si Σ0 in A. Now let ν < α, π(ν) = ν. As before f = ⟨Sξ|ξ < ν⟩ ∈ X. Let
π(f) = f . Then f = ⟨SAξ |ξ < ν⟩, since SA(f, ν). Then JAα ⊂

⋃
ξ<α

SAξ ⊂ U .

U ⊂ JAα then follows as before. QED (Lemma 2.3.17)

A sometimes useful feature of the JAα hierarchy is:
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Lemma 2.3.18. x ∈ JAα → TC(x) ∈ JAα .

(Hence ⟨TC(x)|x ∈ JAα ⟩ is Π1(J
A
α ) since u = TC(x) is defined by:

u is transitive ∧x ⊂ u ∧
∧
v((v is transitive ∧ x ⊂ v)→ u ⊂ v)

Proof: By induction on α.

Case 1 α = ω (trivial)

Case 2 α = β + ω, β ∈ Lim.
Then every x ∈ JAα has the form f(z⃗) where z1, . . . , zn ∈ Jβ[A] ∪
{Jβ[A]} and f is rud in A. By Lemma 2.2.2 we have

⋃
px ⊂

n⋃
i=1

TC(zi) ⊂ Jβ[A] for some p < ω

Hence TC(x) = Cp(x) ∪ TC(
⋃n
i=1 TC(zi)), where ⟨TC(z)|z ∈ Jβ[A]⟩

is JAβ –definable, hence an element of JAα .

Case 3 α ∈ Lm∗ (trivial). QED (Lemma 2.3.18)

Corollary 2.3.19. If α ∈ Lm∗, then ⟨TC(x)|x ∈ JAα ⟩ is uniformly ∆1(J
A
α ).

Proof: We have seen that it is Π1(J
A
α ). But TC ↾JAβ ∈ JAα for all β ∈ Lm∩α.

Hence u = TC(x) is definable in JAα by:∨
f(f is a function ∧ dom(f) is transitive ∧ u = f(x)
∧
∧
x ∈ dom(f)f(x) = x ∪

⋃
f”x)

QED (Corollary 2.3.19)

2.4 J–models

We can add further unary predicates to the structure J A⃗α . We call the struc-
ture:

M = ⟨JA1,...,An
α , B1, . . . , Bm⟩

a J–model if it is amenable in the sense that x ∩Bi ∈ J A⃗α whenever x ∈ J A⃗α
and i = 1, . . . ,m. The Bi are again taken as unary predicates. The type of
M is ⟨n,m⟩. (Thus e.g. Jα has type ⟨0, 0⟩, JAα has type ⟨1, 0⟩, and ⟨Jα, B⟩
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has type ⟨0, 1⟩.) By an abuse of notation we shall often fail to distinguish
between M and the associated structure:

M̂ = ⟨Jα[A⃗], A′
1, . . . , A

′
n, B1, . . . , Bm⟩

where A′
i = Ai ∩ Jα[A⃗] (i = 1, . . . , n).

We may for instance write Σ1(M) for Σ1(M̂) or π : N →Σn M for π : N̂ →Σn

M̂ . (However, we cannot unambignously identify M with M̂ , since e.g. for
M = ⟨JAα , B⟩ we might have: M̂ = JA,Bα .)

In practice we shall usually deal with J models of type ⟨1, 1⟩, ⟨1, 0⟩, or ⟨0, 0⟩.
In any case, following the precedent in earlier section, when we prove general
theorem about J–models, we shall often display only the proof for type ⟨1, 1⟩
or ⟨1, 0⟩, since the general case is then straightforward.

Definition 2.4.1. If M = ⟨J A⃗α , B⃗⟩ is a J–model and β ≤ α in Lm, we set:

M |β =: ⟨J A⃗β , B1 ∩ J A⃗β , . . . , Bn ∩ J A⃗β ⟩.

In this section we consider Σ1(M) definability over an arbitraryM = ⟨J A⃗α , B⃗⟩.
If the context permits, we write simply Σ1 instead of Σ1(M). We first list
some properties which follow by rud closure alone:

• |=Σ1
M is uniformly Σ1, by corollary 2.2.18 (Note ’Uniformly’ here means

that the Σ1 definition is the same for any twoM having the same type.)

• If R(y, x1, . . . , xn) is a Σ1 relation, then so is
∨
yR(y, x1, . . . , xn) (since∨

y
∨
zP (y, z, x⃗)↔

∨
u
∨
y, z ∈ uP (y, z, x⃗) whereR(y, x⃗)↔

∨
zP (y, z, x⃗)

and P is Σ0).

By an n–ary Σ1(M) function we mean a partial function on Mn which
is Σ1(M) as an n+ 1–ary relation.

• If R,R′ are n–ary Σ1 relations, then so are R∩R′, R∪R′. (Since e.g.

(
∨
yP (y, x⃗) ∧

∨
P ′(y, x⃗))↔∨

yy′(P (y, x⃗) ∧ P ′(y′, x⃗)).)

• If R(y1, . . . , ym) is an n–ary Σ1 relation and fi(x⃗) is an n–ary Σ1 func-
tion for i = 1, . . . ,m, then so is the n–ary relation

R(f⃗(x⃗))↔:
∨
y1, . . . , ym(

m∧
i=1

yi = fi(x⃗) ∧R(y⃗)).
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• If g(y1, . . . , ym) is an m–ary Σ1 function and fi(x⃗) is an n–ary Σ1

function for i = 1, . . . ,m then h(x⃗) ≃ g(f⃗(x⃗)) is an n–ary Σ1 function.

(Since z = h(x⃗)↔
∨
y1, . . . , ym(

m∧
i=1
yi = fi(x⃗) ∧ z = g(y⃗)).)

Since f(x1, . . . , xn) = xi is Σ1 function, we have:

• If R(x1, . . . , xn) is Σ1 and σ : n→ m, then

P (z1, . . . , zm)↔: R(zσ(1), . . . , zσ(n))

is Σ1.

• If f(x1, . . . , xn) is a Σ1 function and σ : n→ m, then the function:

g(z1, . . . , zm) ≃: f(zσ(1), . . . , zσn)

is Σ1.

J–models have the further property that every binary Σ1 relation is uni-
formizable by a Σ1 function. We define

Definition 2.4.2. A relation R(y, x⃗) is uniformized by the function F (x⃗)
iff the following hold:

•
∨
yR(y, x⃗)→ F (x⃗) is defined

• If F (x⃗) is defined, then R(F (x⃗), x⃗)

We shall, in fact, prove thatM has a uniformly Σ1 definable Skolem function.
We define:

Definition 2.4.3. h(i, x) is a Σ1–Skolem function for M iff h is a Σ1(M)
partial map from ω ×M to M and, whenever R(y, x) is a Σ1(M) relation,
there is i < ω such that hi uniformizes R, where hi(x) ≃ h(i, x).

Lemma 2.4.1. M has a Σ1–Skolem function which is uniformly Σ1(M).

Proof: |=Σ1
M is uniformly Σ1. Let ⟨φi|i < ω⟩ be a recursive enumeration of

the Σ1 formulae in which at most the two variables v0, v1 occur free. Then
the relation:

T (i, y, x)↔:|=Σ1
M φi[y, x]

is uniformly Σ1. But then for any Σ1 relation R there is i < ω such that

R(y, x)↔ T (i, y, x).
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Since T is Σ1, it has the form:∨
zT ′(z, i, y, x)

where T ′ is Σ0. Writing <M for <A⃗α , we define:

y = h(i, x)↔
∨
z(⟨z, y⟩ is the <M –least

pair ⟨z′, y′⟩ such that T ′(z′, i, y′, x)).

Recalling that the function f(x) = {z|z <M x} is Σ1, we have:

y =h(i, x)↔
∨
z
∨
u(T ′(z, i, y, x)∧

∧u = {w|w <M ⟨z, y⟩}∧
∧
∧
⟨z′, y′⟩ ∈ u¬T ′(z, i, y, x))

QED 2.4.1

We call the function h defined above the canonical Σ1 Skolem function for M
and denote it by hM . The existence of h implies that every Σ1(M) relation
is uniformizable by a Σ1(M) function:

Corollary 2.4.2. Let R(y, x1, . . . , xn) be Σ1. R is uniformizable by a Σ1

function.

Proof: Let hi uniformize the binary relation

{⟨y, z⟩|
∨
x1 . . . xn(R(y, x⃗) ∧ z = ⟨x1, . . . , xn⟩)}.

Then f(x⃗) ≃: hi(⟨x⃗⟩) uniformizes R. QED

We say that a Σ1(M) function has a functionally absolute definition if it
has a Σ1 definition which defines a function over every J–model of the same
type.

Corollary 2.4.3. Every Σ1(M) function g has functionally absolute defini-
tion.

Proof: Apply the construction in Corollary 2.4.2 to R(y, x⃗) ↔ y = g(x⃗).
Then f(x) ≃: hi(⟨x⃗⟩) is functionally absolute since hi is.

QED (Corollary 2.4.2)

Lemma 2.4.4. Every x ∈M is Σ1(M) in parameters from On∩M .

Proof: We must show: x = f(ξ1, . . . , ξn) where f is Σ1(M). IfM = ⟨J A⃗α , B⃗⟩,
it obviously suffices to show it for the model M ′ = J A⃗α . For the sake of
simplicity we display the proof for JAα . (i.e. M has type ⟨1, 0⟩). We proceed
by induction on α ∈ Lm.
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Case 1 α = ω.
Then JAα = Rud(∅) and x = f({0}) where f is rudimentary.

Case 2 α = β + ω, β ∈ Lm.
Then x = f(z1, . . . , zn, J

A
β ) where z1, . . . , zn ∈ JAβ and f is rud in A.

(This is meant to include the case: n = 0 and x = f(JAβ ).) By the
induction hypothesis there are ξ⃗ ∈ β such that zi = gi(ξ⃗) (i = 1, . . . , n)
and gi is Σ1(J

A
β ). For each i pick a functionally absolute Σ1 definition

for gi and let g′i be Σ1(J
A
α ) by the same definition. Then zi = g′i(ξ⃗)

since the condition is Σ1. Hence x = f ′(ξ⃗, β) = f(g⃗′(ξ⃗), JAβ )) where f ′

is Σ1. QED (Case 2)

Case 3 α ∈ Lm∗.
Then x ∈ JAβ for a β < α. Hence x = f(ξ⃗) where f is Σ1(J

A
β ). Pick

a functionally absolute Σ1 definition of f and let f ′ be Σ1(J
A
α ) by the

same definition. Then x = f ′(ξ⃗). QED (Lemma 2.4.4)

But being Σ1 in parameters from On∩M is the same as being Σ1 in a finite
subset of On∩M :

Lemma 2.4.5. Let x = f(ξ⃗) where f is Σ1(M). Let a ⊂ On∩M be finite
such that ξ1, . . . , ξn ∈ a. Then x = g(a) for a Σ1(M) function g.

Proof: Set:

ki(a) =


the i–th element of a in order
of size if a ⊂ On is finite
and card(a) > i,
undefined if not.

Then ki is Σ1(M) since:

y = ki(a)↔
∨
f
∨
n < ω(f : n↔ a ∧

∧
i, j < n(f(i) < f(j)↔ i < j)

∧a ⊂ On∧y = f(i))

Thus x = f(ki1(a), . . . , kin(a)) where ξl = kil(a) for l = 1, . . . , n.
QED (Lemma 2.4.5)

We now show that for every J–model M there is a Σ1(M) partial map of
On∩M onto M . As a preliminary we prove:

Lemma 2.4.6. There is a partial Σ1(M) map of On∩M onto (On∩M)2.

Proof: Order the class of pairs On2 by setting: ⟨α, β⟩ <∗ ⟨γ, δ⟩ iff
⟨max(α, β), α, β⟩ is lexicographically less than ⟨max(γ, δ), γ, δ⟩. This order-
ing has the property that the collection of predecessors of any pair form a
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set. Hence there is a function p : On → On2 which enumerates the pairs in
order <∗.

Claim 1 p↾OnM is Σ1(M).

Proof: If M = ⟨J A⃗α , B⃗⟩, it suffices to prove it for J A⃗α . To simplify
notation, we assume: M = JAα for an A ⊂M (i.e. M is of type ⟨1, 0⟩.)
We know:

y = p(ν)↔
∨
f(φ(f) ∧ y = f(ν))

where φ is the Σ0 formula:

f is a function ∧ dom(f) ∈ On∧
∧
∧
u ∈ rng(f)

∨
β, γ ∈ Cn(u)u = ⟨β, γ⟩∧

∧
∧
ν, τ ∈ dom(f)(ν < τ ↔ f(ν) <∗ f(τ))

∧
∧
u ∈ rng(f)

∧
µ, ξ ≤ max(u)(⟨µ, ξ⟩ <∗ u→ ⟨µ, ξ⟩ ∈ rng(f)).

Thus it suffices to show that the existence quantifier can be restricted
to JAα — i.e. that p↾ξ ∈ JAα for ξ < α. This follows by induction on α
in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on α = OnM , considering three cases:

Case 1 p(α) = ⟨0, α⟩.
Then p↾α maps α onto

{u|u <∗ ⟨0, α⟩} = α2

and we are done, since p↾α is Σ1(J
A
α ). (Note that ω satisfies Case 1.)

Case 2 α = β + ω, β ∈ Lm and Case 1 fails.
There is a Σ1(J

A
α ) bijection of β onto α defined by:

f(2n) = β + n for n < ω
f(2n+ 1) = n for n < ω
f(ν) = ν for ω ≤ ν < β

Let g be a Σ1(J
A
β ) partial map of β onto β2. Set (⟨γ0, γ1⟩)i = γi for

i = 0, 1.
gi(ν) ≃ (g(ν))i(i = 0, 1).

Then f̃(ν) ≃ ⟨fg0(ν, fg1(ν))⟩ maps β onto α2. QED (Case 2)

Case 3 The above cases fail.
Then p(α) = ⟨ν, τ⟩, where ν, τ < α. Let γ ∈ Lm such that max(ν, τ) <
γ < α. Let g be a partial Σ1(J

A
α ) map of γ onto γ2. Then g ∈M,p−1

is a partial map of γ2 onto α; hence f = p−1 ◦ g is a partial map of
γ onto α. Set:

∼
f(⟨ξ, δ⟩) ≃ ⟨f(ξ), f(δ)⟩ for ξ, δ, γ. Then

∼
fg is a partial

map of γ onto α2. QED (Lemma 2.4.6)
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We can now prove:

Lemma 2.4.7. There is a partial Σ1(M) map of OnM onto M .

Proof: We again simplify things by taking M = JAα . Let g be a partial map
of α onto α2 which is Σ1(J

A
α ) in the parameters p ∈ JAα . Define "ordered

pairs" of ordinals < α by:

(ν, τ) =: g−1(⟨ν, τ⟩).

We can then, for each n ≥ 1, define "ordered n–tuples" by:

(ν) =: ν, (ν1, . . . , νn) = (ν1, (ν2, . . . , νn))(n ≥ 2).

We know by Lemma 2.4.4 that every y ∈ JAα has the form: y = f(ν1, . . . , νn)
where ν1, . . . , νn < α and f is Σ1(J

A
α ). Define a function f∗ by:

y = f∗(τ)↔
∨
ν1, . . . , νn(τ = (ν1, . . . , νn)∧

∧y = f(ν1, . . . , νn)).

Then f∗ is Σ1(J
A
α ) in p and y ∈ f∗′′α. If we set: h∗(i, x) ≃ h(i, ⟨x, p⟩),

then each binary relation which is Σ1(J
A
α ) in p is uniformized by one of the

functions h∗i (x) ≃ h∗(i, x). Hence y = h∗(i, γ) for some γ < α. Hence
JAα = h∗′′(ω × α). But, setting:

y = ĥ(µ)↔
∨
i, ν(µ = (i, ν) ∧ y = h∗(i, ν))

we see that ĥ is Σ1(J
A
α ) in p and y ∈ ĥ′′α. Hence JAα = ĥ′′α, where ĥ is

Σ1(J
A
α ) in p. QED (Lemma 2.4.7)

Corollary 2.4.8. Let x ∈M . There are f, γ ∈ JAα such that f maps γ onto
x.

Proof: We again prove it for M = JAα . If α = ω it is trivial since JAα = Hω.
If α ∈ Lm∗ then x ∈ JAβ for a β < α and there is f ∈ JAα mapping β onto
JAβ by Lemma 2.4.7. There remains only the case α = β + ω where β is a
limit ordinal. By induction on n < ω we prove:

Claim There is f ∈ JAα mapping β onto SAβ+n. If n = 0 this follows by
Lemma 2.4.7.

Now let n = m+ 1.
Let f : β

onto−→ SAβ+m and define f ′ by f ′(0) = SAβ+m, f
′(n + 1) = f(n) for

n < ω, f ′(ξ) = f(ξ) for ξ ≥ ω. Then f ′ maps β onto U = SAβ+m ∪ {SAβ+m}

and SAβ+m =
8⋃

δ=β

F ′′
i U

2 ∪
3⋃
i=0
G′′
iU

3 ∪ {A ∩ SAβ+m}.
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Set:

gi = {⟨Fi(f ′(ξ), f ′(ζ)), ⟨i, ⟨ξ, ζ⟩⟩⟩|ξ, ζ < β}
for i = 0, . . . , 8
g8+i+1 = {⟨Gi|f ′(ξ), f ′(ζ), f ′(µ)), ⟨8 + i+ 1, ⟨ξ, ζ, µ⟩⟩|ξ, ζ, µ < β}
for i = 0, . . . , 3
g13 = {⟨A ∩ SAβ+m⟨13, ∅⟩⟩}

Then g =
13⋃
i=0
gi ∈ JAα is a partial map of JAβ onto SAβ+n and gh ∈ JAα is a

partial map of β onto SAβ+m where h is a partial Σ1(J
A
β ) map of β onto JAβ

where h is a partial Σ1(J
A
β ) map of β onto JAβ .

QED (Corollary 2.4.8)

Define the cardinal of x in M by:

Definition 2.4.4. x = x
M

=: the least γ such that some f ∈ M maps γ
onto x.

Note. this is a non standard definition of cardinal numbers. If M is e.g. pr
closed, we get that there is f ∈M bijecting x onto x.

Definition 2.4.5. Let X ⊂ M . h(X) = hM (X) =: The set of all y ∈ M
such that y = f(x1, . . . , xn), where x1, . . . , xn ∈ X and f is a Σ1(M) function

Since Σ1(M) functions are closed under composition, it follows easily that
Y = h(X) is closed under Σ1(M) functions.

By Corollary 2.4.2 we then have:

Lemma 2.4.9. Let Y = h(X). Then M |Y ≺Σ1 M where

M |Y =: ⟨Y,A1 ∩ Y, . . . , An ∩ Y,B1 ∩ Y, . . . , Bm ∩ Y ⟩.

Note. We shall often ignore the distinction between Y and M |Y , writing
simply: Y ≺Σ1 M .

If f is a Σ1(M) function, there is i < ω such that h(i, ⟨x⃗⟩) ≃ f(x⃗). Hence:

Corollary 2.4.10. h(X) =
⋃
n<ω

h′′(ω ×Xn).

There are many cases in which h(X) = h′′(ω ×X), for instance:

Corollary 2.4.11. h({x}) = h′′(ω × {x}).
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Gödel’s pair function on ordinals is defined by:

Definition 2.4.6. ≺ γ, δ ≻=: p−1(≺ γ, δ ≻), where p is the function defined
in the proof of Lemma 2.4.6.

We can then define Gödel n–tuples by iterating the pair function:

Definition 2.4.7. ≺ γ ≻=: γ;≺ γ1, . . . , γn ≻=:≺ γ1,≺ γ2, . . . , γn ≻≻ (n ≥
2).

Hence any X which is closed under Gödel pairs is closed under the tuple–
function. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. If Y ⊂ OnM is closed under Gödel pairs, then:

(a) h(Y ) = h′′(ω × Y )

(b) h(Y ∪ {p}) = h′′(ω × (Y × {p})) for p ∈M .

Proof: We display the proof of (b). Let y ∈ h(Y ∪ {p}). Then y =
f(γ1, . . . , γn, p), where γ1, . . . , γn ∈ Y and f is Σ1(M).

Hence y = f∗(⟨δ, p⟩) where δ =≺ γ1, . . . , γn ≻ and

y = f∗(z)↔
∨
γ1, . . . , γn

∨
p(z = ⟨≺ γ1, . . . , γn ≻, p⟩∧

∧y = f(γ⃗, p)).

Hence y = h(i, ⟨δ, p⟩) for some i. QED (Corollary 2.4.12)

Similarly we of course get:

Corollary 2.4.13. If Y ⊂M is closed under ordered pairs, then:

(a) h(Y ) = h′′(ω × Y )

(b) h(Y ∪ {p}) = h′′(ω × (Y × {p})) for p ∈M .

By Lemma 2.4.5 we easily get:

Corollary 2.4.14. Let Y ⊂ OnM . Then h(Y ) = h′′(ω × Pω(Y )).

In fact:

Corollary 2.4.15. Let A ⊂ Pω(OnM ) be directed (i.e. a, b ∈ A →
∨
c ∈

A a, b ⊂ c). Let Y =
⋃
A. Then h(Y ) = h′′(ω ×A).
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By the condensation lemma we get:

Lemma 2.4.16. Let π : M →Σ1 M where M is a J–model and M is
transitive. Then M is a J–model.

Proof: M is amenable by Σ1 preservation. But then it is a J–model by the
condensation lemma. QED (Lemma 2.4.16)

We can get a theorem in the other direction as well. We first define:

Definition 2.4.8. Let M,M be transitive structures. σ :M →M cofinally
iff σ is a structural embedding of M into M and M =

⋃
σ′′M .

Then:

Lemma 2.4.17. If σ :M →Σ0 M cofinally. Then σ is Σ1 preserving.

Proof: Let R(y, x⃗) be Σ0(M) and let R(y, x⃗) be Σ0(M) by the same defini-
tion. We claim: ∨

yR(y, σ(x⃗))→
∨
yR(y, x⃗)

for x1, . . . , xn ∈M . To see this, let R(y, σ(x⃗)). Then y ∈ σ(u) for a u ∈M .
Hence

∨
y ∈ σ(u)R(y, σ(x⃗)), which is a Σ0 statement about σ(u), σ(x⃗).

Hence
∨
y ∈ uR(y, x⃗). QED (Lemma 2.4.17)

Lemma 2.4.18. Let σ :M →Σ0 M cofinally, where M is a J–model. Then
M is a J–model.

Proof: Let e.g. M = ⟨JAα ⟩,M = ⟨U,A,B⟩.

Claim 1 U = JAα where α = OnM .

Proof: y = SA ↾ν is a Σ0 condition, so σ(SA ↾ν) = SA ↾σ(ν). But σ
takes α cofinally to α, so if ξ < α, ξ < σ(ν), then SAξ (S

A ↾σ(ν))(ξ) ∈ U .
Hence JAα ⊂ U . To see U ⊂ JAα , let x ∈ U . Then x ∈ σ(u) where
u ∈ JAα . Hence u ⊂ SAν and x ∈ σ(SAν ) = SAσ(ν) ⊂ J

A
α . QED (Claim 1)

Claim 2 M is amenable.

Let x ∈ SAσ(ν). Then σ(B∩SAν ) = B∩SAσ(ν) and x∩B = (B∩SAν )∩x ∈
U , since SAν is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let M,M be J–models. Then σ : M →Σ0 M cofinally iff
σ :M →Σ0 M and σ takes OnM to OnM cofinally.
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Proof: (→) is obvious. We prove (←). The proof of σ(SAν ) = SAσ(ν) goes
through as before. Thus if x ∈M , we have x ∈ SAξ for some ξ. Let ξ ≤ σ(ν).
Then x ∈ SAσ(ν) = σ(SAν ). QED (Lemma 2.4.19)

2.5 The Σ1 projectum

2.5.1 Acceptability

We begin by defining a class of J–models which we call acceptable. Every
Jα is acceptable, and we shall see later that there are many other naturally
occurring acceptable structures. Accepability says essentially that if some-
thing dramatic happens to β at some later stage ν of the construction, then
ν is, in fact, collapsed to β at that stage:

Definition 2.5.1. J A⃗α is acceptable iff for all β ≤ ν < α in Lm we have:

If a ⊂ β and a ∈ J A⃗ν+ω \ J A⃗ν , then ν ≤ β in J A⃗ν+ω.

In the following we shall always suppose M to be acceptable unless otherwise
stated. We recall that by Corollary 2.4.8 every x ∈M has a cardinal x = x

M .
We call γ a cardinal in M iff γ = γ (i.e. no smaller ordinal is mappable onto
γ in M).

Lemma 2.5.1. Let M = ⟨JAα , B⟩ be acceptable. Let γ > ω be a cardinal in
M . Then:

(a) γ ∈ Lm∗

(b) x ∈ JAγ →M ∩ P(x) ⊂ JAγ .

Proof: We first prove (a). Suppose not. Then γ = β+ω, where β ∈ Lm, β ≥
ω. Then f ∈M maps β onto γ where: f(2i) = i, f(2i+ 1) = β + i, f(ξ) = ξ
for ξ ≥ ω.
Contradiction! QED (a)

To prove (b) suppose not. Then x is not finite. Let β = x in JAγ . Then
β ≥ ω, β ∈ Lm by (a). Let f ∈ JAγ map β onto x. Let u ⊂ x such that
u /∈ JAγ . Then v = f−1′′u /∈ JAγ . Let ν ≥ γ such that v ∈ JAν+ω \ JAν . Then
γ ≤ ν ≤ β.
Contradiction! QED (Lemma 2.5.1)
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Remark We have stated and proven this lemma for M of type ⟨1, 1⟩, since
the extension to M of arbitrary type is self evident.

The most general form of GCH says that if P(x) exists and x ≥ ω, then
P(x) = x

+ (where α+ is the least cardinal > α).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M,γ be as above. Let a ∈M,a ⊂ JAγ . Then:

(a) ⟨JAγ , a⟩ models the axiom of subsets and GCH.

(b) If γ is a successor cardinal in M , then ⟨JAγ , a⟩ models ZFC−.

(c) If γ is a limit cardinal in M , then ⟨JAγ , a⟩ models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (b). (c) follows from (a) and
rud closure of JAγ . We prove (b). We know that JAγ is rud closed and that
the axiom of choice holds in the strong form:

∧
x
∨
ν
∨
f f maps ν onto

x. We must prove the axiom of collection. Let R(x, y) be Σω(J
A
γ ) and let

u ∈ JAγ such that
∧
x ∈ u

∨
yR(x, y).

Claim
∨
ν < γ

∧
x ∈ u

∨
y ∈ JAν R(x, y). Suppose not.

Let γ = β+ in M . For each ν < γ there is a partial map f ∈M of β onto ν.
But then f ∈ JAγ since f ⊂ ν × β ∈ JAγ . Set fν — the <JA

γ
— least such f .

For x ∈ u set:

h(x) = the least µ such that
∨
y ∈ JAµ R(y, x).

Then suph′′u = γ by our assumption. Define a partial map k on u× β by:
k(x, ξ) ≃ fh(x)(ξ). Then k is onto γ. But k ∈M , since k is Σ1(J

A
γ ). Clearly

u× β = β in M , so γ ≤ β < γ in M .
Contradiction! QED (Corollary 2.5.2)

Corollary 2.5.3. Let M,γ be as above. Then

|JAγ | = HM
γ =:

⋃
{u ∈M |u is transitive ∧ u < γ in M}.

Proof: Let u ∈ M be transitive and u < γ in M . It suffices to show that
u ∈ JAγ . Let ν = u < γ in M . Let f ∈M map ν onto u. Set:

r = {⟨ξ, δ⟩ ∈ ν2|f(ξ) ∈ f(δ)}.
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Then r ∈ JAγ by Lemma 2.5.1 (c), since ν2 ∈ JAγ . Let β = ν
+

= the
least cardinal > ν in M . then JAβ models ZFC− and r, ν ∈ JAβ . But then
f ∈ JAβ ⊂ JAγ , since f is defined by recursion on r : f(x) = f ′′r′′{x} for
x ∈ ν. Hence u = rng(f) ∈ JAγ . QED (Corollary 2.5.3)

Lemma 2.5.4. If π :M →Σ1 M and M is acceptable, then so is M .

Proof: M is a J–model by §4. Let e.g. M = JAα ,M = JAα . Then M has a
counterexample — i.e. there are ν < α, β < ν, a such that card(ν) > β in
Jν+ω and a ⊂ β and a ∈ JA

ν+ω \ JAν . But then letting π(β, ν, a) = β, ν, a it
follows easily that β, ν, a is a counterexample in M .
Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If π : M →Σ0 M cofinally and M is acceptable, then so is
M .

Proof: M is a J–model by §4. Let M = JAα ,M = JAα .

Case 1 α = ω.
Then M =M = JAω , π = id.

Case 2 α ∈ Lm∗.
Then “M is acceptable” is a Π1(M) condition. But then α ∈ Lm∗ and
M must satisfy the same Π1 condition.

Case 3 a = β + ω, β ∈ Lm.
Then α = β + ω, β ∈ Lm and β = π(β). Then JAβ = π(JA

β
) is

acceptable, so there can be no counterexample ⟨δ, ν, a⟩ ∈ JAβ .

We show that there can be no counterexample of the form ⟨δ, β, a⟩. Let
γ = card(β) in M . The statement card(β) ≤ γ is Σ1(M). Hence card(β) ≤
γ = π(γ) in M . Hence there is no counterexample ⟨δ, β, a⟩ with δ ≥ γ.
But since M is acceptable and γ ≤ β is a cardinal in M , the following Π1

statement holds in M by Lemma 2.5.1∧
δ < γ

∧
a ⊂ δa ∈ JAγ .

But then the corresponding statement holds in M . Hence ⟨δ, β, a⟩ cannot be
a counterexample for δ < γ. QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.
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Definition 2.5.2. Let M be acceptable. The Σ1–projectum of M (in sym-
bols ρM ) is the least ρ ≤ OnM , such that there is a Σ1(M) set a ⊂ ρ with
a /∈M .

Lemma 2.5.6. Let M = ⟨JAα , B⟩, ρ = ρM . Then

(a) If ρ ∈M , then ρ is cardinal in M .

(b) If D is Σ1(M) and D ⊂ JAρ , then ⟨JAρ , D⟩ is amenable.

(c) If u ∈ JAρ , there is no Σ1(M) partial map of u onto JAρ .

(d) ρ ∈ Lim∗

Proof:

(a) Suppose not. Then there are f ∈ M , γ < ρ such that f maps γ onto ρ.
Let a ⊂ ρ be Σ1(M) such that a /∈ M . Set ã = f−1′′a. Then ã is Σ1(M)
and ã ⊂ γ. Hence ã ∈M . But then a = f ′′ã ∈M by rud closure.
Contradiction! QED (a)

(b) Suppose not. Let u ∈ JAρ such that D ∩ u /∈ JAρ . We first note:

Claim D ∩ u /∈M .
If ρ = α this is trivial, so let ρ < α. Then ρ is a cardinal by (a) and
by Lemma 2.5.1 we know that P(u) ∩M ⊂ JAρ . QED (Claim)

By Corollary 2.5.2 there is f ∈ JAρ mapping a ν < ρ onto u. Then d =
f−1u(D∩u) is Σ1(M) and d ⊂ ν < ρ. Hence d ∈M . HenceD∩u = f ′′d ∈M
by rud closure. QED (b)

(c) Suppose not. Let f ba a counterexample. Set a = {x ∈ u|x ∈ dom(f) ∧
x /∈ f(x)}. Then a is Σ1(M), a ⊂ u ∈ M . Hence a ∈ JAρ by (b). Let
a = f(x). Then x ∈ f(x)↔ x /∈ f(x).
Contradiction! QED (c)

(d) If not, then ρ = β+ω where β ∈ Lim. But then there is a Σ1(M) partial
map of β onto ρ, violating (c). QED (Lemma 2.5.6)

Remark We have again stated and proven the theorem for the special case
M = ⟨JAα , B⟩, since the general case is then obvious. We shall continue
this practice for the rest of the book. A good parameter is a p ∈ M which
witnesses that ρ = ρM is the projectum — i.e. there is B ⊂ M which is
Σ1(M) in p with B∩HM

ρ /∈M . But by §3 any p ∈M has the form p = f(a)
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where f is a Σ1(M) function and a is a finite set of ordinals. Hence a is good
if p is. For technical reasons we shall restrict ourselves to good parameters
which are finite sets of ordinals:

Definition 2.5.3. P = PM =: The set of p ∈ [OnM ]<ω which are good
parameters.

Lemma 2.5.7. If p ∈ P , then p \ ρM ∈ P .

Proof: It suffices to show that if ν = min(p) and ν < ρ, then p′ = p\(ν+1) ∈
P . Let B be Σ1(M) in p such that B ∩ HM

ρ /∈ M . Let B(x) ↔ B′(x, p)
where B′ is Σ1(M).

Set:
B∗(x)↔:

∨
z
∨
ν(x = ⟨z, ν⟩ ∧B′(z, p′ ∪ {ν})).

Then B∗ ∩Hρ /∈M , since otherwise

B ∩Hρ = {x|⟨x, ν⟩ ∈ B∗ ∩Hρ} ∈M.

Contradiction! QED (Lemma 2.5.7)

For any p ∈ [OnM ]<ω we define the standard code T p determined by p as:

Definition 2.5.4.

T p = T pM =: {⟨i, x⟩| |=M φi[x, p]} ∩HM
ρM
}

where ⟨φi|i < ω⟩ is a fixed recursive enumeration of the Σ1–fomulae.

Lemma 2.5.8. p ∈ P ↔ T p /∈M .

Proof:

(←) T p = T ∩HM
p for a T which is Σ1(M) in p.

(→) Let B be Σ1(M) in p such that B ∩HM
p /∈M . Then for some i:

B(x)↔ ⟨i, x⟩ ∈ T p

for x ∈ HM
p . Hence T p /∈M . QED (Lemma 2.5.8)

A parameter p is very good if every element of M is Σ1 definable from
parameters in ρM ∪ {p}. R is the set of very good parameters lying in
[OnM ]<ω.
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Definition 2.5.5. R = RM =: the set of r ∈ [OnM ]<ω such that M =
hM (ρM ∪ {r}).

Note. This is the same as saying M = hM (ρM ∪ r), since

h(ρ ∪ r) = h”(ω × [ρ ∪ r]<ω).

But ρ ∪ r = ρ ∪ (r \ ρ). Hence:

Lemma 2.5.9. If r ∈ R, then r \ ρ ∈ R. We also note:

Lemma 2.5.10. R ⊂ P .

Proof: Let r ∈ R. We must find B ⊂ M such that B is Σ1(M) in r and
B ∩HM

ρ /∈M . Set:

B = {⟨i, x⟩|
∨
y y = h(i, ⟨x, r⟩) ∧ ⟨i, x⟩ /∈ y}.

If b = B ∩ HM
ρ ∈ M , then b = h(i, ⟨x, r⟩) for some i. Then ⟨i, x⟩ ∈ b ↔

⟨i, x⟩ /∈ b.
Contradiction! QED (Lemma 2.5.10)

However, R can be empty.

Lemma 2.5.11. There is a function hr uniformly Σ1(M) in r such that
whenever r ∈ RM , then M = hr ′′ρM .

Proof: Let x ∈ M . Since x ∈ h(ρ ∪ {r}) there is an f which is Σ1(M)
in r such that x = f(ξ1, . . . , ξn). But ρ is closed under Gödel pairs, so
x = f ′(≺ ξ1, . . . , ξn ≻), where

x = f ′(ξ)↔
∨
ξ1, . . . , ξn(ξ =≺ ξ⃗ ≻ ∧x = f(ξ⃗)).

f ′ is Σ1(M) in r. Hence x = h(i, ⟨≺ ξ⃗ ≻, r⟩) for some i < ω. Set

x = hr(δ)↔
∨
ξ
∨
i < ω(δ =≺ i, ξ ≻ ∧x = h(i, ⟨ξ, r⟩)).

Then x = hr(≺ i,≺ ξ⃗ ≻≻). QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called T p a code: If r ∈ R, then T r gives com-
plete information about M . Thus the relation ∈′= {⟨x, τ⟩|hr(ν) ∈ hr(τ)}
is rud in T r, since ν ∈′ τ ↔ ⟨i, ⟨ν, τ⟩⟩ ∈ T r for some i < ω. Similarly, if
M = ⟨J A⃗α , B⃗⟩, then A′

i = {ν|hr(ν) ∈ Ai} and B′
j = {ν|hr(ν) ∈ Bi} are rud

in T r (as is, indeed, R′ whenever R is a relation which is Σ1(M) in p). Note,
too, that if B ⊂ HM

ρ is Σ1(M), then B is rud in T r. However, if p ∈ P 1 \R1,
then T p does not completely code M .
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Definition 2.5.6. Let p ∈ [OnM ]<ω. Let M = ⟨J A⃗α , B⃗⟩.

The reduct of M by p is defined to be

Mp =: ⟨J A⃗ρM , T
p
M ⟩.

ThusMp is an acceptable model which — if p ∈ RM — incorporates complete
information about M .

The downward extension of embeddings lemma says:

Lemma 2.5.12. Let π : N →Σ0 Mp where N is a J–model and p ∈
[OnM ]<ω.

(a) There are unique M,p such that M is acceptable, p ∈ RM , N =M
p.

(b) There is a unique π̃ ⊃ π such that π̃ :M →Σ0 M and π(p) = p.

(c) π̃ :M →Σ1 M .

Proof: We first prove the existence claim. We then prove the uniqueness
claimed in (a) and (b).

Let e.g. M = ⟨JAα , B⟩,Mp = ⟨JAρ , T ⟩, N = ⟨JAρ , T ⟩. Set: ρ̃ = supπ′′ρ, M̃ =

Mp|ρ̃ = ⟨JAρ̃ , T̃ ⟩ where T̃ = T ∩ JAρ̃ . Set X = rng(π), Y = hM (X ∪ {p}).
Then π̃ : N →Σ0 M̃ cofinally.

(1) Y ∩ M̃ = X
Proof: Let y ∈ Y ∩M̃ . Since X is closed under ordered pairs, we have
y = f(x, p) where x ∈ X and f is Σ1(M). Then

y = f(x, p) ↔|=M φi[⟨y, x⟩, p]

↔ ⟨i, ⟨y, x⟩⟩ ∈ T̃ .

Since X ≺Σ1 M̃ , there is y ∈ X such that ⟨i, ⟨y, x⟩⟩ ∈ T̃ . Hence
y = f(x, p) ∈ X. QED (1)

Now let π̃ : M↔̃Y , where M is transitive. Clearly p ∈ Y , so let
π̃(p) = p. Then:

(2) π̃ :M →Σ1 M, π̃ ↾N = π, π̃(p) = p.
But then:

(3) M = hM (N ∪ {p}).
Proof: Let y ∈ M . Then π̃(y) ∈ Y = hM

′′(ωx(Xx{p})), since X
is closed under ordered pairs. Hence π̃(y) = hM (i, ⟨π(x), p⟩) for an
x ∈M . Hence y = hM (i, ⟨x, p). QED (3)
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(4) ρ ≥ ρM where ρ̄ = On∩N .
Proof: It suffices to find a Σ1(M) set b such that b ⊂ N and b /∈ M .
Set

b = {⟨i, x⟩ ∈ ω ×N |
∨
y (y = hM (i, ⟨x, p⟩)
∧⟨i, x⟩ /∈ y)}

If b ∈M , then b = hM (i, ⟨x, p⟩) for some x ∈ N . Hence

⟨i, x⟩ ∈ b↔ ⟨i, x⟩ /∈ b.

Contradiction! QED (4)

(5) T = {⟨i, x⟩ ∈ ω ×N | |=M φi[i, ⟨x, p⟩]}.
Proof: T ⊂ ω×N , since T̃ ⊂ ω× M̃ . But for ⟨i, x⟩ ∈ ω×N we have:

⟨i, x⟩ ∈ T ↔ ⟨i, π(x)⟩ ∈ T̃
↔M |= φi[⟨(x), p⟩]
↔M |= φi[⟨x, p⟩] by (2)

QED (5)

(6) ρ = ρM .
Proof: By (4) we need only prove ρ ≤ ρM . It suffices to show that if
b ⊂ N is Σ1(M), then ⟨JAρ , b⟩ is amenable. By (3) b is Σ1(M) in x, p

where x ∈ N .
Hence

b = {z|M |= φi[⟨z, x⟩, p]} =
= {z|⟨i, z, x⟩ ∈ T}

Hence b is rud in T where N = ⟨JAρ , T ⟩ is amenable. QED (6)

But then M = hM (ρ ∪ {p}) by (3) and the fact that h
JA
ρ
(ρ) = JAρ .

Hence

(7) p ∈ RM .
By (6) we then conclude:

(8) N =M
p.

This proves the existence assertions. We now prove the uniqueness
assertion of (a). Let M̂ p̂ = N where p̂ ∈ RM̂ .
We claim: M̂ =M, p̂ = p.

Since the Skolem function is uniformly Σ1 there is a j < ω such that

hM̂ (i, ⟨x, p̂⟩) ∈ hM̂ (i, ⟨y, p̂)↔

↔ M̂ |= φj [⟨x, y⟩, p]↔ ⟨j, ⟨x, y⟩⟩ ∈ T
↔ hM (i, ⟨x, p⟩) ∈ hM (i, ⟨y, p⟩)
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Similarly:
hM̂ (i, ⟨x, p̂⟩) ∈ Â↔ hM (i, ⟨x, p⟩) ∈ A

hM̂ (i, ⟨x, p̂⟩) ∈ B̂ ↔ hM (i, ⟨x, p⟩) ∈ B

where M̂ = ⟨J Âα̂ , B̂⟩, M = ⟨JAα , B⟩. Then there is an isomorphism σ :

M̂
∼↔ M defined by σ(hM̂ (i, ⟨x, p̂⟩) ≃ hM (i, ⟨x, p⟩) for x ∈ N . Clearly

σ(p̂) = p. Hence σ = id, M̂ ,M, p̂ = p, since M, M̂ are transitive.

We now prove (b). Let π̂ ⊃ π such that π̂ : M →Σ0 M and π̂(p) = p.
If x ∈ N and hM (i, ⟨x, p⟩) is defined, it follows that:

π̂(hM (i, ⟨x, p)) = hM (i, ⟨π(x), p⟩) = π̃(hM (i, ⟨x, p⟩)).

Hence π̂ = π. QED (Lemma 2.5.12)

If we make the further assumption that p ∈ RM we get a stronger result:

Lemma 2.5.13. Let M,N,M, π, π, p, p be as above where p ∈ RM and π :
N →Σl

Mp for an l < ω. Then π̃ :M →Σl+1
M .

Proof: For l = 0 it is proven, so let l ≥ 1 and let it hold at l. Let R be
Σl+1(M) if l is even and Πl+1(M) if l is odd. Let R have the same definition
over M . It suffices to show:

R(x⃗)↔ R(π̃(x⃗)) for x1, . . . , xn ∈M.

But:
R(x⃗)↔ Q1y1 ∈M . . .Qlyl ∈MR′(y⃗, x⃗)

and
R(x⃗)↔ Q1y1 ∈M . . .Qlyl ∈MR

′
(y⃗, x⃗)

where Q1 . . . Ql is a string of alternating quantifiers, R′ is Σ1(M), and R′ is
Σ1(M) by the same definition. Set

D =: {⟨i, x⟩ ∈ ω × JAρ |hM (i, ⟨x, p⟩) is defined}

D =: {⟨i, x⟩ ∈ ω × JAρ |hM (i, ⟨x, p⟩) is defined}.

Then D is Σ1(M) in p and D is Σ1(M) in p by the same definition. Then
D is rud in T pM and D is rud in T p

M
by the same definition, since for some

j < ω we have:

⟨i, x⟩ ∈ D ↔ ⟨j, x⟩ ∈ T pM , x ∈ D ↔ ⟨j, x⟩ ∈ T
p

M
.

Define k on D

k(⟨i, x⟩) = hM (i, ⟨x, p⟩); k(⟨i, x⟩) = hM (i, ⟨x, p⟩).
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Set:
P (w⃗, z⃗)↔ (w⃗, z⃗ ∈ D ∧R′(k(w⃗), k(z⃗))

P (w⃗, z⃗)↔ (w⃗, z⃗ ∈ D ∧R′
(k(w⃗), k(z⃗))

Then: as before, P is rud in T pM and D is rud in T p
M

by the same definition.
Now let xi = k(zi) for i = 1, . . . , n. Then π̃(xi) = k(π(zi)). But since π is
Σl–preserving, we have:

R(x⃗) ↔ Q1w1 ∈ D . . .Qlwl ∈ D P (w⃗, z⃗)

↔ Q1w1 ∈ D . . .Qlwl ∈ DP (w⃗, π(z⃗))
↔ R(π̃(x⃗))

QED (Lemma 2.5.13)

2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take
its reduct etc., yielding a sequence of reducts and nonincreasing projecta
⟨ρnM |n < ω⟩. this is the classical method of doing fine structure theory,
which was used to analyse the constructible hierarchy, yielding such results
as the □ principles and the covering lemma. In this section we expound
the basic elements of this classical theory. As we shall see, however, it only
works well when our acceptable structures have a property called soundness.
In this book we shall often have to deal with unsound structures, and will,
therefore, take recourse to a further elaboration of fine structure theory,
which is developed in §2.6.

It is easily seen that:

Lemma 2.5.14. Let p ∈ RM . Let B be Σ1(M). Then B ∩ JAρ is rud in
parameters over Mp.

Proof: Let B be Σ1 in r, where r = hM (i, ⟨v, p⟩) and ν < ρ. Then B is Σ1

in ν, p. Let:
B(x)↔M |= φi[⟨x, ν⟩, p]

where ⟨φi|i < ω⟩ is our canonical enumeration of Σ1 formulae. Then:

x ∈ B ↔ ⟨i, ⟨x, ν⟩⟩ ∈ T p

QED(Lemma 2.5.14)

It follows easily that:
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Corollary 2.5.15. Let p, q ∈ RM . Let D ⊂ JAρ . Then D is Σ1(M
p) iff it is

Σ1(M
q).

Assuming that RM ̸= ∅, there is then a uniquely defined second projectum
defined by:

Definition 2.5.7. ρ2M ≃: ρMp for p ∈ RM .

We can then define:

R2
M =: The set of a ∈ [OnM ]<w such that

a ∈ RM and a ∩ ρ ∈ RM(a\ρ) .

If R2
M ̸= ∅ we can define the second reduct:

M2,a =: (Ma)a∩ρ for a ∈ R2
M .

But then we can define the third projectum:

ρ3 = ρM2,a for a ∈ R2
M .

Carrying this on, we get RnM , M
n,a for a ∈ RnM and ρn+1, as long as RnM ̸= ∅.

We shall call M weakly n–sound if RnM ̸= ∅.

The formal definitions are as follows:

Definition 2.5.8. Let M = ⟨JAα , B⟩ be acceptable.

By induction on n we define:

• The set RnM of very good n–parameters.

• If RnM ̸= ∅, we define the n+ 1st projectum ρn+1
M .

• For all a ∈ RnM the n–th reduct Mn,a.

We inductively verify:

* If D ⊂ JAρn and a, b ∈ Rn, then D is Σ1(M
n,a) iff it is Σ1(M

n,b).

Case 1 n = 0. Then R0 =: [OnM ]<ω, ρ0 = OnM ,M
0,a =M .

Case 2 n = m + 1. If Rm = ∅, then Rn = ∅ and ρn is undefined. Now let
Rm ̸= ∅. Since (*) holds at m, we can define
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• ρn =: ρMm,a whenever a ∈ Rm.

• Rn =: the set of a ∈ [α]<ω such that a ∈ Rm and a ∩ ρm ∈ RMm,a .

• Mn,a =: (Mm,a)a∩ρ
m for a ∈ Rn.

Note. It follows inductively that a \ ρn ∈ Rn whenever a ∈ Rn.

We now verify (*). It suffices to prove the direction (→). We first note that
Mn,a has the form ⟨JAρn, T ⟩, where T is the restriction of a Σ1(M

m,a) set T ′

to JAρn. But then T ′ is Σ1(M
m,b) by the induction hypothesis. Hence T is

rudimentary in parameters over Mn,b = (Mm,b)b∩ρ
n by Lemma 2.5.14.

Hence, if D ⊂ JAρn is Σ1(M
n,a), it is also Σ1(M

n,b). QED

This concludes the definition and the verification of (*). Note that R1
M =

RM , ρ1 = ρ1M , and M1,a =Ma for a ∈ RM .

We say that M is weakly n–sound iff RnM ̸= ∅. It is weakly sound iff it is
weakly n–sound for n < ω. A stronger notion is that of full soundness:

Definition 2.5.9. M is n–sound (or fully n– sound) iff it is weakly n–sound
and for all i < n we have: If a ∈ Ri, then PM i,a = RM i,a .

Thus RM = PM , RM1,a = PM1,a for a ∈ PM etc. If M is n–sound we write
P iM for RiM (i ≤ n), since then: a ∈ P i+1 ↔ (a∖ρi ∈ P i ∧ a ∩ ρi ∈ R

M i,a∩ρi

for i < n).

There is an alternative, but equivalent, definition of soundness in terms of
standard parameters. in order to formulate this we first define:

Definition 2.5.10. Let a, b ∈ [On]<ω.

a <∗ b↔=
∨
µ(a \ µ = b \ µ ∧ µ ∈ b \ a).

Lemma 2.5.16. <∗ is a well ordering of [On]<ω.

Proof: It suffices to show that every non empty A ⊂ [On]<ω has a unique
<∗–minimal element. Suppose not. We derive a contradiction by defining
an infinite descending chain of ordinals ⟨µi|i < ω⟩ with the properties:

• {µ0, . . . , µn} ≤∗ b for all b ∈ A.

• There is b ∈ A such that b \ µn = {µ0, . . . , µn}.
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∅ /∈ A, since otherwise ∅ would be the unique minimal element, so set:
µ0 = min{max(b)|b ∈ A}. Given µn we know that {µ0, . . . , µn} /∈ A, since
it would otherwise be the <∗–minimal element. Set:

µn+1 = min{max(b ∩ µn)|b ∈ A ∩ b \ µn = {µ0, . . . , µn}}.

QED (Lemma 2.5.16)

Definition 2.5.11. The first standard parameter pM is defined by:

pM =: The <∗–least element of PM .

Lemma 2.5.17. PM = RM iff pM ∈ RM .

Proof: (→) is trivial. We prove (←). Suppose not. Then there is r ∈ P \R.
Hence p <∗ r, where p = pM . Hence in M the statement:

(1)
∨
q <∗ r r = h(i, ⟨ν, q⟩)

holds for some i < ω, ν < pM . Form M r and let M, r, π be such that
M

r
= M r, r ∈ RM , π : M →Σ1 M , and π(r) = r. The statement (1)

then holds of r in M .

Let q ∈ M , r = hM (i, q) where q <∗ r. Set q = π(q). Then r = h(i, q) in
M , where q <∗ r. Hence q ∈ PM . But then q ∈ RM by the minimality of r.
This impossible however, since

q ∈ π′′M = hM (ρM ∪ r) ̸=M.

Contradiction! QED (Lemma 2.5.17)

Definition 2.5.12. The n–th standard parameter pnM is defined by induction
on n as follows:

Case 1 n = 0. p0 = ∅.

Case 2 n = m+ 1. If pm ∈ Rm
pn = pm ∪ pMm,pm

Note. that we always have: pn ∩ ρn+1 = ∅ by <∗–minimality and Lemma
2.5.7.

If pm /∈ Rm, then pn is undefined. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n–sound iff pnM is defined and pnM ∈ RnM .
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This is the definition of soundness usually found in the literature.

Note. That the sequences of projecta ρn will stabilize at some n, since it
is monotony non increasing. If it stabilizes at n, we have Rn+h = Rn and
Pn+h = Pn for h < ω.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let a ∈ RnM and let π : N →Σl
Mna. Then there are M,a

and π ⊃ π such that Mna
=Mna, a ∈ Rn

M
, π :M →Σn+l+1

M and π(a) = a.

We also have:

Lemma 2.5.20. Let a ∈ RnM . There is an M–definable partial map of ρn

onto M which is M–definable in the parameter a.

Proof: By induction on n. The case n = 0 is trivial. Now let n = m + 1.
Let f be a partial map of ρm onto M which is definable in a \ ρm. Let
N =Mm,a\ρn , b = a ∩ ρm. Then N = hN (ρ

n ∪ {b}) = hN
′′(w× (ρn × {b})).

Set:
g(≺ i, ν ≻) ≃: hN (i, ⟨ν, b⟩) for ν < ρn.

Then N = g′′ρn. Hence M = fg′′ρn, where fg is M–definable in a. QED

We have now developend the "classical" fine structure theory which was used
to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Every Jα is acceptable and sound.

Unfortunately, in this book we shall sometimes have to deal with acceptable
structures which are not sound and can even fail to be weakly 1–sound. This
means that the structure is not coded by any of its reducts. How can we
deal with it? It can be claimed that the totality of reducts contains full
information about the structure, but this totality is a very unwieldy object.
In §2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We first show:

(A) If Jα is acceptable, then it is sound.

Proof: By induction on n we show that Jα is n–sound. The case n = 0
is trivial. Now let n = m + 1. Let p = pmM . Let q = pMm,p = The
<∗–least q ∈ PMm,p .
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Claim q ∈ RMm,p .

Suppose not. Let X = hMm,p(ρn ∪ q). Let π : N
∼←→ X, where N is

transitive. Then π : N →Σ1 M
np and there are M,p, π ⊃ π such that

M
mp

= Mmp, p ∈ Rm
M

, π : M →Σn M , and π(p) = p. Then M = Jα
for some α ≤ α by the condensation lemma for L.

Let A be Σ1(M
mp) in q such that A∩ ρnM /∈Mm,p Then A∩ ρnM /∈M .

Let A be Σ1(N) in q = π−1(q) by the same definition. Then A∩ ρn =
A ∩ ρn is Jα definable in q. Hence α = α, M = M , since otherwise
A∩ρn ∈M . But then π = id and N =M

mp
=Mm. But by definition:

N = hMm,p(ρn ∪ q). Hence q ∈ RMnp . QED

By induction on α we then prove:

(B) Jα is acceptable.

Proof: The case α = ω is trivial. The case α ∈ Lim∗ is also trivial.
There remains the case α = β + ω, where β is a limit ordinal. By the
induction hypothesis Jβ is acceptable, hence sound.

We know that Σω(Jα) = Σn(Jα) by soundeness. But we also know:
P(Jα) ∩ Jα+ω ⊂ Σω(Jα). Let ρ = ρωJα . Clearly, no δ > ρ is a cardinal
in Jα+1. But if a ∈ Jα+ω and a ⊂ γ < ρ, then a ∈ Jρ, since this
a ∈ Σ∗(Jα) and ⟨Jρ, A ∩ Jρ⟩ is amenable for all A ∈ Σ∗(Jα). QED
(Lemma 2.5.21)

The fact that P(Jα) ∩ Jα+1 ⊂ Σω(Jα) was derived from Corollary 2.2.14,
which says that if U ̸= ∅ is any traisntive set, then:

Σω(⟨U,∈ ⟩) = P(U) ∩ rud(U ∪ {U}),

where rud(X) =:the closure of X under rudimentary functions. However, a
slight modification of the proof of Corollary 2.2.14 yields the stronger result:

Lemma 2.5.22. Let U ̸= ∅ be transitive. Let A1, . . . , Am ⊂ U . Then:

Σω(⟨U,∈ A⃗⟩) = P(U) ∩ rud(U ∪ {U, A⃗})

(We leave this to the reader. )

This is especially interesting if U is rudimentary closed and ⟨U,A1, . . . , Am⟩
is amenable.

Definition 2.5.13. N = JAβ is a constructible extension of M = JAα if and
only if A ⊂ Jα[A] and α ≤ β.

By Lemma 2.5.22 we get:
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Lemma 2.5.23. Let JAβ be a constructible extension of JAα . Then Σω(J
A
β ) =

P(JAβ ) ∩ JAβ+ω.

Using this we can repeat the proof of Lemma 2.5.21 to get:

Lemma 2.5.24. Let JAβ be a constructible extension of JAα such that ρω
JA
γ
≥ α

for α ≤ γ ≤ β. Then JAβ is sound and acceptable.

Suppose now that ⟨JAα , B⟩ is a J-model. It is natural to define an extension
A ∗B of the predicate A by: A ∗B = A ∪ (B × {α}). Then:

(A ∗B) ∩ JAα = A,B ∈ JA∗Bα+ω .

Clearly JA∗Bα+ω = rud(Jα[A] ∪ {Jα[A], A,B}). Hence by Lemma 2.5.22:

Lemma 2.5.25. Σω(⟨JAα , B⟩) = P(JAα ) ∩ JA∗Bα+ω .

We can the repeat the last part of the proof of Lemma 2.5.21 to get:

Lemma 2.5.26. Let ⟨JAα , B⟩ be sound and acceptable. Then JA∗Bα+ω is accept-
able.

(However, it does not follow that JA∗Bα+ω is sound. )

2.6 Σ∗–theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structure M = ⟨JAα , B⟩ which — at first sight — seems more natural. Σ0, we
recall, consists of the relation on M which are Σ0 definable in the predicates
of M . Σ1 then consists of relations of the form

∨
yR(y, x⃗) where R is Σ0.

Call these levels Σ
(0)
0 and Σ

(0)
1 . Our next level in the new hierarchy, call it

Σ
(1)
0 , consists of relations which are "Σ0 in Σ

(0)
1 " — i.e. Σ0(⟨M, A⃗⟩) where

A1, . . . , An are Σ
(0)
1 . Σ

(1)
1 then consists of relations of the form

∨
yR(y, x⃗)

where R is Σ
(1)
0 . Σ

(2)
0 then consists of relations which are Σ0 in Σ

(1)
1 . . . etc.

By a Σ
(n)
i relation we of course mean a relation of the form

R(x⃗)↔ R′(x⃗, p⃗),

where p1, . . . , pm ∈ M and R′ is Σ
(n)
i (m). It is clear that there is natural

class of Σ
(n)
i –formulae such that R is a Σ

(n)
i –relation iff it is defined by a

Σ
(n)
i –formula. Thus e.g. we can define the Σ

(1)
0 formula to be the smallest

set Σ of formulae such that
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• All primitive formulae are in Σ.

• All Σ(0)
1 formulae are in Σ.

• Σ is closed under the sentential operations ∨,→,↔,¬.

• If φ is in Σ, then so are
∧
v ∈ u φ,

∨
v ∈ u φ (where v ̸= u).

By a Σ
(1)
1 formula we then mean a formula of the form

∨
vφ, where φ is Σ(1)

0 .

How does this hierarchy compare with the Levy hierarchy? If no projectum
drops, it turns out to be a useful refinement of the Levy hierarchy:
If ρnM = α, then Σ

(n)
0 ⊂ ∆n+1 and Σ

(n)
1 = Σn+1. If, however, a projectum

drops, it trivializes and becomes useless. Suppose e.g. that M = Jα and
ρ = ρ1M < α. Then every M–definable relation becomes Σ

(1)
0 (M). To see

this let R(x⃗) be defined by the formula φ(v⃗), which we may suppose to be
in prenex normal form:

φ(v⃗) = Q1u1 . . . Qmumφ
′(v⃗, u⃗),

where φ′ is quantifier free (hence Σ0). Then:

R(x⃗)↔ Q1y1 ∈M . . .Qmym ∈MR′(x⃗, y⃗)

where R′ is Σ0. By soundness we know that there is a Σ1(M) partial map f
of ρ onto M . But then:

R(x⃗)↔ Q1ξξ ∈ dom(f) . . . Qmξm ∈ dom(f)R′(x⃗, f(ξ⃗)).

Since f is Σ1, the relation R′(x⃗, f(ξ⃗)) is Σ1. But dom(f) is Σ1 and dom(f) ⊂
ρ, hence by induction on m:

R(x⃗)↔ Q1ξ1 ∈ ρ . . . Qmξm ∈ ρR′′(x⃗, ξ⃗),

where R′′ is a sentential combination of Σ1 relations. Hence R′′ is Σ
(1)
0 (M)

and so is R.

The problem is that, in passing from Σ
(0)
1 to Σ

(1)
0 our variables continued to

range over the whole of M , despite the fact that M had grown "soft" with
respect to Σ1 sets. Thus we were able to reduce unbounded quantification
over M to quantification bounded by ρ, which lies in the "soft" part of M . in
section 2.5 we acknowledged softness by reducing to the part H = HM

ρ which
remained "hard" wrt Σ1 sets. We then formed a reduct Mp containing just
the sets inH. IfM is sound, we can choose p such thatMp contains complete
information about M . In the general case, however, this may not be possible.
It can happen that every reduct entails a loss of information. Thus we want
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to hold on to the original structure M . In passing to Σ
(1)
0 , however, we want

to restrict our variables to H. We resolve this conundrum by introducing
new varibles which range only over H. We call these variables of Type 1 ,
the old ones being of Type 0 . Using uh, vh(h = 0, 1) as metavariables for
variables of Type h, we can then reformulate the definition of Σ(1)

0 formula,
replacing the last clause by:

• If φ is in Σ, then so are
∧
vi ∈ u1φ,

∨
vi ∈ u1φ where i = 0, 1 and

vi ̸= u1.

A Σ
(1)
1 formula is then a formula of the form

∨
v1φ, where φ is Σ

(1)
0 . We

call A ⊂M a Σ
(1)
1 set if it is definable in parameters by a Σ

(1)
1 formula. The

second projectum ρ2 is then the least ρ such that ρ ∩ B /∈ M for some Σ
(1)
1

set B. We then introduce type 2 variables v2, u2, . . . ranging over |JAρ2 | (|J
A
γ |

being the set of elements of the structure JAγ , where e.g. M = ⟨JAα , B⟩.)
Proceeding in this way, we arrive at a many sorted language with variables
of type n for each n < ω. The resulting hierarchy of Σ(n)

h formulae (h = 0, 1)
offers a much finer analysis of M–definabilty than was possible with the Levy
hierarchy alone. This analysis is known as Σ∗ theory. In this section we shall
develop Σ∗ theory systematically and ab ovo.

Before beginning, however, we address a remark to the reader: Most people
react negatively on their first encounter with Σ∗ theory. The introduction
of a many sorted language seems awkward and cumbersome. It is especially
annoying that the variable domains diminish as the types increase. The
author confesses to having felt these doubts himself. After developing Σ∗–
theory and making its first applications, we spent a couple of months trying
vainly to redo the proofs without it. The result was messier proofs and a
pronounced loss of perspicuity. It has, in fact, been our consistent experience
that Σ∗ theory facilitates the fine structural analysis which lies at the heart
of inner model theory. We therefore urge the reader to bear with us.

Definition 2.6.1. Let M = ⟨J A⃗α , B⃗⟩ be acceptable.

The Σ∗ M–language L∗ = L∗
M has

• a binary predicate ∈̇

• unary predicates Ȧ1, . . . , Ȧn, Ḃ1, . . . , Ḃm

• variables vji (i, j < ω)

Definition 2.6.2. By induction on n < ω we define sets Σ
(n)
h (h = 0, 1) of

formulae
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Σ
(n)
0 = the smallest set of formulae such that

• all primitive formulae are in Σ.

• Σ
(m)
0 ∪ Σ

(m)
1 ⊂ Σ for m < n.

• Σ is closed under sentential operations ∧,∨,→,↔,¬.

• If φ is in Σ, j ≤ n, and vj ̸= un, then
∧
vj ∈ unφ,

∨
vj ∈ unφ are in

Σ.

We then set:

Σ
(n)
1 =: The set of formulae

∨
vnφ, where φ ∈ Σ

(n)
0 .

We also generalize the last part of this definition by setting:

Definition 2.6.3. Let n < ω, 1 ≤ h < ω. Σ
(n)
h is the set of formulae∨

vn1
∧
vn2 . . . Qv

n
hφ,

where φ is Σ
(n)
0 (and Q is

∨
if h is odd and

∧
if h is even).

We now turn to the interpretation of the formualae in M .

Definition 2.6.4. Let Fmln be the set of formulae in which only variables
of type ≤ n occur.

By recursion on n we define:

• The n–th projectum ρn = ρnM .

• The n–th variable domain Hn = Hn
M .

• The satisfaction relation |=n for formulae in Fmln.

|=n is defined by interpreting variables of type i as ranging over H i for i ≤ n.
We set: ρ0 = α, H0 = |M | = |J A⃗α |, when M = ⟨J A⃗α , B⃗⟩.

Now let ρn, Hn be given (hence |=n is given). Call a set D ∈ Hn a Σ
(n)
1 set.

if it is definable from parameters by a Σ
(n)
1 formula φ:

Dx↔M |=n φ[x, a1, . . . , ap],
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where φ = φ(vn, ui1 , . . . , uim) is Σ
(n)
1 . ρn+1 is then the least ρ such that

there is a Σ
(n)
1 set D ⊂ ρ with D /∈M . We then set:

Hn+1 = |J A⃗ρ |.

This then defines |=n+1.

It is obvious that |=i is contained in |=j for i ≤ j, so we can define the full
Σ∗ satisfaction relation for M by:

|= =
⋃
n<ω

|=n .

Satisfaction is defined in the usual way. We employ vi, ui, ωi etc. as metavari-
ables for variables of type i. We also employ xi, yi, zi etc. as metavariables
for elements of H i. We call vi11 , . . . , v

in
n a good sequence for the formula φ iff

it is a sequence of distinct variables containing all the variables which occur
free in φ. If vi11 , . . . , v

in
n is good we write:

|=M φ[vi11 , . . . , v
in
n /x

i1
1 , . . . , x

in
n ]

to mean that φ becomes true if vinh is interpreted by xinh (h = 1, . . . , n). We
shall follow normal usage in suppressing the sequence vi11 , . . . , v

in
n writing

only:
|=M φ[xi11 , . . . , x

in
n ].

(However, it is often important for our understanding to retain the upper
indices i1, . . . , in.) We often write φ = φ(vi11 , . . . , v

in
n ) to indicate that these

are the suppressed variables. φ (together with vi11 , . . . , v
in
n ) defines a relation:

R(xi11 , . . . , x
in
n )↔|=M φ[xi11 , . . . , x

in
n ].

Since we are using a many sorted language, however, we must also employ
many sorted relations.

The number of argument places of an ordinary one sorted relation is often
called its "arity". In the case of a many sorted relation, however, we must
know not only the number of argument places, but also the type of each
argument place. We refer to this information as its "arity". Thus the arity
of the above relation is not n but ⟨i1, . . . , in⟩. An ordinary 1–sorted relation
is usually identified with its field. We shall identify a many sorted relation
with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair ⟨|R|, r⟩ such
that for some n:

(a) |R| ⊂Mn
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(b) r = ⟨r1, . . . , rn⟩ where ri < ω

(c) R(x1, . . . , xn)→ xi ⊂ Hri for i = 1, . . . , n.

|R| is called the field of R and r is called the arity of R.

In practice we adopt a rough and ready notation, writing R(xi11 , . . . , x
in
n ) to

indicate that R is a many sorted relation of arity ⟨i1, . . . , in⟩.
Note. Let L = LM be the ordinary first order language of M (i.e. it has
only variables of type 0.

Since Hn ∈ M or Hn = M for all n < ω, it follows that every L∗–definable
many sorted relation has a field which is L–definable in parameters from M .)

Note. If R is a relation of arity ⟨i1, . . . , in⟩, then its complement is Γ \ R,
where:

Γ = {⟨x1, . . . , xn⟩|xh ∈ H in for h = 1, . . . , n},

the arity remaining unchanged.

Definition 2.6.6. R(xi11 , . . . , x
im
m ) is a Σ

(n)
h (M) relation iff it is defined by a

Σ
(n)
h formula. R is Σ(n)

h (M) in the parameters p1, . . . , pr iff R(x⃗)↔ R′(x⃗, p⃗),
where R′ is Σ

(n)
h (M). R is a Σ

(n)
h (M) relation iff it is Σ

(n)
h (M) in some

parameters.

It is easily checked that:

Lemma 2.6.1. • If R(yn, x⃗) is Σ
(n)
1 , so is

∨
ynR(yn, x⃗)

• If R(x⃗), P (x⃗) are Σ
(n)
1 , then so are R(x⃗) ∨ P (x⃗), R(x⃗) ∧ P (x⃗).

Moreover, if R(xi00 , . . . , x
im−1

m−1 ) is Σ(n)
1 , so is any relation R′(yj00 , . . . , y

jr−1

r−1 ) ob-
tained from R by permutation of arguments, insertion of dummy arguments
and fusion of arguments having the same type — i.e.

R′(yj00 , . . . , y
jr−1

r−1 )↔ R(y
jσ(0)

σ(0) , . . . y
jσ(m−1)

σ(m−1))

where σ : m→ r such that jσ(l) = il for l < m.

Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let M = ⟨JAα , B⟩ be acceptable. Let ρ = ρn, H = Hn. Then

(a) If ρ ∈M , then ρ is a cardinal in M . (Hence H = HM
ρ )
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(b) If D is Σ
(n)
1 (M) and D ⊂ H, then ⟨H,D⟩ is amenable.

(c) If u ∈ H, there is no Σ
(n)
1 (M) partial map of u onto H.

(d) ρ ∈ Lm∗ if n > 0.

Proof: By induction on n. The induction step is a virtual repetition of the
proof of Lemma 2.5.6. QED (Lemma 2.6.2)

Definition 2.6.7. Let R(xi11 , . . . , x
im
m ) be a many sorted relation. By an

n–specialization of R we mean a relation R′(xj11 , . . . , x
jm
m ) such that

• jl ≥ il for l = 1, . . . ,m

• jl = il if l < n

• If z1, . . . , zm are such that zl ∈ Hjl for l = 1, . . . ,m, then:
R(z⃗)↔ R′(z⃗).

Given a formula φ in which all bound quantifiers are of type ≤ n, we can
easily devise a formula φ′ which defines a specialization of the relation defined
by φ:

Fact Let φ = φ(vi11 , . . . , v
im
m ) be a formula in which all bound variables are

of type ≤ n. Let uj11 , . . . , u
jm
m be a sequence of distinct variables such that

jl ≥ il and jl = il if il < n(l = 1, . . . ,m). Suppose that φ′ = φ′(u⃗) is
obtained by replacing each free occurence of vill by a free occurence of ujll for
l = 1, . . . ,m. Then for all x1, . . . , xm such that xl ∈ Hjl for l = 1, . . . ,m we
have:

|=M φ(v⃗)[x⃗]↔|=M φ′(u⃗)[x⃗].

The proof is by induction on φ. We leave it to the reader. Using this, we
get:

Lemma 2.6.3. Let R(xi11 , . . . , x
im
m ) be Σ

(n)
l . Then every n–specialization of

R is Σ
(n)
l .

Proof: R′(xi11 , . . . , x
im
m ) be an n–spezialization. LetR be defined by φ(vi11 , . . . , v

im
m ).

Suppose (uj11 , . . . , v
jm
m ) is a sequence of distinct variables which are new —

i.e. none of them occur free or bound in φ. Let φ′ be obtained by replacing
every free occurence of vill by ujll (l = 1, . . . ,m). Then φ′(uj11 , . . . , v

jm
m ) de-

fines R′ by the above fact. QED (Lemma
2.6.3)
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Corollary 2.6.4. Let R be Σ(n)
1 in the parameter p. Then every n–spezialization

of R is Σ
(n)
1 in p.

Lemma 2.6.5. Let R′(xj11 , . . . , x
jm
m ) be Σ

(n)
1 . Then R′ is an n–specialization

of a Σ
(n)
1 relation R(xi11 , . . . , x

im
m ) such that il ≤ n for l = 1, . . . ,m.

Proof: LetR′ be defined by φ′(uj11 , . . . , v
jm
m ), when φ′ is Σ(n)

1 . Let vin1 , . . . , v
im
m

be a sequence of distinct new variables, where il = min(n, jl) for l =
1, . . . ,m. Replace each free occurence of ujll by vill for l = 1, . . . ,m to get
φ(ui11 , . . . , v

im
m ). Let R be defined by φ. Then R′ is a specialization of R by

the above fact. QED (Lemma 2.6.5)

Corollary 2.6.6. Let R′(xj11 , . . . , x
jm
m ) be Σ

(n)
1 in p. Then R′ is a spe-

cialization of a relation R(xi11 , . . . , x
im
m ) which is Σ

(n)
1 in p with il ≤ n for

l = 1, . . . ,m.

Every Σ
(m)
1 formula can appear as a "primitive" component of a Σ

(m+1)
0

formula. We utilize this fact in proving:

Lemma 2.6.7. Let n = m+1. Let Qj(znj,1, . . . , z
n
j,pj

, xi11 , . . . , x
ip) be Σ(m)

1 (j =

1, . . . , r).
Set: Qj,x⃗ =: {⟨z⃗nj ⟩|Qj(z⃗nj , x⃗)}.
Set: Hx⃗ =: ⟨Hn, Q1,x⃗, . . . , Qr,x⃗⟩.
Let φ = φ(v1, . . . , vq) be Σl in the language of Hx⃗. Then

{⟨x⃗n, x⃗⟩|Hx⃗ |= φ[x⃗n]} is Σ
(n)
l .

Proof: We first prove it for l = 0, showing by induction on φ that the
conclusion holds for any sequence v1, . . . , vl of variables which is good for φ.

We describe some typical cases of the induction.

Case 1 φ is primitive.
Let e.g. φ = Q̇j(vh1 , . . . , vhpi ), where Q̇j is the predicate for Qjx⃗. Then

Hx⃗ |= φ[x⃗n] is equivalent to: Qj(xnh1 , . . . , x
n
hpj
, x⃗), which is Σ(m)

1 (hence

Σ
(n)
0 ). QED (Case 1)

Case 2 φ arises from a sentential operation.
Let e.g. φ = (φ0 ∧ φ1). Then Hx⃗ |= φ[x⃗n] is equivalent to:

Hx⃗ |= φ0[x⃗
n] ∧Hx⃗ |= φ1[x⃗

n]

which, by the induction hypothesis is Σ
(n)
0 . QED (Case 2)
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Case 3 φ arises from a quantification.
Let e.g. φ =

∧
w ∈ viΨ. By bound relettering we can assume w.l.o.g.

that w is not among v1, . . . , vp. We apply the induction hypothesis to
Ψ(w, v1, . . . , vp). Then Hx⃗ |= φ[x⃗n] is equivalent to:∧

z ∈ xni Hx⃗ |= Ψ[w, x⃗n]

which is Σ
(n)
0 by the induction hypothesis. QED (Case 3)

This proves the case l = 0. We then prove it for l > 0 by induction on l,
essentially repeating the proof in case 3. QED (Lemma 2.6.7)

Note. It is clear from the proof that the set {⟨x⃗n, x⃗⟩|Hx⃗ |= φ[x⃗n]} is uni-
formly Σ

(n)
l — i.e. its defining formula χ depends only on φ and the defining

formula Ψi for Qi(i = 1, . . . , p). In fact, the proof implicitly describes an
algorithm for the function φ,Ψ1, . . . ,Ψp 7→ χ.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Let n = m+1. Let R(x⃗n, xi11 , . . . , x
ig
g ) be Σ

(n)
l where il ≤ m

for l = 1, . . . , g. Then there are Σ
(n)
1 relations Qi(z⃗ni , x⃗)(i = 1, . . . , p) and a

Σl formula φ such that

R(x⃗n, x⃗)↔ Hx⃗ |= φ[x⃗n],

where Hx⃗ is defined as above.

Note. This is weaker, since we now require il ≤ m.

Proof: We first prove it for l = 0. By induction on χ we prove:

Claim Let χ be Σ(n)
0 . Let v⃗n, vi11 , . . . , v

iq
q be good for χ, where i1, . . . , iq ≤ m.

Let χ(v⃗n, v⃗) define the relationR(x⃗n, x⃗). Then the conclusion of Lemma 2.6.8
holds for this R (with l = 0).

Case 1 χ is Σ
(m)
1 .

Let χ(x⃗n, x⃗) define Q(x⃗n, x⃗). Then R(x⃗n, x⃗)↔ Hx⃗ |= Q̇v⃗n[x⃗n].
QED (Case 1)

Case 2 χ arises from a sentential operation.
Let e.g. χ = (Ψ ∧ Ψ′). Appliyng the induction hypothesis we get
Qi(x⃗

n
i , x⃗)(i = 1, . . . , p) and φ such that

M |= Ψ[x⃗n, x⃗]↔ Hx⃗ |= φ[x⃗n]
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whereHx⃗ = ⟨Hn, Q1x⃗, . . . , Qpx⃗⟩. Similarly we getQ′
i(y⃗

n
i , x⃗)(i = 1, . . . , q′)

and φ′

M |= Ψ′[x⃗n, x⃗]↔ H ′
x⃗ |= φ′[x⃗n].

Let Q̇i be the predicate for Qix⃗ in the language of Hx⃗. Let Q̇′
i be the

predicate for Q′
ix⃗ in the language of H ′

x⃗. Assume w.l.o.q. that Q̇i ̸= Q̇′
j

for all i, j. Putting the two languages together we get a language for

H∗
x⃗ = ⟨Hn, Q⃗x⃗, Q⃗

′
x⃗⟩.

Clearly:
M |= (χ ∧ χ′)[x⃗n, x⃗]↔ H∗

x⃗ |= (φ ∧ φ′)[x⃗n].

QED (Case 2)

Case 3 χ arises from the application of a bounded quantifier.
Let e.g. χ =

∧
wn ∈ vnj χ′. By bound relettering we can assume w.l.o.g.

that wn is not among v⃗n. Then wnv⃗n, v⃗ is a good sequence for χ′ and
by the induction hypothesis we have for χ′ = χ′(wn, v⃗n, v⃗):

M |= χ′[zn, x⃗n, x]↔ Hx⃗ |= φ[zn, x⃗n, x⃗].

But then:

M |= χ[x⃗n, x⃗] ↔
∧
zn ∈ xnjM |= χ′[zn, x⃗n, x⃗]

↔
∧
zn ∈ xnjHx⃗ |= φ[zn, x⃗n]

↔ Hx⃗ |=
∧
w ∈ vjφ[x⃗n].

QED (Lemma 2.6.8)

Note. Our proof again establishes uniformity. In fact, if χ is the Σ
(n)
l –

definition of R, the proof implicitely describes an algorithm for the function

χ 7→ φ,Ψ1, . . . ,Ψp

where Ψi is a Σ
(m)
1 definition of Qi.

Remark. Lemma 2.6.7 and 2.6.8 taken together give an inductive definition
of "Σ(n)

l relation" which avoids the many sorted language. It would, however,
be difficult to work directly from this definition.

By a function of arity ⟨i1, . . . , in⟩ to Hj we mean a relation F (yj , xi1 , . . . , xin)
such that for all xi1 , . . . , xin there is at most one such yj . If this y exists, we
denote it by F (xi1 , . . . , xin). Of particular interest are the Σ

(i)
1 functions to

H i.

Lemma 2.6.9. R(yn, x⃗) be a Σ
(n)
1 relation. Then R has a Σ

(n)
1 uniformizing

function F (x⃗).
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Proof: We can assume w.l.o.g that the arguments of R are all of type ≤ n.
(Otherwise let R be a specialization of R′, where the arguments of R′ are of
type ≤ n. Let F ′ uniformize R′. Then the appropriate specialization F of
F ′ uniformizes R.)

Case 1 n = 0.
Set:

F (x⃗) ≃: y where ⟨z, y⟩ is <M –least such that R′(z, y, x⃗).

By section 2.3 we know that uM (x) is Σ1, where uM (x) = {y|y <M x}.
Thus for sufficient r we have:

y = F (x⃗)↔
∨
z(R′(z, y, x⃗)∧

∧w ∈ uM (⟨z, y⟩)
∧
z′, y′ ∈ Cr(w)

(w = ⟨z′, y′⟩ → ¬R(z′, y′, x⃗)),

which is uniformly Σ1(M).

Case 2 n > 0. Let n = m+ 1.
Rearranging the arguments of R if necessary, we can assume that R
has the form R(yn, x⃗n, x⃗), where the x⃗ are of type ≤ m. Then there
are Qi(z⃗ni , x⃗

n, x⃗)(i = 1, . . . , p) such that Qi is Σ
(m)
1 and

R(yn, x⃗n, x⃗)↔ Hx⃗ |= φ[yn, x⃗n],

where φ is Σ1 and

Hx⃗ = ⟨Hn, Q1x⃗, . . . , Qnx⃗⟩.

If e.g. M = ⟨JA, B⟩, we can assume w.l.o.g. that Q1(z
n, x⃗) ↔ A(zn).

Then <Hx⃗, uHx⃗ are uniformly Σ1(Hx⃗) and by the argument of Case 1
there is a Σ1 formula φ′ such that F uniformies R where

y = F (x⃗n, x⃗)↔ Hx⃗ |= φ′[x⃗n, x⃗].

QED (2.6.9)

Note. The proof shows that F (x⃗) is uniformly Σ
(n)
1 — i.e. its Σ(n)

1 definition
depends only on the Σ

(n)
1 definition of R(yn, x⃗), regardless of M .

Note. It is clear from the proof that the Σ
(n)
1 definition of F is functionally

absolute — i.e. it defines a function over every acceptable M of the same
type. Thus:

Corollary 2.6.10. Every Σ
(n)
1 function F (x⃗) to Hn has a functionally ab-

solute Σ
(n)
1 definition.
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Note. The Σ
(n)
1 functions are closed under permutation of arguments, in-

sertion of dummy arguments, and fusion of arguments of same type. Thus
if F (xi11 , . . . x

in
n ) is Σ

(n)
1 , so is F ′(yj11 , . . . , y

jm
m ) where

F ′(yj11 , . . . , y
jm
m ) ≃ F (yjσ(1)

σ(1) , . . . , y
jσ(n)

σ(n) )

and σ : n→ m such that jσ(l) = il for l < n.

If R(xj11 , . . . , x
jp
p ) is a relation and Fi(z⃗) is a function to Hji for i = 1, . . . , n,

we sometimes use the abbreviation:

R(F⃗ (z⃗))↔:
∨
xj11 , . . . x

jp
p (

p∧
i=1

xjii = Fi(z⃗) ∧R(x⃗)).

Note that R(F⃗ (z⃗)) is then false if some Fi(z⃗) does not exist. Σ
(n)
1 relations

are not, in general, closed under substitution of Σ(n)
1 functions, but we do

get:

Lemma 2.6.11. Let R(xj11 , . . . , x
jp
p ) be Σ

(n)
1 such that ji ≤ n for i = 1, . . . , p.

Let Fi(z⃗) be a Σ
(ji)
1 map to Hji for i = 1, . . . , p. Then R(F⃗ (z⃗)) is Σ

(n)
1

(uniformly in the Σ
(n)
1 definitions of R,F1, . . . , Fp)

Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let R(x⃗, yj11 , . . . , y
jp
p ) be Σ

(n)
1 where ji ≤ n for i =

1, . . . , p. Let Fi(z⃗) be a Σ
(ji)
1 map to Hji for i = 1, . . . , p. Then R(x⃗, F⃗ (z⃗))

is (uniformly) Σ
(n)
1 .

Proof: We can assume w.l.o.g. that each of x⃗ has type ≤ n, since otherwise
R is a specialization of an R′ with this property. But then R(x⃗, F⃗ (z)) is
a specialization of R′(x⃗, F⃗ (z)). Let x⃗ = xh11 , . . . , x

hq
q with hi ≤ n for i =

1, . . . , q. For i = 1, . . . , p set:

F ′(x⃗, z⃗) ≃ F (z⃗).

For i = 1, . . . , q set:
Gh(x⃗, z⃗) ≃ xhii .

By Lemma 2.6.11, R(G⃗(x⃗, z⃗), F ′(x⃗, z⃗)) is Σ
(n)
1 . But

R(G⃗(x⃗, z⃗), F ′(x⃗, z⃗))↔ R(x⃗, F⃗ (z⃗)).

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.
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Case 1 n = 0.
The conclusion is immediate by the definition of R(F⃗ (z⃗)):

R(F⃗ (z⃗))↔
∨
x01 . . . x

0
p(

p∧
i=1

x01 = Fi(z⃗) ∧R(x⃗)).

Case 2 n = m+ 1.
Then Lemma 2.6.11 holds at m and it is clear from the above proof
that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:

R(x⃗n, xl11 , . . . , x
lq
q ) where li ≤ m for i = 1, . . . , q.

We first show:

Claim R(x⃗n, F⃗ (z⃗)) is Σ
(n)
1 .

Proof: Let Qi(z⃗ni , x⃗) be Σ
(m)
1 (i = 1, . . . , r) such that

R(xn, x⃗)↔ Hx⃗ |= φ[x⃗n]

where φ is Σ1 and:

Hx⃗ = ⟨Hn, Q1,x⃗, . . . , Qr,x⃗⟩.

Set:
Qi(z⃗

n
i , z⃗) ↔: Qi(z

n
i , F (z⃗))

↔
∨
x⃗(
∧q
i=1 x

li
i = Fi(z⃗) ∧R(x⃗))

H z⃗ =: ⟨Hn, Q1,z⃗, . . . , Qr,z⃗⟩.

If xlii = Fi(z⃗) for i = 1, . . . , q, then Qi(z⃗
n
i , z⃗) ↔ Qi(z⃗

n, x⃗) and H z⃗ =
Hx⃗. Hence:

H z⃗ |= φ[x⃗n] ↔ Hx⃗ |= φ[x⃗n]

↔ R(x⃗n, x⃗)

↔ R(x⃗n, F⃗ (z⃗)).

If, on the other hand, Fi(z⃗) does not exist for some i, then R(x⃗n, F⃗ (z⃗))
is false. Hence:

R(x⃗n, F⃗ (z⃗)) ↔ (
∧q
i=1

∨
xlii (x

li
i = Fi(z⃗))

∧H z⃗ |= φ[x⃗n]).

But
q∧
i=1

∨
xlii (x

li
i = Fi(z⃗)) is Σ

(n)
0 , so the result follows by applying

Lemma 2.6.7 to φ. QED (Claim)
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But then, setting: R′(x⃗n, z⃗)↔ R(x⃗n, F (z⃗)), we have:

R(F⃗ (x⃗))↔ ∨x⃗n(
q∧
i=1

xni = Fi(z⃗) ∧R′(x⃗n, z⃗)).

QED (Lemma 2.6.11)

Note that if, in the last claim, we took R(x⃗n, xl11 , . . . , x
lq
q ) as being Σ

(n)
0

instead of Σ(n)
1 , then in the proof of the claim we could take φ as being Σ0

instead of Σ1. But then the application of Lemma 2.6.7 to H z⃗ |= φ[x⃗n] yields
a Σ

(n)
0 formula. Then we have, in effect, also proven:

Corollary 2.6.13. Let R(x⃗n, yl11 , . . . , y
lq
q ) be Σ

(n)
0 where l1, . . . , lr < n. Let

Fi(z⃗) be a Σ
(li)
1 map to H li for i = 1, . . . , r. Then R(xn, F⃗ (z⃗)) is (uniformly)

Σ
(n)
0 .

As corollaries of Lemma 2.6.11 we then get:

Corollary 2.6.14. Let G(xj11 , . . . , x
jp
p ) be a Σ

(n)
1 map to Hn, where j1, . . . , jp ≤

n. Let Fi(z⃗) be a Σ
(n)
1 map to Hji for i = 1, . . . , p. Then H(z⃗) ≃ G(F⃗ (z⃗))

is uniformly Σ
(n)
1 .

Proof:

y = H(z⃗)↔
∨
x⃗(

p∧
i=1

xjii = Fi(z⃗) ∧ y = G(x⃗)).

QED (Corollary 2.6.14)

Corollary 2.6.15. Let R(xj11 , . . . , x
jp
p ) be Σ

(n)
1 where ji ≤ n for i = 1, . . . , p.

There is a Σ
(n)
1 relation R′(z01 , . . . , z

0
p) with the same field

Proof: Set:

R′(z⃗)↔:
∨
x⃗(

p∧
i=1

xjii = z0i ∧R(x⃗)).

QED (Corollary 2.6.15)

Thus in theory we can always get by with relations that have only arguments
of type 0. (Lest one make too much of this, however, we remark that the
defining formula of R′ will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type ≤ n,
then the property of being Σ

(n)
1 depends only on the field of R. Let us define:
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Definition 2.6.8. R′(zj11 , . . . , z
jr
r ) is a reindexing of the relationR(xi11 , . . . , x

ir
r )

iff both relations have the same field i.e.

R′(y⃗)↔ R(y⃗) for y1, . . . , yr ∈M.

Then:

Corollary 2.6.16. Let R(xi11 , . . . , x
ir
r ) be Σ

(n)
1 where i1, . . . , ir ≤ n. Let

R′(zj11 , . . . , z
jr
r ) be a reindexing of R, where j1, . . . , jr ≤ n. Then R′ is Σ

(n)
1 .

Proof:
R′(z⃗) ↔ R(F1(z1), . . . , Fr(zr))

↔ ∨x⃗(
∨r
l=1 x

il
l = zjll ∧R(x⃗))

where
xil = Fl(z

jl)↔: xil = zjl .

QED (Corollary 2.6.16)

We now consider the relationship between Σ∗ theory and the theory devel-
oped in §2.5. Σ

(0)
1 is of course the same as Σ1 and ρ1 is the same as the Σ1

projectum ρ which we defined in §2.5.2. In §2.5.2 we also defined the set P
of good parameters and the set R of very good parameters. We then defined
the reduct M of MP for any p ∈ [OnM ]<ω. We now generalize these notions
to Σ

(n)
1 . We have already defined the Σ

(n)
1 projectum ρn. In analogy with

the above we now define the sets Pn, Rn of Σ(n)
1 –good parameters. We also

define the Σ
(n)
1 reduct Mnp of M by p ∈ [OnM ]<ω.

Under the special assumption of soundness, these will turn out to be the
same as the concepts defined in §2.5.3.

Definition 2.6.9. LetM = ⟨JAα , B⟩ be acceptable. We define setsMn
xn−1,...,x0

and predicates Tn(xn, . . . , x0) as follows:

M0 =:M,T 0 =: B (i.e. Mn
x⃗ =M for n = 0)

Mn+1
x⃗ =:⟨JAρn+1 , T

n+1
x⃗ ⟩ for x⃗ = xn, . . . , x0

Tn+1(xn+1, x⃗)↔
∨
zn+1

∨
i < ω(xn+1 = ⟨i, zn+1⟩

∧Mn
xn−1,...,x0 |= φi[z

n+1, xn])

(where ⟨φi|i < ω⟩ is our fixed canonical enumeration of Σ1 formulae.)

(Then Tn+1(⟨i, xn+1⟩, xn, . . . , x0)↔Mn
xn−1,...,x0 |= φi[x

n+1, xn]).

Clearly Tn+1 is uniformly Σ
(n)
1 (M).
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Lemma 2.6.17.

(a) Tn+1 is Σ
(n)
1

(b) Let φ be Σj. Then {⟨x⃗n+1, x⃗⟩|Mn+1
x⃗ |= φ[x⃗n+1]} is Σ

(n+1)
j .

Proof: We first note thatMn+1
x⃗ can be written asHx⃗ = ⟨Hn+1, An+1

x⃗ , Tn+1
x⃗ ⟩,

where An+1(xn+1, x⃗)↔: A(xn+1). Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 n = 0 is trivial since ⊩Σ1
N is Σ1(N) for all rud closed N .

Case 2 n = m+ 1. Then T (n+1) is Σ
(n)
1 by (1) applied to m.

QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.

Lemma 2.6.18. (a) Let R(xn+1, . . . , x0) be Σ
(n)
1 . Then there is i < ω

such that
R(xn+1, x⃗)↔ Tn+1(⟨i, xn+1⟩, x⃗).

(b) Let R(x⃗n+1, . . . , x0) be Σ
(n+1)
1 . Then there is a Σ1 formula φ such that

R(x⃗n+1, x⃗)↔Mn+1
x⃗ |= φ[x⃗n+1].

Proof:

(1) Let (a) hold at n. Then so does (b).

Proof: We know that

R(x⃗n+1, x⃗)↔
∨
zn+1P (zn+1, xn+1, x⃗)

for a Σ
(n+1)
0 formula P . Hence it suffices to show:

Claim Let P (x⃗n+1, x⃗) be Σ
(n+1)
0 . Then there is a Σ1 formula φ such that

P (x⃗n+1, x⃗)↔Mn+1
x⃗ |= φ[x⃗n+1].

Proof: We know that there are Qi(z⃗n+1
i , x⃗)(i = 1, . . . , p) such that Qi is

Σ
(n)
1 and
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(2) P (x⃗n+1, x⃗)↔ Hn+1
x⃗ |= Ψ[x⃗n+1] where Ψ is Σ0 and

Hn
x⃗ = ⟨Hn+1, Q⃗x⃗⟩.

Applying (a) to the relation:∨
un+1(un+1 = ⟨z⃗n+1

i ⟩ ∧Qi(z⃗n+1
i , x⃗))

we see that for each i there is ji < ω such that

Qi(z⃗
n+1
i , x⃗)↔ ⟨ji, ⟨z⃗n+1⟩⟩ ∈ Tn+1

vecx .

Thus Qi, x⃗ is uniformly rud in Tn+1
x⃗ for i = 1, . . . , p. Px⃗ is the restric-

tion of a relation rud in Qi,x⃗(i = 1, . . . , p) to Hn+1, by (2). By §2
Corollary 2.2.8 it follows that Px⃗ is the restriction of a relation rud in
Tn+1
x⃗ to Hn+1 uniformly. Since Mn+1

x⃗ = ⟨JAρn+1, T
n+1
x⃗ ⟩ is rud closed,

it follows by §2 Corollary 2.2.8 that:

P (x⃗n+1, x⃗)↔Mn+1
x⃗ |= φ[x⃗n+1]

for a Σ1 formula φ. QED (1)

Given (1) we can now prove (a) by induction on n.

Case 1 n = 0.
Since Σ1 = Σ

(0)
1 , there is φi such that

R(x1, x0) ↔M |= φi[x
1, x0]

↔ T 1(⟨i, x1⟩, x0).

Case 2 n = m+ 1.
Let R(xn+1, . . . , x0) be Σ

(n)
1 . By the induction hypothesis and (1) we

know that (b) holds at n. Hence:

R(xn+1, xm+1, xm, . . . , x0)↔
↔Mn

xm,...,x0 |= φi[x
n+1, xm+1]

for some i. But then

R(xn+1, . . . , x0)↔ Tn+1(⟨i, xn+1⟩, xm+1, . . . , x0).

QED (Lemma 2.6.18)

Note. The reductions in (a) and (b) are both uniform. We have in fact im-
plicitly defined algorithms which in case (a) takes us from the Σ

(n)
1 definition

of R to the integer i, and in case (b) takes us from the Σ
(n+1)
1 definition of

R to the Σ1 formula φ.
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We now generalize the definition of reduct given in §2.5.2 as follows:

Definition 2.6.10. Let a ∈ [OnM ]<ω. M0,a =: M ; Mn+1,a =: Mn+1
a(0),...,a(n)

where a(i) = a ∩ ρiM .

Thus Mn+1,a = ⟨JAρn+1 , T
n+1,a⟩ where Tn+1,a =: Tn+1

a(0),...,a(n) .

Thus by Lemma 2.6.18

Corollary 2.6.19. Set a(i) = a ∩ ρi for a ∈ [OnM ]<ω.

(a) If D ⊂ Hn+1 is Σ
(n)
1 in a(0), . . . , a(n), there is (uniformly) an i < ω

such that
D(xn+1)↔ ⟨i, xn+1⟩ ∈ Tn+1,a

(b) If D(x⃗n+1) is Σ(n+1)
1 in a(0), . . . , a(n) there is (uniformly) a Σ1 formula

φ such that D(x⃗n+1)↔Mn+1,a |= φ[x⃗n+1].

Note. Being Σ
(n)
1 in a is the same as being Σ

(n)
1 in a(0), . . . , a(n), but I do not

see how this is uniformly so. To see that a Σ
(n)
1 relation R in a(0), . . . , a(n) is

Σ
(n)
1 in a we note that for each n there is k such that y = a ∩ ρn ↔

∨
f (f

is the monotone enumeration of a and y = f ′′k), which is Σ1 in a. However,
k cannot be inferred from the Σ

(n)
1 definition of R, so the reduction is not

uniform.

We can generalize the good parameter sets P,R of §2.5.2 as follows:

Definition 2.6.11. P 0
M =: [On]<ω.

Pn+1
M =: the set of a ∈ PnM such that there is D which is Σ

(n)
1 (M) in a with

D ∩Hn
M /∈M .

(Thus we obviously have P 1 = P .)

Similarly:

Definition 2.6.12. R0
M =: P 0

M .

Rn+1
M =: The set of a ∈ RnM such that

Mn,a = hMn,a(ρn+1 ∪ (a ∩ ρn)).

Comparing these definitions with those in §2.5.6 it is apparent that RnM
has the same meaning and that, whenever a ∈ RnM , then Mn,a is the same
structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:
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Lemma 2.6.20. a ∈ Pn ↔ Tna /∈M .

We also note the following fact:

Lemma 2.6.21. Let a ∈ Rn. Let D be Σ
(n)
1 . Then D is Σ

(n)
1 in parameters

from ρn+1 ∪ {a(0), . . . , a(n)}, where a(i) =: a ∩ ρi. (Hence D is Σ
(n)
1 (M) in

parameters from ρn+1 ∪ {a}.)

Proof: We use induction on n. Let it hold below n. Then:

D(x⃗)↔ D′(x⃗; a(0), . . . , a(n−1), ξ⃗),

where ξ1, . . . , ξr < ρn. (If n = 0 the sequence a(0), . . . , a(n−1) is vacuous and
ρn = OnM .)

Let ξi = hMn+1(ji, ⟨µi, a(n)⟩), where µ1, . . . , µr < ρn+1. The functions:

Fi(x) ≃ hMna(ji, ⟨x, a(n)⟩)

are Σ
(n)
1 to Hn in the parameters a(0), . . . , a(n). But D(x⃗) then has the form:

D′(x⃗, a(0), . . . , a(n−1), F1(µ1), . . . , Fr(µr)),

which is Σ
(n)
1 in a(0), . . . , a(n), µ1, . . . , µk by Corollary 2.6.12.

QED (Lemma 2.6.21)

Definition 2.6.13. π is a Σ
(n)
h preserving map of M to M (in symbols

π :M →
Σ

(n)
h

M) iff the following hold:

• M,M are acceptable structures of the same type.

• π′′H i
M
⊂ H i

M for i ≤ n.

• Let φ = φ(vj11 , . . . , v
jm
m ) be a Σ

(n)
h formula with a good sequence v⃗ of

variables such that j1, . . . , jm ≤ n. Let xi ∈ Hji
M

for i = 1, . . . ,m.
Then:

M |= φ[x⃗]↔M |= φ[π(x⃗)].

π is then a structure preserving injection. If it is Σ
(n)
h –preserving, it is

Σ
(m)
1 –preserving for m < n and Σ

(n)
i –preserving for i < h. If h ≥ 1 then

π−1′′Hn
M ⊂ Hn

M
, as can be seen using:

x ∈ Hn
M ↔M |=

∨
unun = v0[x].
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We say that π is strictly Σ
(n)
h preserving (in symbols π :M →

Σ
(n)
h

M strictly)

iff it is Σ
(n)
h preserving and π−1′′Hn

M ⊂ Hn
M

. (Only if h = 0 can the embed-
ding fail to be strict.)

We say that π is Σ∗ preserving (π : M →Σ∗ M) iff it is Σ
(n)
1 preserving for

all n < ω. We call π Σ
(n)
ω preserving iff it is Σ

(n)
h preserving for all h < ω.

Good functions

Let n < ω. Consider the class F of all Σ(n)
1 functions F (xi1 , . . . , xim) to Hj ,

where j, i1, . . . , im ≤ n. This class is not necessarily closed under compo-
sition. If, however, G0 is the class of Σ(j)

1 functions G(zi1 , . . . , zim) to Hj

where j, i1, . . . , im ≤ n, then G0 ⊂ F and, as we have seen, elements of G0

can be composed into elements of F — i.e. if F (zi1 , . . . , zim) is in F and
Gl(x⃗) is in G0 for l = 1, . . . ,m, then F (G⃗(x⃗)) lies in F. The class G of good
Σ
(n)
1 functions is the result of closing G0 under composition. The elements

of G are all Σ(n)
1 functions and G is closed under composition. The precise

definition is:

Definition 2.6.14. Fix acceptable M . We define sets Gk = Gk
n of Σ

(n)
1

functions by:

G0 = The set of partial Σ(i)
1 maps F (xj11 , . . . , x

jm
m ) to H i, where i ≤ n and

j1, . . . , jm ≤ n.

Gk+1 = The set of H(x⃗) ≃ G(F⃗ (x⃗)), such that G(yj1 , . . . , yjmm ) is in Gk and
Fl ∈ G0 is a map to jl for l = 1, . . . ,m.

It follows easily that Gk ⊂ Gk
k+1 (sinceG(y⃗) ≃ G(⃗h(y⃗)) where h(yj11 , . . . , y

jm
m ) =

yjii for i = 1, . . . ,m). G = Gn =:
⋃
k

Gk is then the set of all good Σ
(n)
1

functions G∗ =
⋃
n
Gn is the set of all good Σ∗ functions. All good Σ

(n)
1 func-

tions have a functionally absolute Σ
(n)
1 definition. Moreover, the good Σ

(n)
1

functions are closed under permutation of arguments, insertion of dummy
arguments, and fusion of arguments of same type (i.e. if F (xi10 , . . . , x

jp
m−1)

is good, then so is F ′(y⃗) ≃ F (y
jσ(1)

σ(1) , . . . , y
jσ(m)

σ(m) ) where σ : m → p such that
jσ(l) = il for l < m.

To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Each Gk
n has the above properties.
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The proof is quite straightforward. We then get:

Lemma 2.6.23. The good Σ
(n)
1 functions are closed under composition:

Let G(yj11 , . . . , y
jm
m ) be good and let Fl(x⃗) be a good function to Hjl for

l = 1, . . . ,m. Then the function G(F⃗ (x⃗)) is good.

Proof: By induction in k < ω we prove:

Claim The above holds for Fl ∈ Gk(l = 1, . . . ,m).

Case 1 k = 0.
This is trivial by the definition of "good function".

Case 2 k = h+ 1.
Let:

Fl(x⃗) ≃ Hl(Fl,1(x⃗), . . . , Fl,pl(x⃗))

for l = 1, . . . ,m, where Hl(zl,1, . . . , zl,pl) is in Gh and Fl,i ∈ G0 is a
map to Hjl,i for l = 1, . . . ,m, i = 1, . . . , pl.

Let ⟨⟨lξ, iξ⟩|ξ = 1, . . . , p⟩ enumerate

{⟨l, i⟩|l = 1, . . . ,m; i = 1, . . . , pl}.

Define σl : {1, . . . , pl} → {1, . . . , p} by:

σl(i) = that ξ such that ⟨l, i⟩ = ⟨lξ, iξ⟩.

Set:
H ′
l(z1, . . . , zp) ≃ Hl(zσl(1), . . . , zσl(pl))

for l = 1, . . . ,m. F ′
ξ = Flξ,iξ for ξ = 1, . . . , p.

Clearly we have:

Fl(x⃗) = H ′
l(F

′
1(x⃗), . . . , F

′
p(x⃗))

where H ′
l ∈ Gh for l = 1, . . . ,m. Set:

G′(z1, . . . , zp| ≃ G(H1(z⃗), . . . ,Hm(z⃗)).

Then G′ is a good Σ
(n)
1 function by the induction hypothesis. But:

G(F⃗ (x⃗)) ≃ G′(F ′
1(x⃗), . . . , F

′
p(x⃗)).

The conclusion then follows by Case 1, since F ′
i ∈ G0 for i = 1, . . . , p.
QED (Lemma 2.6.23)
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An entirely similar proof yields:

Lemma 2.6.24. Let R(xi11 , . . . , x
ir
r ) be Σ

(n)
1 where i1, . . . , ir ≤ n. Let Fl(z⃗)

be a good Σ
(n)
1 map to H il(L = 1, . . . ,m). Then R(F⃗ (z⃗)) is Σ

(n)
1 .

Recall that R(F⃗ (z⃗)) means:

∨
y1, . . . , yr(

r∧
l=1

yl = Fl(z⃗) ∧R(y⃗)).)

Applying Corollary 2.6.13 we also get:

Lemma 2.6.25. Let n = m + 1. Let R(x⃗n, xi11 , . . . , x
ir
r ) be Σ

(n)
0 where

i1, . . . , ir ≤ m. Let Fl(z⃗) be a good Σ
(n)
1 map to H il for l = 1, . . . , r. Then

R(x⃗n, F⃗ (z⃗)) is Σ
(n)
0 .

By a reindexing of a function G(xi11 , . . . , x
ir
r ) we mean any function G′ which

is a reindexing of G as a relation. (In other words G,G′ have the same field,
i.e.

G(x⃗) ≃ G′(x⃗) for all x1, . . . , xr ∈M.)

Then:

Corollary 2.6.26. Let G(xi11 , . . . , x
ir
r ) be a good Σ

(m)
1 map to H i. Let

G′(yj11 , . . . , y
jr
r ) be a map to Hj, where j, j1, . . . , jr ≤ n. If G′ is a rein-

dexing of G, then G′ is a good Σ
(m)
1 function.

Proof: G′(y) ≃ F (G(F1(y
j1
1 ), . . . , F (yjrr ))) where F is defined by xi = yi

and Fl is defined by xill = yjll . (Then e.g.

F (y) =

{
y if y ∈ Hmin{i,j}

M ,

undefined if not.

where F is a map to i with arity j.)
But F, F1 . . . , Fr are Σ

(n)
1 good. QED (Corollary 2.6.26)

The statement made earlier that every good Σ
(n)
1 function has a functionally

absolute Σ
(n)
1 definition can be improved. We define:

Definition 2.6.15. φ is a good Σ
(n)
1 definition iff φ is a Σ

(n)
1 formula which

defines a good Σ
(n)
1 function over any acceptable M of the given type.

Lemma 2.6.27. Every good Σ
(n)
1 function has a good Σ

(n)
1 definition.
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Proof: By induction on k we show that it is true for all elements of Gk.
If F ∈ G0, then F is a Σ

(i)
1 map to H i for an i ≤ n. Hence any func-

tionally absolute Σ
(i)
1 definition will do. Now let F ∈ Gk+1. Then F (x⃗) ≃

G(H1(x⃗), . . . ,Hp(x⃗)) where G ∈ Gk and Hi ∈ G0 for i = 1, . . . , p. Then
G has a good definition φ and every Hi has a good definition Ψi. By the
uniformity expressed in Corollary 2.6.14 there is a Σ

(n)
1 formula χ such that,

given any acceptable M of the given type, if φ defines G′ and Ψi defines
H ′
i(i = 1, . . . , p), then χ defines F ′(x⃗) ≃ G′(H⃗ ′(x⃗)). Thus χ is a good Σ

(n)
1

definition of F . QED (Lemma 2.6.27)

Definition 2.6.16. Let a ∈ [OnM ]<ω. We define partial maps ha from
ω ×Hn to Hn by:

hna(i, x) ≃: hMn,a(i, ⟨x, a(n)⟩).

Then hna is uniformly Σ
(n)
1 in a(n), . . . , a(0). We then define maps h̃na from

ω ×Hn to H0 by:

h̃0a(i, x) ≃ hoa(i, x)

h̃n+1
a (i, x) ≃ h̃na((i)0, hn+1

a ((i)1, x)).

Then h̃na is a good Σ
(n)
1 function uniformly in a(n), . . . , a(0).

Clearly, if a ∈ Rn+1, then

hna
′′(ω × ρn+1) = Hn.

Hence:

Lemma 2.6.28. If a ∈ Rn+1, then h̃na
′′(ω × ρn+1) =M .

Corollary 2.6.29. If Rn ̸= ∅, then Σl ⊂ Σ
(n)
l for l ≥ 1.

Proof: Trivial for n = 0, since Σ
(0)
l = Σl. Now let n = m + 1. Set:

D = Hn ∩ dom(hna), where a ∈ Rn. Then D is Σ(n)
1 by Lemma 2.6.24, since:

xn ∈ D ↔ hna(x
n) = hna(x

n)

↔
∨
z0(z0 = hna(x

n) ∧ z0 = z0).

Let R(x⃗) be Σl(M). Let

R(x⃗)↔ Q1z1 . . . QzlP (z⃗, x⃗)

where P is Σ0. Set:
P ′(u⃗n, x⃗)↔: P (⃗hn(u⃗n), x⃗).
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Then P ′ is Σ(n)
1 in a. But for un1 , . . . , unl ∈ D, ¬P ′(u⃗n, x⃗) can also be written

as a Σ
(n)
1 formula. Hence

R(x⃗)↔ Qun1 ∈ D . . .Qunl ∈ DP ′(u⃗n, x⃗)

is Σ
(n)
l in a. QED (Corollary 2.6.29)

We have seen that every Σ
(n)
ω relation is Σω. Hence:

Corollary 2.6.30. Let Rn ̸= ∅. Then Σ
(n)
ω = Σω.

An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let a ∈ RnM . Then every element of M has the form
F (ξ, a(0), . . . , a(n)) where F is a good Σ

(n)
1 function and ξ < ρn.

Using this we now prove a downward extension of embeddings lemma which
strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let n = m + 1. Let a ∈ [OnM ]<ω and let N = Mna. Let
π : N →Σj N , where N is a J–model. Then:

(a) There are unique M,a such that a ∈ Rn
M

and Mna
= N .

(b) There is a unique π ⊃ π such that π : M →
Σ

(m)
0

M strictly and
π(a) = a.

(c) π :M →
Σ

(n)
j

M .

Proof: We first prove existence, then uniqueness. The existence assertion
in (a) follows by:

Claim 1 There are M,a, π̂ ⊃ π such that Mna
= N , a ∈ Rn

M
,

π̂ :M →Σ1 M , π̂(a) = a.

Proof: We proceed by induction on m. For m = 0 this immediate
by Lemma 2.5.12. Now let m = h + 1. We first apply Lemma 2.5.12
to Mma. It is clear from our definition that ρMm,a ≥ ρnM . Set N ′ =
(Mm,a)a∩ρ

m
M . Then N ′ = ⟨JAρ′ , T ′⟩, where ρ′ = ρMma . But it is clear

from our definition that Tna = T ′ ∩ JAρnM . Hence:

(1) π : N →Σ0 N
′.

By Lemma 2.5.12 there are then M̃, ã, π̃ ⊃ π such that M̃ ã = N ′,
ã ∈ RM̃ , π̃ : M̃ →Σ1 M

m,a and π̃(ã) = a ∩ ρmM = a(m).
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(Note: Throughout this proof we use the notation:

a(i) =: a ∩ ρi for i = 0, . . . ,m.)

By the induction hypothesis there are then M,a, π̂ ⊃ π̃ such that
M

ma
= M̃ , π̂ :M →Σ1 M , and π̂(a) = a.

We observe that:
(2) ã = a ∩ ρm

M
.

Proof:

(⊂) Let ρ̃ =: ρm
M

= On∩M̃ . Then ã ⊂ ρ̃. But π̂(ã) = π̃(ã) =
a ∩ ρmM ⊂ a = π̂(a). Hence ã ⊂ a.
(⊃) π̂(a∩ ρ̃) = π̂′′(a∩ ρ̃) ⊂ ρmM ∩a = π̂(ã), since π̂′′ρ̃ ⊂ ρmM . Hence
a ∩ ρ̃ = ã. QED (2)

Since ã ∈ Rma
M

we conclude that a ∈ Rn
M

and N = (Mma)a∩ρ̃ =

M
n,a. QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 Let Ma
= N and a ∈ Rn

M
. There is π ⊃ π such that π :M →

Σ
(m)
1

M and π(a) = a.

Proof: Let x1, . . . , xn ∈M with xi = F i(zi)(i = 1, . . . , r), where F i is
a Σ

(m)
1 (M) good function in the parameters a(0), . . . , a(n) and zi ∈ N .

Let Fi have the same Σ
(m)
1 (M)–good definition in a(0), . . . , a(m). Let

R(u1, . . . , ur) be a Σ
(n)
1 (M) relation and let R be Σ

(n)
1 (M) by the same

definition.

Then R(F 1(z1), . . . , F r(zr)) is Σ
(m)
1 (M) in a(0), . . . , a(m) and

R(F1(z1), . . . , Fr(zr)) is Σ
(m)
1 (M) in a(0), . . . , a(m) by the same defini-

tion. Hence there is i < ω such that

R(F (z⃗)↔ ⟨i, ⟨z⃗⟩⟩ ∈ T
R(F (z⃗))↔ ⟨i, ⟨z⃗⟩⟩ ∈ T

where N = ⟨JAρ , T ⟩, N = ⟨JAρ , T ⟩. Thus R(F (z⃗)) is rud in N and
R(F (z⃗)) is rud in N by the same rud definition. But π : N →Σ0 N .

Hence:

R(F 1(zi), . . . , F r(zr))↔ R(F1(π(z1)), . . . , Fr(π(zr))).

Thus there is π :M →
Σ

(n)
1

M defined by π(F (ξ)) =: F (π(ξ)) whenever

ξ ∈ On∩N , F is Σ
(m)
1 (M)– good in a(0), . . . , a(m) and F is Σ

(m)
1 (M)–

good in a(0), . . . , a(m) by the same definition. But then

π(z) = π(id(z)) = π(z) for z ∈ N.



2.6. Σ∗–THEORY 127

Hence π ⊃ π. But clearly

π(a)= π(a(0) ∪ . . . ∪ a(m))

= a(0) ∪ . . . ∪ a(m) = a.

QED (Claim 2)

We now verify (c):

Claim 3 Let M,a, π be as in Claim 2. Then π :M →
Σ

(n)
j

M .

Proof: We first note that π, being Σ
(n)
1 –preserving, is strictly so —

i.e. ρi
M

= π−1′′ρiM for i = 0, . . . ,m. It follows easily that:

π(a(i)) = π′′a(i) = a(i) for i = 0, . . . ,m.

We now proceed the cases.

Case 1 j = 0.
It suffices to show that if φ is Σ

(n)
1 and x1, . . . , xr ∈ N , then

M |= φ[x1, . . . , xr]→M |= φ[π(x1), . . . , π(xr)].

Let x1, . . . , xr ∈M . Then xi = F i(zi)(i = 1, . . . , r) where zi ∈ N
and F i is Σ

(m)
1 (M)–good in a(0), . . . , a(m). Let Fi be Σ

(m)
1 (M)–

good in a(0), . . . , a(m) by the same good definition.
By Corollary 2.6.19, we know that M |= φ[F 1(z1), . . . , F r(zr)] is
equivalent to

N |= Ψ[z1, . . . , zr]

for a certain Σ1 formula Ψ. The same reduction on the M side
shows that M |= φ[F1(z1), . . . , Fr(zr)] is equivalent to: N |=
Ψ[z1, . . . , zr] for z1, . . . , zr ∈ N , where Ψ is the same formula.
Since π is Σ0–preserving we then get:

M |= φ[x⃗]↔M |= φ[F (z⃗)]

↔ N |= Ψ[z⃗]

→ N |= Ψ[π(z⃗)]

↔M |= φ[F (π(z⃗))]

↔M |= φ[π(x⃗)].

QED (Case 1)

Case 2 j > 0.
This is entirely similar. Let φ be Σ

(n)
j . By Corollary 2.6.19 it
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follows easily that there is a Σj formula Ψ such that: M |=
φ[F 1(z1), . . . , F r(zr)] is equivalent to:

N |= Ψ[z1, . . . , zr].

Since the corresponding reduction holds on the M–side, we get

M |= φ[x⃗]↔M |= φ[π(x⃗)],

since π(xi) = π(F i(zi)) = Fi(π(zi)). QED (Claim 3)

This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.

Proof: Let M̂, â be such that M̂n,â = N and â ∈ RN
M̂

.
Claim M̂ =M, â = a.

Proof: By a virtual repetition of the proof in Claim 2 there is a
π : M̂ →

Σ
(m)
1

M defined by:

(3) π(F̂ (z)) = F (z) whenever z ∈ N , F̂ is a good Σ
(m)
1 (M̂) function

in â(0), . . . , â(m) and F is the Σ
(m)
1 (M) function in a(0), . . . , a(m)

with the same good definition.

But π is then onto. Hence π is an isomorphism of M̂ with M . Since
M̂,M are transitive, we conclude that M = M̂, a = â.

QED (Claim 4)

Finally we prove the uniqueness assertion of (b):

Claim 5 Let π′ :M →
Σ

(m)
0

M strictly, such that π′(a) = a. Then π′ = π.

Proof: By strictness we can again conclude that π′(a(i)) = a(i) for
i = 0, . . . ,m. Let x ∈M , x = F (z), where z ∈ N and F is a Σ

(m)
1 (M)

good function in the parameters a(0), . . . , a(m). Let F be Σ
(m)
1 (M) in

a(0), . . . , a(m) by the same good definition.
The statement: x = F (z) is Σ

(m)
2 (M) in a(0), . . . , a(m). Since π′ is

Σ
(m)
0 –preserving, the corresponding statement must hold in M — i.e.

π′(x) = F (π(z)) = π(x).
QED (Lemma 2.6.32)
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2.7 Liftups

2.7.1 The Σ0 liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the Σ0 liftup). We can define it as
follows:

Definition 2.7.1. Let M be a J–model. Let τ > ω be a cardinal in M . Let
H = HM

τ ∈M and let π : H →Σ0 H
′ cofinally. We say that ⟨M ′, π′⟩ is a Σ0

liftup of ⟨M,π⟩ iff M ′ is transitive and:

(a) π′ ⊃ π and π′ :M →Σ0 M
′

(b) Every element of M ′ has the form π′(f)(x) for an x ∈ H ′ and an
f ∈ Γ0, where Γ0 = Γ0(τ,M) is the set of functions f ∈ M such that
dom(f) ∈ H.

Note. The condition of being a J–model can be relaxed considerably, but
that is uninteresting for our purposes.

Until further notice we shall use the word ’liftup’ to mean ’Σ0 liftup’.

If ⟨M ′, π′⟩ is a liftup of ⟨M,π⟩ it follows easily that:

Lemma 2.7.1. π′ :M →Σ0 M
′ cofinally.

Proof: Let y ∈ M ′, y = π′(f)(x) where x ∈ H ′ and f ∈ Γ0, then y ∈
π′(rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. ⟨M ′, π′⟩ is the only liftup of ⟨M,π⟩.

Proof: Suppose not. Let ⟨M∗, π∗⟩ be another liftup. Let φ(v1, . . . , vn) be
Σ0. Then

M ′ |= φ[π′(f1)(x1), . . . , π
′(fn)(xn)]↔

⟨x1, . . . , xn⟩ ∈ π({⟨z⃗⟩|M |= φ[f⃗(z⃗)]})↔
M∗ |= φ[π∗(f1)(x1), . . . , π

∗(fn)(xn)].

Hence there is an isomorphism σ of M ′ onto M∗ defined by:

σ(π′(f)(x)) = π∗(f)(x)

for f ∈ Γ0, x ∈ π(dom(f)).

But M ′,M∗ are transitive. Hence σ = id, M ′ =M∗, π′ = π∗.
QED (Lemma 2.7.2)
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Note. M |= φ[f⃗(z⃗)] means the same as

∨
y1 . . . yn(

n∧
i=1

yi = fi(zi) ∧M |= φ[y⃗]).

Hence if e = {⟨z⃗⟩|M |= φ[f⃗(z⃗)]}, then e ⊂
n
×
i=1

dom(fi) ∈ H. Hence e ∈ M
by rud closure, since e is Σ0(M). But then e ∈ H, since P(u) ∩M ⊂ H for
u ∈ H.

But when does the liftup exist? In answering this question it is useful to
devise a ’term model’ for the putative liftup rather like the ultrapower con-
struction:

Definition 2.7.2. Let M, τ, π : H →Σ0 H
′ be as above. The term model

D = D(M,π) is defined as follows. Let e.g. M = ⟨JAα , B⟩. D =: ⟨D,∼=
, ∈̃, Ã, B̃⟩ where

D = the set of pairs ⟨f, x⟩ such that f ∈ Γ0 and x ∈ H ′

⟨f, x⟩ ∼= ⟨g, y⟩ ↔: ⟨x, y⟩ ∈ π({⟨z, w⟩|f(z) = g(y)})
⟨f, x⟩∈̃⟨g, y⟩ ↔: ⟨x, y⟩ ∈ π({⟨z, w⟩|f(z) ∈ g(y)})

Ã⟨f, x⟩ ↔: x ∈ π({z|Af(z)})

B̃⟨f, x⟩ ↔: x ∈ π({z|Bf(z)})

Note. D is an ’equality model’, since the identity predicate = is interpreted
by ∼= rather than the identity.

Łos theorem for D then reads:

Lemma 2.7.3. Let φ = φ(v1, . . . , vn) be Σ0. Then

D |= φ[⟨f1, x1⟩, . . . , ⟨fn, xn⟩]↔ ⟨x1, . . . , xn⟩ ∈ π({⟨z⃗⟩|M |= φ[f⃗(z⃗)]}).

Proof: (Sketch)
We prove this by induction on the formula φ. We display a typical case of the
induction. Let φ =

∨
u ∈ v1Ψ. By bound relettering we can assume w.l.o.g.

that u is not among v1, . . . , vn. Hence u, v1, . . . , vn is a good sequence for Ψ.
We first prove (→). Assume:

D |= φ[⟨f1, x1⟩, . . . , ⟨fn, xn⟩].

Claim ⟨x1, . . . , xn⟩ ∈ π(e) where

e = {⟨z1, . . . , zn⟩|M |= φ[f1(z1) . . . fn(zn)]}.



2.7. LIFTUPS 131

Proof: By our assumption there is ⟨g, y⟩ ∈ D such that ⟨g, y⟩∈̃⟨f1, x1⟩ and:

D |= Ψ[⟨g, y⟩, ⟨f1, x1⟩, . . . , ⟨fn, xn⟩].

By the induction hypothesis we conclude that ⟨y, x⃗⟩ ∈ π(ẽ) where:

ẽ = {⟨w, z⃗⟩|g(w) ∈ f1(z1) ∧M |= Ψ[g(w), f⃗(z⃗)}.

Clearly e, ẽ ∈ H and

H |=
∧
w, z⃗(⟨w, z⃗⟩ ∈ ẽ→ ⟨z⃗⟩ ∈ e).

Hence
H ′ |=

∧
w, z⃗(⟨w, z⃗⟩ ∈ π(e)→ ⟨z⃗⟩ ∈ π(e)).

Hence ⟨x⃗⟩ ∈ π(e). QED (→)

We now prove (←)
We assume that ⟨x1, . . . , xn⟩ ∈ π(e) and must prove:

Claim D |= φ[⟨f1, x1⟩, . . . , ⟨fn, xn⟩].

Proof: Let r ∈M be a well ordering of rng(f1). For ⟨z⃗⟩ ∈ e set:

g(⟨z⃗⟩) = the r–least w such that

M |= Ψ[w, f1(z1), . . . , fn(zn)].

Then g ∈M and dom(g) = e ∈ H. Now let ẽ be defined as above with this
g. Then:

H |=
∧
z1, . . . , zn(⟨z⃗⟩ ∈ e↔ ⟨⟨z⃗⟩, z⃗⟩ ∈ ẽ).

But then the corresponding statement holds of π(e), π(ẽ) in H ′. Hence

⟨⟨x⃗⟩, x⃗⟩ ∈ π(ẽ).

By the induction hypothesis we conclude:

D |= Ψ[⟨g, ⟨x⃗⟩⟩, ⟨f1, x1⟩, . . . , ⟨fn, xn⟩].

The conclusion is immediate. QED (Lemma 2.7.3)

The liftup of ⟨M,π⟩ can only exist if the relation ẽ is well founded:

Lemma 2.7.4. Let ∈̃ be ill founded. Then there is no ⟨M ′, π′⟩ such that
π′ :M →Σ0 M

′. M ′ is transitive, and π′ ⊃ π.
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Proof: Suppose not. Let ⟨fi+1, xi+1⟩∈̃⟨fi, xi⟩ for i < w. Then

⟨xi+1, xi⟩ ∈ π{⟨z, w⟩|fi+1(z) ∈ fi(w)}.

Hence π′(fi+1)(xi+1) ∈ π′(fi)(xi)(i < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let ∈̃ be well founded. Then the liftup of ⟨M,π⟩ exists.

Proof: We shall explicitly construct a liftup from the term model D. The
proof will stretch over several subclaims.

Definition 2.7.3. x∗ = π∗(x) =: ⟨constx, 0⟩, where constx =: {⟨x, 0⟩} =
the constant function x defined on {0}.

Then:

(1) π∗ :M →Σ0 D.
Proof: Let φ(v1, . . . , vn) be Σ0. Set:

e = {⟨z1, . . . , zn⟩|M |= φ[constx1(z1), . . . , constxn(zn)]}.

Obviously:

e =

{
{⟨0, . . . , 0⟩} if M |= φ[x1, . . . , xn]

∅ if not.

Hence by Łoz theorem:

D |= φ[x∗1, . . . , x
∗
n] ↔ ⟨0, . . . , 0⟩ ∈ π(e)
↔M |= φ[x1, . . . , xn]

(2) D |= Extensionality.
Proof: Let φ(u, v) =:

∧
w ∈ uw ∈ v ∧

∧
w ∈ v w ∈ u.

Claim D |= φ[a, b]→ a ∼= b for a, b ∈ D. This reduces to the Claim:
Let a = ⟨f, x⟩, b = ⟨g, y⟩. Then

D |= φ[⟨f, x⟩, ⟨g, y⟩] ↔ ⟨x, y⟩ ∈ π(e)
↔ ⟨f, x⟩ ∼= ⟨g, y⟩

where
e = {⟨z, w⟩|M |= φ[z, w]}

= {⟨z, w⟩|f(z) = g(w)}
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QED (2)

Since ∼= is a congruence relation for D we can factor D by ∼=, getting:

D̂ = (D\ ∼=) = ⟨D̂, ∈̂, Â, B̂⟩

where:
D̂ = {ŝ|s ∈ D}
ŝ =: {t|t ∼= s} for s ∈ D
ŝ∈̂t̂↔: s∈̃t

Âŝ↔: Ãs, B̂ŝ↔: B̃s.

Then D̂ is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism k of D̂ onto
M ′, where M ′ = ⟨|M ′|,∈, A′, B′⟩ is transitive.

Set:
[s] =: k(ŝ) for s ∈ D
π′(x) =: [x∗] for x ∈M.

Then by (1):

(3) π′ :M →Σ0 M
′.

Lemma 2.7.5 will then follow by:

Lemma 2.7.6. ⟨M ′, π′⟩ is the liftup of ⟨M,π⟩.

We shall often write [f, x] for [⟨f, x⟩]. Clearly every s ∈ M ′ has the
form [f, x] where f ∈M ; dom(f) ∈ H, x ∈ H ′.

Definition 2.7.4. H̃ =: the set of [f, x] such that ⟨f, x⟩ ∈ D and
f ∈ H.

We intend to show that [f, x] = π(f)(x) for x ∈ H̃. As a first step we
show:

(4) H̃ is transitive.

Proof: Let s ∈ [f, x] where f ∈ H.

Claim s = [g, y] for a g ∈ H.

Proof: Let s = [g′, y]. Then ⟨y, x⟩ ∈ π(e) where: e = {⟨u, v⟩|g′(u) ∈
f(v)} set:

e′ = {u|g′(u) ∈ rng(f)}, g = g′ ↾e′.

Then g ⊂ rng(f) × dom(g′) ∈ H. Hence g ∈ H. Then [g′, y] = [g, y]
since π(g′)(y) = π(g)(y) and hence
⟨y, y⟩ ∈ π({⟨u, v⟩|g′(u) = g(v)}). But e = {⟨u, v⟩|g(u) ∈ f(v)}. Hence
[g, y] ∈ [f, x]. QED (4)

But then:
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(5) [f, x] = π(f)(x) for f ∈ H, ⟨f, x⟩ ∈ D.

Proof: Let f, g ∈ H, ⟨f, x⟩, ⟨g, y⟩ ∈ D. Then:

[f, x] ∈ [g, y] ↔ ⟨x, y⟩ ∈ π(e)
↔ π(f)(x) ∈ π(g)(y)

where e = {⟨u, v⟩|f(u) ∈ g(v)}. Hence there is an ∈–isomorphism σ of
H onto H̃ defined by:

σ(π(f)(x)) =: [f, x].

But then σ = id, since H, H̃ are transitive. (5)

But then:

(6) π′ ⊃ π.

Proof: Let x ∈ H. Then π′(x) = [constx, 0] = π(constx)(0) = π(x)
by (5).

(7) [f, x] = π′(f)(x) for ⟨f, x⟩ ∈ D.

Proof: Let a = dom(f). Then [ida, x] = idπ(a)(x) = x by (5). Hence
it suffices to show:

[f, x] = [constf , 0]([ida, x]).

But this says that ⟨x, 0⟩ ∈ π(e) where:

e = {⟨z, u⟩|f(z) = constf (u)(ida(z))}
= {⟨z, 0⟩|f(z) = f(z)} = a× {0}.

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let π∗ ⊃ π such that π∗ : M →Σ0 M∗. Then the liftup
⟨M ′, π′⟩ of ⟨M,π⟩ exists. Moreover there is a σ : M ′ →Σ0 M∗ uniquely
defined by the condition:

σ ↾H ′ = id, σπ′ = π∗.

Proof: ⟨M ′, π′⟩ exists, since ∈̃ is well founded, since ⟨f, x⟩∈̃⟨g, y⟩ ↔ π∗(f)(x) ∈
π∗(g)(y). But then:

M ′ |= φ[π′(f1)(x1), . . . , π
′(fr)(xr)]↔

↔ ⟨x1, . . . , xr⟩ ∈ π(e)
↔M∗ |= φ[π∗(f1)(x1), . . . , π

∗(fr)(xr)]
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where e = {⟨z1, . . . , zr⟩|M |= φ[f⃗(z⃗)]}. Hence there is σ : M ′ →Σ0 M∗

defined by:
σ(π′(f)(x)) = π∗(f)(x) for ⟨f, x⟩ ∈ D.

Now let σ̃ :M ′ →Σ0 M
∗ such that σ̃ ↾H ′ = id and σ̃π′ = πr.

Claim σ̃ = σ.
Let s ∈ M ′, s = π′(f)(x). Then σ̃(π′(f)) = π∗(f), σ̃(x) = x. Hence
σ̃(s) = π∗(f)(x) = σ(s). QED (Lemma 2.7.7)

2.7.2 The Σ
(n)
0 liftup

From now on suppose M to be acceptable. We now attempt to generalize
the notion of Σ0 liftup. We suppose as before that τ > w is a cardinal in
M and H = HM

τ . As before we suppose that π′ : H →Σ0 H
′ cofinally. Now

let ρn ≥ τ . The Σ0–liftup was the "minimal" ⟨M ′, π′⟩ such that π′ ⊃ π and
π′ : M →Σ0 M

′. We shall now consider pairs ⟨M ′, π′⟩ such that π′ ⊃ π and
π′ : M →Σn

0
M ′. Among such pairs ⟨M ′, π′⟩ we want to define a "minimal"

one and show, if possible, that it exists. The minimality of the Σ0 liftup was
expressed by the condition that every element of M ′ have the form π′(f)(x),
where x ∈ H ′ and f ∈ Γ0(τ,M). As a first step to generalizing this definition
we replace Γ0(τ,M) by a larger class of functions Γn(τ,M).

Definition 2.7.5. Let n > 0 such that τ ≤ ρnM . Γn = Γn(τ,M) is the set
of maps f such that

(a) dom(f) ∈ H

(b) For some i < n there is a good Σ
(i)
1 (M) function G and a parameter

p ∈M such that f(x) = G(x, p) for all x ∈ dom(f).

Note. Good Σ
(i)
1 functions are many sorted, hence any such function can be

identified with a pair consisting of its field and its arity. An element of Γn,
on the other hand, is 1–sorted in the classical sense, and can be identified
with its field.
Note. This definition makes sense for the case n = ω, and we will not
exclude this case. A Σ

(ω)
0 formula (or relation) then means any formula (or

relation) which is Σ
(i)
0 for an i < ω — i.e. Σ(ω)

0 = Σ∗.

We note:

Lemma 2.7.8. Let f ∈ Γn such that rng(f) ⊂ H i, where i < n. Then
f(x) = G(x, p) for x ∈ dom(f) where G is a good Σ

(h)
1 function to H i for

some h < n.
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Proof: Let f(x) = G′(x, p) for x ∈ dom(f) where G′ is a good Σ
(h)
1 function

to Hj where h, j < n. Since every good Σ
(h)
1 function is a good Σk1 function

for k ≥ h, we can assume w.l.o.g. that i, j ≤ h. Let F be the identity function
defined by vi = uj (i.e. yi = F (xj)↔ yi = xj). Set: G(x, y) ≃: F (G′(x, y)).
Then F is a good Σ

(h)
1 function and so is G, where f(x) = G(x, p) for

x ∈ dom(f).
QED (Lemma 2.7.8)

Lemma 2.7.9. Γi(τ,M) ⊂ Γn(τ,M) for i < n.

Proof: For 0 < i this is immediat by the definition. Now let i = 0. If
f ∈ Γ0, then f(x) = G(x, f) for x ∈ dom(f) where G is the Σ

(0)
0 function

defined by
y = G(x, f)↔: (f is a function ∧

∧⟨y, x⟩ ∈ f).

QED (Lemma 2.7.9)

The "natural" minimality condition for the Σ(n)
0 liftup would then read: Each

element of M has the form π′(f)(x) where x ∈ H ′ and f ∈ Γn. But what
sense can we make of the expression "π′(f)(x)" when f is not an element of
M? The following lemma rushes to our aid:

Lemma 2.7.10. Let π′ : M →
Σ

(n)
0

M ′ where n > 0 and π′ ⊃ π. There is a
unique map π′′ on Γn(τ,M) with the following property:

∗ Let f ∈ Γn(τ,M) such that f(x) = G(x, p) for x ∈ dom(f) where G
is a good Σ

(i)
1 function for an i < n and χ is a good Σ

(i)
1 definition of

G. Let G′ be the function defined on M ′ by χ. Let f ′ = π′′(f). Then
dom(f ′) = π(dom(f)) and f ′(x) = G′(x, π′(p)) for x ∈ dom(f ′).

Proof: As a first approximation, we simply pick G,χ with the above prop-
erties. Let G′ then be as above. Let d = dom(f). The statement∧
x ∈ d

∨
y y = G(x, p) is Σ

(n)
0 is d, p, so we have:∧

x ∈ π(d)
∨
y y = G′(x, π(p)).

Define f0 by dom(f0) = π(d) and f0(x) = G′(x, π(p)) for x ∈ π(d). The
problem is, of course, that G,χ were picked arbitrarily. We might also have:

f(x) = H(x, q) for x ∈ d,

where H is Σ
(j)
1 (M) for a j < n and Ψ is a good Σ

(j)
1 definition of H. Let

H ′ be the good function on M ′ defined by Ψ. As before we can define f1
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by dom(f1) = π(d) and f1(x) = H ′(x, π′(q)) for x ∈ π(d). We must show:
f0 = f1. We note that: ∧

x ∈ dG(x, p) = H(x, q).

But this is a Σ
(n)
0 statement. Hence∧

x ∈ π(d)G′(x, p) = H ′(x, q).

Then f0 = f1. QED (Lemma 2.7.10)

Moreover, we get:

Lemma 2.7.11. Let n, π, τ, π′, π′′ be as above. Then π′′(f) = π′(f) for
f ∈ Γ0(τ,M).

Proof: We know f(x) = G(x, f) for x ∈ d = dom(f), where:

y = G(x, f)↔: (f is a function ∧ y = f(x)).

Then π′′(f)(x) = G′(x, π′(f)) = π′(f)(x) for x ∈ π(d), where G′ has the
same definition over M ′. QED (Lemma 2.7.11)

Thus there is no ambiguity in writing π′(f) instead of π′′(f) for f ∈ Γn.
Doing so, we define:

Definition 2.7.6. Let ω < τ < ρnM where n ≤ ω and τ is a cardinal in M .
Let H = HM

τ and let π : H →Σ0 H
′ cofinally. We call ⟨M ′, π′⟩ a Σ

(n)
0 liftup

of ⟨M,π⟩ iff the following hold:

(a) π′ ⊃ π and π′ :M →
Σ

(n)
0

M ′.

(b) Each element of M ′ has the form π′(f)(x), where f ∈ Γn(τ,M) and
x ∈ H ′.

(Thus the old Σ0 liftup is simply the special case: n = 0.)

Definition 2.7.7. Γni (τ,M) =: the set of f ∈ Γn(τ,M) such that either
i < n and rng(f) ⊂ H i

M or i = n < ω and f ∈ H i
M .

(Here, as usual, H i = JρiM
[A] where M = ⟨JAα , B⟩.)

Lemma 2.7.12. Let f ∈ Γni (τ,M). Let π′ : M →
Σ

(n)
0

M ′ where π′ ⊃ π.
Then π′(f) ∈ Γni (π

′(τ),M ′).
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Proof:

Case 1 i = n. Then f ∈ HM
ρnM

. Hence π′(f) ∈ HM ′
ρnM

.

Case 2 i < n.

By Lemma 2.7.9 for some h < n there is a good Σ
(n)
1 (M) function G(u, v)

to H i and a parameter p such that

f(x) = G(x, p) for x ∈ dom(f).

Hence:
π′(f)(x) = G′(x, π′(p)) for x ∈ dom(π(f)),

where G′ is defined over M ′ by the same good Σ
(n)
1 definition. Hence

rng(π′(f)) ⊂ H i
M . QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding Σ
(n)
0 liftups.

Lemma 2.7.13. Let R(xi11 , . . . , x
ir
r ) be Σ

(n)
0 where i1, . . . , ir ≤ n. Let fl ∈

Γnil(l = 1, . . . , r). Then:

(a) The relation P is Σ
(n)
0 in a parameter p where:

P (z⃗)↔: R(f1(z1), . . . , fr(zr)).

(b) Let π′ ⊃ π such that π′ :M →
Σ

(n)
0

M ′. Let R′ be Σ
(n)
0 (M ′) by the same

definition as R. Then P ′ is Σ
(n)
0 (M ′) in π′(p) by the same definition

as P in p, where:

P ′(z⃗)↔: R′(π′(f1)(z1), . . . , π
′(fr)(zr)).

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Let e = {⟨z⃗⟩|P (z⃗)}. Then e ∈ H and π(e) = {⟨z⃗⟩|P ′(z⃗)}.

Proof: Clearly e ⊂ d =
r
×
l=1

dom(fl) ∈ H. But then d ∈ Hρn and e ∈ Hρn

since ⟨Hρn , P∩Hρn⟩ is amenable. Hence e ∈ H, since H = HM
τ and therefore

P(u) ∩M ⊂ H for u ∈ H.

Now set e′ = {⟨z⃗⟩|P ′(z⃗)}. Then e′ ⊂ π(d) =
r
×
l=1

dom(π(fl)) since π′ ⊃ π and

hence π(dom(fl)) = dom(π(fl)). But∧
⟨z⃗⟩ ∈ d(⟨z⃗⟩ ∈ e↔ P (z⃗))
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which is a Σ
(n)
0 statement about e, p. Hence the same statement holds of

π(e), π(p) in M ′. Hence∧
⟨z⃗⟩ ∈ π(d)(⟨z⃗⟩ ∈ π(e)↔ P ′(z⃗)).

Hence π(e) = e′. QED (Corollary 2.7.14)

Corollary 2.7.15. ⟨M,π⟩ has at most one Σ
(n)
0 liftup ⟨M ′, π′⟩.

Proof: Let ⟨M∗, π∗⟩ be a second such. Let φ(vi11 , . . . , v
ir
r ) be a Σ

(n)
0 for-

mula. (In fact, we could take it here as being Σ
(0)
0 .) Let e = {⟨z⃗⟩|M |=

φ[f1(z1), . . . , fr(zr)]} where fl ∈ Γnil(l = 1, . . . , r). Then:

M ′ |= φ[π′(f1)(x1), . . . , π
′(fr)(xr)]↔

↔ ⟨x1, . . . , xr⟩ ∈ π(e)
↔M∗ |= φ[π∗(f1)(x1), . . . , π

∗(fr)(xr)]

for xl ∈ π(dom(fl)(l = 1, . . . , r).

Hence there is an isomorphism σ :M ′→̃M∗ defined by:

σ(π′(f)(x)) =: π∗(f)(x)

for f ∈ Γn, x ∈ π(dom(f)). But M ′,M∗ are transitive. Hence σ = id,M ′ =
M∗, π′ = π∗. QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n = 0.
Then f1, . . . , fr ∈ M and P is Σ0 in p = ⟨f1, . . . , fr⟩, since fi is rudi-
mentary in p and for sufficiently large h we have:

P (z⃗)↔
∨

y1,...,yr ∈ Ch(p)(
r∧
i=1

yi = fi(z⃗i) ∧R(y⃗))

where R is Σ0. If P ′ has the same Σ0 definition over M ′ in π′(p), then

P ′(z) ↔
∨
y1,...,yr

∈ Ch(π(p))(
r∧

n=1
yi = π(fi)(zi) ∧R(y⃗))

↔ R(π(f⃗)(z⃗))

QED
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Case 2 n = ω.
Then Σω0 =

⋃
h<w

Σ
(h)
1 . Let R(xi11 , . . . , x

lr
r ) be Σ

(h)
1 . Since every Σ

(h)
1

relation is Σ
(k)
1 for k ≥ h, we can assume h taken large enough that

i1, . . . , ir ≤ h. We can also choose it large enough that:

fl(z) ≃ Gl(z, p) for l = 1, . . . , v

where Gl is a good Σ
(h)
1 map to H il . (We assume w.l.o.g. that p is the

same for l = 1, . . . , r and that dl = dom(fl) is rudimentary in p.) Set:

P (z⃗, y)↔: R(G1x1, y), . . . , G(xr, y)).

By §6 Lemma 2.6.24, P is Σ
(h)
1 (uniformly in the Σ

(h)
1 definition of R

and G1, . . . , Gr). Moreover:

P (z⃗)↔ P (z⃗, p).

Thus P is uniformly Σ
(h)
1 in p, which proves (a). But letting P ′ have

the same Σ
(h)
1 definition in π′(p) over M ′, we have:

P ′(z⃗) ↔ P ′(z⃗, π′(p))

↔ R′(π′(f1)(z1), . . . , π
′(fr)(zr)),

which proves (b). QED (Case 2)

Case 3 0 < n < w.
Let n = m+1. Rearranging arguments as necessary, we can take R as
given in the form:

R(yn1 , . . . , y
n
s , x

i1
1 , . . . , x

ir
r )

where i1, . . . , ir ≤ m. Let fl ∈ Γnil for l = 1, . . . , r and let g1, . . . , g1 ∈
Γnn.

Claim

(a) P is Σ
(n)
0 in a parameter p where

P (w⃗, z⃗)↔: R(g⃗(w⃗), f⃗(z⃗)).

(b) If π′,M ′ are as above and P ′ is Σ
(n)
0 (M ′) in π′(p) by the same

definition, then

P ′(w, z⃗)↔ R′(π′(g⃗)(w⃗), π′(f⃗)(z⃗))

where R′ has the same Σ
(n)
0 definition over M ′.
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We prove this by first substituting f⃗(z⃗) and then g⃗(w⃗), using two different
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
P0(y⃗

n, z⃗)↔= R(yn, f1(z1), . . . , fr(zr)).

Then:

(a) P0 is Σ
(n)
0 (M) in a parameter p0.

(b) Let π′,M ′, R′ be as above. Let P ′
0 have the same Σ

(n)
0 (M ′) defi-

nition in π′(p0). Then:

P ′
0(y⃗

n, z⃗)↔ R′(yn, π′(f⃗)(z⃗)).

Claim 2 Let
P (w⃗, z⃗)↔: P0(g1(w1), . . . , gs(ws), z⃗).

Then:

(a) P is Σ
(n)
0 (M) in a parameter p.

(b) Let π′,M ′, P ′
0 be as above. Let P ′ have the same Σ

(n)
1 (M ′) defi-

nition in π′(p). Then

P ′(w⃗, z⃗)↔ P ′
0(π

′(g⃗)(w⃗), z⃗).

We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using §6 Lemma 2.6.11. The details are left to the reader. We then prove
Claim 2 by imitating the argument in Case 1: We know that g1, . . . , gs ∈ Hn.
Set: p = ⟨g1, . . . , gn, p⟩. Then P is Σ

(n)
0 (M) in p, since:

P (w⃗, z⃗)↔
∨
y1 . . . ys ∈ Ch(p)(

s∧
i=1

yi = gi(wi) ∧ P0(y⃗, z⃗))

where gi, p0 are rud in P , for a sufficiently large h. But if P ′ is Σ
(n)
0 (M ′) in

Π′(P ) by the same definition, we obviously have:

P ′(w⃗, z⃗) ↔
∨
y1 . . . yr(

s∧
i=1
yi = π′(g)(wi) ∧ P ′

0(y⃗, z⃗))

P ′
0(π

′(g⃗)(w⃗), z⃗).

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments u⃗n. Thus, after re-
arranging arguments we would have R(u⃗n, y⃗n, xi11 , . . . , x

ir
r ) where i1, . . . , ir <

n. We would then define

P (u⃗n, w⃗, z⃗)↔: R(u⃗n, g⃗(w⃗), f⃗(z⃗)).

This gives us:
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Corollary 2.7.16. Let n < w. Let R(u⃗n, xi11 , . . . , x
ir
r ) be Σ(n)

0 where i1, . . . , ip ≤
n. Let fl ∈ Γnil for l = 1, . . . , r. Set:

P (u⃗n, z⃗)↔: R(u⃗n, f1(z1), . . . , fr(zr)).

Then:

(a) P (u⃗n, z⃗) is Σ
(n)
0 in a parameter p.

(b) Let π′ ⊃ π such that π′ :M →
Σ

(n)
0

M ′. Let R′ be Σ
(n)
0 (M ′) by the same

definition. Let P ′ be Σ
(n)
0 (M ′) in π′(p) by the same definition. Then

P ′(u⃗n, z⃗)↔ R′(u⃗n, π′(f1)(z1), . . . , π
′(fr)(zr)).

By Corollary 2.7.15 ⟨M,π⟩ can have at most one Σ
(n)
0 liftup. But when does

it have a liftup? In order to answer this — as before — define a term model
D = D(n) for the supposed liftup, which will then exist whenever D is well
founded.

Definition 2.7.8. Let M, τ,H,H ′, π be as above where ρnM ≥ τ, n ≤ w.
The Σ

(n)
0 term model D = D(n) is defined as follows: (Let e.g. M = ⟨JAα , B⟩.)

We set: D = ⟨D,∼=, ∈̃, Ã, B̃⟩ where:

D = D(n) =: the set of pairs ⟨f, x⟩
such that f ∈ Γn(τ,M) and

x ∈ π(dom(f))

⟨f, x⟩ ∼= ⟨g, y⟩ ↔: ⟨x, y⟩ ∈ π(e), where

e = {⟨z, w⟩|f(z) = g(w)}.

⟨f, x⟩∈̃⟨g, y⟩ ↔: ⟨x, y⟩ ∈ π(e), where

e = {⟨z, w⟩|f(z) ∈ g(w)}

(similarly for Ã, B̃).

We shall interpret the model D in a many sorted language with variables of
type i < ω if n = ω and otherwise of type i ≤ n. The variables vi will range
over the domain Di defined by:

Definition 2.7.9. Di = D
(n)
i =: {⟨f, x⟩ ∈ D|f ∈ Γni }.

Under this interpretation we obtain Łos theorem in the form:
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Lemma 2.7.17. Let φ(vi11 , . . . , v
ir
r ) be Σ

(n)
0 . Then:

D |= φ[⟨f1, x1⟩, . . . , ⟨fr, xr⟩]↔ ⟨x1, . . . , xr⟩ ∈ π(e)

where e = {⟨z⃗⟩|M |= φ[f1(z1), . . . , fr(zr)]} and ⟨fl, xl⟩ ∈ Dil for l = 1, . . . , r.

Proof: By induction on i we show:

Claim If i < n or i = n < ω, then the assertion holds for Σ
(i)
0 formulae.

Proof: Let it hold for j < i. We proceed by induction on the formula φ.

Case 1 φ is primitive (i.e. φ is vi∈̇vj , vi=̇vj , Ȧvi or Ḃvi (for M = ⟨JAα , B⟩).
This is immediate by the definition of D.

Case 2 φ is Σ
(j)
h where j < i and h = 0 or 1. If h = 0 this is immediate

by the induction hypothesis. Let h = 1. Then φ =
∨
ujΨ, where Ψ

is Σ
(i)
0 . By bound relettering we can assume w.l.o.g. that ui is not in

our good sequence vi11 , . . . , v
ir
r . We prove both directions, starting with

(→):

Let D |= φ[⟨f1, x1⟩, . . . , ⟨fr, xr⟩]. Then there is ⟨g, y⟩ ∈ Dj such that

D |= Ψ[⟨g, y⟩, ⟨f1, x1⟩, . . . , ⟨fr, xr⟩]

(uj , v⃗ being the good sequence for Ψ). Set e′ = {⟨w, z⃗⟩|M |= Ψ[g(w), z⃗(x⃗)]}.
Then ⟨y, x⃗⟩ ∈ π(e′) by the induction hypothesis on i. But in M we
have: ∧

w, z⃗(⟨w, z⃗⟩ ∈ e′ → ⟨z⃗⟩ ∈ e).

This is a Π1 statement about e′, e. Since π : H →Σ1 H ′ we can
conclude: ∧

w, z⃗(⟨w, z⃗⟩ ∈ π(e′)→ ⟨z⃗ ∈ π(e)).

But ⟨y, x⃗⟩ ∈ π(e′) by the induction hypothesis. Hence ⟨x⃗ ∈ π(e). This
proves (→). We now prove (←). Let ⟨x⃗⟩ ∈ π(e). Let R be the Σ

(j)
0

relation
R(w, z1, . . . , zr)↔=M |= φ[w, z1, . . . , zr].

Let G be a Σ
(j)
0 (M) map to Hj which uniformizes R. Then G is a

spezialization of a function G′(zh11 , . . . , zhrr ) such that hl ≤ j for l ≤ j.
Thus G′ is a good Σ

(j)
0 function. But

fl(z) = Fl(z, p) for z ∈ dom(fl) for l = 1, . . . , r
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where Fl is a good Σ
(k)
0 map to Hhl for l = 1, . . . , r and j ≤ k < i. (We

assume w.l.o.g. that the parameter p is the same for all l = 1, . . . , rn.)
Define G′′(uk, w) by:

G′′(u,w) ≃: G′((u)r−1
0 , . . . , (u)r−1

r−1, w)

then G′′ is a good Σ
(k)
1 function. Define g by: dom(g) =

r
×
i=1

dom(fi)

and: g(⟨z⃗⟩) = G′′(⟨z⃗⟩, p) for ⟨z⃗⟩ ∈ dom(g). Then g ∈ Γn and g(⟨z⃗⟩) =
G(f1(z1), . . . , fr(zr)). Hence, letting:

e′ = {⟨w, z⃗⟩|M |= Ψ[g(w), f⃗(z⃗)]},

we have: ∧
z⃗(⟨z⃗⟩ ∈ e↔ ⟨⟨z⃗⟩, z⃗⟩ ∈ e′).

This is a Π1 statement about e, e′ in H. Hence in H ′ we have:∧
z⃗(⟨z⃗⟩ ∈ π(e)↔ ⟨⟨z⃗⟩, z⃗⟩ ∈ π(e′)).

But then ⟨⟨z⃗⟩, z⃗⟩ ∈ π(e′). By the induction hypothesis we conclude:

D |= Ψ[⟨g, ⟨z⃗⟩⟩, ⟨f1, x1⟩, . . . , ⟨fr, xr⟩].

Hence:
D |= φ[⟨f1, x1⟩, . . . , ⟨fr, xr⟩].

QED (Case 2)

Case 3 φ is Ψ0 ∧Ψ1,Ψ0 ∧Ψ1,Ψ0 → Ψ1,Ψ0 ↔ Ψ1, or ¬Ψ.

This is straightforward and we leave it to the reader.

Case 4 φ =
∨
ui ∈ vlχ or

∧
ui ∈ vlχ, where vl has type ≥ i. We display

the proof for the case φ =
∨
ui ∈ vlχ. We again assume w.l.o.g. that

u′ ̸= vj for j = 1, . . . , r. Set: Ψ = (ui ∈ vl ∧ χ). Then φ is equivalent
to

∨
uiΨ. Using the induction hypothesis for χ we easily get:

(*)
D |= Ψ[⟨g, y⟩, ⟨f1, xi⟩, . . . , ⟨fr, xr⟩]↔

⟨y, x1, . . . , xn⟩ ∈ π(e′)

where e′ = {⟨w, z⃗⟩|M |= Ψ[g(w), f⃗(z⃗)]}. Using (∗), we consider two
subcases:

Case 4.1 i < n.
We simply repeat the proof in Case 2, using (∗) and with i in place of
j.
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Case 4.2 i = n < w.
(Hence vl has type n.) For the direction (→) we can again repeat the
proof in Case 2. For the other direction we essentially revert to the
proof used initially for Σ0 liftups.

We know that e ∈ H and ⟨x⃗⟩ ∈ π(e), where e = {⟨z⃗⟩|M |= φ[f1(z1), . . . , fr(zr)]}.
Set:

R(wn, z⃗)↔:M |= Ψ[wn, f1(z1), . . . , fr(zr)].

Then R is Σ(n)
0 by Corollary 2.7.16. Moreover

∨
wnR(wn, z⃗)↔ ⟨z⃗⟩ ∈ e.

Clearly fl ∈ Hn
M since fl ∈ Γnn. Let s ∈ Hn

M be a well odering of⋃
rng(fl). Clearly:

R(wn, z⃗) → wn ∈ fl(zl)
→ wn ∈

⋃
rng(fl).

We define a function g with domain e by:

g(⟨z⃗⟩) = the s–least w such that R(w, z⃗).

Since R is Σ
(n)
0 , it follows easily that g ∈ HM

ρn . Hence g ∈ Γnn. But
then∧
z⃗(⟨z⃗⟩ ∈ e↔ ⟨⟨z⃗⟩, z⃗⟩ ∈ e′), where e′ is defined as above, using this g.

Hence in H ′ we have:∧
z⃗(⟨z⃗⟩ ∈ π(e)↔ ⟨⟨z⃗⟩, z⃗⟩ ∈ π(e′)).

Since ⟨x⃗⟩ ∈ π(e) we conclude that ⟨⟨x⃗⟩, x⃗⟩ ∈ π(e′). Hence:

D |= Ψ[⟨g, ⟨x⃗⟩⟩, ⟨f1, x1⟩, . . . , ⟨fr, xr⟩].

Hence:
D |= φ[⟨f1, x1⟩, . . . , ⟨fr, xr⟩].

QED (Lemma 2.7.17)

Exactly as before we get:

Lemma 2.7.18. If ∈̃ is ill founded, then the Σ
(n)
0 liftup of ⟨M,π⟩ does not

exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If ∈̃ is well founded, then the Σ
(n)
0 liftup of ⟨M,π⟩ exists.
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Proof: We shall again use the term model D to define an explicit Σ(n)
0 liftup.

We again define:

Definition 2.7.10. x∗ = π∗(x) =: ⟨constx, 0⟩, where constx =: {⟨x, 0⟩} =
the constant function x defined on {0}.

Using Łos theorem Lemma 2.7.17 we get:

(1) π∗ :M →
Σ

(n)
0

D
(where the variables vi range over Di on the D side).

The proof is exactly like the corresponding proof for Σ0–liftups ((1) in
Lemma 2.7.5). In particular we have: π∗ : M →Σ0 D. Repeating the
proof of (2) in Lemma 2.7.5 we get:

(2) D |= Extensionality.
Hence ∼= is again a congruence relation and we can factor D, getting:

D̂ = (D\ ∼=) = ⟨D̂, ∈̂, Â, B̂⟩

where
D̂ =: {ŝ|s ∈ D}, ŝ =: {t|t ∼= s} for s ∈ D
ŝ∈̂t̂↔: s∈̃t

Âŝ↔: Ãs, B̂ŝ↔: B̃s

Then D̂ is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism k of D̂ onto
M ′, where M ′ = ⟨|M ′|,∈, A′, B′⟩ is transitive. Set:

[s] =: k(ŝ) for s ∈ D
π′(x) =: [x∗] for x ∈M
Hi =: {ŝ|s ∈ Di}(i < n or i = n < ω).

We shall initially interpret the variables vi on the M ′ side as ranging
over Hi. We call this the pseudo interpretation. Later we shall show
that it (almost) coincides with the intended interpretation. By (1) we
have

(3) π′ : M →
Σ

(n)
0

M ′ in the pseudo interpretation. (Hence π′ : M →
Σ

(n)
0

M ′.)

Lemma 2.7.19 then follows from:

Lemma 2.7.20. ⟨M ′, π′⟩ is the Σ
(n)
0 liftup of ⟨M,π⟩.
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For n = 0 this was proven in Lemma 2.7.6, so assume n > 0. We again
use the abbreviation:

[f, x] =: [⟨f, x⟩] for ⟨f, x⟩ ∈ D.

Defining H̃ exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

(4) H̃ is transitive.

(5) [f, x] = π(f)(x) if f ∈ H and ⟨f, x⟩ ∈ D. (Hence H̃ = H ′.)

(6) π′ ⊃ π.

(However (7) in Lemma 2.7.6 will have to be proven later.)

In order to see that π :M →Σ(n) M ′ in the intended interpretation we
must show that Hi = H i

M , for i < n and that Hn ⊂ Hn
M . As a first

step we show:

(7) Hi is transitive for i ≤ n.

Proof: Let s ∈ Hi, t ∈ s. Let s = [f, x] where f ∈ Γni . We must show
that t = [g, y] for g ∈ Γni . Let t = [g′, y]. Then ⟨y, x⟩ ∈ π(e) where

e = {⟨u, v⟩|g′(u) ∈ f(v)}.

Set:
a =: {u|g′(u) ∈ rng(f)}, g = g′ ↾a.

Claim 1 g ∈ Γni .
Proof: a ⊂ dom(q′) is Σ

(n)
0 . Hence a ∈ H and g ∈ Γn. If i < n,

then rng(g) ⊂ rng(f) ⊂ H i
M . Hence g ∈ Γni . Now let i = n. Then

rng(f) ∈ Γnn and the relation z = g(y) is Σ
(n)
0 . Hence g ∈ Hn

M .
QED (Claim 1)

Claim 2 t = [g, y]
Proof: ∧

u, v(⟨u, v⟩ ∈ e→ ⟨u, u⟩ ∈ e′)

where e′ = {⟨u,w⟩|g(u) = g′(w)}. Hence the same Π1 statement
holds of π(e), π(e′) in H ′. Hence ⟨y, y⟩ ∈ π(e′). Hence [g, y] =
[g′, y] = t. QED (7)

We can improve (3) to:

(8) Let Ψ =
∨
vi1v1 , . . . , v

ir
r φ, where φ is Σ

(n)
0 and il < n or il = n < ω for

l = 1, . . . , r. Then π′ is "Ψ–elementary" in the sense that:

M |= Ψ[x⃗]↔M ′ |= Ψ[π′(x⃗)] in the pseudo interpretation.
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Proof: We first prove (→). LetM |= φ[z⃗, x⃗]. ThenM ′ |= φ[π′(z⃗), π′(x⃗)]
by (3).

We now prove (←). Let:

M ′ |= φ[[f1, z1], . . . , [fr, zr], π
′(x⃗)]

where fl ∈ Γnil for l = 1, . . . , r. Since π′(x) = [constx, 0], we then have:
⟨z1, . . . , zr, 0 . . . 0⟩ ∈ π(e), where:

e = {⟨u1, . . . , ur, 0 . . . 0⟩ :M |= φ[f⃗(u⃗), x⃗]}.

Hence e ̸= ∅. Hence ∨
v1 . . . vrM |= φ[f⃗(v⃗), x⃗]

where rng(fl) ⊂ H il for l = 1, . . . , r. Hence M |= Ψ[x⃗]. QED (8)

If i < n, then every Π
(i)
1 formula is Σ

(n)
0 . Hence by (8):

(9) If i < n then

π′ :M →
Σ

(i)
2

M ′ in the pseudo interpretation.

We also get:

(10) Let n < w. Then:

π′ ↾Hn
M : Hn

M →Σ0 Hn cofinally.

Proof: Let x ∈ Hn. We must show that x ∈ π′(a) for an a ∈ Hn
M . Let

x = [f, y], where f ∈ Γnn. Let d = dom(f), a = rng(f). Then y ∈ π(d)
and: ∧

z ∈ d ⟨z, 0⟩ ∈ e

where
e = {⟨u, v⟩|f(u) ∈ consta(v)}

= {⟨u, 0⟩|f(u) ∈ a}.

This is a Σ0 statement about d, e. Hence the same statement holds of
π(d), π(e) in Hn. Hence ⟨z, 0⟩ ∈ π(e). Hence [f, y] ∈ π′(a). QED (10)

(Note: (10) and (3) imply that π′ : M →
Σ

(n)
1

M ′ is the pseudo inter-
pretation, but this also follows directly from (8).)

Letting M = ⟨JAα , B⟩ and M ′ = ⟨|M ′|, A′, B′⟩ we define:

Mi = ⟨H i
M , A ∩H i

M , B ∩H i
M ⟩,M ′

i = ⟨Hi, A
′ ∩Hi, B

′ ∩Hi⟩

for i < n or i = n < w. Then each Mi is acceptable. It follows that:
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(11) M ′
i is acceptable.

Proof: If i = n, then π′ ↾Mn :Mn →Σ0 M
′
n cofinally by (3) and (10).

Hence M ′
n is acceptable by §5 Lemma 2.5.5. If i < n, then π′ ↾Mi :

Mi →Σ
(i)
2

M ′
i by (9). Hence M ′

i is acceptable since acceptability is a
Π2 condition. QED (11)

We now examine the "correctness" of the pseudo interpretation. As a
first step we show:

(12) Let i + 1 ≤ n. Let A ⊂ Hi+1 be Σ
(i)
1 in the pseudo interpretation.

Then ⟨Hi+1, A⟩ is amenable.

Proof: Suppose not. Then there is A′ ⊂ Hi+1 such that A′ is Σ
(i)
1 in

the pseudo interpretation, but ⟨Hi, A
′⟩ is not amenable. Let:

A′(x)↔ B′(x, p)

where B′ is Σ
(i)
1 in the pseudo interpretation. For p ∈M ′ we set:

A′
p =: {x|B′(x, p)}.

Let B be Σ
(i)
1 (M) by the same definition. For p ∈M we set:

Ap =: {x|B(x, p)}.

Case 1 i+ 1 < n.
Then

∨
p
∨
ai+1

∧
bi+1bi+1 ̸= al+1 ∩ A′

p holds in the pseudo in-
terpretation. This has the form:

∨
p
∨
ai+1φ(p, ai+1) where φ

is Π
(i+1)
1 , hence Σ

(n)
0 in the pseudo interpretation. By (8) we

conclude that M |= φ(p, ai+1) for some p, ai+1 ∈ M . Hence
⟨H i+1

M , Ap⟩ is not amenable, where Ap is Σ
(i)
1 (M).

Contradiction! QED (Case 1)

Case 2 Case 1 fails.
Then i + 1 = n. Since π′ takes Hn

M cofinally to Hn. There
must be a ∈ Hn

M such that π(a) ∩ A′ /∈ Hn. From this we
derive a contradiction. Let A′ = A′

p where p = [f, z]. Set:
B̃ = {⟨z, w⟩|B(w, f(z))}. Then B̃ is Σ(i)

1 (M). Set: b = (d×a)∩B̃,
where d = dom(f). Then b ∈ Hn

M . Define g : d→ Hn
M by:

g(z) =: Af(z) ∩ a = {x ∈ a|⟨z, x⟩ ∈ b}.

Then g ∈ Hn
M , since it is rudimentary in a, b ∈ Hn

M . Let φ(un, vn, w)
be the Σ

(n)
0 statement expressing

u = Aw ∩ vn in M.
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Then setting:

e = {⟨v, 0, w⟩|M |= φ[g(v), a, f(z)]}

we have: ∧
v ∈ d ⟨v, 0, v⟩ ∈ e.

But then the same holds of π(d), π(e) in Hn. Hence ⟨z, 0, z⟩ ∈
π(e). Hence: [g, z] = A[f,z] ∩ π(a) ∈ Hn.
Contradiction! QED (12)

On the other hand we have:

(13) Let i+1 < n. Let A ⊂ H i+1
M be Σ

(i)
1 (M) in the parameter p such that

A /∈ M . Let A′ be Σ
(i)
1 (M ′) in π′(p) by the same Σ

(i)
1 (M ′) definition

in the pseudo interpretation. Then A′ ∩Hi+1 /∈M ′.

Proof: Suppose not. Then in M ′ we have:∨
a
∧
vi+1(vi+1 ∈ a↔ A′(vi+1)).

This has the form
∨
aφ(a, π(p)) where φ is Π

(i+1)
1 hence Σ

(n)
0 . By (8)

it then follows that
∨
aφ(a, p) holds in M . Hence A ∈M .

Contradiction! QED (13)

Recall that for any acceptable M = ⟨JAα , B⟩ we can define ρiM , H
i
M by:

ρ0 = α

ρi+1 = the least ρ such that there is A which is

Σ
(i)
1 (M) with A ∩ ρ /∈M

H i = Jρi [A].

Hence by (11), (12), (13) we can prove by induction on i that:

(14) Let i < n. Then

(a) ρiM ′ = ρi, H
i
M ′ = Hi

(b) The pseudo interpretation is correct for formulae φ, all of whose
variables are of type ≤ i.

By (9) we then have:

(15) π′ :M →
Σ

(i)
2

M ′ for i < n.
This means that if n = ω, then π′ is automatically Σ∗–preserving. If
n < ω, however, it is not necessarily the case that Hn = Hn

M , — i.e.
the pseudo interpretation is not always correct. By (12), however we
do have:
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(16) ρn ≤ ρnM , (hence Hn ⊂ Hn
M ′).

Using this we shall prove that π′ is Σ
(n)
0 –preserving. As a preliminary

we show:

(17) Let n < w. Let φ be a Σ
(n)
0 formula containing only variables of type

i ≤ n. Let vi11 , . . . , v
ir
r be a good sequence for φ. Let x1, . . . , xr ∈ M ′

such that xl ∈ Hil for l = 1, . . . , r. Then M |= φ[x1, . . . , xr] holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)
Let C0 be the set of all such φ with: φ is Σ(i)

1 for an i < n. Let C be the
closure of C0 under sentential operation and bounded quantifications
of the form

∧
vn ∈ wnφ,

∨
vn ∈ wnφ. The claim holds for φ ∈ C0

by (15). We then show by induction on φ that it holds for φ ∈ C. In
passing from φ to

∧
vn ∈ wnφ we use the fact that wn is interpreted

by an element of Hn. QED (17)

Since π′′′H i
M ⊂ Hi for i ≤ n, we then conclude:

(18) π′ :M →
Σ

(n)
0

M ′.
It now remains only to show:

(19) [f, x] = π′(f)(x).

Proof: Let f(x) = G(x, p) for x ∈ dom(f), where G is Σ
(j)
1 good for

a j < n. Let a = dom(f). Let Ψ(u, v, w) be a good Σ
(j)
1 definition of

G. Set:

e = {⟨z, y, w⟩|M |= Ψ[f(z), ida(y), constp(w)]}.

Then z ∈ a → ⟨z, z, 0⟩ ∈ e. Hence the same holds of π(a), π(e). But
x ∈ π(a). Hence:

M ′ |= Ψ[[f, x], [ida, x], [constp, x]],

where [ida, x] = x, [constp, 0] = π′(p). Hence:

[f, x] = G′(x, π′(p)) = π′(f)(x),

where G′ has the same Σ
(j)
1 definition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).
QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let ⟨M ′, π′⟩ be the Σ
(n)
0 liftup of ⟨M,π⟩. Let i < n. Then
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(a) π′ :M →
Σ

(i)
2

M ′

(b) If ρiM ∈M , then π′(ρiM ) = ρiM .

(c) If ρiM = OnM , then ρiM ′ = OnM ′.

Proof:

(a) follows by (9) and (14).

(b) In M we have: ∧
ξ0

∨
ξi(ξ0 < ρiM ↔ ξ0 = ξi).

This has the form
∧
ξ0Ψ(ξ0, ρiM ) where Ψ is Σ

(n)
0 . But then the same

holds of π′(ρiM ) in M ′ by (8) and (14) — i.e.∧
ξ0

∨
ξi(ξ0 < π(ρiM )↔ ξ0 = ξi).

(c) In M we have
∧
ξ0

∨
ξiξ0 = ξi, hence the same holds in M ′ just as

above.
QED (Lemma 2.7.21)

The interpolation lemma for Σ
(n)
0 liftups reads:

Lemma 2.7.22. Let σ : H ′ →Σ0 |M∗| and π∗ : M →
Σ

(n)
0

M∗ such that

π∗ ⊃ σπ. Then the Σ
(n)
0 liftup ⟨M ′, π′⟩ of ⟨M,π⟩ exists. Moreover there is a

unique map σ′ :M ′ →
Σ

(n)
0

M∗ such that σ′ ↾H ′ = σ and σ′π′ = π∗.

Proof: ∈̃ is well founded since:

⟨f, x⟩∈̃⟨g, y⟩ ↔ π∗(f)(σ(x)) ∈ π∗(g)(σ(y)).

Thus ⟨M ′, π′⟩ exists. But for Σ
(n)
0 formulae φ = φ(vi11 , . . . , v

ir
r ) we have:

M ′ |= φ[π′(f1)(x1), . . . , π
′(fr)vr)]

↔ ⟨x1, . . . , xn⟩ ∈ π(e)
↔ ⟨σ(x1), . . . , σ(xn)⟩ ∈ σ(π(e)) = π∗(e)

↔M∗ |= φ[π∗(f1)(σ(x1)), . . . , π
∗(fr)(σ(xr))]

where:
e = {⟨x1, . . . , xr⟩|M |= φ[f1(x1), . . . , fr(xr)]}
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and ⟨fl, xl⟩ ∈ Γnil for i = 1, . . . , r. Hence there is a Σ
(n)
0 –preserving embed-

ding σ :M ′ →M∗ defined by:

σ′(π′(f)(x)) = π∗(f)(σ(x)) for ⟨f, x⟩ ∈ Γn.

Clearly σ′ ↾H ′ = σ and σ′π′ = π∗. But σ′ is the unique such embedding,
since if σ̃ were another one, we have

σ̃(π′(f)(x)) = π∗(f)(σ(x)) = σ′(π′(f)(x)).

QED (Lemma 2.7.22)

We can improve this result by making stronger assumptions on the map π,
for instance:

Lemma 2.7.23. Let ⟨M∗, π∗⟩ be the Σ
(n)
0 liftup of ⟨M,π⟩. Let π∗ ↾ρn+1

M = id
and P(ρn+1

M ) ∩M∗ ⊂M . Then ρnM∗ = supπ∗
′′
ρnM .

(Hence the pseudo interpretation is correct and π∗ is Σ
(n)
1 preserving.)

Proof: Suppose not. Let ρ̃ = supπ∗
′′
ρnM < ρnM∗ . Set:

Hn = Hn
M = JAM

ρnM
; H̃ = JAM

ρ̃ .

Then H̃ ∈M∗. Let A be Σ
(n)
1 (M) in p such that A ∩ ρn+1

M /∈M . Let:

Ax↔
∨
ynB(yn, x),

where B is Σ
(n)
0 in p. Let B∗ be Σ

(n)
0 (M∗) in π∗(p) by the same definition.

Then
π∗ ↾Hn : ⟨Hn, B ∩Hn⟩ →Σ1 ⟨H̃, B∗ ∩ H̃⟩.

Then A ∩ ρn+1
M = Ã ∩ ρn+1

M , where:

Ã = {x|
∨
yn ∈ H̃ B∗(y, x)}.

But Ã is Σ
(n)
1 (M∗) in π∗(p) and H̃. Hence

A ∩ ρn+1
M = Ã ∩ ρn+1

M ∈ P(ρn+1
M ) ∩M∗ ⊂M.

Contradiction! QED (Lemma 2.7.23)
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Chapter 3

Mice

3.1 Introduction

In this chapter we develop some of the tools needed to construct fine struc-
tural inner models which go beyond L. The concept of "mouse" is central
to this endeavor. We begin with a historical introduction which traces the
genesis of that notion. This history, and the concepts which it involves, are
familiar to many students of set theory, but the thread may grow fainter
as the history proceeds. If you, the present reader, find the introduction
confusing, we advise you to skim over it lightly and proceed to the formal
development in §3.2. The introduction should then make more sense later
on.

Fine structure theory was originally developed as a tool for understanding
the constructible hierarchy. It was used for instance in showing that V = L
implies □β for all infinite cardinals β, and that every non weakly compact
regular cardinal carries a Souslin tree. It was then used to prove the covering
lemma for L, a result which pointed in a different direction. It says that,
if there is no non trivial elementary embedding of L into itself, then every
uncountable set of ordinals is contained in a constructible set having the
same cardinality. This implies that if any α ≥ ω2 is regular in L, then its
cofinality is the same as its cardinality. In particular, successors of singular
cardinals are absolute in L. Any cardinal α ≥ ω2 which is regular in L
remains regular in V . In general, the covering lemma says that despite
possible local irregularities and cofinalities in L is retained in V .

If, however, L can be imbedded non trivially into itself, then the structure
of cardinalities and cofinalities in L is virtually wiped out in V . There is

155
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then a countable object known as 0# which encodes complete information
about the class L and a non trivial embedding of L. 0# has many concrete
representations, one of the most common being a structure LUν = ⟨Lν [U ],∈
, U⟩, where ν is the successor of an inaccessible cardinal κ in L and U is
a normal ultrafilter on P(κ) ∩ L. (Later, however, we shall find it more
convenient to work with extenders than with ultrafilters.) This structure,
call it M0, is iterable , giving rise to iterates Mi(i < ∞) and embedding
πij : Mi →Σ0 Mj (i ≤ j < ∞). The iteration points κi (i < ∞) are called
the indiscernables for L and form a closed proper class of ordinals. Each κc
is inaccessible in L. Thus there are unboundedly many inaccessibles of L
which become ω–cofinal cardinals in V . It can also be shown that all infinite
successor cardinals in L are collapsed and become ω–cofinal in V . If we chose
κ0 minimally, then M0 = 0# is unique. We briefly sketch the argument for
this, since it involves a principle which will be of great importance later on.
By the minimal choice of κ0 it can be shown that hM0(∅) =M0 (i.e. ρ1M0

= ω

and ∅ ∈ P 1
M0

). Now let M ′
0 = L

U ′
0

ν′0
be another such structure. Iterate M0, M

′
0

out to ω1, getting iteration ⟨Mi|i ≤ ω1⟩, ⟨M ′
i |i ≤ ω1⟩ with iteration points

κi, κ
′
i. Then κω1 = κ′ω1

= ω1. Moreover the sets:

C = {κi|i < ω1}, C ′ = {κ′i|i < ω1}

are club in ω1. Hence C ∩ C ′ is club in ω1. But the ultrafilters Uω1 , U
′
ω1

are
uniquely determined by C ∩ C ′. Hence Mω1 =M ′

ω1
. But then:

M0 ≃ hMω1
(∅) = hM ′

ω1
(∅) ≃M ′

0.

Hence M0 = M ′
0. This comparision iteration of two iterable structures will

play a huge role in later chapters of this book.

The first application of fine structure theory to an inner model which sig-
nificantly differed from L was made by Solovay in the early 1970’s. Solo-
vay developed this fine structure of LU (where U is a normal measure on
P(κ) ∩ LU ). He showed that each level M = JUα had a viable fine structure,
with ρnM , P

n
M , R

n
M (n < ω) defined in the usual way, although M might be

neither acceptable nor sound. If e.g. α > κ and ρ1M < κ (a case which cer-
tainly occurs), the we clearly have R1

M = ∅. However, M has a standard
parameter p = pM ∈ P 1

M and if we transitivize hM (P ), we get a structure
M = JUα which iterates up to M in κ many steps. M is then called the core
of M . (M itself might still not be acceptable, since a proper initial segment
of M might not be sound.) (If n < 1 and ρnM < κ, we can do essentially
the same analysis, but when iterating M to M we must use Σ

(n)
0 –preserving

ultrapowers, as defined in the next section.)

Dodd and Jensen then turned Solovay’s analysis on its head by defining a
mouse (or Solovay mouse) to be (roughly) any Jα or iterable structure of the
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form M = JUα where U is a normal measure at some κ on M and ρωM ≤ κ.
They then defined the core model K to be the union of all Solvay mice. They
showed that, if there is no non trivial elementary embedding of K into K,
then the covering lemma for K holds. If, on the other hand, there is such
an embedding π with critical point κ, then U is a normal measure on κ in
LU = ⟨L[u],∈, u⟩, where:

U = {x ∈ P(κ) ∩K|κ ∈ π(X)},

(This showed, in contrast to the prevailing ideology, that an inner model with
a measurable cardinal can indeed be "reached from below".) The simplest
Solovay mouse is 0# as described above. What K is depends on what there
is. If 0# does not exist, then K = L. If 0# exists but 0## does not, then
K = L(0#) etc. In order to define the general notion of Solovay mouse, one
must employ the full paraphanalia of fine stucture theory.

Thus we have reached the situation that fine structure theory is needed not
only to analyze a previously defined inner model, but to define the model
itself.

If we have reached LU with U a normal ultrafilter on κ and τ = κ+ in LU ,
then we can regard LUτ as the "next mouse" and continue the process. If
(Lκτ )

# does not exist, however, this will mean that LU is the core model. The
full covering lemma will then not necessarily hold, since V could contain a
Prikry sequence for κ.

However, we still get the weak covering lemma:

cf(β) = card(β) if β ≥ ω2 is a cardinal in K.

We also have generic absoluteness:

The definition of K is absolute
in every set generic extension of V.

In the ensuring period a host of "core model constructions" were discov-
ered. For instance the "core model below two measurables" defined a unique
model with the above properties under the assumption that there is no inner
model with two measurable cardinals. Similarly with the "core model up
to a measurable limit of measurables" etc. Initially this work was pursued
by Dodd and Jensen, on the one hand, and by Bill Mitchell on the other.
Mitchell got further, introducing several important innovations. He divided
the construction of K into two stages: In the first he constructed an inner
model KC , which may lack the two properties stated above. He then "ex-
tracted" K from KC , in the process defining an elementary embedding of K
into KC . This approach has been basic to everything done since. Mitchell
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also introduced the concept of extenders, having realized that the normal
ultrafilters alone could not code the embeddings involved in constructing K.

There are many possible concrete representations of mice, but in general a
mouse is regarded as a structure M = JEν where E describes an indexed
sequence of ultrafilters or extenders. A major requirement is that M be
iterable , which entails that any of the indexed extenders or ultrafilters can
be employed in the iteration. But this would seem to imply that eny F lying
on the indeved sequence must be total — i.e. an ultrafilter or extender on
the whole of P(κ) ∩M (κ being the critical point). Unfortunately the most
natural representations of mice involve "allowing extenders (or ultrafilters)
to die". Letting M = JUν be the representation of 0# described above, it is
known that ρ1M = ω. Hence JUν+1 contains new subsets of κ which are not
"measured" by the ultrafilter U . The natural representation of 0## would
be M ′ = JU,U

′

ν′ where:
U ′ = {X|κ′ ∈ π(x)},

and π is an embedding of LU into itself with critical point κ′ > κ. But
U is not total. How can one iterate such a structure? Because of this
conundrum, researchers for many years followed Solovay’s lead in allowing
only total ultrafilters and extenders to be indexed in a mouse. Thus Solovay’s
representation of 0## was JU ′

ν′ This structre is not acceptable, however, since
there is a γ < ν ′ set. κ′ < γ and ρ1

JU
γ

= ω < κ′. Such representation of
mice were unnatural and unwieldy. The conundrum was finally resolved by
Mitchell and Stewart Baldwin, who observed that the structures in which
extenders are "allowed to die" are in fact, iterable in a very good sense. We
shall deal with this in §3.4. All of the innovations mentioned here were then
incorporated into [MS] and [CMI]. They where also employed in [MS] and
[NFS].

It was originally hoped that one could define the core model below virtually
any large cardinal — i.e. on the assumption that no inner model with the
cardinal exists one could define a unique inner model K satisfying weak
covering and generic absoluteness. It was then noticed, however, that if we
assume the existence of a Woodin cardinal, then the existence of a definable
K with the above properties is provably false. (This is because Woodin’s
“stationary tower” forcing would enable us to change the successor of ωω while
retaining ωω as a singular cardinal. Hence, by the covering lemma, K would
have to change.) This precludes e.g. the existence of a core model below "an
inaccessible above a Woodin", but it does not preclude constructing a core
model below one Woodin cardinal. That is, in fact, the main theorem of
this book: Assuming that no inner model with a Woodin cardinal exists, we
define K with the above two properties.

In 1990 John Steel made an enormous stride toward achieving this goal by
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proving the following theorem: Let κ be a measurable cardinal. Assume that
Vκ has no inner model with a Woodin cardinal. Then there is V –definable
inner model K of Vκ which, relativized to Vκ, has he above two properties.
This result, which was exposited in [CMI] was an enormous breakthrough,
which laid the foundation for all that has been done in inner model theory
since then. There remained, however, the pesky problem of doing without
the measurable — i.e. constructing K and proving its properties assuming
only "ZFC+ there is no inner model with a Woodin". The first step was to
construct the model KC from this assumption. This was almost achieved
by Mitchell and Schindler in 2001, except that they needed the additional
hypothesis: GCH. Steel then showed that this hypothesis was superfluous.
These results were obtained by directly weakening the "background condi-
tion" originally used by Steel in constructing KC . The result of Mitchell
and Schindler were published in [UEM]. Independently, Jensen found a con-
struction of KC using a different background condition called "robustness".
This is exposited in [RE]. There reamained the problem of extracting a core
model K from KC . Jensen and Steel finally achieved this result in 2007. It
was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential
to the rest of the book. (We shall, however, deal only with so called "short
extenders", whose length is less than or equal to the image of the critical
point.)

3.2 Extenders

The extender is a generalization of the normal ultrafilter. A normal ultrafilter
at κ can be described by a two valued function on P(κ). An extender, on
the other hand, is characterized by a map of P(κ) to P(λ), where λ > κ. λ is
then called the length of the extender. Like a normal ultrafilter an extender
F induces a canonical elementary embedding of the universe V into an inner
model W . We express this in symbols by: π : V →F W . W is then called
the ultrapower of V by F and π is called the canonical embedding induced
by F . The pair ⟨W,π⟩ is called the extension of V by F . We will always
have: λ ≤ π(κ). However, just as with ultrafilters, we shall also want to
apply extenders to transitive models M which may be smaller than V . F
might then not be an element of M . Moreover P(κ) might not be a subset
of M , in which case F is defined on the smaller set U = P(κ)∩M . Thus we
must generalize the notion of extenders, countenancing "suitable" subsets of
P(κ) as extender domains. (However, the ultrapower of M by F may not
exist.)
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We first define:

Definition 3.2.1. S is a base for κ iff S is transitive and ⟨S,∈⟩ models:

ZFC− + κ is the largest cardinal.

By a suitable subset of P(κ) we mean P(κ) ∩ S, where S is a base for κ.

We note:

Lemma 3.2.1. Let S be a base for κ. Then S is uniquely determined by
P(κ) ∩ S.

Proof: For a, e ∈ P(κ) ∩ S set:

u(a, e) ≃: that transitive u such that
⟨u,∈⟩ is isomorphic to ⟨a, ẽ⟩,
where ẽ = {⟨ν, τ⟩| ≺ ν, τ ≻∈ e}.

Claim S = the union of all u(a, e) such that a, e ∈ P(κ) ∩ S and u(a, e) is
defined.

Proof: To prove (⊂), note that if u ∈ S is transitive, then there exist
α ≤ κ, f ∈ S such that f : α ↔ u. Hence u = u(α, e) where e = {≺ ν, τ ≻
| f(ν) ∈ f(τ)}. Conversely, if u = u(a, e) and a, e ∈ P(κ) ∩ S, then u ∈ S,
since the isomorphism can be constructed in S. QED (Lemma 3.2.1)

Definition 3.2.2. An ordinal λ is called Gödel closed iff it is closed under
Gödel’s pair function ≺,≻ as defined in §2.4. (It follows that λ is closed
under Gödel n–tuples ≺ x1, . . . , xn ≻.)

We now define

Definition 3.2.3. Let S be a base for κ. Let λ be Gödel closed. F is an
extender at κ with length λ, base S and domain P(κ) ∩ S iff the following
hold:

• F is a function defined on P(κ) ∩ S

• There exists a pair ⟨S′, π⟩ such that

(a) π : S ≺ S′ where S′ is transitive

(b) κ = crit(π), π(κ) ≥ λ > κ
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(c) Every element of S′ has the form π(f)(α) where α < λ and f ∈ S
is a function defined on κ.

(d) F (X) = π(X) ∩ λ for X ∈ P(κ) ∩ S.

Note. If F is an extender at κ, then κ is its critical point in the sense that
F ↾κ = id, F (κ) is defined, and κ < F (κ). Thus we set: crit(F ) =: κ.

Note. (c) can be equivalenly replaced by:

π : S ≺ S′ cofinally.

We leave this to the reader.

Note. P(κ) ∩ S ⊂ S′ since X = π(X) ∩ κ ∈ S′. But the proof of Lemma
3.2.1 then shows that S ⊂ S′. (We leave this to the reader.)

Note. As an immediate consequence of this definition we get a form of Łos
Theorem for the base:

S′ |=φ[π(f1)(α1), . . . , (fn)(αn)]↔

≺ α⃗ ≻∈ F ({⟨ξ⃗⟩|S |= φ[f1(ξ1), . . . , fn(ξn)]})

where α1, . . . , αn < λ and fi ∈ S is a function defined on κ for i = 1, . . . , n.

Note. ⟨S′, π⟩ is uniquely determined by F since if ⟨S̃, π̃⟩ were a second such
pair, we would have:

π(f)(α) ∈ π(g)(β)↔≺ α, β ≻∈ F ({≺ ξ, δ ≻ |f(ξ) ∈ g(ξ)})
↔ π̃(f)(α) ∈ π̃(g)(β).

Thus there is an isomorphism i : S′↔̃S̃ defined by i(π(f)(α)) = π̃(f)(α).
Since S′, S̃ are transitive, we conclude that i = id, S′ = S̃.

But then we can define:

Definition 3.2.4. Let S, F, S′, π be as above. We call ⟨S′, π⟩ the extension
of S by F (in symbols: π : S →F S

′).

Note. It is easily seen that:

• S′ is a base for π(κ)

• The embedding π : S → S′ is cofinal (since π(f)(α) ∈ π(rng(f))).

Note. The concept of extender was first introduced by Bill Mitchell. He
regarded it as a sequence of ultrafilters (or measures) ⟨Fα|α < λ⟩, where
Fα = {X|α ∈ F (X)}. For this reason he called it a hypermeasure. We shall
retain this name and call ⟨Fα|α < λ⟩ the hypermeasure representation of F .
We can recover F by: F (X) = {α|X ∈ Fα}.
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Definition 3.2.5. We call an extender F on κ with base S and extension
⟨S′, π⟩ full iff π(κ) is the length of F .

In later sections we shall work almost entirely with full extenders. We leave
it to the reader to show that if S is a ZFC− model with largest cardinal κ
and π : S ≺ S′ cofinally. Then π ↾ P(κ) is a full extender with base S and
extension ⟨S′, π⟩.

Lemma 3.2.2. Let F be an extender with base S and extension ⟨S′, π⟩.
Then:

(a) ⟨S′, π⟩ is amenable

(b) If F is full, then ⟨S′, F ⟩ is amenable.

(c) If φ is Σ0, then {⟨x⃗⟩ : ⟨S, π⟩ |= φ[x⃗]} is uniformly Σ1(⟨S, F ⟩) in
x1, . . . , xn.

Proof: (b) follows from (a), since then:

F ∩ u = {⟨Y,X⟩ ∈ π ∩ u|X ⊂ κ ∧ Y ⊂ λ}.

We prove (a). Since π takes S to S′ cofinally, it suffices to show: π∩π(u) ∈ S′

for u ∈ S. We can assume w.l.o.g. that u is transitive and non empty. If
⟨π(X), X⟩ ∈ π ∩ π(u), then π(X) ∈ π(u) by transitivity, hence X ∈ u. Thus
π ∩ π(u) = (π ↾u) ∩ π(u) and it suffices to show:

Claim π ↾u ∈ S′.
Let f = ⟨f(i)|i < κ⟩ enumerate u. Then π ↾u = {⟨π(f)(i), f(i)⟩|i < κ}.

This proves (a). We now prove (c). It suffices to show:

Claim. (ν ̸= ∅ is transitive and y = π ↾ ν) is uniformly Σ1(⟨S, F ⟩) in ν, y,
since then ⟨S, π⟩ |= φ[x⃗] is expressed by:

∨
w
∨
u(u,w are transitive ∧ x⃗ ∈ u ∧ π ↾u ⊂ w ∧ ⟨w, π ↾u⟩) |= φ[x⃗]

We prove the Claim. Let u ̸= ∅ be transitive. Then:

y = π ↾u ⇐⇒
∨
f(f : k −→ u ∧ y = {⟨π(f)(i), f(i)⟩ : i < κ}.)

{κ}, {π(κ)} are uniformly Σ1(⟨S, F ⟩), since

⟨π(κ), κ⟩ = the unique ≺ β, α ≻∈ F.
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Hence it suffices to show that {π(f)} is uniformly Σ1(⟨S, F ⟩) in f . Let:

X = {≺ j, i ≻∈ κ : f(i) ∈ f(j)}.

Then f is the unique function g such that

dom(g) = κ ∧ g(j) = {g(i) :≺ j, i ≻∈ X} for i < κ.

Since F (X) = π(X) we conclude that π(f) is the unique function g such
that

dom(g) = π(κ) ∧ g(j) = {g(i) :≺ j, i ≻∈ F (X)} for i < π(κ).

The conclusion is immediate. QED (Lemma 3.2.2)

Definition 3.2.6. Let F be an extender at κ with base S, length λ, and
extension ⟨S′, π⟩. The expansion of F is the function F ∗ on

⋃
n<ω

P(κn) ∩ S

defined by:
F ∗(X) = π(X) ∩ λn for X ∈ P(κn) ∩ S.

We also expand the hypermeasure by setting:

F ∗
α1,...,αn

= {X|⟨α⃗⟩ ∈ F ∗(X)}

for α1, . . . , αn < λ. By an abuse of notation we shall usually not distinguish
between F and F ∗, writing F (X) for F ∗(X) and Fα⃗ for F ∗

α⃗.

Using this notation we get another version of Łos Lemma:

S′ |= φ[π(f1)(α⃗), . . . , π(fn)(α⃗)]↔

{⟨ξ⃗⟩|S |= φ[f1(ξ⃗), . . . , fn(ξ⃗)]} ∈ Fα⃗

for α1, . . . , αm < λ and fi ∈M a function with domain km for i = 1, . . . , n.

Note. Most authors permit extenders to have length which are not Gödel
closed. We chose not to for a very technical reason: If λ is not Gödel closed,
the expanded extender F ∗ is not necessarily determined by F = F ∗ ↾P(κ).

Hence if we drop the requirement of Gödel completeness, we must work with
expanded extenders from the beginning. We shall, in fact, have little reason
to consider extenders whose length is not Gödel closed, but for the sake of
completeness we give the general definition:

Definition 3.2.7. Let S be a base for κ. Let λ > κ. F is an expanded
extender at κ with base S, length λ, and extension ⟨S′, π⟩ iff the following
hold:
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• F is a function defined on
⋃
n<ω P(κn) ∩ S

• π : S ≺ S′ where S′ is transitive

• κ = crit(π), π(κ) ≥ λ

• Every element of S′ has the form π(f)(α1, . . . , αn) where α1, . . . , αn <
λ and f ∈ S is a function defined on κn

• F (X) = π(X) ∩ κn for X ∈ P(κn) ∩ S.

This makes sense for any λ > κ. If, indeed, λ is Gödel closed and F is an
extender of length λ as defined previously, then F ∗ is the unique expanded
extender with F = F ∗ ↾P(κ).

Definition 3.2.8. Let F be an extender at κ of length λ with base S and
extension ⟨S′, π⟩. X ⊂ λ is a set of generators for F iff every β < λ has the
form β = π(f)(α⃗) where α1, . . . , αn ∈ X and f ∈ S.

If X is a set of generators, then every x ∈ S′ will have the form π(f)(α⃗)
where α1, . . . , αn ∈ X and f ∈ S. Thus only the generators are relevant. In
some cases {κ} will be a set of generators. (This will happen for instance
if λ is the first admissible above κ or if λ = κ + 1 and F is the expanded
extender.) This means that every element of S′ has the form π(f)(κ) and
that:

S′ |= φ[π(f⃗)(κ)]↔ {ξ|S |= φ[f⃗(ξ)]} ∈ Fκ.

Thus, in this case, S′ is the ultrapower of S by the normal ultrafilter Fκ.

In §2.7 we used a "term model" construction to analyze the conditions under
which the liftup of a given embedding exists. This construction emulated
the well known construction of the ultrapower by a normal ultrafilter. We
could use a similar construction to determine wheter a given F is, in fact,
an extender with base S — i.e. whether the extension ⟨S′, π⟩ by F exists.
However, the only existence theorem for extenders which we shall actually
need is:

Lemma 3.2.3. Let S be a base for κ. Let π∗ : S ≺ S∗ such that κ = crit(π∗)
and κ < λ ≤ π∗(κ) where λ is Gödel closed. Set

F (X) =: π∗(X) ∩ λ for X ∈ P(κ) ∩ S.

Then

(a) F is an extender of length λ.
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(b) Let ⟨S′, π⟩ be the extension by F . Then there is a unique σ : S′ ≺ S∗

such that σπ = π∗ and π ↾λ = id.

Proof: We first prove (a). Let Z be the set of π∗(f)(α) such that α < λ
and f ∈ S is a function on κ.

(1) Z ≺ S∗

Proof: Let S∗ |=
∨
vφ[x⃗] where x1, . . . , xn ∈ Z. We must show:

Claim V y ∈ ZS∗ |= φ[y, x⃗].
We know that there are functions fi ∈ S and αi < X such that xi =
π∗(fi)(αi) for i = 1, . . . , n. By replacement there is a g ∈ S such that
dom(g) = κ and in S:∧

ξ1...ξn
< κ (

∨
yφ(y, f1(ξ1), . . . , fn(ξn))→

φ(g(≺ ξ1, . . . , ξn ≻, f1(ξ1), . . . , fn(ξn)))).

But then the corresponding statement holds of π∗(κ), π∗(g), π∗(f1), . . . , π∗(fn)
in S∗. Hence, setting β =≺ α1, . . . , αn ≻ we have:

S∗ |= φ[π∗(g)(β), π∗(f1)(α1), . . . , π
∗(fn)(αn)].

QED (1)

Now let σ : S′ ∼↔ Z where S′ is transitive. Set: π = σ−1π∗. Then S ≺ S′.
σ : S′ ≺ S∗, and σ(π(f)(α)) = π∗(f)(α) for α < λ. It follows easily that F
is an extender and ⟨S′, π⟩ is the extension by F .

This proves (a). It also proves the existence part of (b), since σ ↾λ = id and
σπ = π∗. But if σ′ also has the properties, then σ′(π(f)(α)) = π∗(f)(α) =
σ(π(f)(α)). Then σ′ = σ and σ is unique. QED (Lemma 3.2.3)

Definition 3.2.9. Let F be an extender at κ with extension ⟨S′, π⟩. Let
κ < λ ≤ π(κ) where λ is Gödel closed. F |λ is the function F ′ defined by:
dom(F ′) = dom(F ) and

F ′(X) = π(X) ∩ λ for X ∈ dom(F ).

It follows immediately from Lemma 3.2.3 that F |λ is an extender at κ with
length λ.

The main use of an extender F with base S is to embed a larger model M
with P(κ)∩M = P(κ)∩ S ∈M into another transitive model M ′, which we
then call the ultrapower of M by F . Ther is a wide class of models to which
F can be so applied, but we shall confine ourselves to J–models.
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Definition 3.2.10. Let M be a J–model. F is an extender at κ on M iff F
is an extender with base S and P(κ) ∩M = P(κ) ∩ S ∈ M , where κ is the
largest cardinal in S. (In other words S = HM

τ ∈M where τ = κ+.)

Making use of the notion of liftups developed in §2.7.1 we define:

Definition 3.2.11. Let F be an extender at κ on M . Let H = HM
τ be the

base of F and let ⟨H ′, π′⟩ be the extension of H by F . We call ⟨N, π⟩ the
extension of M by F (in symbols π : M →F N) iff ⟨N, π⟩ is the liftup of
⟨M,π′⟩.

We then call N the ultrapower of M by F . We call π the canonical embedding
given by F .
Note. that π is Σ0 preserving but not necessarily elementary.

Lemma 3.2.4. Let F be an extender at κ on M of length λ. Let ⟨N, π⟩ be
the extension of M by F . Then every element of N has the form π(f)(α)
where α < λ and f ∈M is a function with domain κ.

Proof: Let H = HM
τ and let ⟨H ′, π′⟩ be the extension of H by F , where

τ = κ+M . Each x ∈ N has the form x = π(f)(z), where f ∈M is a function,
dom(f) ∈ H and z ∈ π(dom(f)). But then z = π(g)(α) where α < λ, g ∈ H
and dom(g) = κ. We may assume w.l.o.g. that rng(g) ⊂ dom(f). (Otherwise
redefine g slightly.) Thus x = π(f ◦ g)(α). QED (Lemma 3.2.4)

Using the expanded extenders we then get Łos Theorem in the form:

Lemma 3.2.5. Let M,F, λ,N, π be as above. Let α1, . . . , αn < λ and let
fi ∈M be such that fi : κm →M for i = 1, . . . , n. Let φ be Σ0. Then

N |= φ[π(f⃗(α⃗)]↔ {⟨ξ⃗⟩|M |= φ[f⃗(ξ⃗)]} ∈ Fα⃗.

Proof: As in §2.7.1 we set:

Γ0 = Γ0(τ,M) = the set of f ∈M such that

f is a function and dom(f) ∈ HM
τ .

Then fi ∈ Γ0, dom(fi) = κm. By Łos Theorem for liftups we get:

N |= φ[π(f⃗)(α⃗)]↔ ⟨α⃗⟩ ∈ π(e) ∩ λm = F (e)

where
e = {⟨ξ⃗⟩|M |= φ[f⃗(ξ⃗)]}.

QED (Lemma 3.2.5)

The following lemma is often useful:
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Lemma 3.2.6. Let F, κ,M, π be as above. Let τ be regular in M such that
τ ̸= κ. Then π(τ) = supπ′′τ .

Proof: If τ < κ this is trivial. Now let τ > κ. Let ξ = π(f)(α) < π(τ),
where α < λ. Set β = sup f ′′κ. Then β < τ by regularity. Hence:

ξ = π(f)(α) ≤ supπ(f)′′π(κ) = π(β) < π(τ).

QED (Lemma 3.2.6)

3.2.1 Extendability

Definition 3.2.12. Let F be an extender at κ on M . M is extendible by F
iff the extension ⟨N, π⟩ of M by F exists.

Note. This requires that N be a transitive model.

⟨N, π⟩, if it exists, is the liftup of ⟨M,π′⟩ where H = HM
τ , τ = κ+M and

⟨H ′, π′⟩ is the extension of its base H by F . In §2.7.1 we formed a term
model D in order to investigate when this liftup exists. The points of D
consisted of pairs ⟨f, z⟩ where

f ∈ Γ0(τ,M) := the set of functions f ∈M such that dom(f) ∈ H.

The equality and set membership relation were defined by

⟨f, z⟩ ≃ ⟨g, w⟩ ↔: ⟨z, w⟩ ∈ π′({⟨x, y⟩|f(x) = g(y)})
⟨f, z⟩∈̃⟨g, w⟩ ↔: ⟨z, w⟩ ∈ π′({⟨x, y⟩|f(x) = g(y)})

Now set:

Definition 3.2.13. Γ0
∗ = Γ0

∗(κ,M) =: {f ∈ Γ0|dom(f) = κ}.

Set D∗ = D∗(κ,M) =: the restriction of D to terms ⟨t, α⟩ such that t ∈ Γ0
∗

and α < λ. The proof of Lemma 3.2.4 implicitly contains a barely disguised
proof that: ∧

x ∈ D
∨
y ∈ D∗x ≃ y.

The set membership relation of D∗ is:

⟨f, α⟩ ∈∗ ⟨g, β⟩ ↔≺ α, β ≻∈ π′({ξ, ζ}|f(ξ) ∈ g(ζ)}).

In §2.7.1. we used the term model to show that the liftup ⟨N, π⟩ exists if and
only if ∈̃ is well founded. In this case D∗ contains all the points of interest,
so we may conclude:
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Lemma 3.2.7. M is extendible iff ∈∗ is well founded.

Note. In the future, when dealing with extenders, we shall often fail to
distinguish notationally between Γ0

∗,D∗,∈∗ and Γ0,D, ∈̃.

Using this principle we develop a further criterion of extendability. We define:

Definition 3.2.14. Let F be an extender on M at κ of length λ. Let F be
an extender on M at κ of length λ.

⟨π, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩

means:

(a) π :M →Σ0 M and π(κ) = κ

(b) g : λ→ λ

(c) Let X ⊂ κ, π(X) = X, α1, . . . , αn < λ. Let βi = g(αi) for i =
1, . . . , n. Then

≺ α⃗ ≻∈ F (X)↔≺ β⃗ ≻∈ F (X).

Lemma 3.2.8. Let ⟨π, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩, where M is extendible by F .
Then M is extendible by F . Moreover, if ⟨N, σ⟩, ⟨N,σ⟩ are the extensions
of M,N respectively, then there is a unique π′ such that

π′ : N →Σ0 N, π
′σ = σπ, and π′ ↾λ = g.

π′ is defined by:
π′(σ(f)(α)) = σπ(f)(g(α))

for f ∈ Γ0 and α < λ.

Proof: We first show that M is extendible by F . Let σ : M →F N . The
relation ∈̃ on the term model D = D(κ,M) is well founded, since:

⟨f, α⟩∈̃⟨h, β⟩ ↔≺ α, β ≻∈ F ({≺ ξ, ζ ≻ |f(ξ) ∈ h(ζ)})
↔≺ g(α), g(β) ≻∈ F ({≺ ξ, ζ ≻ |π(f)(ξ) ∈ π(h)(ζ)})
↔ σπ(f)(g(α)) ∈ σπ(h)(g(β))

Now let σ :M → N . Let φ be a Σ0 formula.

Then:
N |= φ[σ(f1)(α1), . . . , σ(fn)(αn)]

↔ ⟨α⃗⟩ ∈ F ({⟨ξ⃗⟩|M |= φ[f⃗(ξ⃗)]})

↔ ⟨g(α⃗)⟩ ∈ F ({ξ⃗|M |= φ[π(f⃗)(ξ⃗)]})
↔ N |= φ[σπ(f1)(g(α1)), . . . , σπ(fn)(g(αn))].
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Hence there is π′ : N →Σ0 N defined by:

π′(σ(f)(α)) = σπ(f)(g(α)).

But any π′ fulfilling the above conditions will satisfy this definition.
QED (Lemma 3.2.8)

3.2.2 Fine Structural Extensions

These lemmas show that N is the ultrapower of M in the usual sense. How-
ever, the canonical embedding can only be shown to be Σ0–preserving. If,
however, M is acceptable and κ < ρnM , the methods of §2.7.8 suggest another
type of ultrapower with a Σ

(n)
0 –preserving map. We define:

Definition 3.2.15. Let M be acceptable. Let F be an extender at κ on M .
Let H = HM

τ be the base of F and let ⟨H ′, π′⟩ be the extension of H by F .
Let ρnM > κ (hence ρnM ≥ τ). We call ⟨N, π⟩ the Σ

(n)
0 –extension of M by F

(in symbols: π :M →(n)
F N) iff ⟨N, π⟩ is the Σ

(n)
0 liftup of ⟨M,π′⟩.

The extension we originally defined is then the Σ0 ultrapower (or Σ(0)
0 ultra-

power). The Σ
(n)
0 analogues of Lemma 3.2.4 and Lemma 3.2.5 are obtained

by a virtual repetition of our proofs, which we leave to the reader.

Letting Γn = Γn(τ,M) be defined as in §2.7.2 we get the analogue of Lemma
3.2.4.

Lemma 3.2.9. Let F be an extender at κ on M of length λ. Let ρnM > κ

and let ⟨N, π⟩ be the Σ
(n)
0 extension of M by F . Then every element of N

has the form π(f)(α) where α < λ and f ∈ Γn such that dom(f) = κ.

Lemma 3.2.10. Let M,F, λ,N, π be as above. Let α1, . . . , αm < λ and let
fi ∈ Γn such that dom(fi) = κm for i = 1, . . . , p. Let φ be a Σ

(n)
0 formula.

Then:
N |= φ[π(f⃗)(α⃗)]↔ {⟨ξ⃗⟩|M |= φ[f⃗(ξ⃗)]} ∈ Fα⃗.

Note. We remind the reader that an element f of Γn is not, in general, an
element of M . The meaning of π(f) is explained in §2.7.2.

Using Lemma 2.7.22 we get:

Lemma 3.2.11. Let π∗ : M →
Σ

(n)
0

M∗ where κ = crit(π∗) and π∗(κ) ≥ λ,
where λ is Gödel closed. Assume: P(κ) ∩M ∈M . Set:

F (X) =: π∗(X) ∩ λ for X ∈ P(κ) ∩M.

Then:
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(a) F is an extender at κ of length λ on M .

(b) The Σ
(n)
0 extension ⟨M ′, π⟩ of M by F exists.

(c) There is a unique σ :M ′ →
Σ

(n)
0

M∗ such that σ′ ↾λ = id and σπ = π∗.

Proof: Let H = HM
τ , H∗ = π∗(H). Then H is a base for κ and π∗ ↾

H : H ≺ H∗. Hence by Lemma 3.2.3 F is an extender at κ with base H
and extension ⟨H ′, π′⟩. Moreover, there is a unique σ′ : H ′ ≺ H∗ such that
σ′ ↾λ = id and σ′π′ = π∗ ↾H. But by Lemma 2.7.22 the Σ

(n)
0 liftup ⟨M ′, π⟩

of ⟨M,π′⟩ exists. Moreover, there is a unique σ : M ′ →
Σ

(n)
0

M∗ such that
σ ↾H ′ = σ′ and σπ′ = π∗. In particular, σ ↾ λ = id. But σ is then unique
with these properties, since if σ̃ had them, we would have:

σ̃(π(f)(α)) = π∗(f)(α) = σ(π(f)(α))

for f ∈ Γn, dom(f) = κ, α < λ. QED (Lemma 3.2.11)

By Lemma 2.7.21 we get:

Lemma 3.2.12. Let π :M −→(n)
F N . Let i < n. Then:

(a) π is Σ
(i)
2 preserving.

(b) π(ρiM ) = ρiM ′ if ρiM ∈M .

(c) ρiM ′ = On∩M ′ if ρiM = On∩M .

The following definition expresses an important property of extenders:

Definition 3.2.16. Let F be an extender at κ of length λ with base S. F is
weakly amenable iff whenever X ∈ P(κ2)∩ S, then {ν < κ|⟨ν, α⟩ ∈ F (X)} ∈
S for α < λ.

Lemma 3.2.13. Let F be an extender at κ with base S and extension ⟨S′, π⟩.
Then F is weakly amenable iff P(κ) ∩ S′ ⊂ S.

Proof:

(→) Let Y ∈ P(κ) ∩ S′, Y = π(f)(α), α < λ. Set X = {⟨ν, ξ⟩ ∈ κ2|ν ∈
f(ξ)}. Then π(f)(α) = {ν < κ|⟨ν, α⟩ ∈ F (X)} ∈ S, since F (X) =
π(X) ∩ λ.

(←) Let X ∈ P(κ2)∩ S, α < λ. Then {ν < κ|⟨ν, α⟩ ∈ π(X)} ∈ P(κ)∩ S′ ⊂
S.
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QED (Lemma 3.2.13)

Corollary 3.2.14. Let M be acceptable. Let F be a weakly amenable ex-
tender at κ on M . Let ⟨N, π⟩ be the Σ

(n)
0 extension of M by F . Then

P(κ) ∩N ⊂M .

Proof: Let H = HM
τ , H̃ =

⋃
u∈H π(u), π̃ = π ↾H. Then H is the base for

F and ⟨H̃, π̃⟩ is the extension of H by F . Hence P(κ)∩ H̃ ⊂ H ⊂M . Hence
it suffices to show:

Claim P(κ) ∩N ⊂ H̃.

Proof: Since π(κ) > κ is a cardinal in N and N is acceptable, we have:

P(κ) ∩N ⊂ HN
π(κ) = π(HM

κ ) ∈ H̃.

QED (Corollary 3.2.14)

Corollary 3.2.15. Let M,F,N, π be as above. Then κ is inaccessible in M
(hence in N by Corollary 3.2.14).

Proof:

(1) κ is regular in M .
Proof: If not there is f ∈ M mapping a γ < κ cofinally to κ. But
then π(f) maps γ cofinally to π(κ). But π(f)(ξ) = π(f(ξ)) = f(ξ) < κ
for ξ < γ. Hence sup{π(f)(ξ)|ξ < γ} ⊂ κ. Contradiction!

(2) κ ̸= γ+ in M for γ < κ.
Proof: Suppose not. Then π(κ) = γ+ in N where π(κ) > κ. Hence
κ = γ in N and N has a new subset of κ. Contradiction!

QED (Corollary 3.2.15)

By Corollary 3.2.14 and Lemma 2.7.23 we get:

Lemma 3.2.16. Let π : M →(n)
F N where F is weakly amenable. Let n

be maximal such that ρnM > κ. Then ρnN = supπ”ρnM . (Hence π is Σ
(n)
1

preserving.)

With further conditions on F and n we can considerably improve this result.
We define:
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Definition 3.2.17. Let F be an extender at κ on M of length λ. F is close
to M if F is weakly amenable and Fα is Σ1(M) for all α < λ.

This very important notion is due to John Steel. Using it we get the following
remarkable result:

Theorem 3.2.17. Let M be acceptable. Let F be an extender at κ on M
which is close to M . Let n ≤ ω be maximal such that ρn > κ in M . Let
⟨N, π⟩ be the Σ

(n)
0 extension of M by F . Then π is Σ∗ preserving.

Proof: If n = ω this is immediate, so let n < ω. Then ρn+1 ⊆ κ < ρn in
M . By the previous lemma π is Σ1–preserving. Hence π(κ) is regular in N .
Set: H = HM

κ . Then H = HN
κ by Corollary 3.2.14.

(1) Let D ⊂ H be Σ
(n)
1 (N). Then D is Σ

(n)
1 (M).

Proof: Let:
D(z)↔

∨
xnD′(xn, z, π(f)(α))

where α < λ, f ∈ Γn such that dom(f) = κ, and D′ is Σ
(n)
0 . Then by

Lemma 3.2.16:

D(z) ↔
∨
u ∈ Hn

M

∨
x ∈ π(u)D′(x, z, π(f)(α))

↔
∨
u ∈ Hn

Mα ∈ π(e)
↔

∨
u ∈ Hn

Me ∈ Fα

where e = {ξ|
∨
x ∈ uD(x, z, f(ξ))} where D is Σ

(n)
0 (M) by the same

definition as D′ over N . QED (1)

By induction on m > n we then prove:

(2) (a) Hm
M = Hm

N

(b) Σ
(m)
1 (M) ∩ P(H) = Σ

(m)
1 (N) ∩ P(H)

(c) π is Σ
(m)
1 –preserving.

Proof:

Case 1 m = n+ 1

(a) Let M = ⟨JAα , B⟩, N = ⟨JA′
α′ , B′⟩. Then: H = JAκ = JA

′
κ . But

P(ρ) ∩M = P(ρ) ∩N = P(ρ) ∩H for ρ ≤ κ.
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But then in M and N we have:

ρm = the least ρ < κ such that D ∩ JAρ /∈ H for D ∈ Σ
(n)
1

and Hm = JAρm .

Hence ρmM = ρmN , H
m
M = Hm

N . QED (a)

(c) Let A(x⃗m, xi1 , . . . , xip) be Σ
(m)
1 (M), where i1, . . . , ip ≤ n. Let A be

Σ
(m)
1 (N) by the same definition. Then there are Σ

(m)
1 (M) relations

B
j
(x⃗m, x⃗)(j = 1, . . . , q) and a Σ1 formula φ such that

A(x⃗m, x⃗)↔ H
m
x⃗ |= φ[x⃗m]

where Hm
x⃗ = ⟨Hm, B

1
x⃗, . . . , B

q
x⃗⟩ and

B
j
x⃗ = {⟨x⃗m⟩|Bj

(z⃗ m, x⃗)}(j = 1, . . . , q).

Let Bj(zm, x⃗) have the same Σ
(n)
1 definition over N . Define Hm

x⃗ the
same way, using B1, . . . , Bq in place of B1

, . . . , B
q. Then

A(x⃗m, x⃗)↔ Hm
x⃗ |= φ[x⃗m].

But Hm
M = Hm

N . Hence, since π is Σ
(n)
1 preserving, we have: B

j
x⃗ =

Bj
π(x⃗). Hence Hm

x⃗ = Hm
π(x⃗). But then:

A(x⃗m, x⃗) ↔ H
m
x⃗ |= φ[x⃗m]

↔ Hm
π(x⃗) |= φ[x⃗m]

↔ A(x⃗m, π(x⃗))

↔ A(π(x⃗m), π(x⃗))

since π(x⃗m) = x⃗m. QED (c)

(b) The direction ⊂ follows straightforwardly from (c). We prove the di-
rection ⊃. Let A(x⃗m, xi1 , · · · , xir) be Σ(m)

1 (N) such that A ⊂ H. Then
there are Bj (j = 1, . . . , q) such that Bj is Σ

(n)
1 (N) and

Ax⃗(x
n)↔ Hn

x⃗ |= φ[x⃗, s]

where s ∈ Hm and φ is a Σ1 formula and Hm
x⃗ = ⟨Hm, B1

x⃗, . . . , B
q
x⃗⟩. By

(1) there are Bj
(j = 1, . . . , q) such that Bj is Σ

(n)
1 (M) and B

j
x⃗ = Bj

x⃗
whenever xi1 , . . . , xir ∈ H. The conclusion is immediate.

QED (Case 1)
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Case 2 m = h+ 1 where h > n.
This is virtually identical to Case 1 except that we use:

Σ
(h)
1 ∩ P(Hh

M ) = Σ
(h)
1 ∩ P(Hh

N )

in place of (1). QED (Theorem 3.2.17)

Theorem 3.2.17 justifies us in defining:

Definition 3.2.18. Let F be an extender at κ on M . Let n ≤ ω be maximal
such that ρmM > κ. We call ⟨N, π⟩ the Σ∗–extension of M by F (in symbols
π :M →∗

F N) iff F is close to M and ⟨N, π⟩ is the Σ
(n)
0 extension by F .

As a corollary of the proof of Lemma 3.2.16 we have:

Corollary 3.2.18. Let π :M −→∗
F N . Let H = HM

κ and ρn+1
M ≤ κ. Then:

• H = HN
κ

• M ∩ P(H) = N ∩ P(H).

• Σ
(n)
1 (M) ∩ P(H) = Σ

(n)
1 (N) ∩ P(H).

• Hn+1
M = Hn+1

N .

3.2.3 n–extendibility

Definition 3.2.19. Let F be an extender of length λ at κ on M . M is
n–extendible by F iff κ < ρnM and the Σ

(n)
0 extension ⟨N, π⟩ of M by F

exists.

⟨N, π⟩, if it exists, is the Σ
(n)
0 liftup of ⟨M,π′⟩ where H = HM

τ is the base
of F , τ = κ+M , and ⟨M ′, π′⟩ is the extension of H by F . To analyse this
situation we use the term model D = D(n)(π′,M) defined in §2.7.2. The
points of D are pairs ⟨f, z⟩ such that f ∈ Γn = Γn(τ,M) as defined in §2.7.2.
and z ∈ π′(dom(f)). The equality and set membership relation of D are
again defined by:

⟨f, z⟩ ≃ ⟨g, w⟩ ↔ ⟨z, w⟩ ∈ π′({⟨x, y⟩|f(x) = g(y)})
⟨f, z⟩∈̃⟨g, w⟩ ↔ ⟨z, w⟩ ∈ π′({⟨x, y⟩|f(x) = g(y)})

Set: Γn∗ = Γn∗ (κ,M) =: the set of f ∈ Γn such that dom(f) = κ. Let
D∗ = D(n)

∗ (F,M) be the restriction of D to points ⟨f, d⟩ such that f ∈ Γn∗
and α < λ. The proof of Lemma 3.2.7 tells us that∧

x ∈ D
∨
y ∈ D∗x ≃ y.
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Hence M is Σ
(n)
0 extendable iff the restriction ∈∗ of the relation ∈̃ to D∗ is

well founded.

We have:

⟨f, α⟩ ∈∗ ⟨g, β⟩ ↔ ⟨α, β⟩ ∈ F ({⟨ξ, ζ⟩|f(ξ) ∈ g(ζ)}).

Note. When dealing with extenders, we shall again sometimes fail to dis-
tinguish notationally between Γn∗ ,D

(n)
∗ ,∈∗ and Γn,D(n), ∈̃.

We now prove:

Lemma 3.2.19. Let ⟨π, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩, where M is m–extendible
by F . Let n ≤ m and let π be Σ

(n)
0 preserving with κ < ρm in M , where

κ = crit(F ). Then M is n–extendible by F . Moreover, if ⟨N, σ⟩ is the Σ
(m)
0

extension of M by F and ⟨N,σ⟩ is the Σ
(n)
0 extension of M by F , then there

is a unique π′ such that

π′ : N →
Σ

(n)
0

N, π′σ = σN, π′ ↾λ = g.

π′ is defined by:
π′(σ(f)(α)) = σπ(f)(g(α))

for f ∈ Γn∗ (κ,M), α < β.

Proof: Let ∈∗ be the set membership relation of D∗ = D∗(F ,M).

Then:

⟨f, α⟩ ∈∗ ⟨h, β⟩ ↔ ⟨α, β⟩ ∈ F ({⟨ξ, ζ⟩|f(ξ) ∈ g(ζ)})
↔ ⟨g(α), g(β)⟩ ∈ F ({⟨ξ, ζ⟩|π(f)(ξ) ∈ π(h(ζ)})
↔ σπ(f)(α) ∈ σπ(f)(β).

Hence there is π′ : N →
Σ

(n)
0

N defined by:

π′(σ(f)(α)) = σπ(f)(g(α)).

But any π′ fulfilling the above conditions satisfies this definition.
QED (Lemma 3.2.19)

Taking π, g as id, we get:

Corollary 3.2.20. Let M be Σ
(m)
0 extendible by F . Let n ≤ m. Then M is

Σ
(n)
0 extendible by F . Moreover, if σ :M →(m)

F N and σ :M →(m)
F N , there

is π : N →
Σ

(n)
0

N defined by:

π(σ(f)(α) = σ(f)(α) for f ∈ Γn, α < λ.
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Lemma 3.2.19 is normally applied to the case n = m. The condition κ < ρn
M

will be satisfied if the map π is strictly Σ
(n)
0 -preserving. However, it does not

follows that π′ is strictly Σ
(n)
0 -preserving. Similarly, even if we assume that

π is fully Σ
(n)
1 -preserving, we get no corresponding strengthening of π′. We

can remedy this situation by strengthening our basic premiss:

⟨π, g⟩ : ⟨M,F ⟩ −→ ⟨M,F ⟩

We define:

Definition 3.2.20. ⟨π, g⟩ : ⟨M,F ⟩ →∗ ⟨M,F ⟩ iff the following hold:

• ⟨π, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩

• F , F are weakly amenable

• Let α < λ = length (F ). Then Fα is Σ1(M) in a parameter p and
Fg(α) is Σ1(M) in p = π(p) by the same definition.

(Hence F is close to M .) Taking n = m in Lemma 3.2.19 we prove:

Lemma 3.2.21. Let ⟨π, g⟩ : ⟨M,F ⟩ →∗ ⟨M,F ⟩. Let σ : M →(n)
F N where

π is Σ
(n)
1 preserving. Let σ : M →(n)

F N, π′ : N → N be given by Lemma
3.2.19. Then π′ is Σ

(n)
1 preserving.

We derive this from a stronger lemma:

Lemma 3.2.22. Let ⟨π, g⟩ : ⟨M,F ⟩ →∗ ⟨M,F ⟩. Let n,N,N, π′ be as
above, where π is Σ

(n)
1 preserving. Let D(y, x1, . . . , xr) be Σ

(n)
1 (N) and

D(y⃗, x1, . . . , xr) be Σ
(n)
1 (N) by the same definition. Let π′(xi) = xi(i =

1, . . . , r). Then
{⟨y⃗⟩ ∈ HM

κ |D(y⃗, x1, . . . , xr)}

is Σ
(n)
1 (M) in a parameter p

and:
{⟨y⃗⟩ ∈ HM

κ |D(y⃗, x1, . . . , xr)}

is Σ
(n)
1 (M) in p = π(p) by the same definition.

Before proving Lemma 3.2.22 we show that it implies Lemma 3.2.21. Let
D(x1, . . . , xr) be Σ

(n)
1 (N) and let D(x1, . . . , xr) be Σ

(n)
1 (N) by the same

definition. Set:

D′(y, x⃗)↔: y = ∅ ∧D(x⃗); D
′
(y, x⃗)↔: y = ∅ ∧D(x⃗).
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Let π′(xi) = xi (i = 1, . . . , r). Applying Lemma 3.2.22 and the Σ
(n)
1 preser-

vation of π we have:

D(x1, . . . , xr) ↔ ∅ ∈ {y ∈ HM
κ |D

′
(y, x1, . . . , xr)}

↔ ∅ ∈ {y ∈ HM
κ |D′(y, x1, . . . , xr)}

↔ D(x1, . . . , xr).

QED

We now prove Lemma 3.2.22. For the sake of simplicity we display the proof
for the case r = 1. Let D(y⃗, x) be Σ

(n)
1 (N) and D(y⃗, x) be Σ

(n)
1 (N) by the

same definition. We may assume:

D(y⃗, x)↔
∨
znB(zn, y, x), D(y⃗, x)↔

∨
znB(zn, y, x)

where B is Σ(n)
0 (N) and B is Σ(n)

0 (N) by the same definition. Let A have the
same definition over M and A the same definition over M . Let x = π′(x).
Then x = σ(f)(α) for an f ∈ Γn and α < λ. Hence x = σπ(f)(g(α)). Then
for y⃗ ∈ HM

κ :

D(y⃗, x) ↔
∨
znB(zn, y⃗, x)

↔
∨
u ∈ Hn

M

∨
z ∈ σ(u)B(zn, y⃗, σ(f)(α))

↔
∨
u ∈ Hn

M

∨
{ξ < κ|

∨
z ∈ u A(z, y⃗, f(ξ))} ∈ Fα.

Similarly for y⃗ ∈ H we get:

D(y⃗, x)↔
∨
u ∈ Hn

M{ξ < κ|
∨
z ∈ uA(z, y⃗, π(f)(ξ))} ∈ Fg(α).

Fα is Σ1(M) in a parameter p and Fg(α) is Σ1(M) in a parameter p = π(p).
But by the definition of Γn we know that there are q, q such that either:

f = q ∈ Hn
M

and q = π(f)

or:
f(ξ) ≃ G(ξ, q) where G is a good Σ

(i)
1 (M) map

and:

π(f)(ξ) ≃ G(ξq) where G has the same good definition over M.

Hence:
{⟨y⃗⟩ ∈ HM

κ |D(y⃗, x)}

is Σ
(n)
1 (M) in κ, q, p and:

{⟨ y⃗ ∈⟩HM
κ |D(y⃗, x)}

is Σ
(m)
1 (M) in κ, q, p by the same definition. QED (Lemma 3.2.22)
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3.2.4 ∗–extendability

Definition 3.2.21. Let F be an extender of length λ at κ on M . M is
∗–extendible by F iff F is close to M and M is n–extendible by F , where
n ≤ w is maximal such that κ < ρnM .

(Hence π :M →∗
F N where ⟨N, π⟩ is the Σ

(n)
0 –extension.)

Lemma 3.2.23. Assume ⟨π, g⟩ : ⟨M,F ⟩ →∗ ⟨M,F ⟩ where M is ∗–extendible
by F . Assume that π is Σ∗ preserving. Then M is ∗–extendible by E. More-
over, if σ : M →∗

F
N and σ : M →∗

F N , there is a unique π′ : N →Σ∗ N

such that π′σ = σπ and π′ ↾λ = g.

Proof: Let n be maximal such that κ < ρnM . Let σ : M →(n)
F N . By

Lemma 3.2.21 we have κ < ρn
M

and there is σ :M →(n)

F
M . Moreover there

is π′ : N →
Σ

(n)
1

N such that π′σ = σπ and π′ ↾λ = g.

Claim 1 n is maximal such that κ < ρn
M

.

Proof: If not, then n < w and ρn+1
M ≤ κ < ρnM . Hence∧

zn+1zn+1 ̸= κ holds in M.

Thus
∧
zn+1zn+1 ̸= κ in M , since π is Σ

(n+1)
0 preserving. Hence

ρn+1
M
≤ κ < ρn

M
. (QED Claim 1)

Note. In the case n < w we needed only the Σ
(n+1)
0 preservation of π to

establish Claim 1.

By Claim 1 we then have:

(1) π :M →∗
F
N .

Hence M is ∗–extendible by F . It remains only to show:

Claim 2 π′ is Σ∗ preserving.

Proof: If n = w, there is nothing to prove, so assume n < w. We
must show that π′ is Σ

(m)
0 preserving for n < m < w. Let n < m < w.

Since σ :M →∗
F N , we know that:

(2) ρmM = ρmN and σ ↾ρmM = id.
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By Claim 1 an (1) we similarly conclude:

(3) ρm
M

= ρm
N

and σ ↾ρm
M

= id.

Using (2), (3) and Lemma 3.2.22 we can then show:

(4) Let D(y⃗m, x⃗) be Σ
(m)
j (N). Let D(y⃗m, x⃗) be Σ

(m)
j (N) by the same

definition. Let
π′(xi) = xi(i = 1, . . . , r).

Then:

Dx1,...,xr =: {⟨ym⟩↾D(y⃗m, x1, . . . , xr)}

is Σ
(m)
j (M) in a parameter p and:

Dx1,...,xr =: {⟨y⃗m⟩|D(y⃗m, x1, . . . , xr)}

is Σ
(m)
j (M) in p = π(p) by the same definition.

Proof: By induction on m.

Case 1 m = n+ 1

We know:
D(y⃗m, x⃗)↔ H

m
x⃗ |= φ[y⃗m]

where φ is Σj and

H
m
x⃗ = ⟨Hm

M
, B

1
x⃗, . . . , B

q
x⃗⟩

where Bi
x⃗ = {⟨z⃗m⟩|Bi

(z⃗m, x)} and Bi is Σm1 (N) for i = 1, . . . , q. Since
D(ym, x⃗) has the same Σ

(m)
j definition, we can assume

D(y⃗m, x⃗)↔ Hm
x⃗ |= φ[y⃗m]

where:
Hm
x⃗ = ⟨Hm

M , B
1
x⃗, . . . , B

q
x⃗⟩

where Bi
x⃗ = {⟨zm⟩|Bi(z⃗m, x)} and Bi is Σ(n)

1 (N) by the same definition
as Bi over N . Letting π′(xi) = xi (i = q, . . . , r), we know by Lemma
3.2.22 that each of Bi

x1,...,xr is Σ
(n)
1 (M) in a parameter p and Bi

x1,...,xr

is Σ
(n)
1 (M) in p = π(p) by the same definition. (We can without loss

of generality assume that p is the same for i = 1, . . . , r.) But then
Dx,...,xr is Σ

(m)
j (M) in p and Dx1,...,xr is Σ

(m)
j (M) in p = π(p) by the

same definition. QED (Case 1)
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Case 2 m = h+ 1 where h > n.

We repeat the same argument using the induction hypothesis in place
of Lemma 3.2.22. QED (4)

But Claim 2 follows easily from Claim 4 and the fact that π is Σ∗

preserving. Let D(x⃗) be Σ
(m)
0 (N) and D(x⃗) be Σ

(m)
0 (N) by the same

definition. Set:
D

′
(y, x⃗)↔: y = 0 ∧D(x⃗)

D′(y, x⃗)↔: y = 0 ∧D(x⃗)

By (4) we have:

D(x⃗)↔ 0 ∈ Dx⃗ ↔ 0 ∈ Dπ′(x⃗) ↔ D(π′(x⃗))

for x1, . . . , xr ∈M , using the Σ
(m)
0 preservation of π and π(0) = 0.

QED (Lemma 3.2.23)

Note. The last part of the proof also shows that π′ is Σ
(m)
j preserving if π

is.

As a corollary of the proof we also get:

Lemma 3.2.24. Let ⟨π, g⟩ : ⟨M,F ⟩ −→ ⟨M,F ⟩. Let M be ∗-extendible by
F . Let n be the maximal n such that κ = crit(F ) < ρnM . Let n < r < ω and
suppose that π is Σ

(r)
j preserving, where j < ω. Then:

(a) n is maximal such that κ = crit(F ) < ρn
M

.

(b) M is ∗-extendible by F .

(c) Let π′ be the unique π′ : N −→Σ0 N such that π′σ = σπ and π′ ↾λ = g.
Then π′ is Σ

(r)
j preserving.

Proof. (a) follows by the proof of Claim 1 in Lemma 3.2.23, since that
only need that π is Σn+1

0 -preserving. (1) then follows as before. Hence M
is ∗-extendible by F . (2) and (3) follows for r ≥ m > n, using the Σ

(r)
0

preservation of π. Hence (4) follows as before and we can conclude that π′

is Σ
(n)
j preserving as before.

QED(Lemma 3.2.24)

Notation. Γn∗ (κ,M) = {f ∈ Γn(τ,M) : dom(f) = κ} and Γ∗(κ,M) =
Γn∗ (κ,M) where n ≤ ω is maximal such that κ < ρnM .
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3.2.5 Good Parameters

We now recall some concepts which were developed in §2.5. LetM = ⟨JEα , B⟩
be acceptable. The set Pn+1

M of n+ 1-good parameters can be defined by:

a ∈ Pn+1
M iff a ∈ [OnM ]<ω and there is an A ⊂ Hn

M which is
Σ
(n)
1 (M) in parameters from ρn+1 ∪ a such that A ∩Hn+1 /∈M .

We then say that A confirms a ∈ Pn+1. We also set: P 0
M = [OnM ]<ω. It is

not hard to prove:

Fact 1. Let a ∈ Pn. Then:

• a ⊂ b ∈ [OnM ]<ω −→ b ∈ PM .

• a∖ ρn ∈ Pn.

The definition of Pn+1
M is equivalent to that given in §2.5. However, we thus

required a ∈ PnM in place of a ∈ [OnM ]<ω. To show the equivalence of these
definitions, we must prove: Pn+1

M ⊂ PnM (n < ω). With a view to proving
this we recall the following definition, which was stated in an equivalent form
in §2.5.

With a view to proving this we recall the following definition, which was
stated in an equivalent form in §2.5.

Definition 3.2.22. Let M = ⟨JAα , B⟩ be acceptable. Let a ∈ [α]<ω. For
n < ω we define the n-th reduct Mn,a and the n-th standard predicate Tn,aM

with respect to a:
T 0 = B,Mn = ⟨JAρM , T

n⟩,

Tn+1 = {⟨i, x⟩ : i < ω ∧Mn |= φi[x, a
(n)]}

where a(n) = a∩ ρn and ⟨φi : i < ω⟩ enumerates recursively all Σ1 formulae
ψ = φ(v0, v1) with at most the free variables v0, v1 in the language of M .

By induction on n we get:

Fact 2. Let a ∈ [OnM ]<ω. Then:

• Tn,a is Σ
(n)
1 (M) in a.
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• Let A ⊂ Hn be Σ
(n)
1 (M) in a. There is an i < ω such that

Ax −→ ⟨i, x⟩ ∈ Tn,a

From this it follows that:

Fact 3. a ∈ Pn+1 ↔ Tn,a confirms a ∈ Pn+1. But then:

Fact 4. Pn+1 ⊂ Pn.

Proof. For n = 0 this is trivial. Now let n = m + 1. Let a ∈ Pn+1. Then
Tn,a ∩Hn+1 /∈M .

Claim. Tm,a ∩Hn /∈M .

Suppose not. If ρn ∈M , then:

⟨Hn, Tm,a ∩Hn⟩ ∈M

Hence Tn,a ∈ M and Hn+1 ∩ Tn,a ∈ M . Contradiction! Now let ρn = ρ0.
Then for each x ∈M , there is i ≤ ω such that ⟨i, x⟩ ∈ Tm,a. If Tm,a ∩Hn =
Tm,a ∈M , then ⟨i, Tm,a⟩ ∈ Tm,a. Contradiction!

QED(Fact 4.)

We also mention:

Fact 5. a ∈ Pn+1 iff there isA which is Σ(n)
1 (M) in a such thatA∩ρn+1 /∈M .

Proof. (Sketch) If ρn+1 = ρ0, take A = ρ0. Now let ρn+1 < ρ0. Then
Hn+1 = |JEρn+1 | is a ZFC− model. Note that for any N = JEα , the function
fN is uniformly Σ1(N), where

fN (α) = the α-th element of N in the ordering <E .

Let A be Σ
(n)
1 (M) such that A ⊂ Hn and A ∩Hn+1 /∈M . Set:

A′ = {α < ρn : f(α) ∈ A}

where f = fJE
ρn

. Then f ↾ ρn+1 = fJE
ρn

maps ρn+1 onto Hn+1. Hence, if

A′ ∩ ρn+1 ∈M , we have f”(A′ ∩ ρn+1) = A ∩Hn+1 ∈M . Contradiction!

QED(Fact 5)

Thus A∩Hn+1 could have been replaced by A∩ ρn in the original definition
of Pn.

We now define:
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Definition 3.2.23. π is a strongly Σ∗-preserving map of M to N (in sym-
bols: π :M −→Σ∗ N strongly) iff the following hold:

• π :M −→Σ∗ N

• If ρn+1 = ρω in M , then ρn+1 = ρω in N .

• If ρn+1 = ρω in M , A confirms a ∈ Pn+1 in M , and A′ is Σ
(n)
1 (N) in

π(a) by the same definition, then A′ confirms π(a) ∈ Pn+1 in N .

By Fact 3 and Fact 4 we conclude:

Lemma 3.2.25. Let π : M −→Σ∗ N strongly. Let ρn+1 = ρω in M . Let
a ∈ Pn+1 in M . Then T i,a confirms a ∈ P i+1 in M and T i,π(a) confirms
π(a) ∈ P i+1 in N for i ≤ n.

We now prove:

Lemma 3.2.26. Let π :M −→∗
F N . Then π :M −→Σ∗ N strongly.

Proof. Let κ = crit(F ). We consider two cases.

Case 1. ρωM ≤ κ.

The conclusion is immediate by Corollary 3.2.18.

Case 2. κ < ρωM .

We show that for any n < ω, if A confirms a ∈ Pn+1 in M , then A′ confirms
π(a) ∈ Pn+1 in N . Suppose not. Let A′ ∩Hn+1

M ∈ N . Let y = A′ ∩Hn+1
N .

Then y ∈ Hn
N and in N we have:∧

zn+1(zn+1 ∈ y ←→ zn+1 ∈ A′),

which is a Π
(n+1)
1 statement in π(a), y. Let y = π(f)(α), where α < λ = λF

and f ∈ Γ∗(κ,M). Thus dom(f) = κ and:

f(ξ) = G(ξ, q)

where q ∈ HM
κ+ and G is a good Σ

(m)
1 function to Hn for an m < ω. Assume

without lose of generality m > n+ 1.

The statement:
∧zn+1(zn+1 ∈ f(ξ)←→ zn+1 ∈ A)
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is then Σ
(m)
1 (M) in q, a, ξ. Hence it is Σm+1

0 (M) in q, a, ξ. Set:

X = {ξ < κ :
∧
zn+1(zn+1 ∈ f(ξ)←→ zn+1 ∈ A)}.

Then X ∈M . But α ∈ π(X). This is a contradiction, since X = π(X) = ∅
by the fact that A ∩Hn+1

M /∈M .

Finally we note that for all n < ω we have κ < ρn+1
M . Hence: ρnM = π(ρnM )

if ρnM ∈M and otherwise ρnN = OnN . Thus:

ρn+1
M = ρωM −→ ρn+1

N = ρωN .

QED(Lemma 3.2.26)

Obviously we have:

Lemma 3.2.27. If π0 : M0 −→Σ∗ M1 strongly and π1 : M1 −→Σ∗ M2

strongly, then π1π0 is a strong Σ∗-preserving map from M0 to M2.

We now prove:

Lemma 3.2.28. Let πij : Mi −→Σ∗ Mj strongly (i ≤ j < λ) where the πij
commute. Suppose that:

⟨Mi : i < λ⟩, ⟨πij : i ≤ j < λ⟩

has a transitivized direct limit:

M, ⟨πi : i < λ⟩.

Then πi :Mi −→Σ∗ M strongly for i < λ.

Proof. πi is Σ1-preserving, since each πij is. Hence M = ⟨JEα , B⟩ is accept-
able. If we set:

ρn =
⋃
i<λ

πi”ρ
n
Mi
, Hn =

⋃
i<λ

πi”Hn,

it follows that Hn = HM
ρn = |JEρn |. By induction on n we prove:

Claim. ρn = ρnM and πi :Mi −→Σ
(n)
1

M .

Proof.

Case 1. n = 0 is trivial.
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Case 2. n = m+ 1.

Let r ≥ n such that ρrM0
= ρωM0

. Let a ∈ P rM0
. Then Tm,aiMi

verifies ai ∈ PMi

for i < λ where π0i(a0) = ai. Let a = πi(ai) (i < λ). By the induction
hypothesis πi is Σ

(m)
1 -preserving. Hence

x ∈ Tm,aiMi
←→ πi(x) ∈ Tm,aM .

Claim. Tm,aM ∩Hn /∈M .

Proof. Suppose not. Let y = Tm,aM ∩ Hn. Let i < λ such that π(yi) = y.
For x ∈ Hn

Mi
we have:

x ∈ Tm,aiMi
←→ πi(x) ∈ Tm,aM ∩Hn

←→ π(x) ∈ π(y)
←→ x ∈ yi.

Hence Tm,aiMi
∩Hn

Mi
= yi ∩Hn

Mi
∈Mi. Contradiction!

QED(Claim 1)

Claim 2. Let A ⊂ Hn be Σ
(m)
1 (M). Then ⟨Hn, A⟩ is amenable.

Proof. Let A be Σ
(m)
1 (M) in q. For i such that q ∈ rng(πi), let qi = π−1

i (q)

and let Ai be Σ
(m)
1 (M) in qi by the same definition. Now let x ∈ Hn.

We claim that x ∩ A ∈ Hn. Let i be large enough that q ∈ rng(πi). Set
xi = π−1

i (x). Let zi = Ai∩xi. Then xi ∈ Hn
Mi

where ⟨Hn
Mi
, Ai⟩ is amenable.

Hence zi ∈ Hn
Mi

where z = πi(zi) = A ∩ x. Hence z ∈ Hn
Mi

.

QED(Claim 2)

Hence ρnM = ρn and Hn
M = HM . It follows straightforwardly that πi :

Mi −→Σ
(n)
1

M for i < λ.

QED(Case 2)

It remains to show:

Claim 3. The embedding πi is strong.

Proof. Let ρn+1 = ρω in Mi. Let A ⊂ Hn confirm a ∈ Pn+1 in Mi. Let Aj
be Σ

(n)
1 (Mj) in aj =: πij(a) for i ≤ j < λ. Then ρn+1 = ρω in Mj and Aj

confirms aj ∈ ρn+1 in Mj . Let a′ = πi(a), and let A′ be Σ
(n)
1 (M) in a′ by the

same definition. We repeat the proof of Claim 1 to show that A′ confirms
a′ ∈ Pn+1 in M (i.e. A′ ∩Hn+1 /∈M).
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QED(Lemma 3.2.28)

3.3 Premice

A major focus of modern set theory is the subject of "strong axioms of
infinity". These are principles which posit the existence of a large set or class,
not provable in ZFC. Among these principles are the embedding axioms,
which posit the existence of a non trivial elementary embedding of one inner
model into another. The best known example of this is the measurability
axiom, which posits the existence of a non trivial elementary embedding π
of V into an inner model. ("Non trivial" here means simply that π ̸= id.
Hence there is a unique critical point κ = crit(π) such that π ↾ κ = id and
π(κ) > κ.) The critical point κ of π is then called a measurable cardinal ,
since the existence of such an embedding is equivalent to the existence of an
ultrafilter (or two valued measure) on κ.

This is a typical example of the recursing case that an axiom positing the
existence of a proper class (hence not formulable in ZFC) reduces to a state-
ment about set existence. The weakest embedding axiom posits the existence
of a non trivial embedding of L into itself. This is equivalent to the existence
of a countable transitive set called 0#, which can be coded by a real number.
(There are many representations of 0#, but all have the same degree of con-
structability.) The "small" object 0# in fact contains complete information
about both the proper class L and an embedding of L into itself. We can
then form L(0#), the smallest universe containing the set 0#. If L(0#) is
embeddable into itself we get 0##, which gives complete information about
L(0#) and its embedding . . . etc. This process can be continued very far.
Each stage in this progression of embeddings, leading to larger and larger
universes, is coded by a specific set, called a mouse. 0# and 0## are the
first two examples of mice. It is not yet known how far this process goes, but
it is conjectured that all stages can be represented by mice, as long as the
embeddings are representable by extenders. (Extenders in our sense are also
called short extenders, since one must modify the notion in order to go still
further.) The concept of mouse, however hard it is to explicate, will play a
central role in this book.

We begin, therefore, with an informal discussion of the sharp operation which
takes a set a to a#, since applications of this operation give us the smallest
mice 0#, 0##, etc.

Let a be a set such that a ∈ L[a]. Suppose moreover that there is an
elementary embedding π of La = ⟨L[a],∈, a⟩ into itself such that a ∈ Laκ,
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where κ = crit(π). We also assume without loss of generality, that κ is
minimal for π with this property. Let τ = κ+L

a and ν = supπ′′τ . Then
π̃ : Laτ ≺ Laν cofinally, where π̃ = π ↾ Laτ . Set F = π ↾ P(κ). F is then an
extender at κ with base Lτ [a] and extension ⟨Lν [a], π̃⟩.

⟨Laν , F ⟩ = ⟨Lν [a], a, F ⟩ is then amenable by Lemma 3.2.2. It can be shown,
moreover, that F is uniquely defined by the above condition. We then define:

Definition 3.3.1. a# is the structure ⟨Lν [a], a, F ⟩.

Note. In the literature a# has many different representations, all of which
have the same constructibility degree as ⟨Lν [a], a, F ⟩.

a# has a number of interesting properties, which we state here without
proof. F is clearly an extender at κ on ⟨Laν , F ⟩. Moreover, we can form the
extension:

π0 : ⟨Laν , F ⟩ →F ⟨Laν1 , F1⟩.

We then have π0 ⊃ π̃, π0(κ) = ν. (In fact π0 = π′ ↾Laν .) But we can then
apply F1 to ⟨Laν1 , F1⟩ . . . etc. This can be repeated indefinitely, showing that
a# is iterable in the following sense:

There are sequences κi, τi, νi, Fi(i <∞) and πij(i ≤ j <∞) such that

• κ0 = κ, τ0 = τ, ν0 = ν, F0 = F .

• κi+1 = π′i,i+1(κi), νi = π′i,i+1(πi), τi = κ
+La

νi
i .

• Fi is a full extender at κi with base Lτi [a] and extension ⟨Lνi [a], π′i,i+1 ↾

L
[a]
τi ⟩.

• π′i,i+1 : ⟨Laνi , Fi⟩ →Fi ⟨Laνi+1
, Fi+1⟩.

• The maps π′ij commute — i.e.

π′ii = id; π′ijπ
′
hi = π′hj .

• For limit λ, ⟨Laνλ , Fλ⟩, ⟨π
′
iλ|i < λ⟩ is the transitivized direct limit of

⟨⟨Laν0 , Fi⟩|i < λ⟩, ⟨π′ij |i ≤ j < λ⟩.

It turns out that a# = ⟨Laν , F ⟩ is uniquely defined by the conditions:

• ⟨Laν , F ⟩ is iterable in the above sense

• ν is minimal for such ⟨Laν , F ⟩.
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If a = ∅ we write: 0#. 0# = ⟨Lν , F ⟩ is then acceptable. By a Löwenheim–
Skolem type argument it follows that 0# is sound and ρ1

0#
= ω. (To see

this let M = 0#, X = hM (ω). Let σ : M
∼↔ X be the transitivization of

X, where M = ⟨Lν , F ⟩. Using the fact that σ : M → M is Σ1–preserving
and M is iterable, it can be shown that M is iterable. Hence M =M , since
ν ≤ ν and ν is minimal.) But then 0# is countable and can be coded by a
real number. But this is real giving complete information about the proper
class L, since we can recover the satisfaction relation for L by:

L |= φ[x⃗]↔ Lκi |= φ[x⃗]

where i is chosen large enough that x1, . . . , xn ∈ Lκi . But from 0# we also
recover a nontrivial elementary embedding of L into itself, namely:

π : L→F L where 0# = ⟨Lν , F ⟩.

0# is our first example of a mouse. All of its iterates, however, are not
sound, since if i > 0, then rng(π0i) = hMi(ω), where ρ1Mi

= ρ1M0
= ω. But

κ0 /∈ rng(π0i).

We can iterate the operation #, getting 0, 0#, (0#)#, . . . etc. This notation
is not literally correct, however, since a# is defined only when a ∈ L[a].
Thus, setting:

0#(n) = 0

n︷ ︸︸ ︷
# . . .#,

we need to set: 0#(n+1) = (en)#, where en codes 0, . . . , 0#(n). If we do this
in a uniform way, we can in fact define 0#(ξ) for all ξ <∞.

Definition 3.3.2. Define ei, νi, 0#(i) = ⟨Leiνi , Eνi⟩(i <∞) as follows:

ei =: {⟨x, νi⟩|j < i ∧ x ∈ Eνj} (hence e0 = ∅)

0#(0) =: ⟨∅, ∅⟩ (hence ν0 = 0)

0#(i+1) =: (ei)# (hence νi+1 > νi)

For limit λ we set:

ν =: sup
i<λ

νi, 0
#(λ) =: ⟨Leλνλ , ∅⟩, (hence ∅ = Eνλ).

By induction on i < ∞ it can be shown that each 0#(i) is acceptable and
sound, although we skip the details here. Each 0#(i) is also iterable in a
sense which we have yet to explicate. As before, it will turn out that the
iterates are acceptable but not necessarily sound. Set:

E =:
⋃
i<∞

ei.
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Then L[E] is the smallest inner model which is closed under the # operation.
(For this reason it is also called L#.) We of course set: LE =: ⟨L[E],∈, E⟩.

LE is a very L–like model, so much so in fact, that we can obtain the next
mouse after all the 0#(i)(i < ∞) by repeating the construction of 0# with
LE in place of L: Suppose that π : LE ≺ LE is a nontrivial elementary
embedding. Without loss of generality assume the critical point κ of π to be
minimal for all such π. Let τ = κ+L

E and ν = supπ′′τ . Then π̃ = π ↾LEτ .
Set: F = π ↾ P(κ). Then F is an extender with base Lτ [E] and extension
⟨Lν [E], π̃⟩. The new mouse is then ⟨LEν , F ⟩.

As before, we can recover full information about LE from ⟨LEν , F ⟩ and we can
recover a nontrivial embedding of LE by: π : LE →F L

E . e = E∪{⟨x, ν⟩|x ∈
F} then codes all the mice up to and including ⟨LEν , F ⟩, so the next mouse
is e# . . . etc.

Note. that LE ||ν = ⟨LEν , ∅⟩ since, if κi = crit(Eνi+1), then the sequence
⟨κi|i < ∞⟩ of all critical points of previous mice is discrete, whereas κ =
crit(F ) is a fixed point of this sequence.

This process can be continued indefinitely. At each stage it yields a set
which encodes full information about an inner model. We call these sets
mice. Each mouse will be an acceptable structure of the form M = ⟨JEα , Eα⟩
where E = {⟨x, ν⟩|ν < α ∧ x ∈ Eν} codes the set of ’previous’ mice. For
ν = α we have: Either Eν = ∅ or ν is a limit ordinal and Eν is a full extender
at a κ < ν with extension ⟨Jν [E], π⟩ and base Jτ [E], where τ = κ+M .

For limit ξ ≤ α we set: M ||ξ =: ⟨JEξ , Eξ⟩. A class model LE is called a
weasel iff E = {⟨x, ν⟩|ν < ∞∧ x ∈ Eν} and LE ||α =: ⟨JEα , Eα⟩ is a mouse
of all limit α.

When dealing with such structures M satisfying, we shall often use the fol-
lowing notation: If Eν ̸= ∅, then κν = the critical point of Eν , τν = κ+JEν ,
and λν = the length of Eν = π(κν), where ⟨JEν , π⟩ is the extension of JEτν by
Eν .

In the above examples, the extenders Eν were so small that τν eventually
got collapsed in L[Eν ]. Thus Eν was no longer an extender in L[Eν ], since
it was not defined on all subsets of κ. However, if we push the construction
far enough, we will eventually reach an Eν which does not have this defect.
L[Eν ] will then be the smallest inner model with a measurable cardinal.

In the above examples the extender Eν is always generated by {κν} Hence we
could just as wel have worked with ultrafilters as with extenders. Eventually,
however, we shall reach a point where genuine extenders are needed. In the
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examples we also chose λν = π(κν) minimally — i.e. we imposed an initial
segment condition which says that Eν |λ is not a full extender for any λ < λν .
This condition can become unduly restrictive, however: It might happen that
we wish to add a new extender Eν and that Eν |λ is an extender which we
added at an earlier stage. In that case we will have: Eν |λ ∈ JEν . In order to
allow for this situation we modify the initial segment condition to read:

Definition 3.3.3. Let F be a full extender at κ with base S and extension
⟨S′, π⟩. F satisfies the initial segment condition iff whenever λ < π(κ) such
that F |λ is a full extender, then F |λ ∈ S′.

As indicated above, we expect our mice to be iterable. The example of
an iteration given above is quite straightforward, but the general notion of
iterability which we shall use is quite complex. We shall, therefore, defer it
until later. We mention, however, that, since mice are fine structural etities,
we shall iterate by Σ∗–extensions rather than the usual Σ0–extensions. In the
above examples, the minimal choice we made in our construction guaranteed
that the mice we constructed were sound. However, in general we want the
iterates of mice to themselves be mice. Thus we cannot require all mice
to be sound: Suppose e.g. that M = ⟨JEν , F ⟩ is a mouse and we form:
π : M →∗

F M ′. Then M ′ is no longer sound. (To see this, let p ∈ P 1
M . It

follows easily that π(p) ∈ P 1
M ′ . But κ /∈ rng(π); hence κ is not Σ1(M

′) in
π(p).)

As we said, however, our initial construction is designed to produce sound
structures. Hence we can require that if M = ⟨JEν , F ⟩ is a mouse and λ < ν,
then M ||λ is sound, since this property will not be changed by iteration.

By a premouse we mean a structure which has the salient properties of a
mouse, but is not necessarily iterable. Putting our above remarks together,
we arrive at the following definition:

Definition 3.3.4. M = ⟨JEν , F ⟩ is a premouse iff it is acceptable and:

(a) Either F = ∅ or F is a full extender at a κ < ν with base Jτ [E], where
τ = κ+M , and extension ⟨Jν [E], π⟩. Moreover F is weakly amenable
and satisfies the initial segment condition. (Recall that J = ⟨Jν [E], E∩
Jν [E]⟩).

(b) Set Eγ = E′′{γ} for γ < ν. If γ < ν is a limit ordinal, then M ||γ =:
⟨JEγ , Eγ⟩ is sound and satisfies (a).

(c) E = {⟨x, η⟩|x ∈ Eη ∩ η < ν is a limit ordinal}.

By Lemma 2.5.26 we then have:
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Lemma 3.3.1. Let ⟨JEα , Eα⟩ be a sound premouse. ⟨JE′
α+ω, ∅⟩ is a premouse,

where E′ = E ∪ ⟨Eα × {α}⟩.

However, it does not follow that ⟨JE′
α+ω, ∅⟩ is sound.

We call a premouse M = ⟨JEν , F ⟩ active iff F /∈ ∅. If F is inactive we often
write JEν for ⟨JEν , ∅⟩. We classify active premice into three types:

Definition 3.3.5. Let F be an extender on κ with base S and extension
⟨S′, π⟩. We set:

• C = CF =: {λ|κ < λ < π(κ) ∧ F |λ is full}

• F is of type 1 iff C = ∅

• F is of type 2 iff C ̸= ∅ but is bounded in π(κ)

• F is of type 3 iff C is unbounded in π(κ)

• Let M = ⟨JEν , F ⟩ be a premouse. The type of M is the type of F . We
also set: CM =: CF .

It is evident that F satisfies the initial segment condition iff F |λ ∈ S′ when-
ever λ ∈ CF .

Premice of differing type will very often require different treatment in our
proofs. In much of this book we will assume that there is no inner model
with a Woodin cardinal, which implies that all mice are of type 1. For now,
however, we continue to work in greater generality.

Lemma 3.3.2. Let F be an extender at κ with base S and extension ⟨S′, π⟩.
Let κ < λ < π(κ). Then λ ∈ CF iff π(f)(α1, . . . , αn) < λ for all f ∈ M
such that f : κn → κ and all α1, . . . , αn < λ.

Proof: We first prove the direction (→). Let F ∗ = F |λ be full with ex-
tension ⟨S∗, π∗⟩. Let f, α1, . . . , αn be as above. Let β = π∗(f)(α⃗). Set
e = {⟨ξ1, . . . , ξn, δ⟩|f(ξ⃗) = δ}. Then β < λ and:

⟨α⃗, β⟩ ∈ F ∗(e) = λn+1 ∩ F (e).

Hence π(f)(α⃗) = β < λ. QED (→)

We now prove (←). Let f, α1, . . . , αn be as above. Then π(f)(α⃗) = β < λ.
Hence

⟨α⃗, β⟩ ∈ F (e) ∩ λn+1 = F ∗(e).
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Hence π∗(f)(α⃗) = β < λ. But each γ < π∗(κ) has the form π∗(f)(α⃗) for
some such f, α1, . . . , αn < λ. Hence π∗(κ) = λ = length (F ∗).

QED (Lemma 3.3.2)

Corollary 3.3.3. CF is closed in π(κ).

Corollary 3.3.4. Let F, S, S′, π be as above and let F be weakly amenable.
Then CF is uniformly Π1(⟨S′, F ⟩) in κ.

Proof: S′ is admissible and the Gödel function ≺,≻ is uniformly Σ1 over
admissible structures. By weak amenability we know that P(κ2) ∩ S =
P(κ2) ∩ S′. S′ is admissible and Gödel’s pair function ≺,≻ is Σ1(S

′) and
defined on (OnS′)2. Then "λ is Gödel–closed" is ∆1(S

′), since it is expressed
by

∧
ξ, δ < λ ≺ ξ, δ ≻< λ. By Lemma 3.3.2, "λ ∈ CF " is equivalent in S′

to:
κ < λ ⊂ π(κ) ∧ λ is Gödel–closed

∧
∧
f : n→ κ

∧
α < λ

∨
β < λ ≺ α, β ≻∈ F (ef )

where ef = {≺ δ, ξ ≻< κ|f(ξ) = δ}. The function f 7→ ef is Σ1(S
′) in κ and

defined on {f ∈ S|f : κ→ κ}. Note that µ = π(κ) is expressible over ⟨S′, F ⟩
by ⟨µ, κ⟩ ∈ F and e′ = F (e) is expressible by ⟨e′, e⟩ ∈ F . Thus λ ∈ CF is
equivalent to the conjunction of ’λ is Gödel–closed’ and:∧

e, e′, µ, f((⟨e′, e⟩ ∈ F ∧ ⟨µ, κ⟩ ∈ F ∧ f : κ→ κ ∧ e = ef )

→ (κ < λ < µ ∧
∧
α < λ

∨
β < λ ≺ α, β ≻∈ e′))

QED (Lemma 3.3.4)

We now turn to the task of analyzing the complexity of the property of being
a premouse and the circumstances under which this property is preserved by
an embedding σ : M → M ′. If M = ⟨JEν , F ⟩ is an active premouse, the
answer to these question can vary with the type of F .

We shall be particularly interested in the case that, for some weakly amenable
extender G on M at a κ̃ < ρnM ,M

′ is the Σ
(n)
0 extension ⟨M ′, σ⟩ of M by G

(i.e. σ :M →(n)
G M ′). In this case we shall prove:

• M ′ is a premouse

• If M is active, then M ′ is active and of the same type

• If M is of type 2, then σ(maxCM ) = maxCM ′ .

This will be the content of Theorem 3.3.24 below. Note that if G is close to
M in the sense of §3.2, and n is maximal with κ̃ < ρnM , then M ′ is a fully
Σ∗–preserving ultrapower of M (i.e. σ : M →∗

G M ′). In later sections we
shall consider mainly iterations of premice by Σ∗–ultrapowers.
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Note. In later sections we shall mainly restrict ourselves to premice of type
1. For the sake of completeness, however, we here prove the above result in
full generality. The proof will be arduous.

We first define:

Definition 3.3.6. M = ⟨JEν , F ⟩ is a mouse precursor (or precursor for
short) at κ iff the following hold:

• M is acceptable

• κ ∈M and τ = κ+M ∈M

• F is a full extender at κ on JEτ with extension ⟨JEν , π⟩.

Note. F then has base Jτ [E] and extension ⟨Jν [E], π⟩.
Note. F is weakly amenable, since P(κ) ∩M ⊂ Jτ [E] by acceptability.

Lemma 3.3.5. M = ⟨JEν , F ⟩ is a precursor at κ iff the following hold:

(a) M is acceptable

(b) F is a function defined on P(κ) ∩M

(c) F ↾κ = id, κ < F (κ) = λ, where λ is the largest cardinal in M .

(d) Let a1, . . . , an ∈ P(κ) ∩M . Let φ be a Σ1 forumla. Then:

JEτ |= φ[⃗a]↔ JEν |= φ[F (⃗a)]

(e) Let ξ < ν. There is X ∈ P(κ) ∩M such that

F (X) /∈ JEξ .

Proof: The direction (→) then follows easily. We prove (←).

We first note that F injects P(κ) ∩M into P(λ) ∩M . F is injective by (d).
But if X ⊂ κ, then F (X) ⊂ F (κ) = λ by (d).

(1) JEκ ≺ JEλ .

Proof: We first recall that by §2.4 each x ∈ JEκ has the form f(a) for some
first a ⊂ κ, where f is Σ1(J

E
κ ). By §2.4 we can choose the Σ1 definition of

f as being functionally absolute in J–models. Now let x1, . . . , xn ∈ JEκ .
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Let φ be a first order formula. We claim:

JEκ |= φ[x⃗]→ JEλ |= φ[x⃗].

Let xi = fi(ai), where ai ⊂ κ is finite and fi has a functionally absolute
definition ’x = fi(a)’. Then JEλ |= ’xi = fi(ai)’ for i = 1, . . . , n. Let Ψ be
the formula: ∨

x1 . . . xn(
n∧
i=1

xi = fi(ai) ∧ φ(x⃗)).

Then:
JEκ |= φ[x⃗]↔ JEκ |= Ψ[⃗a]

and:
JEλ |= φ[x⃗]↔ JEλ |= Ψ[⃗a].

But JEκ |= Ψ[⃗a] is Σ1(M) in κ, a⃗ and JEλ |= Ψ[⃗a] is Σ1(M) in λ, a⃗ by the
same definition. Moreover F (ai) = ai (i = 1, . . . , n) and F (κ) = λ.

Hence by (d):
JEκ |= φ[x⃗] ↔ JEκ |= Ψ[⃗a]

↔ JEλ |= Ψ[⃗a]

↔ JEλ |= φ[x⃗].

QED (1)

It follows easily, using acceptability, that JEκ and JEλ are ZFC− models.
Gödel’s pair function ≺,≻ then has a uniform definition on JEκ and JEλ .
Hence ⟨≺ α, β ≻ |α, β ∈ JEκ ⟩ is Σ1(M) in κ and ⟨≺ α, β ≻ |α, β ∈ JEλ ⟩ is
Σ1(M) in λ by the same definition.

For any X ⊂ κ there is at most one function Γ = ΓX defined on κ such that
Γ(α) = {Γ(β)|⟨β, α⟩ ∈ X} for α < κ. For X ∈ P(κ) ∩M the statement
f = ΓX is uniformly Σ1(M) in X, f, κ. Moreover the statement

∨
f f = ΓX

(’ΓX is defined’) is uniformly Σ1(M) in X,κ. The same is true at λ: For
Y ⊂ λ the statement f = ΓY is uniformly Σ1(M) in Y, f, λ and the statement∨
f f = ΓY is uniformly Σ1(M) in Y, λ by the same definition.

We must define a π such that ⟨Jν [E], π⟩ is the extension of F . The above
remarks suggest a way of doing so:

Definition 3.3.7. Let x ∈ JEτ , x ∈ u, where u ∈ JEτ is transitive. Let
f ∈ JEτ map κ onto u. Set:

X =: {≺ α, β ≻ |f(α) ∈ f(β)},

then f = ΓX . Let f ′ =: ΓF (X). Let x = f(ξ) where ξ < κ. Set:

π(x) = πf,ξ(x) =: f ′(ξ).
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We must first show that π is independent of the choice of f, ξ. Suppose that
x ∈ v, where v ∈ JEτ is transitive, and g ∈ JEτ maps κ onto v. Then, letting
Y = {≺ α, β ≻ |g(α) ∈ g(β)}, we have: Let x = g(ζ). Then by (d):

f(ξ) = ΓX(ξ) = ΓY (ζ)→ πf,ξ(x) = ΓF (X)(ξ) = ΓF (Y )(ζ) = πg,ζ(x).

Similarly we get:

(2) π : JEτ →Σ0 j
E
ν .

Proof: Let x1, . . . , xn ∈ JEτ . Let x1, . . . , xn ∈ u, where u ∈ JEτ is transitive.
Let fi ∈ JEτ map κ onto u(i = 1, . . . , n). Set: Xi = {≺ α, β ≻ |fi(α) ∈
fi(β)}. Let xi = fi(ξi). Let φ be Σ0. By (d) we conclude:

JEτ |= φ[x⃗] ↔ JEτ |= φ(ΓX⃗(ξ⃗))

↔ JEτ |= φ(ΓF (X⃗)(ξ⃗))

where F (Xi)(ξi) = π(ξi). QED (2)

(3) F (X) = π(X) for X ∈ P(κ) ∩M .

Proof: Let X = f(µ) where µ < κ, f ∈ JEτ , and f : κ → u, where u
is transitive. Set: Y =: {≺ α, β ≻ |f(α) ∈ f(β)}. Then f = ΓY and
X = ΓY (µ). By (d) we conclude:

F (X) = ΓF (Y )(µ) = π(X).

QED (3)

It remains only to show:

(4) π : JEτ → JEν cofinally.

Proof: Let y ∈ JEν . If y ∈ JEξ , ξ < ν, there is an X ∈ P(κ) ∩M such that
F (X) /∈ JEξ . Let X ∈ JEµ , µ < τ . Then:

F (X) = π(X) ∈ JEπ(µ).

Hence π(µ) > ξ and:
y ∈ JEπ(µ) = π(JEµ ).

QED (Lemma 3.3.5)
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Corollary 3.3.6. Let M = ⟨JEν , F ⟩. The statement ’M is a precursor’ is
uniformly Π2(M).

Proof: The conjunction of (a) – (e) is uniformly Π2(M) in the parameters
κ, λ. Let it have the form R(κ, λ), where R is Π2. It is evident that if R(κ, λ)
holds, then ⟨κ, λ⟩ is the unique pair of ordinals which is an element of F .
Hence the conjunction (a) – (e) is expressible by:∨

κ, λ⟨κ, λ⟩ ∈ F ∧
∧
κ, λ(⟨κ, λ⟩ ∈ F → R(κ, λ)).

QED (Corollary 3.3.6)

Definition 3.3.8. M = ⟨JEν , F ⟩ is a good precursor iff M is a precursor and
F satisfies the initial segment condition.

Corollary 3.3.7. Let M = ⟨JEν , F ⟩. The statement ’M is a good precursor
at κ’ is uniformly Π3(M).

Proof: Let M be a precursor. Then F satisfies the initial segment condition
iff in M we have, letting C =: CF :∧

η ∈ C
∨
F ′(F ′ is a function ∧ dom(F ) = P(κ))

∧
∧
Y,X(⟨Y,X⟩ ∈ F → ⟨Y ∩ η,X⟩ ∈ F ′)

This is Π3 since C is Π2. QED (Lemma 3.3.7)

Lemma 3.3.8. Let M = ⟨Jν , F ⟩ be a precursor at κ. Let τ = κ+M and
let ⟨JEν , π⟩ be the extension of JEτ by F . Then π and dom(π) are uniformly
∆1(M).

Proof: π is uniformly Σ1(M) in κ, λ since by the definition of π in the proof
of Lemma 3.3.5 we have:

y = π(x)↔
∨
f
∨
u
∨
X

∨
ξ
∨
Y (u is transitive ∧

f : κ
onto−→ u ∧ x = f(ξ) ∧X = {≺ α, β ≻ |f(α) ∈ f(β)}

∧Y = F (X) ∧ y = ΓY (ξ)).

Let φ(κ, λ, y, x) be the uniform Σ1 definition of π from κ, λ. Then ⟨κ, λ⟩ is
the unique pair of ordinals such that ⟨κ, λ⟩ ∈ F . Hence:

y = π(x)↔
∨
κ, λ(⟨κ, λ⟩ ∈ F ∧M |= φ[κ, λ, y, x]).

Then π is uniformly Σ1(M). But dom(π) = JEτ ; hence:

y ∈ domπ ↔
∨
κ, λ(⟨κ, λ⟩ ∈ F ∧ y ∈ (JEκ+)

JE
λ )∧

κ, λ(⟨κ, λ⟩ ∈ F → y ∈ (JEκ+)
JE
λ ).
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Thus dom(π) is uniformly ∆1(M). But then

y = π(x)↔ (y ∈ dom(π)∧∧
y′ ∈M(y ̸= y′ → y′ ̸= π(x))).

Thus π is ∆1(M). QED (Lemma 3.3.8)

But then:

Corollary 3.3.9. Let σ :M →Σ1 M
′ where M = ⟨JEν , F ⟩ and M ′ = ⟨JE′

ν′ F
′⟩

are precursors. Let ⟨JEν , π⟩ be the extension of JEτ by F and ⟨JE′
ν′ , π

′⟩ be the
extension of JE′

τ ′ by F . Then:

σπ(x) ≃ π′σ(x) for x ∈M.

The satisfaction relation for an amenable structure ⟨JEν , B⟩ is uniformly
∆1(M) in the parameter ⟨JEν , B⟩ whenever M ∋ ⟨JEν , B⟩ is transitive and
rudimentarily closed.

(To see this note that, letting E = E ∩ JEν , the structure ⟨M,E,B⟩ is rud
closed. Hence its Σ0–satisfaction is ∆1(⟨M,E,B⟩) or in other words ∆1(M)
in E,B. But if φ is any formula in the language of ⟨JEν , B⟩, we can convert
it to a Σ0 formula φ in the language of ⟨M,E,B⟩ simply by bounding all
quantifiers by a new variable v. Then:

⟨JEν , B⟩ |= φ[x⃗]↔ ⟨M,E,B⟩ |= φ[Jν [E], x⃗]

for all x1, . . . , xn ∈ JEν .)

It is apparent from §2.5 that for each n there is a statement φn such that

⟨JEν , B⟩ is n–sound ↔ ⟨JEν , B⟩ |= φn.

Moreover the sequence ⟨φn|n < ω⟩ is recursive. Thus

Lemma 3.3.10. "⟨JEν , B⟩ is sound" is uniformly Π1(M) in ⟨JEν , B⟩ for all
transitive rud closed M ∋ ⟨Jν , B⟩.

Using this we get:

Lemma 3.3.11. Let JEν be acceptable. The statement ’⟨JEν , ∅⟩ is a premouse’
is uniformly Π1(J

E
ν ).

Proof: ⟨JEν , ∅⟩ is a premouse iff the following hold in JEν :

•
∧
x ∈ E

∨
ν, z ∈ TC(x)(x = ⟨z, ν⟩ ∧ ν ∈ Lm∧z ∈ JEν )
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•
∧
ν(ν ∈ Lm→ ⟨JEν , E′′{ν}⟩ is sound)

•
∧
ν(E′′{ν} ≠ ∅ → ⟨JEν , E′′{v}⟩ is a good precursor).

QED (Lemma 3.3.11)

An immediate corollary is:

Corollary 3.3.12. Let M,M be acceptable. Then:

• If π :M →Σ1 M and M is a passive premouse, then so is M .

• If π :M →Σ0 M and M is a passive premouse, then so is M .

The property of being an active premouse will be harder to preserve. ⟨JEν , F ⟩
is an active premouse iff ⟨JEν , ∅ is a passive premouse and ⟨JEν , F ⟩ is a good
precursor. Hence:

Lemma 3.3.13. ’⟨JEν , F ⟩ is an active premouse’ is uniformly Π3(⟨JEν , F ⟩).

Note. This uses that being acceptable is uniformly Π1(⟨JEν , F ⟩) when ν ∈
Lm∗.

An immediate, but not overly useful, corollary is:

Corollary 3.3.14. Let M,M , be J–models.

• If π :M →Σ3 M and M is an active premouse, then so is M .

• If π :M →Σ2 M and M is an active premouse, then so is M .

In order to get better preservation lemmas, we must think about the type of
F in ⟨JEν , F ⟩. F is of type 1 iff CF = ∅. By Corollary 3.3.4 the condition
CF = ∅ is Π2(⟨Jν , F ⟩) uniformly. Hence

Lemma 3.3.15. The statement ’M is an active premouse of type 1’ is uni-
formly Π2(M) for M = ⟨JEν , F ⟩.

Hence

Corollary 3.3.16. Let M,M be J–models.

• If π :M →Σ2 M and M is an active premouse of type 1, then so is M .

• If π :M →Σ1 M and M is an active premouse of type 1, then so is M .
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A more important theorem is this:

Lemma 3.3.17. Let M be an active premouse of type 1. Let M = ⟨JEν , F ⟩
where κ = crit(F ). Let G be a weakly amenable extender on M at κ̃, where
κ̃ < ρnM . Let ⟨M ′, σ⟩ be the Σ

(n)
0 extension of M by G. Then M ′ is an active

premouse of type 1.

Proof: We consider two cases:

Case 1 n = 0.

Claim 1 M ′ = ⟨JE′
ν′ , F

′⟩ is a precursor.

(1) F ′ is a function and dom(F ′) ⊂ P(κ), since these statements are
Π1 and σ is Σ1 preserving
For ξ < τ = κ+M set: π[ξ] = π ↾JEξ , π

′[ξ] = σ(π[ξ]), then

(2) π′[ξ] : JEσ(ξ) ≺ J
E
σπ(ξ),

since π[ξ] : JEξ ≺ JEπ(ξ).
Set: π′ =

⋃
ξ

π′[ξ]. Since supπ′′τ = ν and supσ′′ν = ν ′, we have

(3) σ : ⟨M,π⟩ →Σ0 ⟨M ′, π′⟩ cofinally.
(4) dom(π′) =

⋃
ξ<τ

τ(JEξ ) = JE
′

τ ′ ,

where τ ′ = σ(τ) = κ′+M
′
and κ′ = σ(κ). Hence

(5) π′ : JE′
τ ′ →Σ0 J

E′
ν′ cofinally.

(6) F ′ = π′ ↾P(κ′)
by (3) and:∧

X(X ∈ JEσ(ξ) ∩ P(κ′)→ ⟨π′(X), X⟩ ∈ F ′),

since the corresponding Π1 statement holds of ξ in M .

It follows easily that ⟨Jν′ [E′], π′⟩ is the extension of JEτ ′ by F ′.
QED (Claim 1)

Claim 2 F ′ is of type 1 (hence F ′ satisfies the initial segment condition).

Proof: Let ξ < λ′ = π′(κ′). Using Lemma 3.3.2 we show:

Claim ξ /∈ CF ′ .
Let ζ ∈ M be least such that σ(ζ) ≥ ζ. Since ζ /∈ CF , there is
f : κn → κ in M such that π(f)(α⃗) > ζ for some α1, . . . , αn < ζ. But
then σ(α1), . . . , σ(αn) < ξ and

π′(σ(f))(σ(α⃗)) = σ(π(f))(α⃗)) > σ(ζ) ≥ ξ.
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Hence ξ /∈ CF ′ . QED (Claim 2)

Thus JE′
ν′ is a premouse by Corollary 3.3.12 and M ′ is a good precursor

of type 1. Hence M ′ is a premouse of type 1. QED (Case 1)

Case 2 n > 1.
Then σ is Σ2–preserving by Lemma 3.2.12. Hence M ′ is a premouse
of type 1 by Corollary 3.3.16 QED (Corollary 3.3.17)

We now consider premice of type 2. M = ⟨JEν , F ⟩ is a premouse of
type 2 iff JEν is a premouse, M is a precursor and F |η ∈ JEν where
η = maxCF . (It then follows that F |µ = (F |η)|µ ∈ JEν whenever
µ ∈ CF .) The statement e = F |µ is uniformly Π1(M) in e, u, µ, since
it says:

e is a function ∧
∧
x ∈ P(κ) ∩Me(X) = F (X) ∩ µ.

But then the statement:

e = F |η ∧ η = maxCF

is Π2(M) in e, η, κ uniformly, since it says: e = F |η∧CF \η = ∅, where
CF is uniformly Π2(M). It then follows easily that:

Lemma 3.3.18. Let M = ⟨JEν , F ⟩, M = ⟨JE′
ν′ , F ⟩.

• If π : M →Σ2 M and M is a premouse of type 2, then so is M .
Moreover, π(maxCE) = maxCF .

• If π :M →Σ1 M, M is a premouse of type 2 and e = F |max(CF ) ∈
rng(π), thenM is a premouse of type 2 and π(maxCF ) = maxCF .

We also get:

Lemma 3.3.19. Let M be a premouse of type 2. Let G be a weakly
amenable extender on M at κ̃, where κ̃ < ρnM . Let ⟨M ′, σ⟩ be the Σ

(n)
0

extension of M by G. Then M ′ is a premouse of type 2. Moreover,
σ(maxCM ) = maxCM ′.

Proof: If n > 0, then σ is Σ2–preserving and the result follows by
Lemma 3.3.18. Now let n = 0. Let M = ⟨JEν , F ⟩ where F is an
extender at κ on JEτ (where τ = κ+M . Let M ′ = ⟨JE′

ν′ , F
′⟩). It

follows exactly as in Lemma 3.3.17 that JE′
ν′ is a premouse and M ′ is

a precursor. We must prove:

Claim F ′ is of type 2. Moreover, τ(maxCF ) = maxCF ′ .

Proof: Let η = maxCF , e = F |η. Then σ(e) = F ′|η′, since this is
a Π1 condition. But then CF ′ \ η′ = ∅ follows exactly as in Lemma
3.3.17, since CF \ η = ∅ and σ takes λ = F (κ) cofinally to λ′ = F ′(κ′).

QED (Lemma 3.3.19)
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We now turn to premice of type 3. One very important property of these
structures is:

Lemma 3.3.20. Let M = ⟨JEν , F ⟩ be a premouse of type 3. Let λ = F (κ)
where F is at κ. Then ρ1M = λ.

Proof:

(1) hM (λ) =M . Hence ρ1M ≤ λ.

Proof: Note that if X ∈ P(κ) ∩M , then X ∈ JEτ ⊂ hM (τ). Hence
F (X) ∈ hM (τ), since F is Σ1(M). Hence ξ ∈ hM (τ) for a ξ such that
F (X) ∈ JEξ . Hence On∩hM (τ) is cofinal in ν. Let xinM such that
x ∈ JEξ for a ξ ∈ hM (τ). Then there is f ∈ hM (τ) such that f : λ onto−→
JEξ . But them x = f(α) for an α < λ. Hence x ∈ f ′′λ ⊂ hM (λ). QED
(1)

(2) Let D ⊂ λ be Σ1(M). Then ⟨JEλ , D⟩ is amenable. (Hence ρ1M ≥ λ.)

Proof: By (1) D is Σ1(M) in a parameter α < λ. Let η ∈ CF such
that η > α. Then E = F |η ∈M . Since JEλ is a ZFC− model, we have:

⟨JEν , F ⟩ ∈ JEλ , where π : JEτ →F J
E
ν .

We then observe that there is a unique σ : JEν ≺ JEν defined by

σ(π(f)(β)) = π(f)(β) for

f ∈ JEτ , f : κ→ JEτ , β < η.

Moreover, σ ↾η = id and σ is cofinal.

(To see that this definition works, let β1, . . . , βn < η, f1, . . . , fn ∈ τ
such that fi : κ→ JEτ for i = 1, . . . , n. Set:

X = {≺ ξ1, . . . , ξn ≻ |JEτ |= φ[f1(ξ1), . . . , fn(ξn)]}.

Then:

JEν |= φ[π(f⃗(β⃗)] ↔ ≺ β⃗ ≻∈ F (X) = η ∩ F (X)

↔ JEν |= φ[π(f⃗)(β⃗)].)

But σ(⟨F (Z), Z⟩) = ⟨F (Z), Z⟩ for Z ∈ P(κ) ∩M . Hence:

σ(F ∩ U) = σ′′(F ∩ U) = F ∩ U.

By this we get:

σ : ⟨JEν , F ⟩ →Σ0 ⟨JEν , F ⟩ cofinally.

Thus D = D ∩ η is Σ1(⟨JEν , F ⟩) in α by the same definition as D over
⟨JEν , F ⟩. Hence D ∈ JEλ , since ⟨JEν , F ⟩ ∈ JEν . QED (Lemma 3.3.20)
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Note that the argument of (1) holds for arbitrary premice. Hence:

Lemma 3.3.21. Let M⟨JEγ , F ⟩ be an active premouse. Then hM (λ) = M
(hence ρ1M ≤ λ).

If M = ⟨JEν , F ⟩ is a precursor, then "F is of type 3" is uniformly Π3(M) in
κ, since it is the conjunction:∧

ξ < λ
∨
η < λ · η ∈ CF ∧

∧
ξ < η ∈ CF

∨
e ∈ JEλ e = F |η.

Hence:

Lemma 3.3.22. (a) Let π : M −→Σ3 M where M is a premouse of type
3. Then so is M .

(b) Let π :M −→Σ2 M where M is a premouse of type 3. Then so is M .

We also get:

Lemma 3.3.23. Let M = ⟨JEν , F ⟩ be a premouse of type 3. Let G be a
weakly amenable extender at κ̃ on M . Let κ̃ < ρnM and let ⟨M ′, σ⟩ be the
Σ
(n)
0 extension of M by G. Then M ′ is a premouse of type 3.

Proof: Let M ′ = ⟨JE′
ν′ , F

′⟩. We consider three cases:

Case 1 n = 0.

Exactly as in the previous lemmas we get: JE′
ν′ is a premouse and M ′

is a precursor. We must show:

Claim F is of type 3.
We know that σ takes λ cofinally to λ′. Let η < λ, η ∈ CF . Let
e = F |η ∈ M . Then σ(η) ∈ CF ′ and σ(e) = F ′|σ(η), since these
statements are Π1. Hence if µ < λ′ there is η ∈ CF such that µ ≤ σ(η)
and

F ′|µ = (F ′|σ(η))|µ ∈ JE′
λ′ .

QED (Case 1)

Case 2 n = 1.

Then σ is Σ2–preserving. Hence JE′
ν′ is a premouse and M ′ is a precur-

sor. Let ⟨M,π⟩ be the extension of JEτ by F and ⟨M ′, π′⟩ the extension
of JE′

τ ′ by F ′, where τ = κ+M , τ ′ = σ(τ) = κ′+M
′
.

We know that:
σ ↾JEλ : JEλ →G J

E
ρ′ ,
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where λ = π(κ) = ρ1M and ρ′ = supσ”λ = ρ1M ′ . Since τ is a successor
cardinal in JEλ , we have τ ̸= crit(G). But then τ ′ = supσ”τ by Lemma
3.2.6 of §3.2. π takes τ cofinally to ν and π′ takes τ ′ cofinally to ν ′.
Using this we see:

(1) ν ′ = supσ”ν.

Proof: Let ξ < ν ′. Let ζ < τ ′ such that π′(ζ) > ξ. Let η < τ such
that σ(η) > ζ. By Corollary 3.3.9 we have:

σπ(η) = π′σ(η) > ξ.

QED (1)

But then it suffices to show:

Claim σ :M →G M
′,

since then we can argue as in Case 1.

Let x ∈ M ′. Let κ̃ = crit(π). We must show that x = σ(f)(ξ) for an
f ∈ M such that f : κ → M . Since M ′ is the Σ

(1)
0 –ultrapower, we

know:
x = σ(f)(ξ), where f : κ→M is Σ1(M).

Choosing a functionally absolute definition for f we have:

v = f(w)↔
∨
yA(y, v, w, p)

where A is Σ0(M) and p ∈M . By functional absoluteness we have:

v = σ(f)(w)↔
∨
yA′(η, v, w, σ(p))

where A′ is Σ0(M
′) by the same definition. Let A′(y, x, ξ, σ(p)). Since

σ takes M cofinally to M ′ there is a ∈ M such that y, x ∈ σ(a) and
κ̃ ⊂ a. Set:

g(µ) =

{
x if x ∈ a ∧

∨
y ∈ aA(y, x, µ, p)

0 if no such x exists.

Then g ∈M, g : κ̃→M and x = σ(g)(ξ). QED (Case 2)

Case 3 n > 1.

Then ρ1M ′ = τ(ρ1M ) = λ′ and σ is Σ
(1)
2 –preserving by Lemma 3.2.12.

But CF is now Σ
(1)
0 (M) and e = F |η is Σ

(1)
0 (M) for e, η ∈ JEλ . The

statements:∧
ξ < λ

∨
η < λ(ξ < η ∈ CF ,

∧
η ∈ CF (

∨
e ∈ JEλ e = F |η)

are now Π
(1)
2 (M). Hence the corresponding statements hold in M ′.

Hence CF ′ is unbounded in λ′ and F ′|η ∈ JE′
λ′ for η ∈ CF ′ . Then M ′

is of type 3. QED (Lemma 3.3.23)
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Combining lemmas 3.3.12, 3.3.14, 3.3.19 and 3.3.23 we have:

Theorem 3.3.24. Let M be a premouse. Let G be an extender at κ̃ on M

where ρnM > κ̃. Let ⟨M ′, σ⟩ be the Σ
(n)
0 extension of M by G. Then:

• M ′ is a premouse

• If M is active then M ′ is active and of the same type

• If M is of type 2, then

σ(maxCM ) = maxCM ′ .

In order to show that premousehood is preserved under iteration we shall
also need:

Theorem 3.3.25. Let M0 be a premouse. Let πij :Mi →Σ1 Mj for i ≤ j ≤
η, where:

• πi,i+1 :Mi →(ni)
Gi

Mi+1, where Gi is an extender at κ̃i on Gi(i < η)

• Mi is transitive and the πij commate

• If λ ≤ η is a limit ordinal, then Mλ, ⟨πi|i < λ⟩ is the transitivized direct
limit of ⟨Mi|i < λ⟩, ⟨πij |i ≤ j < λ⟩.

Then:

• Mη is a premouse

• If M0 is active, then Mη is active and of the same type as M0

• If M0 is of type 2, then π0η(CM0) = CM ′
η
.

Proof: We proceed by induction on η. Thus the assertion holds at every
i < η. The case η = 0 is trivial, as is η = µ + 1 by Theorem 3.3.24. Hence
we assume that η is a limit ordinal. We make the following observation:

(1) Let φ be a Π3 formula. Let i < η, x1, . . . , xn ∈ Mi such that Mj |=
φ[πij(x⃗)] for i ≤ j < η. Then Mη |= φ[πiη(x⃗)].

Proof: Let y ∈ Mη. Pick j such that i ≤ j < η and y = πiη(y). Then
Mj |= Ψ[y, πij(x⃗)], where φ =

∧
vΨ. Hence Mj |= χ[z, x, πij(x⃗)] for some z,
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where Ψ =
∨
uχ. Hence Mη |= χ[z, y, πiη(x⃗)] where z = πiη(z), since πjη is

Σ1–preserving. QED (1)

Each Mi is a premouse for i < η. But this condition is uniformly Π3(Mi) by
Lemma 3.3.13. Hence Mη is a premouse. If M0 is of type 1, then CMi = ∅
for i < η. But this condition is uniformly Π2(Mi); Hence Mη is of type 1.

Now let M0 be of type 2 and let µ0 = maxCM0 . Then Mi is of type 2
and µi = maxCMi for i < η, where µi = Π0i(µ0). Let e0 = F0|µ0 where
M0 = ⟨JE0

ν0 , F0⟩. Then ei = Fi|µi for i < η, since e = F |µ is a Π1 condition.
Thus for i < ρ each Mi satisfies the Π2 condition in ei, µi:

e0 = Fi|µi ∧ CFi \ µi = ∅.

Hence Mη satisfies the corresponding condition. Hence Mη is of type 2
and µη = max(Cη). Clearly CMi = CFi ∪ {maxCMi} for i ≤ η. Hence
πij(CMi) = CMi .

Now assume that M0 is of type 3. Then each Mi(i < η) satisfies the Π3

condition: ∧
ξ < λi

∨
ζ < λi(ξ < ζ ∈ CMi),∧

ζ ∈ CMi

∨
e ∈ JEi

λi
e = Fi|ζ.

But then Mη satisfies the corresponding conditions. Hence Mη is of type 3.
QED (Theorem 3.3.25)

3.4 Iterating premice

3.4.1 Introduction

We have stated that a mouse will be an iterable premouse, but left the mean-
ing of the term "iterable" and "iteration" vague. Iteration turns out, indeed,
to be a rather complex notion. Let us begin with the simplest example. most
logicians are familiar with the iteration of a structure ⟨M,U⟩, where M is,
say, a transitive ZFC− model and U ∈M is a normal ultrafilter on P(U)∩M .
Set: M0 = M,U0 = U . Applying U0 to M0 gives the ultraproduct ⟨M1, U1⟩
and the extension Π0,1 : ⟨M0, U0⟩ → ⟨M1, U1⟩ by U0. We then repeat the
process at ⟨M1, U1⟩ to get ⟨M2, U2⟩ etc. After 1 + µ repetitions we get an
iteration of length µ, consisting of a sequence ⟨⟨Mi, Ui⟩|i < µ⟩ of models and
a commutative sequence ⟨πij |i ≤ j < µ⟩ of iteration maps πij : Mi → Mj .
These sequences are characterized by the conditions:

• πi,i+1 : ⟨Mi, Ui⟩ → ⟨Mi+1, Ui⟩ is the extension by Ui.
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• The πij commute — i.e. πij = id and πijπhi = πhj for h ≤ i ≤ j < µ.

• If λ < µ is a limit ordinal, then M, ⟨πiλ|i < λ⟩ is the direct limit of:

⟨Mi|i < λ⟩, ⟨Mij |i ≤ j < λ⟩.

Now suppose we are given a structure ⟨M,S⟩ where S = {⟨X,κ⟩|X ∈ Uκ}
and for each κ ∈ M , eiter Uκ = ∅ or else κ is a measurable cardinal in M
and Uκ ∈M is a normal ultrafilter on P(κ)∧M . An iteration of ⟨M,S⟩ then
consists of sequences ⟨⟨Mi, Si⟩|i < µ⟩, ⟨Mij |i ≤ j < µ⟩ and ⟨κi|i+ 1 < µ⟩.

The first condition above is then replaced by:

πi,i+1 : ⟨Mi, Si⟩ → ⟨Mi+1, Si+1⟩ is the extension by the ultrafilter

Ui = {X|⟨X,κi⟩ ∈ Si}

The other conditions remain unchanged. κi|i+1 ≤ µ⟩ is called the sequence
of indices. κi must always be so chosen that Ui is an ultrafilter.

Note. Since we are allowed considerable leeway in the choice of the index
κi, the purist may question whether the word "iteration" is still appropriate.
In fact, the mathematical meaning of this word has rapidly changed as the
structures to which it is applied have grown more complex.

An iteration is called normal iff the indices are increasing — i.e. κi < κj for
i < j < µ.

We now attempt to apply these ideas to premice. Let M be a premouse. An
iteration of length µ will yield a sequence ⟨Mi|i < µ⟩ of premice. In passing
from Mi to Mi+1 we apply any of the extenders EMν such that Mi||ν =
⟨JEν , Eν⟩ is active. v = νi is then the i–th index. (It would be ambiguous
to regard κi = crit(Eνi) as the index, since Mi might have many extenders
with this critical point.) In a normal iteration we have that, whenever i < j,
then:

JE
Mi

νi = JE
Mj

νi and νi is a cardinal in Mj .

(In fact, νi = λ+
Mj

i , where λi = Eνi(κi) is inaccessible in Mj .) This follows
easily by induction on j. It was originally envisaged that Eν0 would be
applied directly toMi to getMi+1. It turns out, however, that such iterations
are unsuitable for may purposes. (In particular, they are unsuited to use in
comparison iteration, which we shall describe below.) The problem is that
κi = crit(Eνi) could be much smaller than λi, where λi = Eνi(κi) is the
largest cardinal in the model JEMi

νi . In particular, we might have κi < λh for
an h < i. Since λh is an inaccessible cardinal inMi, it follows by acceptability
that:

P(κ) ∩Mi = P(κ) ∩ JE
Mh

λh
⊂Mh.
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Hence it should be possible to apply Eνi to Mh rather than Mi. It turns out
that it is most effective to apply Eνi to the smalles place possible: we apply
it to MT (i+1), where

T (i+ 1) =: the least h such that either h = i

or h < i and κi < λh.

This should give us
πh,i+1 :Mh →Mi+1.

Here, however, we must deal with a second problem, which can arise even
when T (i + 1) = i. We know that Eνi is an extender at κi on JEνi . Then

P(κi) ∩ JE
Mi

νi = P(κi) ∩ JE
Mi

τi = P(κi) ∩ JE
Mh

τi , where τi = κ
+JE

νi
i . But Mh

might contain subsets of κi which do not lie in JEτi (hence τi is not a cardinal
in Mh, by acceptability). Eνi is then only a partial function on Mh and
cannot be applied to Mh. The resolution of this difficulty is to apply Eνi to
the largest possible segment of Mh. We set:

M∗
i =: Mh||ηh, where ηi ≤ OnMh

is maximal such that

τh is a cardinal in Mh||η.

By acceptability, P(κi) ∩M∗
i = P(κi) ∩ JEτi and ρωM∗

i
≤ κi if ηi < OnMh

.

We then say that Mh drops (or truncates) to M∗
i , if Mh ̸= M∗

i . i + 1 is
then called a drop point (or truncation point). πh,i+1 : M∗

i → Mi+1 is then
a partial map of Mh to Mi+1

This means that iteration is no longer a linear process. Previously πij was
defined whenever i ≤ j < µ, µ being the length of the iteration. Now it is
defined only when i is less than or equal to j in a tree T on µ. (We write
i ≤T j for i = j ∨ iTj .) 0 is the unique minimal point of T . T (i + 1) is the
unique T–predecessor of i+ 1. The πij are partial maps and we again have:

πij · πhi = πhj for h ≤T i ≤T j.

We will always have: iTj → i < j, but the converse may not hold. If µ = ω,
these conditions completely define T ⊂ ω2. But how do we then extend
the iteration to an iteration of length ω + 1? Previously we simply took a
transitivized direct limit of ⟨Mi|i < ω⟩, ⟨πij |i ≤ j < ω⟩. Now we must first
find a branch b in T which is cofinal in ω (i.e. sup b = ω). We also require
that b have at most finitely may drop points. Pick any i ∈ b such that b\i has
no drop point. Then πhj : Mh → Mj is a total map on Mh for i≤Th ≤

T i

∈ b.

Form the direct limit:
Mb, ⟨πhi |i ≤ h ∈ b⟩
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of:
⟨Mh|i ≤ h ∈ b⟩, ⟨πhj |i ≤T h ≤ j ∈ b⟩.

If Mb is well founded, we call b a well founded branch and take Mb are being
transitive. We can then continue the iteration by setting:

Mω =:Mb;hTω ↔: h ∈ b for h < ω.

πjω is then defined for i ≤T j <T ω. If hT i, we set πhω =: πjω · πhi.

The same procedure is applied at all limit points λ. We then have:

• λ is a limit point of T

• T ′′{λ} is cofinal in λ

• T ′′{λ} contains at most finitely many truncation points.

By now we have almost given a virtual definition of what is meant by a
"normal iteration of a premouse". The only point left vague is what we
mean by "applying" the extender Eνi to M∗

i . We shall, in fact, take the
Σ
(n)
0 –ultrapower:

π :M∗
i →

(n)
Eνi

Mi+1,

where n ≤ ω is maximal such that κi < ρnM∗
i
.

3.4.2 Normal iteration

We are now ready to write out the formal definition of "normal iteration".
We shall employ the following notational devices:

Definition 3.4.1. Let T be a tree. We set:

• i <T j ↔: ◦Tj

• i ≤T j ↔: i = j ∨ iTj

• [i, j]T =: {h|i ≤T h ≤T j} (similarly for [i, j]T , [i, j]T , [i, j]T )

• T (i) =: The immediate T–predecessor of i (if it exists).

We can now define:
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Definition 3.4.2. Let M be a premouse. By a normal iteration of M of
length µ we mean:

⟨⟨Mi|i < µ⟩, ⟨νi|i+ 1 < µ⟩, ⟨πij |i ≤T j⟩, T ⟩

where.

(a) T is a tree on µ such that iTj → j < j

(b) Mi is a premouse for i < µ

(c) νi < νj if i < j. Moreover Mi||νi = ⟨JEνi , Eνi⟩ with Eνi ̸= ∅. (We set:
κi =: crit(Eνi), τi =: κ+i J

E
νi , λi =: Eνi(κi) = the largest cardinal in

JEνi .)

(d) Let h be least such that h = i or h < i and κi < λh. Then h = T (i+1)

and JE
Mh

τi+1 = JE
Mi

τi+1 .

(e) πij is a partial map of Mi to Mj . Moreover πij ◦ πhi = πhj for h ≤T
i ≤T j.

(f) Let h = T (i+1). Set: M∗
i =Mh||ηi, where ηi is maximal such that τi

is a cardinal in Mh||ηi. Then πh,i+1 :M
∗
i →

(n)

E
Mi
νi

Mi+1, where n ≤ ω is

maximal such that κi < ρnM∗
i
. (We call i+1 a drop point or truncation

point iff M∗
i ̸=Mh)

(g) If k ≤j and (i, j]T has no drop point, then πij : Mi → Mj is a total
function on Mi.

(h) Let λ be a limit ordinal. Then T ′′{λ} is club in λ and contains at most
finitely many drop points. Moreover, if iTλ and (i, λ)T is free of drops,
then:

Mλ, ⟨πjλ|i ≤T j <T λ⟩

is the transitivized direct limit of:

⟨Mj |i ≤T j <T λ⟩, ⟨πhj |i ≤T h ≤T j <T λ⟩.

This completes the definition.

Lemma 3.4.1. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ be a normal iteration. Then

(a) JEMi

νi = JE
Mi+1

νi

(b) In Mi+1, λi is inaccessible and νi = λ+i .
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Proof: τi is a cardinal in M∗
i . Since κi is inaccessible in JE

Mi

τi and is the
largest cardinal in JEMi

τi , it follows by acceptability that:

τi = κ+i and κi is inaccessible in M∗
i

F = EMi
νi is a full extender of length λi with baseH = |JEMi

τi | and extension
⟨π,H ′⟩, where H ′ = |JEMi

νi |. By acceptability we have:

P(κi) ∩M∗
i = P(κi) ∩ JE

Mi

τi

Hence F is an extender on M∗
i (and the condition (f) makes sense). But

then ⟨Mi+1, πi,i+1⟩ is the Σ
(n)
i -liftup of ⟨M∗

i , π⟩, where n is maximal such
that κi < ρnM∗

i
. Hence:

πi,i+1(τi) = supπ”τi = νi and πi,i+1(κi) = λi

Hence (b) holds, since the corresponding statement is function of κi, τi in
M∗
i .

To see that (a) holds, note that each element of H ′ has the form π(f)(α),
where α < λ0 and f ∈ H is a function on κ. But then:

π(f)(α) ∈ EMi ←→ π(f)(α) ∈ EMi+1 ←→ α ∈ π(X)

where X = {ξ < κi : f(ξ) ∈ EMi}. Hence

EMi ∩H ′ = EMi+1 ∩H i and JE
Mi

νi = JE
Mi+1

νi

QED(Lemma 3.4.1)

Using these facts we prove:

Lemma 3.4.2. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration. Let
h < i. Then

(a) JE
Mh

νh
= JE

Mi

νh

(b) λh is inaccessible in Mi and νh = λ+h in Mi

(c) Let h < j <T i. Then λh ≤ crit(πj,i) < λi.

(d) Let h <T i. πh,i is a total function on Mh iff [H, i]T is drop free.

The proof is by induction on i. We leave the details to the reader.

Note. h < i implies νh < λi, since νh < νi is a successor cardinal in Mi;
hence νh /∈ [λi, νi).
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Definition 3.4.3. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration.

• lh(I) denotes the length of I

• If η ≤ lh(I) we set:

I|η =: ⟨⟨Mi|i < η⟩, ⟨νi|i+ 1 < η⟩, ⟨πij |i ≤T i < η⟩, T ∩ η2⟩.

Definition 3.4.4. Let I = ⟨⟨Mi⟩, . . . , T ⟩ be a normal iteration of limit
length η. By a well founded cofinal branch in I we mean a branch b in T
such that

• sup b = η

• b has at most finitely many truncation points

• Let i ∈ b such that b \ i is truncation free. Then

⟨Mj |j ∈ b⟩, ⟨πhi|i ≤ h ≤ j in b⟩

has a well founded direct limit.

We leave it to the reader to prove:

Lemma 3.4.3. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration of limit
length η. Let b be a well founded cofinal branch in I. I has a unique extension
I ′ of length η+1 such that I ′|η = I and T ′′′{λ} = b. (Moreover, if i ∈ b and
b \ i is drop free then:

M ′
η, ⟨π′h,η|h ∈ b \ i⟩

is the transitivized direct limit of

⟨Mh|h ∈ b \ i⟩, ⟨πh,j |h ∈ b \ i⟩.

Note. We use Theorem 3.3.25 to show that M ′
η is a premouse.

Note. It will be easier to talk about such limits if we have a notion of direct
limit which can be applied to directed systems of partial maps. This could be
defined quite generally, but the following version suffices for our purposes:
Let S = ⟨S,<⟩ be a linear ordering. Let Ai be a model and let πij be a
partial injection of Ai to Aj for i ≤ j in S. Assume that the maps commute
(i.e. πijπκi = πκj) and that for sufficiently large i ∈ S we have:

πij is a total map on A8 for all j ≥ i in I.
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Let S′ be the set of such i. We call:

A, ⟨πi|i ∈ S⟩

a direct limit of:
⟨Ai|i ∈ S⟩, ⟨πij |i ≤ j in S⟩

iff:
A, ⟨πi|i ∈ S′⟩

in a direct limit of:
⟨Ai|i ∈ S′⟩, ⟨πij |i ≤ j in S′⟩

and πh is defined by: πh = πiπhi for h /∈ S′
1i ∈ S.

In §3.2 we defined N to be a Σ∗–ultrapower of M by F with Σ∗–extension
π (in symbols π : M →∗

F N) iff F is close to M and π : M →(n)
F N where

n ≤ ω is maximal such that crit(F ) < ρnM . Theorem 3.2.17 said that in this
case π is Σ∗–preserving. We shall now show that in a normal iteration EMi

νi
is always close to M∗

i . In order to utilize the full strength of this fact, we
shall formulate it not only for normal iteration, but also for potential normal
iteration in the following sense:

Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration of length i + 1. If we
attempt to extend I to an I ′ of length i + 2 by appointing the next νi, we
call this attempt a potential normal iteration. The formal definition is:

Definition 3.4.5. A potential normal iteration of length i+2 is a structure

T′ = ⟨⟨Mj |j ≤ i⟩, ⟨νj |j ≤ i⟩, ⟨πij |i ≤ j ≤ i⟩, T ′⟩

where:

• I = ⟨⟨Mj⟩, ⟨νj |j < i⟩, ⟨πij⟩, T ⟩ is a normal iteration of length i + 1,
where T = T ′ ∩ (i+ 1)2

• EMi
νi ̸= ∅ and νi > νj for j < i

• hT ′j ↔ (hTj ∨ (h ≤T ξ ∧ j = i)) where:

ξ = T ′(i+ 1) =: the least ξ such that κi < λξ.

If I ′ is a potential iteration and ξ = T ′(i + 1), we define M∗
i = MξU is in

the usual way, (but we do not yet know whether M∗
i is extendable by EMi

νi ).
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Note. (a)-(d) in the definition of normal iteration continue to hold. ((d) is
trivial if ξ = i. If ξ < i, then τi < λξ and JE

Mξ

λξ
= JE

Mi

λξ
). But then M∗

i is
defined and τi ∈ M∗

i is a cardinal in M∗
i . Let n ≤ ω be maximal such that

κi < ρnM∗
i
. It is easily seen that, if the Σ

(n)
0 extension:

π′ :M∗
i −→

(n)

EMiνi

M ′

exists, we can turn I ′ into a normal iteration of length i+ 2 by setting:

Mi+1 =M ′, πξ,i+1 = π′

We now prove a basic fact about normal iteration:

Theorem 3.4.4. Let I be a potential normal iteration of length i + 2. Let
ξ = T (i+ 1). Then EMi

νi is close to M∗
i .

Before proving this we note the obvious corollary:

Corollary 3.4.5. Let I be a normal iteration. If h = T (i+ 1) in I, then:

πh,i+1 :M
∗
i →∗

Eνi
Mi.

Lemma 3.4.6. Let I be a normal iteration. Let h = T (i + 1), i + 1 ≤T j,
where (i+ 1, j]T has no truncation point. Then:

πh,j :M
∗
i −→Σ∗ Mj strongly.

In particular πh,j”PnM∗
i
⊂ PnMj

for ρn+1 = ρω in M∗
i .

Proof. By induction on j using Lemma 3.2.26, Lemma 3.2.27 and Lemma
3.2.28.

QED(Lemma 3.4.6)

We shall derive Theorem 3.4.4 from an even stronger statement:

Lemma 3.4.7. Let I be a potential normal iteration of length i+ 2. Then

P(τi) ∩ Σ1(Mi||νi) ⊂ Σ1(M
∗
i ).

We first show that Lemma 3.4.7 implies theorem 3.4.4. Since F = Eνi is
weakly amenable, we need only show that Fα ∈ Σ1(M

∗
i ) for α < λi, where:

Fα = {x ⊂ κi|x ∈Mi||νi ∧ α ∈ F (x)}.
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Let k ∈Mi||νi map τi onto JEτi . Then k ∈M∗
i , since either i = T (i+ 1) and

M∗ ⊃Mi||νi, or else h = T (i+ 1) < i, whence follows: k ∈ JEMi

λh
= JE

M∗
i

λh
⊂

M∗
i . Set:

F̃α = {ξ < τi|k(ξ) ∈ Fα}.

Then F̃α ⊂ P(τi) is Σ1(M
∗
i ) by Lemma 3.4.7. Hence Fα = k′′F̃α ∈ Σ1(M

∗
i ).

QED

We now prove Lemma 3.4.7. Suppose not. Let I be a counterexample of
length i+ 2, where i is chosen minimally. Let h = T (i+ 1). Then:

(1) h < i

Proof: Suppose not. Then M∗
i = Mi||µ where µ ≥ ν. Hence

Σ1(Mi||νi) ⊂ Σ1(M
∗
i ). Contradiction!

(2) νi = OnMi and ρ1Mi
≤ τi.

Proof: Suppose not. Let A ⊂ τi be Σ1(Mi||νi). Then A ∈ P(τi)∧Mi ⊂
JE

Mi

λn
, since λh > τi is inaccessible in ???. But JEMi

λn
= JE

Mi

λn
⊂ M∗

i .
Contradiction!

(3) i is not a limit ordinal.

Proof: Suppose not. Then sup{crit(πli)(<
T
i} = sup

l<i
λl, so we can pick

L <
T
i such that crit(πl,i) > λh > τi and πl,i is a total function on

Ml. Then πl,i : Ml →Σ1 Mi, where Mi = ⟨JEi
νi , F ⟩, where F ̸= ∅.

Hence Ml = ⟨JEν , F ⟩ where F ̸= ∅. Let A ⊂ τi be Σ1(Mi) such
that A /∈ Σ1(M

∗
i ). We can assume l to be chosen large enough that

p ∈ rng(πli), where A is Σ1(Mi) in the parameter p. Thus A ∈ Σ1(Ml).
Clearly ν > νj for all j < l, since νj ∈Ml = ⟨JFν , F ).

Extend I|l + 1 to a potential iteration I ′ of cf length l + 2 by setting
νl = ν. Since crit(πl,i) > Ii, it follows easily that τ ′l = τi, κ

′
l = κi,

where τl, κ′l are defined in the usual way. But then M∗
i = (M ′

l )
∗ and

A ∈ Σ1(M
∗
i ) by the minimality of i. Contradiction! QED (3)

Now let i = j+1, ξ = T (i). Since πξ,i :M∗
j →Σ1 Mi = ⟨JEνi , Eν⟩ where

Eνi ̸= ∅i we have:

(4) M∗
j = ⟨JEν , Eν⟩ where Eν ̸= ∅.

(5) τi < κj

Proof: τi < λj since τi = κ+Mi
i and κi < λh ≤ λj , where λj

is inaccessible in Mi. But obviously κi, τi ∈ rng(πξ,i) by (4) where
[κj , λj) ∩ rng(πξi) = ∅. QED (5)
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(6) πξi :M∗
j →Eνj

Mi is a Σ0 ultrapower.

Proof: Suppose not. Then κj < ρ1M∗
j
. Hence πξ,i is Σ

(1)
0 –preserving.

Hence πξi′′ρ1M∗
i
⊂ ρ1Mi

. Hence τi = πξi(τj) < ρ1Mi
, contradicting (2).

QED (6)

But then:

(7) P(τi) ∩ Σ1(Mi) ⊂ P(τi) ∩ Σ1(M
∗
j ).

Proof: Let A ⊂ τi be Σ1(Mi) in the parameter p. Let p = πξi(f)(α),
where f : κi →M∗

i , f ∈M∗
i , and λ < λj . Then

A(ξ)↔
∨
xA′(ζ, x, p)

where A′ is Σ0(Mi). Let A′ be Σ0(M
∗
j ) by the same Σ0 definition.

Then, since πξi takes M∗
j cofinally to Mi by (6), we have

A(ζ)↔
∨
u ∈M∗

j

∨
x ∈ πξ,i(u)A′(ζ, x, p).

By the minimality of i we know that (Eνj )α ∈ Σ1(M
∗
j ) for α < λj .

But then:

A(ζ)↔
∨
u ∈ m∗

j{γ < κj |A
′
(ζ, x, f(γ)} ∈ (Eνi)α.

Hence A is Σ1(M
∗
j ). QED (7)

Now extend I|ξ + 1 to a potential iteration I ′ of length ξ + 2 by setting
ν ′ξ = ν, where M∗

j = Mξ||ν = ⟨JEν , Eν⟩. Then κi = κ′ξ and τi = τ ′ξ, since
πξi ↾ κj = id. Hence h = T (i + 1) = T ′(ξ + 1) and M∗

i = (M∗
ξ )

′. By the
minimal choice of i we conclude

P(τi) ∩ Σ1(M
∗
j ) ⊂ Σ1(M

∗
i ).

Hence P(τi)∩Σ1(Mi) ⊂ Σ(M
∗
i ) by (7). Contradiction! QED (Lemma 3.4.7)

3.4.3 Padded iterations

Normal iterations are often used to "compare" two premice M and M ′. The
comparison iteration or coiteration consists of a pair ⟨I, I ′⟩ of iteration I ofM
and I ′ of M ′. When we have reached Mi,M

′
i , we proceed as follows: We look

for the least point of difference — i.e. the least ν such that Mi||ν ̸= M ′
i ||ν.

Then JE
Mi

ν = JE
M′

i

ν and EMi
ν ̸= E

M ′
i

ν . Then at least one of EMi
ν , E

M ′
i

ν is
an extender. If both are extenders, we continue on the I–side with the
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index νi = ν. However, if, say, EMi
ν is an extender and E

M ′
i

ν = ∅, we
iterate by νi = ν on the I–side and on the I ′–side do nothing. We then
call i an inactive point on the I ′–side and set: M ′

i+1 = M ′
i , π

′
i,i+1 = id with

i = T ′(i + 1) in I. Thus i is active on one or the other side and we have
achieved: Mi+1||ν = M ′

i+1||ν = ∅. (This is called "iterating away the least
point of difference".) At a limit λ we choose on either side a well founded
branch and continue with that.

If all goes well, we eventually reach a point i such that Mi = M ′
i or one of

Mi, M ′
i is a proper segment of the other.

In order to carry this out we need a slightly more flexible definition of "normal
iteration", which admits inactive points. We therefore define:

Definition 3.4.6. A padded normal iteration of length µ is a sequence:

I = ⟨⟨Mi|i < µ⟩, ⟨νi|i ∈ A⟩, ⟨πij |i≤T j⟩, T ⟩

such that:

(1) A ⊂ {i : j + 1 < µ} is called the set of active points in I.

(2) (a)-(h) of the previous definition hold, where (c) requires the assump-
tion: i, j ∈ A and (d), (f) require : i ∈ A.

(3) Let h < j < µ such that [h, j) ∩A = ∅. Then:

• h ≤T j,Mh =Mj , πhj = id.

It follows easily that if i ≤ j, then Ii = Ij if and only if [i, j) ∩ A = ∅. (To
see this, let h = min[i, j) ∩A. Then νh is a cardinal in Mj but not in Mi. )

Note. This gives a new way of potentially extending I of length i + 1.
Instead of appointing νi, we could set: i /∈ A,Mi+1 =Mi.

All previous results go through mutatis mutandis. We shall often use the
term "normal iteration" so as to include padded normal iteration. We then
call normal iterations in the sense of our previous definition strict . We can
turn a padded iteration into a strict iteration simply by omitting the inactive
points.

Conversely, we can turn a strict iteration into a padded iteration simply by
inserting inactive points. The relevant lemmas are:

Lemma 3.4.8. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a (possibly padded) normal
iteration of length µ. Let A be the set of active points in I. Set:

A′ =: {i : i ∈ A ∨ i+ 1 = µ}
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Let B ⊂ µ such that A′ ⊂ B. Let f be the monotone enumeration of B.
Then:

I ′ = ⟨⟨Mf(i)⟩, ⟨νf(i)⟩, ⟨πf(i),f(j)⟩, T ′⟩

is a normal iteration , where T ′ = {⟨i, j⟩ : f(i)Tf(j)}. (Moreover I ′ is strict
if B = A′).

Proof. (a)-(i) are satisfied by I ′.

Conversely:

Lemma 3.4.9. Let I, µ be as above. Let f : µ −→ µ′ be monotone such that
lub f”µ = µ′ if µ is a limit ordinal. Set: f(i) = lub f”i for i < µ. For i < µ′

set:

ξi = that ξ such that either f(ξ) ≤ i ≤ f(ξ), or else ξ + 1 = µ and f(ξ) < i.

Define:
I ′ = ⟨⟨M ′

i⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩

by:
M ′
i =Mξi , π

′
ij = πξi,ξj , T

′ = {⟨i, j⟩ : ξiTξj}

and:

ν ′i =

{
νξi if i = f(ξi)

otherwise undefined

Then I ′ is a normal iteration.

Proof: I ′ satisfies (a)-(i).

Note. Lemma 3.4.9 enables to recover I form the I ′ in Lemma 3.4.8.

We leave the proof to the reader.

3.4.4 n–iteration

In a normal iteration we always take Σ∗ ultrapowers. For technical reasons,
however, we may sometimes want to bound the degree of preservation of our
ultraproducts. In a 0–iteration for instance, we would use the ordinary Σ0

ultrapower to pass from Mi to Mi+1, as long as no h ≤T i+1 is a truncation
point. If, on the other hand, we have reached a truncation point h ≤T i+1,
we then revert to the full Σ∗–ultrapowers. More generally:
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Definition 3.4.7. Let n ≤ ω. By a normal n–iteration of M of length µ we
mean

⟨⟨Mi|i < µ⟩, ⟨νi|i+ 1 < µ⟩, ⟨πij |i≤T ⟩, T ⟩,

where (a) – (e) and (g) ,(h) in the definition of "normal iteration" hold, and
in addition:

(f) Let h = T (i + 1). If τi is a cardinal in Mh and πjh is a total map on
Mj for jTh, then πh,i+1 : Mh →

(m)
Eνi

Mi+1, where m ≤ n is maximal
such that κi < ρmMh

.

Otherwise πh,i+1 :M
∗
i →

(m)
Eνi

Mi+1, where M∗
i is defined as before and m ≤ ω

is maximal such that κi < ρmM∗
i
.

Note. An ω–iteration is then the same as a normal iteration n the sense
of our previous definition. We also call such iterations ∗–iterations, since
we then always take the Σ∗ ultrapowers. ∗–iterations are the ones we are
interested in.

It is easily seen that the conclusions of Lemma 3.4.2 hold for normal n–
iterations. Lemma 3.4.3 also holds for these iterations and Lemma 3.4.7
holds mutatis mutandis. We leave this to the reader. More suprising is:

Theorem 3.4.10. Theoem 3.4.4 holds for normal n–iterations.

Before proving this, we again note some consequences. It follows easily that:

Corollary 3.4.11. Let I be a normal n–iteration. Let h = T (i+ 1). Let m
be maxiomal such that κi < ρmM∗

i
. Assume either that m ≤ n or that there is

a j ≤T i+ 1 which is a drop point. Then:

πh,i+1 :M
∗
i →∗

Eνi
Mi+1.

In all other cases we have:

πh,i+1 :M
∗
i →

(n)
Eνi

Mi+1.

But then by induction on i we get:

Corollary 3.4.12. Let I be as above. Let πij be a total map on Mi. If there
is a drop point j such that jT i, then πij is Σ∗–preserving. Otherwise it is
Σ
(n)
0 –preserving.

As before, we derive Lemma 3.4.10 from:
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Lemma 3.4.13. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a potential n–iteration of
length i+ 2. Then P(τi) ∩ Σi(Mi||νi) ⊂ Σ1(M

∗
i ).

The derivation of Lemma 3.4.10 from Lemma 3.4.13 is exactly as before.
We prove Lemma 3.4.13. Almost all steps in the proof of Lemma 3.4.7 go
through as before. The only difficulty occurs in the proof of (6), where
we derived that πξ,i is Σ

(1)
0 –preserving from: κj < ρ1M∗

j
. If n ≥ 1, this is

unproblematical. Now assume n = 0. If there is a drop point l ≤T i, then
πξ,i is Σ∗–preserving and there is nothing to prove. Now suppose there is no
such drop point.

By the definition of "0–iteration" we then have: πξ,i : M∗
j →0

Eνj
Mi, which

was to be proven.

All other steps in the proof go through. QED (Lemma 3.4.13)

This proves Theorem 3.4.10.

The concept "padded n–iteration" is defined exactly as before. As before,
every padded iteration can be converted into a strict iteration by omitting
the inactive points, and every strict iteration can be expanded to a padded
iteration by inserting inactive points. We leave this to the reader.

3.4.5 Copying an iteration

Suppose that I is a normal iteration of a premouse M and σ : M →Σ∗ M ′,
where M ′ is a premouse. We can attempt to "copy" I onto an iteration I ′

of M ′ by repeating the same steps modulo σ. We define:

Definition 3.4.8. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a strict normal iter-
ation of M . Let σ : M →Σ∗ M , where M ′ is a premouse. We call
I ′ = ⟨⟨M ′

i⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩ a copy of I induced by ⟨σ,M ′⟩ with copying map
⟨σi|i < lh(I)⟩ iff the following hold:

(a) lh(I ′) = lh(I) and T ′ = T

(b) σi :Mi →Σ∗ M ′
i and σ0 = σ

(c) σiπli = π′liσj for l ≤T i

(d) σi ↾λl = σl ↾λl for l ≤ i

(e) ν ′i = σi(νi) for νi ∈Mi. Otherwise ν ′i = On∩M ′
i .
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Note. This definition can easily be extended to padded normal iterations.
(b) – (e) are then stipulated for active points, and for inactive points we
stipulate:

(f) If i is inactive in I, it is inactive in I ′ and σi+1 = σi.

We shall often formulate our definitions and theorems for strict iteration,
leaving it to the reader to discover — mutatis mutandis — the correct version
for padded iterations. In particular, the remaining theorems in this section
will assume strictness.

We also define:

Definition 3.4.9. ⟨I, I ′, ⟨σi|i < lh(I)⟩⟩ is a duplication iff I, I ′ are normal
iterations and I ′ is a copy of I with copying maps ⟨σi⟩.

Lemma 3.4.14. Let I ′ be a copy of I with copying maps ⟨σi⟩. Let h =
T (i+ 1).

(i) If i + 1 is a drop point in I, then it is a drop point in I ′ and M ′∗
i =

σh(M
∗
i ).

(ii) If i + 1 is not a drop point in I, it is not a drop point in I ′. (Hence
M∗
i =Mh,M

′∗
i =M ′

h.)

(iii) Let F = EMi
νi , F

′ = E
M ′

i

ν′i
. Then:

⟨σh ↾M∗
i , σi ↾λi⟩ : ⟨M∗

i , F ⟩ → ⟨M ′∗
i , F

′⟩

as defined in §3.2.

(iv) σi+1(πh,i+1(f)(α)) = π′h,i+1σh(f)(σi(α)) for f ∈ Γ∗(κi,M
∗
i )α < λi.

(v) σj(νi) = ν ′i for i < j.

Proof:

(i) Let h = T (i+ 1). Then M∗
i = Mh||µ, where µ ∈ Mh is maximal such

that τi is a cardinal in Mh||µ. But τ ′i = σi(τi) = σh(τi) by (d), (e).
Hence σh(µ) = µ′, where µ′ is maximal such that τ ′i is a cardinal in
M ′
h, and σh(Mh||µ) =M ′

h||µ′.

(ii) If τ is a cardinal in Mh, then τ ′i = τh(τ) is a cardinal in M ′
h, since σh

is Σ1–preserving.
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(iii) Clearly σh ↾M∗
i :M∗

i →Σ∗ M ′
i
∗ by (i) and (ii). Now let x ∈ P(κi)∩M∗

i

and α1, . . . , αn < λ0. Since σi :Mi −→M ′
i is Σ∗-preserving we have:

⟨α⃗⟩ ∈ F (x)↔ ⟨σi(α⃗)⟩ ∈ F ′(σi(x)).

But σi(x) = σh(x), since by (d) we have: σi ↾JE
Mi

λn
= σh ↾JE

Mh

λh
.

(iv) If f ∈M∗
i , then by (c):

σi+1πh,i+1(f) = π′h,i+1σh(f).

Otherwise f(ξ) ≃ G(ξ, q) where q ∈ M∗
i and G is a good Σ

(n)
1 (M∗

i )
function for an n such that κi < ρn+1

M∗
i

. But then:

σi+1πh,i+1(f)(ξ) ≃ G′(ξ, σi+1πh,i+1(q))

≃ G′(ξ, π′h,i+1σh(q))

≃ π′h,i+1σh(f)

where G′ is Σ
(n)
1 (M ′

i
∗) by the same good definition.

(v) If j > i + 1, then νi < λi+1 and σj(νi) = σi+1(νi). But letting h =
T (i+ 1), we have:

σi+1(νi) = σi+1πh,i+1(τi) = π′h,i+1σh(τi),

where
σh(τi) = σi(τi) = τ ′i , since τi < λh.

Hence σi+1(νi) = π′h,i+1(τ
′
h) = ν ′i.

QED (Lemma 3.4.14)

It is apparent from Lemma 3.4.14 that there is only one way to extend a
copy of I|i+1 to a copy of I|i+2. Moreover, the copying map σi is unique.
Similarly, if η is a limit ordinal and I ′ is a copy of I|µ with copying maps
⟨σi|i < η⟩, ther is only one way to extend I ′ to a copy of I|η + 1, for then:

M ′, ⟨π′i,η|iTη⟩

is the direct limit of:

⟨M ′
i |i < η⟩, ⟨π′ij |i ≤T j <T η⟩,

and ση is defined by:
σηπiη = π′iησi for i <T η.

Hence, by induction on lh(I) we get:
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Lemma 3.4.15. Let I be a normal iteration of M . Let σ : M →Σ∗ M ′.
Then there is at most one copy I ′ of I induced by σ. Moreover, the copying
maps σi are unique.

Now suppose that I is a normal iteration of length i+1 and I ′ is a copy of I
with copying maps ⟨σh |h ≤ i⟩. Extend I to a potential iteration Ĩ of length
i+ 2 by appointing νi. Extend I ′ to a potential iteration Ĩ ′ by appointing:

ν ′i =

{
σi(νi) if νi ∈Mi

On∩M ′
i if νi = On∩Mi.

We call ⟨Ĩ , Ĩ ′, ⟨σj || ≤ i⟩⟩ a potential duplication of length i+ 2. The formal
definition is:

Definition 3.4.10. Let I, I ′ be potential iteration of length i+2. ⟨Ĩ , Ĩ ′, ⟨σj |j ≤
i⟩⟩ is a potential duplication of length i+ 2 iff

• ⟨I, I ′, ⟨σj |j ≤ i⟩⟩ is a duplication of length i+1, where I = Ĩ|i+1, I
′
=

I ′|i+ 1.

• σi(νi) = ν ′i if νi ∈Mi. Otherwise ν ′i = On∧M ′
i .

Note. It is then easily seen that T (i + 1) = T ′(i + 1). We also know that
EMi
νi is close to Mn

i and E
M ′

i

ν′i
is clost to M ′

i . The following theorem is an
analogue of theorem 3.4.7

Lemma 3.4.16. Let ⟨I, I ′, ⟨σi⟩⟩ be a potential duplication of length i + 2.
Let h = T (i+ 1). Then:

⟨σh ↾M∗
i , σi ↾λi⟩ : ⟨M∗

i , F ⟩ →∗ ⟨M ′∗
i , F

′⟩

(as defined in §3.2) where F = EMi
νi , F

′ = E
M ′

i

ν′i
.

Before proving the theorem, we note some of its consequences. It gives us
exact criteria for determining whether the copying process can be continued
one step further.

Lemma 3.4.17. Let I be a normal iteration of M of length i + 2. Let
σ :M →M ′ induce a copy I ′ of I|0 + 1 with copying maps ⟨σj |j ≤ i⟩. Set:

ν ′i =

{
σi(νi) if νi ∈Mi

On∩M ′
0 if νi = On∩Mi

Then σ induces a copy of I iff M ′∗
i is Σ∗–extendible by EM

′
i

ν′i
.
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Proof: If M ′∗
i is not extendible, then no such copy can exist. Now let

M ′∗
i be extendible. Let π′h,i+1 : M ′∗

i →∗
E

M′∗
i

ν′
i

M ′∗
i+1. By theorem 3.4.16 and

Lemma 3.2.23 it follows that there is a unique σ :Mi+1 →Σ∗ M ′
i+1 such that

σπh,i+1 = π′h,i+1 · ⟨σh ↾M∗
i ), where h = T (i+ 1). Set: σi+1 =: σ. This gives

us the copy I ′′ of I with copying maps ⟨σj |j ≤ 0 + 1⟩.
QED (Lemma 3.4.17)

We also have:

Lemma 3.4.18. Let I be a normal iteration of M of length η+1, where η is
a limit ordinal. Let σ : M →E∗ M ′ induce a copy I ′ of I|η. We can extend
I ′ to a copy of I induced by σ iff b = T ′′{η} is a well founded branch in I ′.

The proof is left to the reader.

We also note:

Lemma 3.4.19. Let I be a normal iteration of limit length. Let I ′ be a
copy of I. If b is a cofinal well founded branch in I ′, then it is a cofinal well
founded branch in I.

The proof is left to the reader.

We now turn to the proof of theorem 3.4.16. As with theorem 3.4.7 we derive
it from an even stronger lemma:

Lemma 3.4.20. Let ⟨I, I ′, ⟨σi⟩⟩ be a potential duplication of length i + 2.
Let A ⊂ τi be Σ1(Mi||νi) in a parameter p. Let A′ ⊂ τ ′i be Σ1(Mi||νi) in
σi(p) by the same definition. Then A is Σ1(M

∗
i ) in a parameter q and A′ is

Σ1(M
′∗
i ) in σh(q) by the same definition, where h = T (i+ 1).

The derivation of theorem 3.4.16 from lemma 3.4.20 is a virtual repetition
of the proof of theorem 3.4.4 from lemma 3.4.7. We leave it to the reader.

Lemma 3.4.20 is proven by a virtual repetition of the proof of lemma 3.4.7,
making changes as necessary. We give a brief sketch of the proof:

Suppose not. Let I, I ′, νi, ν ′i be counterexamples of length i + 1, where i is
chosen minimally. Let h = T (i+ 1) = T ′(i+ 1). Then:

(1) h < i.
Suppose not. Then Mi||νi ⊂ M∗

i and M ′
i ||ν ′i ⊂ M ′∗

i as before. If
νi ∈ M∗

i , then σi(M ||νi) = M ′
i ||ν ′i. Hence A ∈ M∗

i and σi(A) = A′.
Contradiction!
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(2) νi = OnMi and ρiMi
≤ τi.

Otherwise, as before A ∈ P(τi) ∩M∗
i , A

′ ∈ P(τi) ∩M ′∗
i and σh(A) =

σi(A) = A′. Contradiction!

(3) i is not a limit cardinal.
The proof of this is a virtual repetition of the argument given in the
proof of lemma 3.4.7. We leave it to the reader.

Now let i = j + 1, ξ = T (i). Exactly as before we have:

(4) M∗
j = ⟨JEν , Eν⟩,M ′∗

j = ⟨JE
′

ν′ , E
′
ν′⟩ where Eν , E′

ν ̸= ∅.

(5) τi < κj .

(6) πξ,i :M∗
j →Eνj

Mi is a Σ0 ultrapower (and therefore cofinal). Similarly
for π′ξ,i : M ′∗

j →Eν′
j
M ′
i . By the minimality of σ we know that for

all α < λj , (EMj
j)α is Σ1(M

∗
j ) in a parameter r and (EMi

ν′i
)σi(α) is

Σ1(M
′∗
j ) in σξ(r) by the same definition. Using this we can repeat the

argument in the proof of Lemma 3.4.7 to get:

(7) A is Σ1(M
∗
j ) in a q and A′ is Σ1(M

′∗
j ) in σξ(q) by the same definition.

Now extend I|ξ + 1 to a potential iteration Ĩ of length ξ + 2 by setting
ν̃ξ = ν, where ν is as in (4). Extend I ′|ξ + 1 to Ĩ ′ by setting ν̃ξ = ν ′ where
ν ′ is as in (4). Then κi = κ̃ξ, τi = τ̃ξ, κ

′
i = κ̃ξ, τ

′
i = τ̃ ′ξ as before. Hence

h = T̃ (ξ + 1) = T̃ ′(ξ + 1) and M∗
i = M̃∗

ξ ,M
′∗
i = M̃ ′∗

ξ . By this minimality
of i we conclude that A is Σ1(M

∗
i ) ia a q and A′ is Σ1(M

′∗
i ) in σh(q) by the

same definition. Contradiction! QED (Lemma 3.4.20)

3.4.6 Copying an n–iteration

Definition 3.4.11. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal n–iteration
(n ≤ ω). Let σ :M →ΣM

1
,M ′. We call:

I ′ = ⟨⟨M ′
i⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩

a copy (or n–copy) of I induced by ⟨σ,M ′⟩ iff I ′ is an n–iteration satisfying
(a), (c), (d), (e) of the previous definition together with

(b’) σ0 = σ and σ :Mi →Σ
(n)
1

M ′
i . Moreover, if some h ≤T i is a truncation

point, then σi is Σ∗–preserving.
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The notion "n–duplication" and "potential n–duplication" are defined as
before. Lemma 3.4.14 goes through as before exept (iv) must be reformulated
as:

(iv’) If no l ≤T i+ 1 is a truncation point and κi < ρnMh
, then:

σi+1(πh,i+1(f))(α) = π′h,i+1σi(f)(σi(α))

for f ∈ Γn∗ (κi,Mh), α < λi. In all other cases the equation holds for

f ∈ Γ∗(κi,M
∗
i ), α < λi.

Lemma 3.4.15 then holds as before. Theorem 3.4.16 and lemma 3.4.17 –
3.4.19 then go through as before. By theorem 3.4.16 we also get:

Lemma 3.4.21. Let ⟨I, I ′, ⟨σi⟩⟩ be an n–duplication. Let i <T j in I such
that πij is total on Mi.

(a) If no l ≤T i is a truncation point and κi < ρnMi
, then πij : Mi →Σ

(n)
1

Mj.

(b) In all other cases πij is Σ∗–preserving.

These lemmas and theorems hold mutatis mutandis for padded n–iterations.
The details are left to the reader.

3.5 Iterability

A mouse is a premouse which is iterable. Iterability is, however, as complex
a notion as that of iterating itself. We begin with normal iterability which
says that any normal iteration of M constructed accordig to an appropriate
strategy, can be continued.

3.5.1 Normal iterability

Definition 3.5.1. A premouseM has the normal uniqueness property (NUP)
iff every normal iteration of M of limit length has at most one cofinal well
founded branch. The simplest mice, such as 0#, 0## etc. are easily seen to
have this property. Unfortunately, however, there are mice which do not. If
a premouse M does satisfy NUP, then normal iterability can be defined by:
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Definition 3.5.2. Let M satisfy NUP, M is normally iterable iff every nor-
mal iteration of M can be continued — i.e.

• If I is a normal iteration of M of limit length, then it has a cofinal well
founded branch.

• If I is a potential iteration of length i+2, then M∗
i is ∗–extendible by

EMi
νi .

If M does not satisfy NUP, we say that it is normally iterable if there exists
a strategy for picking cofinal well founded branches such that any iteration
executed in accordance with that strategy could be continued. We first
define:

Definition 3.5.3. A normal iteration strategy is a partial function S on
normal iterations of limit length such that S(I), if defined, is a well founded
cofinal branch in I. We call it a strategy for M if its domain is restricted to
iterations of M .

Definition 3.5.4. A normal iteration I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨xij , T ⟩ conforms to
the iteration strategy S iff, whenever, η < lh I is a limit ordinal, then
T ′′{η} = S(I|η).

Definition 3.5.5. A normal iteration strategy S is α–successful for a pre-
mouse M iff every S–conforming iteration of M of length < α can be con-
tinued in an S–conforming way. In other words:

• If I is of limit length < α, then S(I) is defined

• If I is a potential normal iteration length i + 2 < α, then M∗
i is ∗–

extendible by EMi
νi .

Definition 3.5.6. M is normally α–iterable iff there exists an α–successful
strategy for M .

Definition 3.5.7. M is normally iterable iff it is normally α–iterable for all
α.

Note. It might seem more natural to take "normal iterable" as meaning
that M is ∞–iterable, but that is a second order property, which we cannot
express in ZFC.

Note. If M has NUP, then any two iteration strategies for M must coin-
cide on their common domain. Hence, in this case, our initial definition of
"normally iterable" is equivalent to the definition just given. It is then also
equivalent to the second order statement that M is ∞–iterable.
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Definition 3.5.8. M is uniquely normally iterable iff it is normally iterable
and satisfies NUP.

Proving iterability is a central problem of inner model theory. There are
large classes of premice for which it is unsolved. The success we have had
to date depends strongly on NUP. Whenever we have been able to prove the
iterability M , it is either because M satisfies NUP, or because we derive its
iterability from that of another premouse which satisfies NUP.

Note. In the above definition we take "normal iteration" as meaning "padded
normal iteration". One can, of course, define strict iteration strategy, strictly
α–successful and strictly α–iterable in the obvious way. But in fact ev-
ery strictly α–iterable premouse is α–iterable, since every strictly successful
strategy S can be expanded to an α–successful S∗ as follows. Let:

I = ⟨⟨Mi⟩, ⟨νi|i ∈ A⟩, ⟨πij , T ⟩

be padded iteration of limit length η. If A is cofinal in η, let ⟨αi|i < µ⟩ be
the monotone enumeration of A and set:

I ′ = ⟨⟨Mαi⟩, ⟨να0⟩, ⟨παi,αj ⟩, {⟨i, j⟩|αiTαj}⟩.

Then I ′ is strict and we set:

S∗(I) ≃ {i|
∨
j ∈ S(I′)iTαj}.

If A is not cofinal in η, let j < η such that [j, η] ∩ A = ∅. S∗(I) is then
defined to be the unique cofinal well founded branch:

{i|iTj ∨ j ≤ i < η}.

3.5.2 The comparison iteration

As mentioned earlier, we can "compare" two normally iterable premice via
a pair of padded normal iterations known as the coiteration or comparison
iteration. We define:

Definition 3.5.9. Let M,N be premice. M is a segment of N (in symbols:
M ◁N) iff M = N ||η for an η ≤ OnN .

If neither of M0,M1 is a segment of the other, there is a first point of
difference ν0 defined as the least ν such that M0||ν ̸=M1||ν. Then JEM0

ν0 =

JE
M1

ν0 and EM0
ν0 ̸= EM

′
ν0 . Set : πh0,1 : Mh −→Eν0

Mh
1 if EMh

ν0 ̸= ∅.
Otherwise set: Mh

1 = Mh, πh0,1 = id. Then M0
1 ||ν0 = M∗

1 ||ν0. If M0
1 ,M

1
1
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have a point ν1 of difference, then ν1 > ν0 and we can repeat the process to
get Mh

2 etc. Suppose that card(Mh) < Θ for h = 0, 1 where Θ+1 is regular
and each Mh is Θ+1 iterable. The comparison process then continues until
we have a pair of iterations of length i+ 1, where either i = Θ of i < Θ and
M0
i ,M

1
i have no point of difference. (Hence one is a segment of the other.)

Using the initial segment condition we shall show that the comparison must
terminate at an i+ 1 < Θ. The formal definition is:

Definition 3.5.10. Let Θ > ω be a regular cardinal. Let M0, M1 be
premice of height < Θ which are normally Θ + 1-iterable. Let Sn be a
successful Θth normal iteration strategy for Mn (n = 0, 1). The coiteration
of M0, M1 given by ⟨S0, S1⟩ is a pair ⟨I0, I1⟩ of padded normal iterations
of common length µ+ 1 ≤ Θ+ 1 with coindices ⟨νi | i < µ⟩ such that

In = ⟨⟨Mn
i ⟩, ⟨νi | i ∈ An⟩, ⟨πni,j⟩, Tn⟩

and:

• Mn
0 =Mn

• If M0
i , M1

i are given and i < Θ, then

νi ≃ the first point of difference ν such that M0
i ||ν ̸=M1

i ||ν.

• If νi exists and Enνi ̸= ∅, then i ∈ An and:

πnh,i+1 : M
∗
i −→∗

En
νi
Mn
i+1.

• If νi exists and Enνi = ∅, then i /∈ An and Mn
i+1 =Mn

i .

• If νi does not exist, then µ = i.

Then the coiteration is uniquely determined by M0, M1, S0, S1. We prove
the Comparison Lemma:

Lemma 3.5.1. The comparison iteration terminates below Θ.

Proof: Suppose not. Then Mh
i , πhi,j are defined for all i ≤ Θ and i ≤Th j ≤

Θ. By induction we have: Mh
i , π

h
i,j ∈ HΘ for i ≤Th j < Θ. Hence Ih ∈ HΘ+ .

Set: Q = HΘ+ . By a Löwenheim–Skolem argument, there is X ≺ Q such
that:

card(X) < Θ, X ∩Θ is transitive , I0, I1 ∈ X.
Let σ : Q̄ ∼←→ X where Q̄ is transitive. Then σ : Q̄ ≺ Q. Let σ(Īh) = Ih

(h = 0, 1). Let:
Īh = ⟨⟨M̄h

i ⟩, ⟨ν̄i | i ∈ Ah⟩, ⟨π̄hi,j⟩, T̄ h⟩
for h = 0, 1. Clearly ¯Theta = Θ ∩X and σ ↾Θ̄ = id. Hence:
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(1) (a) i ≤T̄h j ←→ i ≤Th j for i, j < Θ̄

(b) i <T̄h Θ̄←→ i <Th Θ for i < Θ̄.

Hence:

(1)(c) Θ̄ <Th Θ,

since Θ̄ is a limit point of the club set T h”Θ.

Set: H̄ =: (HΘ̄)
Q. Then:

(2) σ ↾H̄ = id.

Proof. Since σ ↾ Θ̄ = id, we have: σ(a) = a for a ⊂< α < Θ̄ such that
a ∈ H̄. Similarly σ(r) = r for r ⊂ α2 such that α < ¯Theta, r ∈ H̄.
Let x ∈ H̄. Let u = TC(x). Then u ∈ H̄ and there is α < H̄, f ∈ H̄
such that f : α onto−→ u. Hence:

σ(r) = r where r = {⟨i, j⟩ | i, j < α ∧ f(i) ∈ f(j)}.

Hence f = σ(f), since both are defined by the recursion:

f(i) = {f(j) | jri} for i < α.

Hence σ(a) = a where a = f−1”x. Hence x = σ(x) = f”a. QED (2)

Hence:

(3) M̄h
i =Mh

i , π̄hi,j = πhi,j for i ≤T̄h j < Θ̄.

But then:

(4) M̄h
Θ̄
, ⟨π̄h

i,Θ̄
| i <T̄h Θ̄⟩ is the direct limit of:

⟨Mh
i | i <Th Θ̄⟩, ⟨πhi,j | i ≤Th j <Th Θ̄⟩.

Hence:

(5) M̄h
Θ̄
=Mh

Θ̄
, π̄h

i,Θ̄
= πh

i,Θ̄
for i < Θ̄.

Using this we get:

(6) πh
Θ̄,Θ

= σ ↾Mh
Θ̄

Proof. Let x ∈Mh
Θ̄
, x = πh

i,Θ̄
(z) where i <Tn Θ̄. Then;

σ(x) = σ(πhi,Θ̄(z)) = πhi,Θ(z) = πhΘ̄,Θπ
h
i,Θ̄(z) = πhΘ̄,Θ(x).

QED (6)
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(7) There is i ∈ [Θ̄,Θ)Th such that MΘ̄ ̸=Mi.

Proof. Suppose not. Then Mi = MΘ̄ and hence [Θ̄, i) ∩ Ah = ∅ for
i <Th Θ. Hence MΘ = MΘ̄. But then [Θ̄,Θ) ⊂ A1−h. Let j ∈ [Θ̄,Θ)
such that νj > ht(MΘ̄). νj is a point of difference. Hence νj ≤ ht(MΘ̄).
Contradiction! QED (7)

Now let ih be least such that Θ̄ ≤Th i <Th Θ and Mi ̸= MΘ̄. By
minimality, ih = jh+1 for some jh. But then jh ∈ Ah, since otherwise
Mj = Mi and i was not minimal. Let th = T h(ih). Then Θ̄ ≤Th th <
ih. Hence Mh

th
=Mh

Θ̄
and πΘ̄,th = id. Set:

Fh =: E
Mh

jh
νjh

, κh =: crit(Fh).

We know: πΘ̄,Θ = πΘ̄,thπth,ihπih,Θ, where πh
Θ̄,th

= id ↾Mh
Θ̄

and πhih,Θ ↾
λjh = id. From this it follows easily that:

κh = crit(πhth,ih) = crit(πhΘ̄,ih)

and:

(8) Fh(X) = σ(X) ∩ λjh for h = 0, 1, X ∈ P(Θ̄) ∩Mh
Θ̄
.

But then:

(9) j0 ̸= j1,

since otherwise EM0

νj0
= EM

1

νj1
and νjh is not a point of difference.

Now suppose e.g. that j0 < j1. νj0 is then a cardinal in M0
j1

. But
E0
j0

= E1
j1
|λj0 ∈ M1

j1
||νj1 . Hence νj0 is not a cardinal in M0

j1
, since:

M0
j1
||νj1 =M1

j1
||νj1 . Contradiction!

QED (Lemma 3.5.1)

3.5.3 n–normaliterability

By an n–normal iteration strategy we mean a partial function s on normal n–
iterations of limit length such that S(I), if defined, is a well founded cofinal
branch in I. The concepts α–successful n–normal strategy and n–normally
α–iterable are then defined in the obvious way. M is called n–normally
iterable iff it is n–normally α–iterable for all α. If M0,M1 are premice of
cardinals 1 < Θ, where Θ is regular, and Sh is a Θ+1–successful nh–normal
iteration strategy for Mh(h = 0, 1), we can define the ⟨n0, n1⟩–coiteration
of M0,M1 given by ⟨S0, S1⟩ exactly as before. But then the comparison
lemma holds for this coiteration by exactly the same proof as before.
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3.5.4 Iteration strategy and copying

Lemma 3.5.2. Let M be normally α–iterable. Let σ :M →Σ∗ M . Then M
is normally α–iterable.

Proof: Let S be an α–successful strict normal iteration strategy for M .
We use the copying procedure and Lemma 3.4.19 to define an α–successful
strategy S for M . S is defined on the set of strict iterations I of M having
limit length such that σ induces a copy I of I onto M with copying maps
⟨σ0|i < lh(I)⟩ which conforms to S. We then set: S(I) = S(I). S(I) is
then a cofinal well founded branch in I by Lemma 3.4.19. By induction
on µ = lh(I) it then follows that, if I is S–conforming, then σ induces an
S–conforming copy I with copying maps ⟨σi|i < µ⟩. For µ = 1 or limit µ
this is trivial. For µ = η+1 where η is a limit, we use the definition of S. If
µ = η + 1, we use Lemma 3.4.18 By a virtual repitition of this proof:

Lemma 3.5.3. Let M be n–normally α–iterable. Let σ :M →
Σ

(n)
1

M . Then

M is n–normally α–iterable.

The details are left to the reader.

3.5.5 Full iterability

Normal iterability is too weak a property for many purposes. For instance, we
do not kknow, in general, that a normal iterate N of a normally iterable M is
itself normally iterable. We therefore introduce the notion of full iterability ,
which is often more useful but, unfortunately, harder to verify.

The process of taking a normal iteration of M can itself be iterated, as can
the process of taking a segment of a normal iterate of M . This suggests
an expande notion of iteration: Not only normal iterations are allowed, but
also (finite or infinite) successions of normal iteration, where the i + 1 set
iteration is applied to a segment of the iterate given by stage i. The formal
definition is:

Definition 3.5.11. Let M be a premouse. By a full iteration I of M of
length µ we mean a sequence ⟨Ii|i < µ⟩ of normal iteration:

Ii = si⟨⟨M i
h⟩, ⟨νih⟩, ⟨πih,j⟩, T i⟩

inducing a sequence Mi = MM,I
i (i < µ) of premice and a commutative

sequence of partial maps πhj = π
(M,I)
hj (h ≤ j < µ) such that the following

hold:
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(a) M0 =M .

(b) M i
0 ◁Mi for i < µ.

(c) If i+ 1 < µ, then Ii has length li + 1 for some li and:

Mi+1 =M i
li
, πi,i+1 = πi0,li .

Call i < µ a drop point in I iff either M i
0 ̸= Mi or i + 1 < µ and Ii has a

truncation on its main branch.

(d) Let α < µ. Then the set of drop points i < α is finite. Moreover, πi,α
is a total function on Mi whenever [i, α) has no drop point. If α is a
limit ordinal then:

Mα, ⟨πiα|i < µ⟩

is the transitivized direct limit of:

⟨Mi|i < α⟩, ⟨πij |i ≤ j < µ⟩.

It is clear that the sequence ⟨Mi|i < µ⟩, ⟨πij |i ≤ j < µ⟩ are uniquely deter-
mined by the pair ⟨M, I⟩.

Definition 3.5.12. I = ⟨Ii|i < µ⟩ is a full iteration iff it is a full iteration
of some M .

Note. We have not excluded the case µ = 0. In this case I = ∅ is a full
iteration of every premouse. We then have: M (N,∅) = N, π(N,∅) = id↾N.

Definition 3.5.13. Let I = ⟨Ii|i < µ⟩ be a full iteration. The total length
of I is Σi<µ lh(I

i).

Definition 3.5.14. Let I be a full iteration of M . i < µ is a truncation
point (or drop point) v with M, I, iff either Iσ is of length li + 1 and has a
truncation on its main branch T i′′{li}, or else M i

0 ̸=Mi.

By (d) the set of truncation points i < α is always finite if α < µ is a limit
ordinal.

Definition 3.5.15. I is a full iteration of M to M ′ iff I is a full iteration of
M and one of the following holds:

(i) I = ∅ and M ′ =M

(ii) I has length µ = η + 1 and Iη has length γ + 1, where M ′ =Mη
γ .
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(iii) I has limit length mu, the set of truncation points i < µ is finite, and:

⟨Mi < i < µ⟩, ⟨πij |i ≤ j < µ⟩

is as the transitive direct limit:

M ′, ⟨πi|i < µ⟩.

Definition 3.5.16. Let M,M ′, I be as above. The iteration map π = π(M,I)

from M to M ′ given by the pair (M, I) is defined as follows:

(i) π = id↾M if I = ∅

(ii) If I, Iξ are as in (ii) we set π = πη0,lη ◦ π
(M,I)
0,η

(iii) If case (iii) holds, we set: π = π0.

Definition 3.5.17. Let I = ⟨Ii|i < µ⟩, I ′ = ⟨I ′i|i < µ′⟩ be full iterations.
the concatenation I⌢I ′ of I, I ′ is the sequence ⟨Ĩi|i < µ + µ′⟩ such that
Ĩi = Ii for i < µ and Ĩµ+i = I ′i for i < µ′.

I⌢I ′ is not necessarily a full iteration. However, it is easily seen that

Lemma 3.5.4. If I is a full iteration from M to M ′ and I ′ is a full iteration
of M ′, then

(a) I⌢I ′ is a full iteration of M .

(b) If I ′ ̸= ∅, then π(M,I) = π
(M,I⌢I′)
0µ , where µ = lh(I).

(c) If I ′ is an iteration of M ′ to M ′′, then I⌢I ′ is an iteration of M to
M ′′ and π(M,I⌢I′) = π(M

′,I′) ◦ π(M,I).

Definition 3.5.18. Let I be a full iteration of M . By a lenthening of I we
mean any I⌢I ′ which is a full iteration.

(Hence we cannot lengthen ⟨Ii|i ≤ η⟩ by extending its last normal iteration
Iη, but only by starting a new normal iteration.)

Note. Lemma 3.5.4 (b) then says that, if I is an iteration from M to M ′

and I ′ is a proper lenghtening of I (i.e. µ = lh(I) < µ′ = lh(I ′), then
π(M,I) = π

(M,I′)
0µ .

We now define the concept of full iterability :
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Definition 3.5.19. A full iteration strategy is a partial function on full
iterations I of length η + 1 such that Iη is of limit length. S(I), if defined
is then a cofinal well founded branch in Iη (we refer such full iterations I as
critical).

Definition 3.5.20. A full iteration I = ⟨Ii|i < µ⟩ conforms to the strategy
S iff whenever i < µ and γ < lh(Ii) is a limit ordinal, then T 0′′{γ} is the
branch S((I ↾ i)⌢(Ii|γ)) given by S.

Definition 3.5.21. A strategy S is α–successful for M iff whenever I =
⟨Ii|i < µ⟩ is an S–conforming full iteration ofM of total length Σi<µ lh(I

i) <
α, then I can be extended one step further in an S–conforming way:

(a) If µ = i+ 1 and Ii is of limit length, then S(I) exists.

(b) Let µ = i + 1 and lh(Ii) = h + 1. Extend Ii to a potential normal
iteration by appointing νh. This gives Eνh and M∗

i . Then M∗
h is ∗–

extendible by Eνh .

(c) If µ is a limit ordinal, then there are at most finitely many truncation
points below µ. Moreover:

⟨M (M,I)
i |i < µ⟩, ⟨π(M,I)

i,j |i ≤ j < µ⟩

has a well founded limit.

Definition 3.5.22. M is fully α–iterable iff it has an α–successful full iter-
ation strategy.

Definition 3.5.23. M is fully iterable iff it is fully α–iterable for every α.

3.5.6 The Dodd–Jensen Lemma

We now prove a theorem about normal iteration of premice which are fully
iterable and have the normal unique new property.

Theorem 3.5.5. (The Dodd–Jensen Lemma)
Suppose that M has the normal uniqueness property and is fully Θ–iterable,
where Θ > ω is regular. Let:

I0 = ⟨⟨M0
i ⟩, ⟨ν0i ⟩, ⟨π0ij⟩, T 0⟩

be a normal iteration of M with length η + 1. Let σ : M →Σ∗ N where
N ◁M0

η . Then:

(a) N =M0
η .
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(b) There is no truncation point on the main branch T 0′′{η} of I0.

(c) σ(ξ) ≥ π0, (ξ) for all ξ ∈ On∩M .

Note. Let M ′ = M0
η , π = π0,η. Then π is the unique Σ∗–preserving map

of M to M ′ such that π(ξ) = the least ξ′ such that ξ′ = σ(ξ) for some
σ : M → M ′ which is Σ∗–preserving. Thus π depends only on the models
M,M ′ and not on the iteration I0.

We now prove the theorem. Fix a Θ–successful strategy S for M . By
induction on i < ω we construct Ii, N i, σi such that

• Ii = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πihj , T i⟩ is a normal iteration.

• N i ◁M i
η and σi :M →Σ∗ N i.

• ⟨I0, . . . , Ii⟩ is S–conforming.

• If i = h+ 1, then Ii is the copy of I0 onto Nh by σh.

Case 1 i = 0
I0 is given. Set: N0 = N, σ0 = σ.

Case 2 i = h+ 1
We first construct Ii. We construct Ii|γ + 1 and copying maps

σhl :M0
l →Σ∗ M0

l (l ≤ γ)

by induction on γ, ensuring at each stage that ⟨I0, . . . , Ih, Ii|γ + 1⟩ is
S–conforming.

For γ = 0 set Ii|γ + 1 = ⟨⟨Nh⟩,∅, ⟨ id ⟩,∅⟩. We set σh0 = σh. If
γ = l + 1, we follow the usual procedure.

Now let γ be a limit ordinal. We are given Ii|γ and copying maps
⟨σhl |l < γ⟩, where Ii|γ is the copy of I0|γ onto M i

0 = Nh by σh. Then
I ′ = ⟨I0, . . . , Ih, Ii|γ⟩ is S–conforming. Hence S gives us a cofinal
well founded branch b = S(I ′) in Ii|γ and we extend Ii|γ to Ii|γ + 1
by setting T i′′{γ} = B. But by Lemma 3.4.19, b is a well founded
cofinal branch in I0|γ. Hence b = T 0′′{γ} by uniqueness. But then
σiγ+1 : M0

γ → M i
γ can be defined as usual. This gives ⟨I0, . . . , Ii⟩,

which is S–conforming. But σhη : M0
η →Σ∗ M i

η, where N0 ◁M0
η . If

N0 = M0
η , set N i = M i

η. Otherwise set: N i = σhη (N
0). In either case

σhη · σ0 :M →Σ∗ N i, and we set: σi = σhη · σ0. QED (Case 2)

Thus ⟨Ii|i < ω⟩ is an S–conforming full iteration of M . Using this we prove
(a) – (c):
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(a) Suppose not. Then N i ̸= M i for i < ω. But M0 = M,Mn+1 = Mn
η

and Mn+1
0 = Nn ̸=Mn+1. Hence every n+1 < ω is a truncation point

in I = ⟨In|n < ω⟩.
Contradiction!

(b) Suppose not. Let i+1 be a truncation point on the main branch T 0′′{η}
of I0. By our construction i + 1 is a truncation point in Tn′′{η} for
n < ω. Hence each n+ 1 is a truncation point in I.
Contradiction!

(c) By (a), (b), πnm :Mn →Mm is a total function on Mn for n ≤ m < ω.
Suppose (c) to be false. Let σ0(ξ) < π00(ξ). Then σi+1(ξ) = σiη(σ

0(ξ) <

σiη(π
0
0η(ξ)) = πi0η(σ

i(ξ)) = π
(M,I)
i,i+1 (σi(ξ)). Hence πi+1,ωσ

i+1(ξ) < πi,ωσ
i(ξ)

for i < ω.
Contradiction! QED (Theorem 3.5.5)

Lemma 3.5.6. Let ω < Θ ≤ α where Θ is a regular cardinal. Let S be an
α–successful strategy for M . Let I be an S–conforming iteration from M to
M ′ with total length < Θ. Define an iteration strategy S′ for M ′ by

S′(I ′) ≃ S(I⌢I ′)

for full iteration I ′ of M ′. Then S′ is an α–successful strategy for M ′.

The proof is left to the reader. Similarly, we obtain a normal iteration
strategy S′′ for M by setting S′′ for M by setting S′′(I) ≃ S′(⟨I⟩) where I is
a normal iteration of limit length < α and ⟨I⟩ is the full iteration Ĩ of length
1 such that Ĩ0 = I.

3.5.7 Copying a full iteration

Definition 3.5.24. Let σ : M →Σ∗ M ′ where M,M ′ are premice. Let
I = ⟨Ii|i < µ⟩ be a full iteration of M . I ′ = ⟨I ′i|i < µ⟩ is the copy of I onto
M ′ by σ with copying maps ⟨σi < i < µ⟩ iff

(a) I ′ is a full iteration of M ′ inducing

⟨M ′
i |i < µ⟩, ⟨π′ij |i ≤ j < µ⟩

(b) σi :Mi →Σ∗ M ′
i such that σiπij = π′ijσi

(c) σ0 = σ

(d) I ′i is the copy of Ii induced by σi ↾M i
0 with copying maps ⟨σih|h <

lh(Ii)⟩



3.5. ITERABILITY 237

(e) If Mi =M i
0, then M ′

i =M ′i
0 and σi = σi0.

(f) If Mi ̸=M i
0, then M ′i

0 = σi(M
i
0) and σi0 = σi ↾M i

0

(g) If i+ 1 < µ, then σi+1 = σili where lh(Ii) = li.

Clearly I ′ and the copying maps ⟨σi|i < µ⟩, ⟨σih|i < µ, h < lh(Ii)⟩ are unique,
if they exist. (Note that if η < µ is a limit ordinal, then ση is uniquely defined
by: σηπiη = π′iησi for i < η.)

Lemma 3.5.7. Let σ : M →Σ∗ M ′, where M ′ is fully α–iterable. Then M
is fully α–iterable.

Let S′ be an α–successful strategy for M ′. We define a strategy S for M
as follows: If I = ⟨Ii|i ≤ η⟩ is a full iteration of M such that Iη is of limit
length, we ask whether σ induces a copy I ′ of I onto M ′. If so we set:
S(I) ≃ S′(I ′). If not, S(I) is undefined. (S(I), if defined, is a cofinal well
founded branch in Iη by Lemma 3.4.19.) It follows that if I is S–conforming,
then σ induces a copy I ′ which is S′–conforming. (We prove this by induction
on µ, where I = ⟨Ii|i < µ⟩ and for µ = η + 1 by induction on the length of
Iη.) Using Lemma 3.4.18 and 3.4.19 it then follows that I can be extended
in an S–conforming way, since I ′ can be extended in an S′–conforming way.

QED (Lemma 3.5.7)

3.5.8 The Neeman–Steel lemma

The usefulness of the Dodd–Jensen Lemma is limited by the fact that it
applies only to premice with the normal uniqueness property. In the absence
of normal uniqueness we have the following subtleties:

Theorem 3.5.8 (The Neeman–Steel Lemma). Let M be a countable
premouse which is fully ω + 1 iterable. Let ⟨ξn|n < ω⟩ be an enumeration of
On∩M . There is an ω1-successful full iteration strategy S for M such that
whenever I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ is an S-conforming normal iteration of
M of length η + 1 < ω1 and σ :M −→Σ∗ M ′, where M ′ ◁Mη, then:

(a) M ′ =Mη.

(b) There is no truncation point on the main branch {i : iTη}.

(c) If σ(ξi) = π0,η(ξi) for i ≤ n < ω, then σ(ξn) ≥ π0,η(ξn).
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Then π0,η is the unique π :M −→Σ∗ M ′ such that π(ξn) = the least ξ′ such
that σ(ξn) = ξ′ for a σ such that σ : M −→Σ∗ M ′ and σ(ξi) = π(ξi) for
i < n. Then π depends only on M,M ′ and the enumeration ⟨ξi : i < ω⟩,
rather than on the iteration I.

Note. When we say that a normal iteration is S-conforming, we mean that
the full iteration ⟨I⟩ of length 1 is S-conforming.

We shall derive Theorem 3.5.8 from a stronger statement:

Lemma 3.5.9. Let M, ⟨ξi : i < ω⟩ be as above. There is a ω1 + 1-successful
full iteration strategy S for M such that whenever I is an S-conforming full
iteration from M to M ′ and σ :M −→Σ∗ M ′, then:

(a) No i < lh(I) is a drop point in I (hence the iteration map π from M
to M ′ is a total function on M).

(b) If σ(ξi) = π(ξ) for i < n, then σ(ξn) ≥ π(ξn).

This clearly implies Theorem 3.5.8 since if I = ⟨⟨Mi⟩,m⟩, M ′ are as in the
theorem, then ⟨I, ⟨M ′⟩⟩ is an S-conforming full iteration from M to M ′ of
length 2. (Here ⟨M⟩ denotes the minimal normal iteration of M of length 1:
⟨M⟩,∅, ⟨ id↾M⟩,∅⟩.)

Proof. We prove Lemma 3.5.9. In the following we use the term “iteration”
to mean a full iteration of total length < ω1. By a lengthening of an iteration
I we mean an iteration of the form I⌢I ′. Fix an ω1 + 1-successful iteration
strategy for M . We write “S-iteration” to mean “S-conforming iteration”.

(1) There is an iteration I0 from M to an N0 such that:

• There is σ0 :M −→Σ∗ N0.

• Let I be any lengthening of I0 which is an S-iteration from M to
M ′. Let σ′ : M −→Σ∗ M ′. Then I has no truncation point in
lh(I)∖ lh(Î).

Proof. Suppose not. Recall that ∅ is an S-iteration of M to M .
There is then a sequence of ⟨Ii, Ni, σi⟩(σ < ω) such that:

• I0 = ∅, N0 =M,σ0 = idM .

• Ii + 1 is an S-iteration of M to Ni + 1 which lengthen Ii.

• Ii + 1 has a truncation point in lh(Ii + 1)∖ lh(Ii).

• σi :M −→Σ∗ Ni.
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Set I =
⋃
i Ii. Then I is an S-iteration with infinitely many truncation

points below lh(I). Contradiction!

QED (1)

Fix I0, N0, σ0.

(2) We can extend ⟨I0, N0, σ0⟩ to an infinite sequence ⟨Ii, Ni, σi⟩ (i < ω)
such that:

• Ii = I⌢h Ih,i is an S-iteration which lengthen Ih for h < i.
• Ih,i is an iteration from Nh to Ni with iteration map πh,i =
π(Nh,Ih,i).

• πijπhi = πhi for h ≤ i ≤ j < ω.
• σi :M −→Σ∗ Ni

• πijσi(ξh) = ξh for h < i < j.
• Let j = i+ 1 and let I⌢j I be any S-iteration, where I is from Nj

to N . Let σ : M −→Σ∗ N such that σ(ξh) = πσj(ξh) for h < j,
where π = π(Nj ,I) is the iteration map. Then σ(ξi) ≥ πσj(ξi).

Proof. Suppose not. Consider the tree of finite sequences ⟨⟨Ii, Ni, σ0⟩ :
i ≤ n⟩ such that the above holds for all h, i, j ≤ n. This tree has no
infinite branch. Hence there is a finite sequence ⟨⟨Ii, Ni, σi⟩ : i ≤ n⟩
which has no successor in the tree. Nut then we can form a sequence

⟨Ĩi, Ñi, σ̃i⟩, i ≤ ω

with the properties:

• Ĩ0 = In, Ñ0 = Nn, σ̃0 = ξn.
• Ĩi+1 = Ñ⌢

i Ĩ
′
i is an S-iteration from M to Ñi+1 which properly

lengthens Ñi.
• Ĩ ′i is an iteration from Ñi to Ñi+1 with iteration map πi = π(Ñ,Ĩ

′
i).

• ξ̃i+1 : M −→Σ∗ Ñi+1 is such that ξ̃i+1(ξh) = πξ̃i(ξh) = πiξ̃i(ξh)
for h < n but ξ̃i+1(ξn) < πi(ξ̃i(ξn)).

Set µi = lh(Ĩi), Ĩ =
⋃
i Ii. Then µi < µi+1 and Ĩ is of limit length

µ = supi µi since Ĩi lengthens I0 and σ̃i : M −→Σ∗ Ñi. Let Ml =

M
(M,Ĩ)
l , π̃l,j = π

(M,Ĩ)
l,j for l ≤ i < µ, it follows easily that πi = π̃µi,µi+1

and Ñi =Mi. Moreover π̃µi,j is a total function on Mi for µi ≤ j < µ.
Since Ĩ is S-conforming we can form the transitive limit M̃, ⟨π̃i : i < µ⟩
of:

⟨Mi : i < µ⟩, ⟨πi,j : i ≤ j < µ⟩.

But then π̃µi+1σ̃i+1(ξn) < π̃iσ̃i(ξn), i < ω. Contradiction!
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QED(2)

Now let ⟨Ii, Ni, σi⟩, i < ω be as in (2). Let µi =: lh(Ii). We assume
without lose of generality that µi < µj for i < j. If I ′i is an S-iteration
from M to M ′, then so if I ′⌢⟨M ′⟩. Set I∗ =

⋃
i Ii. I

∗ is an S-iteration
of length µ∗ = supi µi. We know by (1) that I∗ has no truncation point
in µ∗∖µ0. Letting M∗ =MM,I∗

i , π∗i,j = π
(M,I∗)
i,j , we have:

Ni =M∗
µi and πij = π∗µi,µj

where Ni, πij are as in (2). Since I∗ is an S-iteration, we can form the
limit:

M∗, ⟨π∗i : i < µ∗⟩

of ⟨M∗
i : i < µ∗⟩, ⟨π∗ij : i ≤ j < µ∗⟩. But π∗µi+1

(σi+1(ξh)) = π∗µj+1
(σj+1(ξh))

for h ≤ i ≤ j < ω, where σi+1 : M → M and π∗µi+1
: Mµi+1 → M∗ are

Σ∗–preserving. But then we can define a σ∗ :M →Σ∗ M∗ by:

σ∗(ξn) = πµi+1(σi+1(ξh)) for h ≤ i < ω.

Let S∗ be the ω1 + 1–successful strategy for M∗ defined by:

S∗(I) ≃ S(I∗⌢I)

where I is any full iteration of M∗. Following the prescription in the
proof of Lemma ?? we can then define a strategy S for M by: If I is
an iteration of M , we first ask wheter σ∗ induces a copy I of I onto
M∗. If so we set:

S(I) ≃ S∗(I) ≃ S(I∗⌢I).

If I is S–conforming, it follows that I is S∗–conforming, hence that
I∗⌢I is S–conforming. Using this, we show that S satisfies (a), (b).
Let I be an iteration from M to M and let σ :M →Σ∗ M . σ∗ induces
an iteration I from M∗ to M ′ with copying map σ′ : M → M ′. Thus
σ′σ : M →Σ∗ M ′. Let π = π(M,I) be the iteration map from M to
M

′. Let π = π(M
∗,I) be the iteration map from M∗ to M ′. Then

σ′π = πσ∗, since σ′ is a copying map.

(3) There is no truncation point i < lh(T ).

Proof. Suppose not. Then i is a truncation point in I and µ∗ + i is a
truncation point in I∗⌢I, contradicting (1), since σ′σ :M →Σ∗ M ′.

QED (3)

(4) Let σ(ξh) = π(ξh) for h < i. Then σ(ξi) ≥ π(ξi).
Proof. Suppose not. Note that

σ′π(ξh) = πσ∗(ξh) = ππµ∗i+1
σi+1(ξh)
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for h ≤ i. But I∗⌢I = Ii+1
⌢Ĩ where Ĩ is an iteration from Ni+1 to

N with iteration map π̃ = π(Ni+1,Ĩ). It is easily seen that π̃ = ππµ∗i+1
,

hence
σ′π(ξh) = π̃σi+1(ξh) for h ≤ i.

Hence σ′σ(ξh) = π̃σi+1(ξh) for h < i, but

σ′σ(ξi) < σ′π(ξi) = π̃σi+1(ξi).

This contradicts (2).

QED(4)

This proves Lemma 3.5.9 and with it Theorem 3.5.8.

QED(Lemma 3.5.9)

QED(Theorem 3.5.8)

The fact that the Neeman-Steel lemma holds only for countable mice is a
less serious limitation than one might suppose. In practice, both the Dodd–
Jensen lemma and the Newman–Steel lemma are used primarily to establish
properties of mice which - by a Löwenheim-Skolem argument - hold generally
if they hold for countable mice.

3.5.9 Smooth iterability

Definition 3.5.25. By a smooth iteration of M we mean a full iteration I
of M such that Mi =M i

0 for i < lh(I).

The concepts "smooth iteration strategy", "i–successful smooth iteration
strategy" and "smooth α–iterable" are defined accordingly. We shall even-
tually prove that every smoothly iterable premouse is fully iterable. The
proof will depend on enhanced copying procedures.

3.5.10 n–full iterability

We said at the outset that a "mouse" will be defined to be a premouse
which is iterable. But what is the right notion of iterability? full iterability
feels right. An, indeed, we shall ultimately show that, if there is no inner
model with a Woodin cardinal, then every normally iterable premouse is fully
iterable. However, it will take a long time to reach that point, and in the
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meantime we must make do with weaker forms of iterability which are easier
to verify. The main problem will be this. Our procedure for verifying that
a premouse M is normally iterable will not show that normal iterates of M
are themselves iterable. What it will show is weaker: If, by an appropriate
strategy, I is a normal iteration of M to M ′ of length η + δ and if ρnM , > λi
for i < η, then M ′ ia n–normally iterable. For this reason we will often
be forced to work with n–iteration rather than ∗–iterations, and we must
employ a sharply restricted notion of "full iteration". We define:

Definition 3.5.26. Let I be an m–normal iteration of length η+1 for some
m ≤ ω. Let n ≤ ω. I is n–bounded iff λi < ρnM2

for all i < η.

Definition 3.5.27. I is an m to n–normal iteration iff I is an n–bounded
m–normal iteration.

We shall be mainly interested in n to n iterations.

Definition 3.5.28. Let M be a premouse. Let n ≤ ω by an n–full iteration
i of length µ we mean a sequence ⟨Ii|i < µ⟩ of n–normal iterations such that
Ii is n to n normal for i+ 1 < µ, inducing a sequence Mi = M

(M,I)
i (i < µ)

of premice and a commutative sequence πij = π
(M,I)
ij of partial maps from

Mi to Mj(i ≤ j < µ) satisfying (a) – (d) of our previous definition.

Note. If I = ⟨Ii|i ≤ η⟩ is an n–full iteration of length η + 1, then the final
n–normal iteration Iη is not neccessarily n to n, though the previous ones
are. However, if Iη is not n to n, then there is no possibility of lengthening
the sequence I, thouch Iη itself could be lengthened.

We can take over our previous definitions — in particular the definition of
"n–full iteration from M to N" and "n–full iteration map" πM,I .

Definition 3.5.29. I = ⟨Ii|i < η⟩ is an n to n full iteration if I is n–full
and each Ii is an n to n–normal iteration.

The definition of "concatenation" is as before. It is cler that if I is an n to
n–full iteration from M to M ′ and I ′ is an n–full iteration of M ′, then I⌢I ′

is an n–full iteration of M .

Lemma 3.5.4 holds as before, on the assumption that I is an n to n–full
iteration fromM toM ′ and I is an n–full iteration ofM . THe concepts n–full
iteration strategy is defined as before, as is the concept of an S–conforming
n–full iteration, α–successful n–full strategy, and n–full α–iterability.

The Dodd–Jensen lemma then holds in the form:
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Theorem 3.5.10. Suppose that M has the n–normal uniqueness property
and is n–fully Θ–iterable, where Θ > ω is regular. Let:

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

be an n to n–normal iteration of M with length η + 1. Let σ : M →Σ∗ N
where N ◁Mη. Then:

(a) N =Mη.

(b) There is no truncation point on the main branch T ′′{η} of I.

(c) σ(ξ) ≥ πo,η(ξ) for all ξ ∈ On∩M .

The proof is a virtual repetition of the previous proof.

Lemma 3.5.6 holds mutatis mutandis just as before. We define what it means
for σ :M →Σ(n) M ′ to induce a copy I ′ of I onto M ′ with copying maps ⟨σi⟩
just as before, writing Σ(n) instead of Σ∗ everywhere.

Theorem 3.5.11. Let M be a countable premouse which is n–fully ω1 +
1 iterable. Let ⟨ξn|n < ω⟩ be an enumeration of On∩M . There is an
ω1 + 1–successful n–full iteration strategy S for M such that whenever I =
⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, τ⟩ is an S–conforming n to n–normal iteration of M of
length η + 1 < ω1 and σ :M →Σ(n) M ′ where M ′ ◁Mη, then:

(a) M ′ =Mη.

(b) There is no truncation point on the main branch {i|iTη}.

(c) If σ(ξi) = π0,η(ξi) for i < n < ω, then σ(ξn) ≥ π0,η(ξn).

As before, this follows from:

Lemma 3.5.12. Let M, ⟨ξi|i < ω⟩ be as above. There is an ω1+1–successful
n–full iteration strategy S to M such that whenever I is an S–conforming n
to n–full iteration from M to M ′ and σ :M →Σ(n) M ′, then:

(a) No i < lh(I) is a truncation point. (Hence the map π = π(M,I) is a
total function on M .)

(b) If σ(ξi) = π(ξi) for i < n, then σ(ξn) ≥ π(ξn).

The proofs are virtually unchanged.
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3.6 Verifying full iterability

3.6.1 Introduction

As we said, full iterability is a difficult property to verify. A theorem that
every normally iterable mouse is fully iterable would be useful, if true, but
seems unlikely. We can, however, prove the following pair of theorems:

Theorem 3.6.1. If M is smoothly α–iterable, then it is fully α–iterable.

Theorem 3.6.2. Let κ > ω be regular and let M be uniquely normally κ+1
iterable. Then M is smoothly κ+ 1–iterable.

The proofs of these theorems are quite complex. To prove theorem 3.6.1, we
redo much of chapter 2, developing a theory of embeddings which are Σ∗–
preserving modulo pseudo projecta, which may not be the real projecta, but
behave simiarly. The proof of theorem 3.6.2 requires us, in addition, to delve
rather deeply into the combinatorics of normal iteration, using technique
which, essentially, were developed by John Steel and Farmer Schlutzenberg.

This section (§3.6) is devoted to the proof of theorem 3.6.1. The following
section brings the proof of theorem 3.6.2. In later chapters we shall make
frequent use of both these theorems, but will seldom, if ever, refer to their
proofs. Hence it would be justifiable for a first time reader of this this book
to skip §3.6 and §3.7, taking the above theorems for granted and deferring
their proofs until later.

3.6.2 Pseudo projecta

In order to prove theorem 3.6.1, we must redo §2.6, allowing “pseudo pro-
jecta” to play the role of the real projecta.

Definition 3.6.1. Let M = ⟨JAα , B⟩ be acceptable. Then ρ = ⟨ρi|i < ω⟩ is
a good sequence of pseudo projecta for M iff the following hold:

(a) ρi is p.r. closed if i > 0.

(b) ω ≤ ρi+1 ≤ ρi ≤ ρiM for i < ω.

(c) JAρi is cardinally absolute in M (i.e. if γ ∈ JAρi is a cardinal in JAρi , then
it is a cardinal in M).

Note. ρ0 < ρ0M = OnM is not excluded. Moreover, ρi itself need not be a
cardinal in M .



3.6. VERIFYING FULL ITERABILITY 245

We shall generally write “ρ is good for M ” instead of “ρ is a good sequence
of pseudo projecta for M i”.

Definition 3.6.2. Let ρ be good for M = JAα . Hi = Hi(M,ρ) =: |JAρi | for
i < ω.

We adopt the same language with typed variables vi(i < ω) as before. The
formula classes Σ(n)

h (h, n < ω) are defined exactly as before. The satisfaction
relation:

M |= φ[x1, . . . , xn] mod ρ

is defined as before except that the variables vi now range overHi = Hi(M,ρ)

instead of H i = H i
M . A relation R(xi11 , . . . , x

in
n ) is Σ

(n)
j (M,ρ) (or Σ

(n)
j (M)

mod ρ) iff it is M–definable mod ρ by a Σ
(n)
j formula.

Similarly for Σ
(n)
j ,Σ∗,Σ∗. We then define:

Definition 3.6.3. σ :M →
Σ

(n)
j

M ′ mod (ρ, ρ′) iff the following hold:

(a) ρ is good for M and ρ′ is good for M ′.

(b) σ′′Hi ⊂ H ′
i for i < ω, where Hi = Hi(M,ρ), H ′

i = Hi(M
′, ρ′).

(c) Let φ be Σ
(n)
i , φ = φ(vi11 , . . . , v

ip
p ) where i1, . . . , ip ≤ n. Then:

M |= φ[x⃗] mod ρ↔M ′ |= φ[σ(x⃗)] mod ρ′

for all x1, . . . , xp ∈M such that xi ∈ Hil(l = 1, . . . , p).

We also define:

Definition 3.6.4. σ :M →Σ∗ M ′ mod (ρ, ρ′) iff

σ is Σ
(n)
0 –preserving mod (ρ, ρ′) for n < ω.

As before, this is equivalent to:

σ is Σ
(n)
1 –preserving mod (ρ, ρ′) for n < ω.

We also write:
σ :M →

Σ
(n)
j

M ′ mod ρ′

to mean {
σ :M →

Σ
(n)
j

M ′ mod (ρ, ρ′),

where ρi = ρiM for i < ω.

(Similarly for σ :M →Σ∗ M ′ mod ρ′.)
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Lemma 3.6.3. Let σ :M →
Σ

(n)
j

M ′. Let ρ be good for M and define ρ′ by:

ρ′i =

{
σ(ρi) if ρi < ρiM
ρiM if not.

Then σ :M →
Σ

(n)
j

M ′ mod (ρ, ρ′).

(Hence, if σ is fully Σ∗–preserving, it is also Σ∗–preserving modulo (ρ, ρ′).)

Proof: Clearly ρ′ is good for M ′. Now let R(xil1 , . . . , x
ip
p ) be Σ

(n)
j (M,ρ),

where i1, . . . , ip ≤ n. By an induction on n, R is uniformly Σ
(n)
j (M) in the

parameter u = ⟨ρi : l ≤ n ∧ ρl < ρlM ⟩. (We leave the detail to the reader.)

But then, if R′ is Σ
(n)
i (M ′, ρ′) by the same definition, it is Σ

(n)
j (M ′) in σ(u)

by the same definition. QED (Lemma 3.6.3)

Lemma 3.6.4. Let σ : M →Σ∗ M ′ and let ρ, ρ′ be as in lemma 3.6.3. Let
κ = crit(σ), where ρi+1 ≤ κ < ρi. Define ρ′′ by:

ρ′′j =: ρ′j for j ̸= i, ρ′′i =: supσ′′ρi.

Then:
σ :M →Σ∗ M ′ mod (ρ, ρ′′).

Proof: ρ′′ is still good for M ′. By induction on n it then follows that σ is
Σ
(n)
1 –preserving modulo (ρ, ρ′′). QED (Lemma 3.6.4)

One might expect that most of §2.6 will not go through with pseudo projecta
in place of projecta, since ⟨Hi, B⟩ is not necessarily amenable when B is
Σ
(i)
0 (M,ρ). As it turns out, however, a great many proofs in §2.6 do not use

this property (in contrast to the treatment in §2.5). In particular, lemmas
2.6.3 – 2.6.16 go through without change. Similarly, the definition of a good
function can be relativized to a good ρ in place of ⟨ρnM |n < ω⟩. We define

Gn = Gn(M,ρ);G∗ = G∗(M,ρ)

exactly as before with ρ in place of ⟨ρiM |i < ω⟩. Lemma 2.6.22 — 2.6.25 then
go through exactly as before. Leaving the definition of good Σ

(n)
1 definition

unchanged, we get the following version of Lemma 2.6.27: Let F be a good
Σ
(n)
1 function mod ρ. There is a good Σ

(n)
1 definition which defines F

mod ρ.

Even some of §2.7 remains valid for pseudo projecta. In §2.7.1 we define
Γ0(τ,M) (τ being a cardinal in M) as the set of maps f ∈ M such that
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dom(f) ∈ H = HM
τ . In §2.7.2 we then introduce Γn = Γn(τ,M) for the case

that n > 0 and τ ≤ ρnM , defining Γn to be the set of f such that:

(a) dom(f) ∈ H = HM
τ .

(b) For some i < n there is a good Σ
(i)
1 (M) function G and a parameter

p ∈M such that:

f(x) = G(x, p) for all x ∈ dom(f).

Lemma 2.7.10 then told us that, whenever π : M →
Σ

(n)
0

M ′, there is a
canonical way of assigning to each f ∈ Γn a definable partial map π′(f)
on M ′. This continues to hold if π : M →

Σ
(n)
0

M ′ mod ρ. The extended
version of 2.7.10 reads:

Lemma 3.6.5. Let π : M →
Σ

(n)
0

M ′ mod ρ. There is a unique map π′

which assigns to each f ∈ Γn(τ,M) a function π′(f) with the following prop-
erty:

(*) π′(f) : π(dom(f)) → M ′. Moreover, if f(x) = G(x, p) for all x ∈
dom(f), where G is a good Σ

(i)
1 (M) function for an i < n and p ∈M ,

then
π′(f)(x) = G′(x, π(p)) for x ∈ π(dom(f)),

where G′ is a good Σ
(i)
1 (M ′, ρ) function by the same good definition.

The proof is exactly as before. As before we get:

Lemma 3.6.6. Let u, τ, π, π′ be as above. Then π′(f) = π(f) for f ∈
Γ0(τ,M).

Thus, again, we could unambiguously write π(f) instead of π′(f) for f .
However , this is only unambiguous if we have previously specified the good
sequence ρ. π′ depends not only on π but also on the good sequence ρ. For
this reason we shall write: πρ(f) for π′(f). We can omit the subscript ρ if
the good sequence is clear from the context.

In §3.2 we then considered the special case that τ = κ+M where κ is a
cardinal inM . (This is mainly of interest when there is an extender F on M
at κ.) We then set:

Γn∗ (κ,M) =: {f ∈ Γn(κ,M)| dom(f) = κ}.
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We also set:

Γ∗(κ,M) =: Γn∗ (κ,M) where n ≤ ω is maximal such that κ < ρnM .

Let us call p a defining parameter for f ∈ Γ∗(κ,M) iff either p = f or else:

f(ξ) = G(ξ, p) for all ξ < κ

where G is a good Σ
(i)
1 (M) function for an i < n. By lemma 2.6.25 we can

then conclude:

Fact 1 Let R(x⃗, y1, . . . , yr) be a Σ
(n)
0 (M) relation. Let fi ∈ Γn∗ (κ,M) have

a defining parameter pi for i = 1, . . . , r. Then the relation:

Q(x⃗, ξ⃗)←→: R(x⃗, f1, (ξ1), . . . , fr(ξ)

is Σ
(n)
0 (M) in the parameters κ, p1, . . . , pr.

Moreover, if:
σ :M →

Σ
(n)
0

M ′ mod ρ.

and R′ has the same Σ
(n)
0 (M,ρ) definition, then the relation:

Q′(x⃗, ξ⃗)↔: R′(x⃗, σρ(f1)(ξ1), . . . , σρ(fr)(ξr))

is Σ
(n)
1 (M ′, ρ) in κ, σ(p1), . . . , σ(pr) by the same definition as Q.

Now let a1, . . . , am ∈M and set:

X = {⟨ξ⃗⟩|R(⃗a, f⃗(ξ))}.

Then X ∈ Hn
M and ⟨Hn

M , Q⟩ is amenable.

Fact 2 Let R,R′, Q,Q′, f1, . . . , fr, σ,M,M ′ be as in Fact 1. Let a⃗, X be as
above. Then:

σ(X) = {≺ ξ⃗ ≻∈ σ(κ)|R′(σ(⃗a), σρ(f⃗)(ξ⃗))}.

Proof (sketch)

We know: ∧
ξ⃗ < κ(≺ ξ⃗ ≻∈ X ↔ Q(⃗a, ξ⃗))

which is Π
(n)
0 (M) in the parameters HM

κ , a⃗, p⃗. (We use here the fact
that κ and the Gödel ν–tuple function on κ are HM

κ –definable.) But
then the corresponding Π

(n)
0 (M ′, ρ) statement holds ofHn(M

′, ρ), σ(⃗a),
σ(α⃗), σ(p⃗). QED (Fact 2)
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Note. σ is Σ1 preserving mod ρ, if n > 0. But then κ′ = σ(κ) is a cardinal
in M ′, since it is a cardinal in H0 = H0(M

′, ρ) and ρ0 is cardinally absolute
in M ′.

We now recall the Q–quantifier:

Qziφ(zi) =:
∧
ui

∨
vi(vi ⊃ ui ∧ φ(vi)).

By a Q(i) formula we mean any formula of the form Qz′φ(zi), where Q(νi)

is Σ
(i)
1 . We write:

σ :M →Q∗ N mod (ρ, ρ′)

to mean that σ is elementary mod (ρ, ρ′) with suspect to Q(n) formulae for
all n < ω. Clearly, if σ isQ∗ preserving mod (ρ, ρ′), then it is Σ∗–preserving
mod (ρ, ρ′). If ρ = ⟨ρiM |i < ω⟩, we write:

σ :M →Q∗ N mod ρ.

In the following assume:

(1) σ :M →Σ∗ N mod ρ′.

We define a minimal good sequence:

ρ = min ρ′ = min(σ,N, ρ′)

with the following properties:

(a) σ :M →Q∗ N mod ρ.

(b) supσ′′ρiM ≤ ρi ≤ ρ′i for i < ω.

(c) Let φ be Σ
(i)
0 . Let x ∈M, z1, . . . , zp ∈ Hi(N, ρ). Then:

N |= φ[z⃗, σ(x)] mod ρ↔ N |= φ[z⃗, σ(x)] mod ρ′.

(d) ρ = min ρ.

We define ρ as follows:

Definition 3.6.5. Let σ :M →Σ∗ N mod ρ′. We define:

• ρi(0) =: supσ′′ρiM .

• ρi(n+ 1) =: the supremum of all F (η) such that η < ρi+1(n) and F is
a Σ

(i)
1 (N, ρ′) map to ρ′i in parameters from rng(σ).

• ρi =: sup
n<ω

ρi(n).
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• ρ = ⟨ρi|i < ω⟩.

Lemma 3.6.7. ρi(n) ≤ ρi(n+ 1).

Proof: We show by induction on n that it holds for all i ≤ ω.

Case 1 n = 0.
If ξ < ρiM , then σ(ξ) = F (0), where F = the constant function σ(ξ).
But then F is Σ

(i)
1 (N, ρ′) in σ(ξ). Hence σ(ξ) < ρi(1).

Case 2 n > 0.
Then ρi+1(n) ≥ ρi+1(n− 1). Hence:

F ′′ρ
(n)
i+1 ⊃ F

′′ρ
(n−1)
i+1

for all F which is a Σ
(i)
1 (N, ρ′) map to ρ′i.

The conclusion is immediate. QED (Lemma 3.6.7)

Lemma 3.6.8. ρi(n) is p.r. closed for i > 0.

Proof: We show by induction on n that it holds for all i > 0.

Case 1 n = 0.
σ ↾JA

ρiM
: JA

ρiM
→Σ0 J

A
ρi cofinally, where ρiM is p.r. closed.

Case 2 n > 0. Let n = m+ 1.
Then ρi(m) is p.r. closed. Let f be a monotone p.r. function on On.
It suffices to show:

Claim f“ρi(n) ⊂ ρi(n).
Let ν < ρi(n). Then ν < F (η) where η < ρ

(m)
i+1 and F is Σ

(i)
1 (N, ρ′) to

ρ′i in σ(x). But then f ◦ F is Σ
(i)
1 (N, ρ′) to ρ′i, since ρ′i is p.r. closed.

Hence f(ν) < f · F (η) < ρi(n). QED (Lemma 3.6.8)

Corollary 3.6.9. ρi is p.r. closed for i > 0.

Definition 3.6.6.

Hi(n) = Hi(N, σ, ρi(n)) =: |JAN

ρi(n)
|

Hi = Hi(N, ρ) =: |JAN

ρi |

Lemma 3.6.10. (a) Hi(0) =
⋃
σ′′H i

M .
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(b) Hi(n + 1) = the union of all F (x) such that x ∈ H
(n)
i+1 and F is

Σ
(i)
1 (n, ρ′) to ρ′i in parameters from rng(σ).

(c) Hi =
⋃
n
Hi(n).

Proof: (c) is immediate. (a) is immediate since:

σ ↾H i
M : H i

M →Σ0 Hi(0) cofinally.

We prove (b). Let y = F (x), where F, x are as in (b).

Claim y ∈ Hi(n+ 1).

Proof: We recall the function ⟨SAν |ν <∞⟩ such that for all limit α:

JAα =
⋃
ν<α S

A
ν and ⟨SAν |ν < α⟩ is

uniformly σ1(JAα ).

Since ρi+1(n) is p.r. closed, there is a Σ1(Hi+1(n)) map f of ρi+1(n) onto
Hi+1(n). Set:

g(x) =: the least ν sucht that x ∈ Sν .

Then F̃ (ξ) ≃ gFf(ξ) is a Σ
(i)
1 (N, ρ′) map to ρ′i in parameters from rng(σ).

Hence, where f(η) = x, we have y ∈ SA
F̃ (η)
⊂ Hi(n+ 1).

QED (Lemma 3.6.10)

By the definition 3.6.5 and Lemma 3.6.7:

Lemma 3.6.11. Let ρ = min ρ′. Then:

• σ”ρiM ⊂ ρi ≤ ρ′0 ≤ ρ0N .

• ρi = supX, where X is the set of all F (ν) such that ν < ρi+1 and F
is a Σ

(i)
1 (N, ρ′) map to ρ′0 in some σ(x).

Similarly by Lemma 3.6.10.

Lemma 3.6.12. Let ρ = min ρ′. Then:

• σ′′H i
M ⊂ Hi ⊂ H ′

i ⊂ H i
N .

• Hi =
⋃
X where S is the set of all F (x) such that z = Hi+1 and F is

a Σ
(i)
1 (N, ρ′) map to H ′

i in some σ(x).
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We now can show:

Lemma 3.6.13. ρ is good for N .

Proof: By Lemma 3.6.11 we have:

ω ≤ ρi+1 ≤ ρi ≤ ρ′i ≤ ρiN .

Moreover, ρi is p.r. closed for i > 0 by Lemma 3.6.8.

It remains only to show:

Claim Hi is cardinally absolute with respect to N .

Proof: We know: Hi =
⋃
X, where X = the set of F (z) such that z ∈ Hi+1

and F is a Σ
(i)
1 (N, ρ′) map to H ′

i = Hi(N, ρ
′). Moreover H ′

i is cardinally
absolute in N .

(1) Let α ∈ X. Then αN ∈ X and there is f ∈ X such that f : α
N onto−→ α.

Proof: Suppose not.

Define a Σ1(Hi) map by:

F (β) ≃ the <SA –least pair ⟨γ, f⟩ such that γ < β and f : γ
onto−→ β.

Then F ′′X ⊂ X. Set:

α0 = αiαi+1 ≃ (F (αi))0.

By induction on i it follows that αi exists and αi ∈ X. But then αi+1 < αi
for i < ω. Contradiction! QED (1)

Now let α be a cardinal in Hi but not in N . Then α /∈ X by (1). But α < β

for a β ∈ X. Hence β
N
> α. (Otherwise, letting γ = β

N
< α, we have

γ ∈ X ⊂ Hi and there is f ∈ X ⊂ Hi such that f : γ
onto−→ β. Hence there is

g ∈ Hi such that g : γ
onto−→ α, since 0 < α < β. Hence α is not a cardinal in

Hi.) But then, letting γ = β
N

, α is a cardinal in JAγ and γ is a cardinal in
N . Hence α is a cardinal in N by acceptability. QED (Lemma 3.6.13)

We now verify property (c) for ρ = min ρ′.

Lemma 3.6.14. Let B(w⃗i) be Σ
(i)
0 (M) in the parameter x ∈M . Let B′(w⃗i)

be Σ
(i)
0 (N, ρ′) in σ(x) and B(w⃗i) be Σ

(i)
0 (N, ρ) in σ(x) by the same definition.

Then: ∧
z⃗ ∈ Hi(B(z⃗)↔ B′(z⃗)).
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Proof: By induction on i. The case i = 0 is trivial. Now let it hold for h
where i = h+ 1. It suffices to prove the claim for B which is Σ

(h)
1 (M) in x.

We than have:
B(z⃗)↔

∨
ahD(ah, z⃗)

where D is Σ
(h)
0 (M) in x;

B′(z⃗)↔
∨
ahD′(ah, z⃗)

where D′ is Σ
(h)
0 (N, ρ′) in σ(x) by the same definition, and:

B(z⃗)↔
∨
ahD(ah, z⃗)

where D is Σ
(h)
0 (N, ρ) in σ(x) by the same definition.

Define a map F to ρ′h which is Σ
(h)
1 (N, ρ′) in σ(x) by:

ξ = F (z⃗) ↔ (∨u ∈ SξD′(uz⃗)∩
∧ξ′ < ξ ∧ u ∈ Sξ,¬D′(u, z⃗)

Hence for z⃗ ∈ Hi:

B′(z⃗) ↔ ∨u ∈ HhD
′(u, z⃗)

↔ ∨u ∈ SF (z⃗)D
′(u, z⃗)

↔ ∨u ∈ HhD
′(u, z⃗)

↔ ∨u ∈ HhD(u, z⃗)↔ B(z⃗)

(by the induction hypothesis). QED (Lemma 3.6.14)

Since σ :M →Σ(i) N mod ρ′, we conclude that σ :M →Σ(i) N mod ρ.

Since this holds for all i < ω, we conclude:

Corollary 3.6.15. σ :M →Σ∗ N mod ρ.

Another immediate corollary is:

Corollary 3.6.16. ρ = min(N, σ, ρ).

It remains only to prove:

Lemma 3.6.17. σ :M →Q∗ N mod ρ.

Proof:
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Assume: M |= Quiφ(ui, x) where φ is Σ
(i)
1 .

Claim N |= Quiφ(ui, x) mod ρ.
Let v ∈ Hi. Then v ⊂ w = G(w), where w ∈ Hi+1. Then v ⊂ w =

G(w), where w ∈ Hi+1 and G is Σ
(i)
1 (N, ρ) map to Hi in parameter

from rng σ. Let:

φ =
∨
ziψ(zi, ui, x) where ψ is Σ

(i)
0 .

Define a Σ
(i)
1 (N, ρ) map to Hi in σ(x) by:

F (w) ≃ the N–least ⟨z, u⟩ ∈ H i such that

z ⊂ u ∧ ψ(z, u, σ(x)).

The Π
(i+1)
1 –statement:∧

ai+1(ai+1 ∈ dom(G)→ ai+1) ∈ dom(F ◦G))

holds in N , since the corresponding statement holds in M by our
assumption. Let ⟨z, u⟩ = FG(w) = F (w). Then v ⊂ w ⊂ u and
ψ(z, u, σ(x)). Hence:

N |= Quφ(u, σ(x)) mod ρ.

QED (Lemma 3.6.17)

Then ρ = min ρ′ possess all the properties that we ascribed to it.

As a corollary of Lemma 3.6.17 we get:

Corollary 3.6.18. Let B be Σ
(i)
1 (N, ρ) in parameters from rng σ. Then

⟨Hi, B⟩ is amenable.

Proof: Let B be Σ
(i)
1 (M) in x and B be Σ

(i)
1 (N, ρ) in the same definition.

Since ⟨H i
M , B⟩ is amenable, we have:

Qui
∨
yi yi = ui ∩B in M.

But then:
Qui

∨
yi yi = ui ∩B in N mod ρ.

Let u ∈ Hi. There is then v ⊃ u, v ∈ Hi such that v ∩ B ∈ Hi. Hence
u ∩B = u ∩ v ∈ Hi. QED (Corollary 3.6.18)
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Definition 3.6.7. σ :M →Σ∗ N min ρ iff

[σ :M →Σ∗ N mod ρ] ∧ [ρ = min(N, σ, ρ)].

(Similarly for Σ
(n)
j , Q

(n)
j , Q∗ etc.)

In the following we shall always assume that M is acceptable, κ ∈ M is
inaccessable in M , and that τ = κ+M ∈M .

Lemma 3.6.19. Let π : M →Σ∗ M ′. Let κ = crit(π), λ ≤ π(κ), and
suppose an extender F at κ, λ on M to be defined by:

F (X) = λ ∩ π(X) for X ∈ P(κ) ∩M.

Let σ : M →Σ∗ M min ρ, where σ(κ) = κ. Let F be a weakly amenable
extender at κ, λ on M . Assume:

⟨σ, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩, where g : λ→ λ.

Let n ≤ w be maximal such that κ < ρn
M

.

Define a good sequence ρ∗ for M ′ by:

ρ∗i =


supπ′′ρn if i = n

π(ρi) if i ̸= n and ρi < ρiM

ρiM ′ if i ̸= n and ρi = ρiM .

(Hence π :M →Σ∗ M ′ mod (ρ, ρ∗) by Lemma 3.6.3 and 3.6.4.) Then:

(a) M is n–extendible by F .

(b) Let π :M →(n)

F
M

′. There is a map σ′ such that

σ′ :M
′ →

Σ
(n)
0

M ′ mod ρ∗ and σ′π = πσ, σ′ ↾λ = g.

Moreover, σ′ is defined by:

σ′(π(f)(α)) = ((πσ)ρ∗(f))(g(α))

for f ∈ Γ∗(κ,M), α < λ.

Proof: We obviously have:

πσ :M →Σ∗ M ′ mod ρ∗.
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It is also clear that n is maximal such that κ < ρn and also maximal such
that κ′ = π(κ) < ρ∗n.

We now prove (a). We must show that the ∈–relation ∈∗ of D∗(F ,M) is well
founded. Let ⟨f, α⟩, ⟨f ′, α′⟩ ∈ D∗. Set:

e = {≺ ξ, ζ ≻< κ|f(ξ) ∈ f ′(ζ)}.

Then:

⟨f, α⟩ ∈∗ ⟨f ′, α′⟩ ←→ ⟨a, α′⟩ ∈ F
←→≺ g(α), g(α′) ≻∈ F (σ(e))
←→≺ g(α), g(α′) ≻∈ πσ(e)
←→ (πσ)ρ∗(f)(g(α)) ∈ (πσ)f∗(f

′)(g(α))

(The second line rises the assumption: ⟨σ, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩. The third
uses: F (X) = λ∩π(X). The fourth uses Fact 2, which we established earlier
in the section. QED (a)

We now prove (b). Let R′ be a Σ
(n)
0 (M

′
) relation and let R′ be Σ

(n)
0 (M ′) by

the same definition. We claim that: σ′ : M ′ →
Σ

(n)
0

M ′ where σ′ is defined
by:

σ′(π(f)(α)) = (πσ)ρ∗(f)(g(α))

for f ∈ Γ∗(u,M), α < λ.

Let R′ be a Σ
(n)
0 (M

′
) relation and let R′ be Σ

(n)
0 (M ′, ρ∗) by the same defini-

tion. Let α1, . . . , αm < λ and f1, . . . , fm ∈ Γ∗(u,M). Writing e.g. f⃗(α⃗) for
f1(α1), . . . , (αm), it suffices to show:

Claim R
′
(π(f⃗)(α⃗))↔ R′(πσ(f⃗), g(α⃗)).

Proof: Let R be Σ
(n)
0 (M) and R be Σ

(n)
0 (M,ρ) by the same definition. Set:

e = {≺ ξ⃗ ≻ |R(f⃗(ξ⃗)}.

Then:

R
′
(π(f⃗)(α⃗))←→≺ α⃗ ≻ ∈ F (e)

←→≺ g(α⃗) ≻ ∈ F (σ(e))
←→≺ g(α⃗) ≻ ∈ πσ(e)

←→ R′((πσ)ρ∗(f⃗)(g(α⃗)))

QED (Lemma 3.6.19)
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We would like to prove something stronger namely that M is ∗–extendible
by F and that:

σ′ :M
′ →Σ∗ M ′ mod ρ∗.

For this we must strengthen the condition:

⟨σ, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩.

In §3.2 we helped ourselves in a similar situation by strengthening the relation
→ to →∗. However →∗ is too strong for our purposes and we adopt the
following weakening:

Definition 3.6.8. ⟨σ, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod ρ iff the following hold:

(a) ⟨σ, g⟩ : ⟨M,F ⟩ → ⟨M,F ⟩

(b) σ :M →Σ0 M mod ρ

(c) Let α < lh(F ), α = g(α). There are G,G,H,H such that letting

κ = crit(F ), κ = crit(F )

we have:

(i) G,H are Σi(M) in a q ∈ M and G,H are Σ1(M,ρ) in q = σ(q)
by the same definition.

(ii) G = Fα, H =M ∩ (κP(u))
(iii) G ⊂ Fα
(iv) H ⊂ {X ∈ κP(u)|

∧
ξ < κ(Xξ or κ \Xξ ∈ G)}

Note. Actually, only the first pseudo projectum ρ0 is relevant in this defi-
nition. (b)says merely that ρ is good for M and that σ is a Σ0-preserving
map into M with σ′′OnM ≤ ρ0. In (c) the statement “G,H are Σ1(M,ρ) in
q by the same definition” can be rephrased as: “G,H are Σ1(M |ρ0) in q by
the same definition”, where M |η =: ⟨JAη , B ∩ JAη ⟩ for M = ⟨JAα , B⟩.

(Note that M |η is not necessarily amenable.) We set:

Definition 3.6.9. ⟨σ, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ iff:

⟨X, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod (⟨ρnM |n < w⟩).

Note. This always holds if ρ0 = OnM .

Note. Let σ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod ρ. Let X ∈ M ∩ (κP(κ)). If
X = σ(X), then X ∈M and hence

∧
ξ < κ(Xξ or (κ \Xξ) ∈ G).
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Note. Let σ : ⟨M,F ⟩ →∗ ⟨M,F ⟩. It follows easily that:

σ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩.

Note. Suppose that σ : M →Σ∗ M min ρ. Set M |ρ0 = ⟨JAρ0 , B ∩ J
A
ρ0⟩,

where M = ⟨JAγ , B⟩. Then M |ρ0 is amenable by Corollary 3.6.18. Clearly
τ = κ+M ∈ M |ρ0 since τ = κ+M ∈ M . Hence P(κ) ∩M ⊂ M |ρ0. But then
F is an extender at κ on M |ρ0 and it makes sense to write:

⟨σ, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M |ρ0, F ⟩.

But this means exactly the same thing as:

⟨σ, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod ρ.

We are now ready to prove:

Lemma 3.6.20. Let π, σ,M,M,M
′
,M ′, ρ, ρ∗, τ , τ, π, σ′, g be as in lemma

3.6.19. Assume:

⟨σ, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod ρ.

Then M is ∗–extendible by F and:

σ′ :M
′ →Σ∗ M ′ mod ρ∗.

Proof: F is then close to M . Hence M is ∗–extendible by F . By induction
on i we now show:

Claim σ′ :M
′ →

Σ
(i)
1

M ′ mod ρ∗.

For i < n this is given. Now let i = n. We prove a somewhat stronger
claim:

Subclaim 1 Let A ⊂ κ be Σ
(n)
1 (M

′
) in a ∈ M ′ and A ⊂ κ be Σ

(n)
1 (M ′, ρ∗)

in a = σ′(a) by the same definition. There is r ∈ M such that A is
Σ
(n)
1 (M) in r and A is Σn1 (M,ρ) in r = σ(r) by the same definition.

(As we shall see, this proves the claim for the case i = n.)

We now prove the subclaim. Let:

A(i)↔
∨
yP

′
(y, i, a),

A(i)↔
∨
yP ′(y, i, a)

where P ′ is Σ0(M
′
) and P ′ is Σ0(M

′, ρ∗) by the same definition.
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Let P be Σ
(n)
0 (M) and P be Σ

(n)
0 (M) by the same definition. Let

a = π(f)(α) and a = πσ(f)(α), where α = g(α). Let p be a "defining
parameter" for f (i.e. either p = f or else f(ξ) = B(ξ, p) where B
is a good Σ

(i)
1 (M) function for an i < n.) Then p = σ(p) is in the

same sense a defining parameter for σ(f) and p′ = πσ(p) is a defining
parameter for πσ(f). (The good definition of B remaining unchanged.)

Finally, let G,G,H,H be as given for α, α = g(α) by the principle:

⟨σ, q⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod ρ∗.

Since ⟨M ′
, π⟩ is the extension of ⟨M,F ⟩, we know that: π“Hn

M
is

cofinal in Hn
M .

Thus:

(1)
A(i) ↔

∨
u ∈ Hn

M

∨
y ∈ π(u)P ′

(g, i, π(f)(α))

↔
∨
u ∈ Hn

M
α ∈ π(X(i, u))

↔
∨
u ∈ Hn

M
X(i, u) ∈ G,

where X(i, u) = {ξ < u|P (y, i, f(ξ))}.
Thus A is Σ

(n)
1 (M) in p, q, κ. We now show that A is Σ

(n)
1 (M) in

p, q, κ by the same definition. Set:

Hn = Hn(M,ρ), H ′
n = Hn(M

′, ρ∗).

It is easily seen that the relation:

Q(u, i, ξ)←→: (u ∈ Hn ∧
∨
y ∈ uP (y, i, σρ(f)(ξ))

is Σ
(n)
0 (M,ρ) in p and the relation:

Q′(u, i, ξ)←→: (u ∈ H ′
n ∧

∨
y ∈ uP ′(y, i, (πσ)ρ∗(ξ))

is Σ
(n)
0 (M ′, ρ∗) in p′ by the same definition. Set: X(u, i) = {ξ <

u|Q(u, i, ξ)}. Then X(u, i) ∈ Hn, since ⟨Hn, Q⟩ is amenable by
lemma 3.6.14 and hence is rud closed. Since ρ∗n = supσ”ρn, we
know that π”Hn is cofinal in H ′

n. Thus:
(2)

A(i) ↔
∨
u ∈ Hn

∨
y ∈ π(u)P ′(y, i, ((πσ)ρ∗(f)(α))

↔
∨
u ∈ HnQ(π(u), i, α)

↔
∨
u ∈ Hnα ∈ π(X(u, i)) ∩X

↔
∨
u ∈ Hnα ∈ F (X(u, i))

↔
∨
u ∈ HnX(u, i) ∈ Fα.
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If Fα = G, we would be finished, but G might be a proper subset
of Fα. (Moreover, we don’t even know that Fα is M–definable in
parameters.) However, we can prove:

(3) A(i)↔
∨
u ∈ HnX(u, i) ∈ G,

which establishes subclaim 1. The direction (←) is trivial by (2),
since G ⊂ Fα. We prove (→). Assume A(i0), where i0 < κ.
We must show that u ∈ Hn can be chosen large enough that
X(u, i0) ∈ G. We know that it can be chosen large enough that
X(u, i0) ∈ Fα. Since ρ = min(M,σ, ρ), we also know that the
set of S(ξ) such that S is a partial Σ(n)

1 (M,ρ) map to Hn in a
parameter s = σ(s) and ξ < ρn+1 is cofinal in Hn. (This uses
Lemma 3.6.12.) Hence we can assume w.l.o.g. that u = S(ξ0) for
a ξ0 < ρn+1. Now set:

Y (v) =: {x(v, i)|i < u} for v ∈ Hn.

Then Y (v) ∈ Hn by the rud closure of ⟨Hn, Q⟩. Moreover, the
function Y is Σ1(⟨Hn, Q⟩) and hence is a Σ

(n)
1 (M,ρ) function.

Hence Y ◦ S in Σ
(n)
1 (M,ρ) in s. Let S be Σ

(n)
1 (M) is s and Y be

Σ
(n)
1 (M) by the same definition. The Π(n+1)(M,ρ) statement:∧

ζ < ρn+1(ζ ∈ dom(Y · S)→ Y · S(ζ) ∈ H)

is true, since the corresponding statement:∧
ζ < ρn+1

M (ζ ∈ dom(Y · S)→ Y · S(ζ) ∈ H)

is true in M . Since u = S(ζ0), it follows that: Y (u) ∈ H and:

X(κ, i0) ∈ G ∨ (κ \X(u, i0)) ∈ G.

But G ⊂ Fα(κ \ X(u, i0)) ∈ G is therefore impossible, since we
would then have:

X(κ, i0) ∩ (κ \X(u, i0)) = ∅ ∈ Fα.

Hence, X(U, i0) ∈ G. QED (Subclaim 1)

Subclaim 2 σ′ :M
′ →

Σ
(n)
1

(M
′
) mod ρ∗.

Proof. Let Q be Σ
(n)
1 (M ′, ρ∗) and Q be Σ

(n)
1 (M

′
) by the same defini-

tion. Set:
P (i, x)↔ (i = 0 ∧Q(x)),

P (i, x)↔ (i = 0 ∧Q(x)).
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Set:
A(x) = {i|P (i, x)}, A(x) = {i|P (i, x)}.

Then A is the characteristic function of Q and A is the characteristic
function of Q. But A(σ′(x)) = A(x) for x ∈M by Subclaim 1.

QED (Subclaim 2)

A slight reformulation of Subclaim 1 yields:

Subclaim 3 Let A be Σ
(n)
1 (M ′, ρ∗) i p = σ′(p). Let A be Σ

(n)
1 (M

′
) in p

by the same definition. Set: H = HM
κ , H = HM

κ . Then A ∩ H is
Σ
(n)
1 (M,ρ) in a q = σ(q) and A ∩ H is Σ

(n)
1 (M) in q by the same

definition.

Proof: H = JEκ , where E = EM and H = JEκ where E = EM . But
κ, κ are preclosed. Let f : κ

onto−→ H be primitive recursive in E and let
f : κ

onto−→ H be primitive recursive in E by the same definition. Apply
subclaim 1 to

B = f−1′′A,B = f
−1′′A.

Then B ⊂ κ is Σ
(n)
1 (M,ρ) in a q = σ(q) and B ⊂ κ is Σ

(n)
1 (M) in q.

But then the same holds for A = f ′′B,A = f ′′B.
QED (Subclaim 3)

For i > n, we know: ρi
M

= ρiM , so we can write ρi =: ρi
M

. By the
definition of ρ∗, we know: ρi = ρ∗i for i > n. We can also set:

H
i
= H i

M
= H i

M
, Hi = Hi(M,ρ) = Hi(M

′, ρ∗).

We now prove:

Subclaim 4 Let i > n. Let A be Σ
(i)
1 (M

′
) in a ∈ M

′ and let A be
Σ
(i)
1 (M ′, ρ∗) in a = σ′(a) by the same definition. Then there are B,B,

q, q such that

(a) B is Σ
(i)
0 (M) in q ∈M .

(b) B is Σ
(i)
0 (M,ρ) in q = σ(q) by the same definition.

(c) A ∩H i
= B ∩H i.

(d) A ∩Hi = B ∩Hi.

Proof: By induction on i. Let it hold below i. Then w.l.o.g. we can
assume:

(1) A(x)←→ ⟨H i
, P ∩H i⟩ |= φ[x] for x ∈ H i where φ is Σ1 and p is

Σi−1
0 (M

′
) in a.
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(2) A(x)←→ ⟨H ′, P ∩Hi⟩ |= φ[x] for x ∈ Hi where φ is the same Σ1

formula and P is Σi−1
0 (M ′, ρ∗) in a by the same definition.

But then there are Q,Q, q, q such that

(3) P ∩H i = Q ∩H i, where Q is Σi−1
1 (M) in q ∈M .

(4) P ∩Hi = Q∩Hi, where Q is Σi−1
1 (M,ρ) in q = σ(q) by the same

definition.

This is by subclaim 3 if i = n + 1, and otherwise by the induction
hypothesis. QED (Sublemma 4)

The claim then follows easily, since σ is Σ∗–preserving mod ρ∗.
QED (Lemma 3.6.20)

We can then go on further and set:

ρ′ = min(M ′, σ′, ρ∗).

It then follows that:
π“ρi ⊂ ρ′i ≤ ρ∗i for i < ω.

To see that π′′ρi ⊂ ρ′i, we recall that ρ′i = sup{ρ′i(n) : n < ω} where the
sequence ⟨ρ′i(n)|i < w⟩ is defined from ρ∗,M ′, σ′ by a canonical recursion on
n (cf. Definition 3.6.5).

But since ρ = min(M,σ, ρ), we have: ρi = sup
n<w

ρi(n), where ⟨ρi(n)|i < w⟩ is

defined from ρ,M, σ by the same induction on n. Since π′σ = πσ, it follows
easily by induction on n that:

π“ρi(n) ⊂ ρ′i(n) for i < w.

The details are left to the reader.

Putting all of this together:

Theorem 3.6.21. Let π : M →Σ∗ M ′ with critical point κ. Let λ ≤ π(κ)
and let the extender F at κ, λ on M be defined by:

F (X) = π(X) ∩ λ.

Let σ :M →Σ∗ M min ρ with σ(κ) = κ. Assume:

⟨σ, g⟩ : ⟨M,F ⟩ →∗∗ ⟨M,F ⟩ mod ρ

where F is a weakly amenable extender at κ, λ on M . Then

(a) M is ∗–extendable by F , giving π :M →∗
F
M

′.
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(b) There are σ′, ρ′ such that

(i) σ′ :M
′ →Σ∗ M ′min ρ′

(ii) σ′ is defined by:

σ′(π(f)(α)) = (πσ)ρ(f)(g(α))

for α < λ−, f ∈ Γ∗(κ,M). (Hence σ′π = πσ and σ′ ↾λ = g.)
(iii) π′′ρi ⊂ ρ′i ≤ π(ρi) for i < w (taking π(ρi) = OnM , if ρi = OnM ).

(c) The above, in fact, holds for:

ρ′ =: min(ρ∗) = min(M ′, σ′ρ∗).

where ρ∗ is defined by:

ρ∗0 =


sup ′′ρi if ρi+1 ≤ κi
π(ρi) if κi < ρi+1 and ρi < ρiM

ρiM , if κi < ρi+1 and ρi = ρiM .

This is the most important result on pseudo projecta.

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and
Lemma 3.6.37 actually establishes a more abstract result which is useful in
other contexts:

Lemma 3.6.22. Assume that Mi,M
′
i are amenable for i < µ, where µ is a

limit ordinal. Assume further than:

(a) πi,j :Mi −→Σ∗ Mj (i ≤ j < µ), where the πi,j commute.

(b) π′i,j :M
′
i −→Σ∗ M ′

j (i ≤ j < µ), where the π′i,j commute.

Moreover:
⟨M ′

i : i < µ⟩, ⟨π′i,j : i ≤ j < µ⟩

has a transitivized direct limit M ′, ⟨π′i,j : i ≤ j < µ⟩.

(c) σi :M ′
i −→Σ∗ M ′

j min ρi (i ≤ j < µ).

(d) σjπi,j = π′i,jσi.

(e) π′i,j“ρ
i
n ⊂ ρin ≤ π′i,j(ρin) for i ≤ j < µ, n < ω.

Then:
⟨Mi : i < µ⟩, ⟨πi,j : i ≤ j < µ⟩

has a transitivized direct limit M, ⟨πi,j : i < µ⟩.
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There is then σ :M −→M ′ defined by: σπi = π′iσi(i < µ). Moreover:

(1) There is a unique ρ such that σ :M −→Σ∗ M ′min ρ and:

π′“ρin ⊂ ρn ≤ π′i(ρin) for i < µ, n < ω.

(2) There is i < µ such that ρn = π′j(ρ
i
n) for i ≤ j < µ, n < ω.

3.6.3 Mirrors

Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration of length η. By a mirror
of I we shall mean a sequence:

I ′ = ⟨⟨M ′
i⟩, ⟨π′ij⟩, ⟨σi⟩, ⟨ρi⟩⟩

such that σi :Mi →Σ∗ M ′
i min ρi for i < η and the sequence:

I ′′ = ⟨⟨M ′
i⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ⟩

"mirrors" the action of I, where ν ′i =: σi(νi). However, I ′′ will not necessarily
be an iteration. If i + 1 is not a drop point in I and h = T (i + 1), we will,
indeed, have:

π′h,i+1 :M
′
h →Σ∗ M ′

i+1,

but M ′
i+1 is not necessarily an ultrapower of M ′

h. None the less κ′i =: σi(κi)
will still be the critical point and we shall have:

P(κ′i) ∩M ′
h = P(κ′i) ∩ JE

M′
i

νi

and:
α ∈ EM

′
i

νi (X)↔ α ∈ π′h,i+1(X) for

X ∈ P(κ′i) ∩M ′
h and α < λ′i,

where λ′i =: σi(λi).

We shall also require a measure of agreement among the maps σi. In partic-
ular, if h = T (i+ 1) is as above, then:

σi+1πh,i+1 = π′h,i+1σh; σi ↾λi = σi+1 ↾λi.

Note. that this gives:

⟨σh, σi ↾λi⟩ : ⟨Mh, E
Mi
νi ⟩ → ⟨M

′
h, E

M ′
i

νi ⟩.)

The formal definition is:
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Definition 3.6.10. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration of
length η. By a mirror of I we mean a sequence:

I ′ = ⟨⟨M ′
i |i < η⟩, ⟨π′ij |i ≤T i⟩, ⟨σi < |i < η⟩, ⟨ρi|i < η⟩⟩

satisfying the following conditions:

(a) M ′
i is a premouse and σi :Mi →Σ∗ M ′

i min ρi.

(b) π′ij is a partial structure preserving map from M ′
i to M ′

j . Moreover
the π′ij commute and πii = id ↾Mi. If λ < η is a limit, then M ′

λ =⋃
i⊤λ

rng(π′iλ).

(c) σiπij = π′ijσi for i ≤⊤ j.

(d) σi ↾λi = σj ↾λi for i < j < η.

In order to state the further clauses we need some notation. Set:

ν ′i = σi(νi) =:

 σi(νi) if νi ∈Mi

On∩M ′
i if not

κ′i = σi(κi), τ
′
i = σi(τi), λ

′
i = σi(λi)

For h = T (i+ 1) set:

M ′∗
i =

{
σh(M

∗
i ) if M∗

i ∈Mh

M ′
h if not.

Noting that τ ′i = σh(τi) by (d) we can easily see that:

M ′∗
i =M ′

h||µ, where µ ≤ OnM ′
h

is maximal such that
τ ′o < µ and τ ′i is a cardinal in M ′

h||µ.

(To see that this holds for M ′∗
i = M ′

h, we note that τ ′i = σh(τi) is a
cardinal in M ′

h||ρh0 and ρh0 is cardinally absolute in M ′
h.)

We now complete the definition of mirror :

(e) Let h = T (i+1), i+1 ≤T i, and assume that there is no drop point in
(i+ 1, j)T . Then:

(i) π′h,i :M
′∗
i →Σ∗ M ′

j .

(ii) κ′i = crit(π′hj).

(iii) If X ∈ P(κ′i) ∩ JE
Mi

τ ′i
, then X ∈M ′∗

i and EM
′
i

ν′i
(X) = λ′i ∩ π′h,j(X).
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(iv) Set:

ρ̂i =

{
ρh if M ′∗

i =M ′
h

min(M ′∗
i , ρh ↾M

∗
i , ⟨ρnM ′∗

i
|n < w⟩) if not.

Then:
π′h,j“ρ̂

i
M ⊂ ρjn ≤ π′h,j(ρ̂in) for n < w

(where π′hj(ρ̂
i
n) =: OnM ′

j if ρ̂in = OnM ′∗
i
).

(Hence, if h ≤T j and [h, j]T has no drop point, then π′h,j“ρ
h
n ⊂

ρjn ≤ π′h,j(ρhn).)

This completes the definition.

Lemma 3.6.23. JE
M′

i

λ′i
= JE

M′
i+1

λ′i
for i+ 1 < ηi.

Proof: λ′i is an inaccessible cardinal in JE
Mi

νi . Hence there are arbitrarily
large primitive recursive closed ordinals α < λ′i and it suffices to show:

Claim JE
M′

i

α = J
M ′

i+1
α for primitive recursive closed α < λ′i.

Proof: Let h = T (i+ 1). Since x ∈ JEα is JEα –definable from parame-
ters β1, . . . , βn < α, it suffices to show:

Subclaim Let β1, . . . , βn < α. Let φ be a first order formula. Then:

JE
M′

i

α |= φ[β⃗]←→ JE
M′

i+1

α |= φ[β⃗].

Proof: Set: X = {≺ ξ⃗, ζ ≻< κ′i|JE
M′

i

ζ mod φ[ξ⃗]}. Then X ∈ P(κ′i) ∩

JE
M′

i

ν′i
⊂ M ′∗

i by (e) (iii). But JE
M

′
i

κ′i
= JE

M
′∗
i

κ′i
= JE

M′
h

κ′i
, by (e) (i), (ii).

Then: ∧
ξ⃗, ζ < κ′i(≺ ξ⃗ ≻∈ X ↔ JEζ |= φ[ξ⃗]),

which is a first order statement in ⟨JEκ′i , X⟩, where E = EM
′∗
i . But

then the same first order statement holds in ⟨π′(JEκ′i), π
′(X)⟩, where

π′ = π′h,i+1. Clearly π′(JEκ′0) = JE
M′

i+1

π′(κ′i)
. Thus:

π′(X) = {≺ ξ⃗, ζ ≻< π(κ′i)|JE
M′

i+1

ζ |= φ[ξ⃗]},

and we have:

JE
M′

i+1

α |= φ[β⃗] ←→≺ β⃗, α ≻∈ π′(X)

←→≺ β⃗, α ≻∈ EM
′
i

ν′i
(X) by (e) (iii)

←→ JE
M′

i

α |= φ[β⃗].
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QED (Lemma 3.6.23)

We know that λ′i = E
M ′

i

ν′i
(κ′i) ≤ π′(κ′i), where h = T (i + 1), π′ = πh,i+1 (by

(e) (iii)). Set:

λ∗i =: π′h,i+1(κ
′
i) where h = T (i+ 1), for i+ 1 < η.

Lemma 3.6.24. Let i+ 1 < η. Then λ′i ≤ λ∗i = σj(λi) for i < j < η.

Proof: λ′i ≤ λ∗i is trivial. But then:

σi+1(λi) = σi+1πh,i+1(κi) = π′h,i+1σh(κi)

= π′h,i+1(κ
′
i) = λ∗i .

Hence σj(λi) = σi+1(λi) for j > i, since λi < λi+1. QED (Lemma 3.6.24)

Note. The main difference between a mirror of I and a simple copy of I in
our earlier sense is that we can have: λ′i < λ∗i .

Corollary 3.6.25. λ′i < λ′j for i < j, j + 1 < η.

Proof: λ′i ≤ λ∗i = σj(λi) < σj(λj) = λ′j . QED (Corollary 3.6.25)

Corollary 3.6.26. If h = T (i + 1), h + 1 ≤T j, then κ′i < λ′h ≤ λ∗h ≤ κ′j
(since κj ≥ λh).

Lemma 3.6.27. JE
M′

i

λ′i
= JE

M′
j

λ′i
for i ≤ j < η.

Proof: By induction on j

Case 1 j = i trivial.

Case 2 j = l + 1. Then it holds at l. But JE
Ml

λ′l
= JE

Mj

λ′l
where λ′i ≤ λ′l.

The conclusion is immediate.

Case 3 j = µ is a limit ordinal.

By 3.6.26 we have: κ′i < κ′j for i + 1 ≤T j + 1 ≤T µ. Moreover
supκ′i = supλ′i by 3.6.26, 3.6.25. Pick an l+1 ≤T µ such that κ′l > λ′i.

Then JE
M′

l

κ′l
= JE

M′
µ

κ′l
by axiom e (i), (ii) and JE

M′
i

λ′i
= JE

M′
l

λ′i
, where

λ′i < κ′l.

The conclusion is immediate. QED (Lemma 3.6.27)
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Lemma 3.6.28. JE
M′

i+1

λ∗i
= JE

M′
j

λ∗i
for i < j < η.

Proof: For j = i+1 it is trivial. For j > i+1, we have λ′i+1 = σi+1(λi+1) >

σi+1(λi) = λ∗i and JE
M′

i+1

λ′i+1
= JE

M′
j

λ′i+1
. The conclusion is immediate. QED

(Lemma 3.6.28)

Lemma 3.6.29. λ∗i is a limit cardinal in M ′
j for all j > i.

Proof: λ∗i = σj(λi) is a cardinal in M ′
j , since λi is a cardinal in Mj . (This

uses that ρj0 is cardinally absolute if ρi0 < OnM ′
i
.) But then λ∗i is cardinally

absolute in M ′
j and:

JE
M′

i

λ∗i
|= there are arbitrarily large cardinals,

since the same is true in JEMi

λi
. QED (Lemma 3.6.29)

Lemma 3.6.30. λ′i is cardinally absolute in M ′
j for j ≥ i.

Proof: Let α be a cardinal in JEλ′i
= JE

M′
i

λ′i
= JE

M′
j

λ′i
. Let h = T (i + 1) and

let:
X = {ξ < κ′i)J

E
κ′i
|= ξ is a cardinal}.

Then: α ∈ EM
′
i+1

ν′i
(X) ⊂ π′h,i+1(X). Hence:

JE
M′

i+1

λ∗i
|= α is a cardinal.

But JE
M′

i+1

λ∗i
= JE

M′
j

λ∗i
and λ∗i is cardinally absolute in M ′

j .
QED (Lemma 3.6.30)

But there are arbitrarily large cardinals in the sense of JE
M′

i

λ′i
. Hence:

Corollary 3.6.31. λ′i is a limit cardinal in M ′
j for i < j.

Lemma 3.6.32. Let h = T (i+ 1). Then JE
M′

h

τ ′i
= JE

M′
i

τ ′i
.

Proof: For h = i it is trivial. Let h < i. Then JE
M′

h

λ′h
= JE

M′
i

λ′h
, so we need

only show that τ ′i < λ′h. But λ′h is a limit cardinal in M ′
i and κ′i < τ ′i . Hence

in M ′
i we have: τ ′i ≤ κ′

+
i < λ′h. QED (Lemma 3.6.32)

Corollary 3.6.33. P(κ′i) ∩M ′∗
i = P(κ′i) ∩ JE

M′
i

ν′i
.
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Proof: Since τ ′i > κ′i is a cardinal in M ′∗
i , we have by acceptability:

P(κ′i) ∩M ′∗
i = P(κ′i) ∩ JE

M′
h

τ ′i
= P(κ′i) ∩ JE

M′
i

τ ′i

= P(κ′i) ∩ JE
M′

h

ν′i

QED(Corollary 3.6.33)

Lemma 3.6.34. Let h = T (i+ 1), F = EMi
νi , F

′ = E
M ′

i

ν′i
. Then

⟨σh ↾M∗
i , σi ↾λi⟩ : ⟨M∗

i , F ⟩ −→ ⟨M ′∗
i , F

′⟩.

Proof. Clearly (σh ↾M∗
i ) : M∗

i −→Σ0 M
′∗
i . Moreover, rng(σi ↾ λi) ⊂ λ′i.

Now let X ⊂ κi, X ∈M∗
i , αi, . . . , αn < λi. Then:

≺ α⃗ ≻∈ F (X) = πh,i+1(X)

←→≺ σi+1(α⃗) ≻∈ σi+1πh,i+1(X) = π′h,j+1σh(X)

←→≺ σi(α⃗) ≻∈ F ′(σh(X)),

since σi ↾λi = σi+1 ↾λi and F ′(σh(X)) = λ′i ∩ π′h,i+1(σh(X)).

QED(Lemma 3.6.34)

We also note:

Lemma 3.6.35. Let λ < η be a limit ordinal. Then for sufficiently large
i <T λ we have:

ρλ = π′i,λ(p
i
n) for n < ω

Proof. Pick ξ < λ such that [ξ, λ)T has no drop points. For each n < ω
and each i, j such that ξ ≤T i ≤T j ≤T λ we have:

π′i,j“ρ
i
n ⊂ ρjn ≤ π′ij(ρin).

(1) For each n < ω there is in ∈ [ξ, λ)T such that:

π′i,j(ρ
i
n) = ρin for in ≤T i ≤T j <T λ.

Proof. Suppose not. Then there exist ir(r < ω) such that ξ <T ir <T
ir+1 and ρ

ir+1
n < π′ir+1,λ

(ρ
ir+1
n ) < π′ir,λ(ρ

ir
n ). Hence: π′ir+1,λ

(ρ
ir+1
n ) <

π′ir,λ(ρ
i
n) for r < ω. Contradiction!

QED(1)
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(2) π′i,λ(ρ
i
n) = ρλn for in ≤T<T λ.

Proof. Since M, ⟨π′i,λ : in ≤T i <T λ⟩ is a direct limit, we have:

π′i,λ(ρ
i
n) =

⋃
in≤T i<Tλ

π′i,λ“ρ
i
n ⊂ ρλn ≤ π′i,λ(ρin).

QED(2)

(3) If ρλn = ρnMλ
then in = ξ.

Proof. If not, there is i ∈ [ξ, λ)T such that ρin < ρnMi
. Hence ρλn ≤

π′i,λ(ρ
i
n) < ρnMλ

. Contradiction!

QED(3)

But then the set {n : in > ξ} is finite. Set: i = max{in : in > ξ}. This has
the desired property.

QED(Lemma 3.6.35)

Corollary 3.6.36. Let λ be a limit ordinal. Then

π′i,λ :M ′
i −→Σ∗ M ′

λ mod (ρi, ρλ)

for sufficiently large i ≤T λ.

Proof. Let i0 ≤T i <T λ such that π′i,λ(ρ
i
n) = ρλn for i0 ≤T i < λ, n < ω.

By Lemma 3.6.3 we need only show:

(1) ρin < ρnMi
−→ ρλn = π′i,λ(ρ

i
n)

(2) ρin = ρnMi
−→ ρλn = ρnMλ

(1) is immediate. To prove (2) we note:

ρλn = π′i,λ(ρ
i
n) = πi,λ(ρ

n
Mi

) ≥ ρnMλ
≥ ρλn

QED Corollary 3.6.36

Definition 3.6.11. By a mirror pair of length η we mean a pair ⟨I, I ′⟩ such
that I is a normal iteration of length η and I ′ is a mirror of I.

It is natural to ask whether, and in what circumstances, a mirror pair of
length η can be extended to one of length η + 1. For limit η the answer is
fairly straightforward:
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Lemma 3.6.37. Let ⟨I, I ′⟩ be a mirror pair of limit length. Let b be a cofinal
branch in T = TI . Let the sequence:

⟨M ′
i : i ∈ b⟩, ⟨π′ij : i ≤ j in b⟩

have a well founded direct limit. Then ⟨I, I ′⟩ extends uniquely to a mirror
pair ⟨Î , Î ′⟩ of length η + 1 with b = T̂”{η} (where T̂ = TÎ).

Proof. Let M ′
η, ⟨π′i,η : i ∈ b⟩ be the transitivized direct limit.

Note. By our convention this means that for some j0 ∈ b, b∖j0 is drop free
and:

⟨M ′
i : i ∈ b∖j0⟩, ⟨π′i,j : j0 ≤ i ≤ j in b⟩

in the usual sense, and we define:

π′iη = π′j0,η ◦ π
′
i,j0 for i < j0 in b

In the same sense the sequence:

⟨Mi : i ∈ b⟩, ⟨πi,j : i ≤ j in b⟩

has a transitivized limit:
M, ⟨Miη : i ∈ b⟩

The maps πi,η, π′i,η are easily seen to be Σ∗−preserving for j0 ≤ i ∈ b. We
extend T to T̂ by setting T̂”{η} = b. We define the map ση : Mη −→ M ′

η

by: σηπiη = π′iησi for i < η. We must then define a good sequence ρ̂ = ρη

for M ′
η. We first imitate the proof of Lemma 3.6.35 by showing that there is

i0 ∈ b such that b∖i0 has no drop points and for all j ∈ b∖i0:

π′i,j(ρ
i
n) = ρjn for n < ω

Thus, setting: ρ̂n =: π′i0,η(ρ
i0
n ), we have:

ρ̂n = π′j,η(ρ
j
n) for n < ω, i0 ≤T j ∈ b

It is easily shown that ρ̂ = ⟨ρ̂n : n < ω⟩ is a good sequence forM ′
η. Repeating

the proof of Lemma 3.6.36 we then have:

(1) π′jη :M
′
j −→Σ∗ M ′

η mod (ρi, ρ̂) for i0 ≤T j ≤T η.

Using this we show:

Claim 1. ση :Mη −→Σ∗ M ′
η mod ρ̂.
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Proof. Let x1, . . . , xn ∈ Mη. Then x⃗ = πiη(z⃗) for an i ∈ [i0, η). Hence for
any Σ

(n)
0 formula:

Mη |= φ[x⃗]←→Mi |= φ[z⃗]

←→M ′
i |= φ[σi(z⃗)] mod ρi

←→M ′
i |= φ[π′i,ησi(z⃗)] mod ρ̂

where π′i,ησi(z⃗) = σηπi,η(z⃗) = ση(x⃗).

QED(Claim 1)

We must also show:

Claim 2. ση :Mη −→Σ∗ M ′
ηmin ρ̂.

Proof. We must show:
ρ̂ = min(Mη, ση, ρ̃)

Let ⟨ρ̂l(n) : l < ω⟩ be defined by induction on n < ω as in Definition 3.6.5.
We must show: ρ̂l =

⋃
n<ω ρ̂l(n). Let ξ < ρ̂l. Then ξ = π′i,η(ξ̄) where

i0 ≤T<T η and η̄ < ρil. But ρil =
⋃
n<ω ρ

i
l(n). Thus ξ̄ < ρil(n) for some n.

Using (1) and Definition 3.6.5, we easily get:

π′i,η”ρ
i
l(n) ⊂ ρ̂l(n) by induction on n

But then ξ = π′i,η(ξ̄) ∈ ρ̂l(n).

QED(Claim 2)

Using these facts it is easy to see that the extension ⟨Î , Î ′⟩ we have defined
satisfies the axiom (a)-(e) and is, therefore a mirror pair of length η + 1.
(We leave the detail to the reader). The uniqueness of the maps πi,η, π′i,η, ση
is immediate from our construction. Finally, we must show that ρ̂ = ρη is
unique. This is because ρ̂n = π′i0,λ(ρ

i0
n ) where π′i0,λ is unique.

QED(Lemma 3.6.37)

We now ask how we can extend a mirror pair of length η+1 to one of length
η + 2. This will turn out to be more complex.

If I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ is a normal iteration of length η+ 1, we can turn
it into a potential iteration of length η + 2 simply by appointing a νη such
that EMη

νη ̸= ∅ and νη > νi for i < η. This then determines h = T (η+1) and
M∗
η . (The notion of potential iteration was introduced in §3.4, where we gave

a more formal definition). If ⟨I, I ′⟩ is a mirror pair of length η + 1, we can
then form a potential mirror pair of length η+2 by appointing ν ′η =: ση(νη).
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This determines M ′∗
η . Our main lemma on “1-step extension” of mirror pair

reads:

Lemma 3.6.38. Let ⟨I, I ′⟩ be a mirror pair of length η+1. Form a potential
pair of length η + 2 by appointing νη and ν ′η = ση(νη). Let:

π′ :M ′∗
η −→Σ∗ M ′ such that κ′η = crit(π′)

and
E
M ′

η
νη (X) = λ′η ∩ π′(X) for X ∈ P(κ′η) ∩ JE

M′
η

ν′η

Our potential pair then extends to a full mirror pair with:

M ′ =M ′
η+1, π

′ = π′h,η+1 where h = T (η + 1)

In order to prove this, we must first form a ∗-ultrapower:

π :M∗
η −→∗

F M where F = E
Mη
νη

We must then define σ, ρ such that:

π′“ρ̂n ⊂ ρn ≤ π′(ρ̂n) for n < ω

where ρ̂ is defined as in axiom (e)(iv). If we then set:

Mη+1 =:M,M ′
η+1 =:M ′, πh,η+1 =: π, π′h,η+1 =: π′, ση+1 = σ, ρη+1 = ρ

we will have defined the desired extension. (We leave it to the reader to
verify the axioms (a)-(e)). By the proof of Lemma 3.6.34 we have:

⟨σh ↾M∗
η , ση ↾λη⟩ : ⟨M∗

i , F ⟩ −→ ⟨M∗
i , F

′⟩

where F = E
Mη
νη , F ′ = E

M ′
η

ν′η
.

Lemma 3.6.19 then points us in the right direction. In order to get the full
result, however, we must use Theorem 3.6.21 together with:

Lemma 3.6.39. Let ⟨I, I ′⟩, νη, ν ′η, π′ be as in Lemma 3.6.38. Set: ξ =

T (η + 1), F = E
Mη
νη , F ′ = E

M ′
η

ν′η
. Set:

ρ̂ =

{
ρξ if M ′∗

η =M ′
ξ

min(M ′∗
η , σh ↾M

′∗
η , ⟨ρnM ′∗

η
: n < ω⟩) if not

Then:
σh ↾M

∗
h , ση ↾λη : ⟨M∗

η , F ⟩ −→∗∗ ⟨M ′∗
η , F

′⟩ mod ρ̂
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We leave it to the reader to see that Theorem 3.6.21 and Lemma 3.6.39 give
the desired result.

Note. It is clear that πh,η+1, π
′
h,η+1, ση+1 are uniquely determined by the

choice of νη, ν ′η, π′. If we wished, we could use clause (c) of Theorem 3.6.21
to make ρη+1 unique.

We are actually in familiar territory here. The notion of mirror is clearly
analogous to that of copy developed in §3.4.2. The analogue of mirror pair
was there called a duplication. The role of Lemma 3.4.16 is now played by
Lemma 3.6.38 and that of Theorem 3.4.16 by Lemma 3.6.39, which verifies
the weaker principle −→∗∗ in place of −→∗ (which was, in turn, patterned
on the proof of Theorem 3.4.3), which said that, if I is a potential normal
iteration of length η + 2, then EMη

η is close to M∗
η ).

We now turn to the proof of lemma 3.6.39. Just as in §3.4.2 we derive it
from a stronger lemma. In order to formulate this properly we define:

Definition 3.6.12. Let M be acceptable. Let κ ∈ M be inaccessible in M
such that P(κ)∩M ∈M . A ⊂ P(κ)∩M is strongly Σ1(M) in the parameter
p iff there is B ⊂M such that B is Σ0(M) and:

• x ∈ A←→
∨
zB(z, x, p)

• If u ∈M such that u ⊂ P(κ) and uM ≤ κ, then:∨
v ∈M

∧
X ∈ u

∨
z ∈ v(B(z,X, p) ∨B(z, κ∖X, p))

We shall derive:

Lemma 3.6.40. Let ⟨I, I ′⟩, η, ξ, νη, ν ′η, π′ be as in Lemma 3.6.39. Let A ⊂
P(κη) be strongly Σ1(Mη||νη) in p. Let A′ ⊂ P(κ′η) be Σ1(M

′
η||ν ′η) in p′ =

ση(p) by the same definition. Then there is q ∈M∗
η such that

• A is strongly Σ1(M
∗
η ) in q.

• Let A′′ be Σ1(M
′∗
η ) in q′ = σξ(q) by the same definition. Then A′′ ⊂ A′.

Before proving this, we show that it implies Lemma 3.6.39:

Lemma 3.6.41. Assume Lemma 3.6.40. Let ρ∗ be good for M ′∗ and let:

σξ ↾M
∗
η :M∗

η −→Σ∗ M ′∗
η mod ρ∗.

Then:
⟨σξ ↾M∗

η , ση ↾λη⟩ : ⟨M∗
η , F ⟩ −→∗∗ ⟨M ′∗

η , F
′⟩ mod ρ∗.
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Proof. Let α < λη, α
′ = ση(α). Then Fα is Σ1(J

EMη

νη ) in α, since:

X ∈ Fα ←→
∨
Y (Y = F (X) ∧ α ∈ Y )

We know, however, that if u ∈ JEMη

νη , u ⊂ P(κ), and u ≤ κ in JE
Mη

νη , then:∨
v ∈ JE

Mη

νη ∧X ∈ u
∨
Y ∈ v(Y = F (X) ∧ (α ∈ Y ∨ α ∈ (κ∖Y )))

Hence Fα is strongly Σ1(J
EMη

νη ) in α. Obviously Fα
′

α′ is Σ1(J
E

M′
η

ν′η
) in α′ =

ση(α) by the same definition. Hence G = Fα is strongly Σ1(M
∗
η ) in a pa-

rameter q. Moreover, if G′ in Σ1(M
′∗
η) in σξ(q) by the same definition, then

G′ ⊂ F ′
α′ . Now let G be Σ1(M

′∗
η , ρ

∗) in σξ(q) by the same definition. Then
G ⊂ G′ ⊂ F ′

α′ . Now let:

X ∈ G←→
∨
zB(z,X, q)

be the strongly Σ1(M
∗
η )-definition of G in q. Then:

X ∈ G←→
∨
zB(z,X, q′)

where q′ = ση(q) and B is Σ0(M
∗
η , ρ

∗) by the same definition. (In other
words, B is Σ0(M

′∗
η|ρ∗0) by the same definition). Now let H be the set of

f ∈M∗
η ∩ κP(κ) such that∨

z
∧
i < κ(B(z, f(i), q) ∨B(z, κ∖f(i), q))

Then H =M∗
η ∩ κP(κ) by the strongness of our definition. But if H has the

same Σ1(M
∗
η , ρ

∗) definition in q′, then we obviously have:

f ∈ H −→
∧
i < κ′(f(i) ∈ G ∨ κ∖f(i) ∈ G)

QED(Lemma 3.6.41)

(In the application we, of course, take ρ∗ = p̂, where p̂ is defined as in Lemma
3.6.39).

We now turn to the proof of Lemma 3.6.40. Suppose not. Let η be the least
counterexample. We again have fixed νη and ν ′η = ση(νη), which gives us
κη, κ

′
ητη, τ

′
η, λη, λ

′
η, ξ = T (η + 1),M∗

η ,M
′∗
η and ρ∗.

(1) ξ < η.

Proof. Suppose not. Let A ⊂ P(κ) be strongly Σ1(Mη||νη) in p and
let A′ ⊂ P(κ′η) be Σ1(M

′
η||ν ′η) in p′ = ση(p) by the same definition.
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Clearly τη is a cardinal in Mη||ν1, so M∗
η = Mη||µ for a µ ≥ νη.

Similarly M ′∗
η =M ′

η||µ′ where:

µ′ =

{
ση(µ) if µ ∈Mη

ON ∩Mη if not

Now suppose νη ∈ M∗
η (i.e. µ > νη). Then A ∈ M∗

η and A′ ∈ M ′∗
η

where ση(A) = A′. Then A is trivially strongly Σ1(M
∗
η ) in the param-

eter A and A′ is Σ1(M
∗′
η ) in A′ = ση(A) by the same definition, where

A′ ⊂ A′. Contradiction!

Now letM∗
η =Mη||νη. ThenM ′∗

η =M ′
η||ν ′η and A′ is Σ1(M

′∗
η ) definable

in p′ = ση(p) by the same definition. But A is strongly Σ1(M
∗
η ) in p,

since M∗
η =Mη|νη. Contradiction!

QED(1)

(2) νη = ON ∩Mη.

Proof. Suppose not. Then λξ > τη is inaccessible in Mη. Hence

A ∈ JEMη

λξ
= JE

Mξ

λξ
⊂ M∗

η . Similarly A′ ∈ JE
M′

η

λ′ξ
= JE

M′
ξ

λ′ξ
⊂ M ′∗

η|ρ∗0.
Then A is strongly Σ1(M

∗
η ) in A′ = σξ(A) by the same definition.

Contradiction!

QED(2)

(3) τη ≥ ρ1Mη
.

Proof. Suppose not. Then τη < ρ1Mη
. Hence A ∈ JE

Mη

ρ1Mη

since A ⊂

JE
Mη

τη . Hence A ∈ JEMη

λξ
= JE

Mξ

λξ
⊂ M∗

η . Hence A is strongly Σ1(M
∗
η )

in the parameter Ar. Now let A′′ be Σ1(M
′
η|ρ

η
0) in p′ = ση(p) by the

same definition. Then A′′ ⊂ A′. But since

ση :Mη −→Σ∗ M ′
ηmin(ρη),

we have: A′′ = ση(A). But λ′′ξ is inaccessible in M ′
η; hence A′′ ∈

JE
Mη

λ′ξ
= JE

Mξ

λ′ξ
⊂ M

′∗
η . Hence A′′ = σξ(A) is Σ1(M

′∗
η ) in A′′ = σξ(A)

by the same definition. Contradiction!

QED(3)

(4) η is not a limit ordinal.

Proof. Suppose not. Pick η <T η such that η = µ + 1. πηη is
total on Mη, κ = crit(πη,η) > λη and p ∈ rng(πη,η). Then π′η,η is
total in M ′

η, κ
′ = crit(π′η,η) > λ′η and p′ ∈ rng(π′η,η), where p′ =

ση(p). Set p = π−1
η,η(p), p

′ = π−1
η,η(p

′). Then ση(p) = p. Then Mη =
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⟨JE
Mη

ν , F ⟩,M ′
η = ⟨JE

M′
η

ν′ , F ⟩. Extend the mirror ⟨I|η + 1, I ′|η + 1⟩ to
a potential mirror ⟨I, I ′⟩ of length η + 2, by setting: νη = ν, ν ′η = η′.

Then M
∗
η = M∗

η ,M
′∗
η = M

′∗
η = M

′∗
η , ξ = T (η + 1) = T (η + 1) and

σξ ↾M∗
η : M

∗
η −→Σ∗ M

′∗
η min ρ∗. It is easily seen that A is Σ1(Mη)

in p′ by the same definition. By the minimality of η we conclude that
there is q ∈ M∗

η = M
∗
η such that A is strongly Σ1(M

∗
η ) in q and A is

Σ1(M
′∗
η ) in q′ = σξ(q) by the same definition. Contradiction!

QED(4)

Now let η = µ + 1. Let ζ = T (µ + 1). Then πζ,η : M∗
µ −→Σ∗ Mη and

κµ = crit(πζ,η). Hence M∗
µ has the form M = ⟨JEν , F ⟩ where F ̸= ∅.

Set: κ = crit(F ), τ = τ(F ) =: κ+M , λ = λ(F ) =: F (κ). Similarly M ′∗
µ

has the form M
′
= ⟨JE

′

ν′ , F
′⟩ and we define κ′, τ ′, λ′ accordingly.

Set: π = πζ,η, π
′ = π′ζ,η.

(5) κµ > κ,

since otherwise κη = π(κ) ≥ π(κµ) = λµ ≥ λξ > κη. Contradiction!

QED(5)

But then κµ > τ and hence τ = τη, κ = κη. Similarly κ′µ > τ ′ and
τ ′ = τ ′η, κ

′ = κ′η. But then:

(6) κµ > ρ1
M

,

since otherwise ρ1Mη
≥ π(κµ) = λµ > τη. Contradiction! by (3).

QED(6)

Hence, since π :M −→∗
Eνµ

Mη, we have:

(7) π :M −→Eνµ
:Mη is a Σ0 ultraproduct and ρ1

M
= ρ1Mη

.

Recall that A is strongly Σ1(Mη) in p and A′ is Σ1(M
′
η) in p′ = ση(p)

by the same definition. By (7) we know:

(8) p = π(f)(α) where α < λµ, f ∈M and f : κµ −→M . Hence

(9) p′ = π′(f ′)(α′) where f ′ = σf (f), α
′ = σµ(α).

Proof. p′ = ση(π(f)(α)) = (σηπ(f))(ση(α)) = (π′σζ(f))(σµ(α)).

QED(9)

Note. σµ ↾λµ = ση ↾λµ since µ < η.

Let A be strongly Σ1(Mη) in p as witnessed by
∨
zB(z,X, p), where

B is Σ0(Mη). Set:

B0(u,X, p)←→:
∨
z ∈ uB(z,X, p).
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Then A is strongly Σ1(Mη) in p as witnessed by
∨
uB0(u,X, p). Note

that for all u, u′:

(10) (B0(u,X, p) ∧ u ⊂ u′) −→ B0(u
′, X, p).

Let B1 be Σ0(M) by the same definition as B0 over Mη. Set F̃ =:

E
Mµ
νµ , F̃ ′ = E

M ′
µ

ν′µ
. By the cofinality of the map p :M −→Mη and (10)

we have:

(11)

AX ←→
∨
u ∈MB0(π(u), X, p)

←→
∨
u ∈M{γ < κµ : Bγ(u,X, f(γ))} ∈ F̃α.

But F̃α is strongly Σ1(Mµ||νµ) in α and F̃ ′
α′ is Σ1(M

′
µ||ν ′µ) in α′ by the

same definition.

Hence by the minimality of η we conclude:

(12) There is q ∈M such that the following hold:

(a) G = F̃α is strongly Σ1(M) in q.

(b) Let G′ be Σ1(M
′
) in q′ = σγ(q) by the same definition. Then

G′ ⊂ F̃ ′
α′ , where α′ = σµ(α).

Let:
∨
zG0(z,X, q) witness the fact that G is strongly Σ1(M) in q.

Then:

AX ←→
∨
u ∈MB0(π(u), X, π(f)(α))

←→
∨
u ∈M{γ < κµ : B1(u,X, f(γ))} ∈ G

←→
∨
v ∈M

∨
u ∈ v

∨
∈ v

∨
z ∈ v

(Y = {γ < κµ : B1(u,X, f(γ))} ∧G0(z, Y, q))

This has the form:

(13) AX ←→
∨
vB2(v,X, r), where r = ⟨q, f⟩ and B2 is Σ0(M).

For this B2 we claim:

(14) A is strongly Σ1(M) in r are witnessed by
∨
B2(v,X, r).

Proof. Let w ⊂ P(κ) ∩M,w < κ in M .

Claim. There is v ∈M such that∧
X ∈ w(B2(v,X, r) ∧B2(v, κ∖X, r))
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For the sake of simplicity we can assume without lose of generality that
X ∈ w ←→ (κ∖M) ∈ ω. Fix u ∈M such that∧

X ∈ w(B0(π(u), X, p) ∧B0(π(u), (κ∖X), p))

For X ∈ w set:

θ(X) =: {γ < κµ : B1(u,X, f(γ))}

Then: ∧
x ∈ w(θ(X) ∈ G ∨ θ(κ∖X) ∈ G)

By rudimentary closure, ⟨θ(X) : X ∈ w⟩ ∈ M . Hence θ“w ∈ M and
card(θ“w) ≤ κ < κµ in M . Thus there is z ∈M such that:∧

X ∈ w(G0(z, θ(X), q) ∨G0(z, κµ∖θ(X), q))

Claim.
∧
X ∈ w(G0(z, θ(X), q) ∨G0(z, θ(κ∖X), q)).

Proof. Suppose not. Then there is X ∈ w such that:

κµ∖θ(X), κµ∖θ(κ∖X) ∈ G = F̃α.

Hence ¬B0(π(u), X, p) and ¬B0(π(u), κ∖X, p). Contradiction!

QED(Claim)

Pick V ∈M such that u ∈ v, z ∈ v and θ”w ⊂ v. Then:∧
X ∈ w(B2(v,X, r) ∨B2(v, κ∖X), r)

QED(14)

(15) Let A′′ be Σ(M) in r′ = σζ(r) by the same definition. Then A′′ ⊂ A′.

Proof. Let B′
0 be Σ0(M

′) by the same definition as B0 over M . Let
B′

1 be Σ0(M) by the same definition. A′′X says that there is u ∈ M
with:

{γ < κ′µ : B′
1(u,X, f

′(γ))} ∈ G′

where f ′ = σζ(f). But G′ ⊂ F̃α′ . Hence B′
0(π(u), X, π

′(f ′)(α′)), where
p′ = π′(f ′)(α′). Hence A′X.

QED(15)

Now extend ⟨I|ζ+1, I ′(ζ+1)⟩ to a potential mirror pair ⟨Î , Î ′⟩ of length
ζ + 2 by setting: νζ = ν, ν ′ζ = ν ′. Since κ = κη, τ = τη, we have:

ξ = T̂ (ζ + 1), M̂∗
ζ =M∗

η , M̂
′∗
ζ =M

′∗
η

But ζ ≤ µ < η. By the minimality of η and by (14), (15), we conclude
that there is a parameter s ∈M∗

η such that:
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• A is strongly Σ1(M
∗
η ) in s.

• If A′′′ has the same Σ1(M
′∗
η ) definition in s′(σξ(s)), then

A′′′ ⊂ A′′ (hence A′′′ ⊂ A′).

This contradicts the fact that η was a counterexample.

QED(Lemma 3.6.40)

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and
Lemma 3.6.37 actually establishes a more abstract result which is useful in
other contexts:

Lemma 3.6.42. Assume that Mi,M
′
i are amenable for i < µ, where µ is a

limit ordinal. Assume further that:

(a) πi,j :Mi −→Σ∗ Mj (i ≤ j < µ), where the πi,j commute.

(b) π′i,j :M
′
i −→Σ∗ M ′

j (i ≤ j < µ), where the π′i,j commute. Moreover:

⟨M ′
i : i < µ⟩, ⟨π′i,j : i ≤ j < µ⟩

has a transitivized direct limit M ′, ⟨π′i : i < µ⟩.

(c) σi :M ′
i −→Σ∗ M ′

j min ρi (i ≤ j < µ).

(d) π′i,j“ρ
i
n ⊂ ρ

j
n ≤ π′i,j(ρin) for i ≤ j < µ, n < ω. Then

⟨Mi : i < µ⟩, ⟨πi,j : i ≤ j < µ⟩

has a transitivized direct limit M, ⟨πi : i < µ⟩. There is then σ :M −→
M ′ defined by: σπi = π′iσi (i < µ). Moreover:

(1) There is a unique ρ such that σ :M −→Σ∗ M ′min ρ and:

π′i“ρ
i
n ⊂ ρn ≤ π′i(ρin) for i < µ, n < ω.

(2) There is i < µ such that ρn = π′j(ρ
j
n) for i ≤ j < µ, n < ω.

3.6.4 The conclusion

In this section we show that every smoothly iterable premouse is fully iter-
able. We first define some auxiliary concepts:
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Definition 3.6.13. Let ⟨I, I ′⟩ be a mirror pair of length η with:

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ and I ′ = ⟨⟨M ′
i⟩, ⟨π′ij⟩, ⟨σi⟩, ⟨ρi⟩⟩

Let N be a premouse such that M ′
0 = N ||µ for some µ ≤ ONN . As usual

set: ν ′i = σi(νi). Let:
I ′′ = ⟨⟨Ni⟩, ⟨ν ′′i ⟩, ⟨π′′ij⟩, T ⟩

be an iteration on N of length η. (T being the same as in I). Set:

µi =

{
π′′0j(µ) if µ ∈ dom(π′′0j)

ONNi if not.

We say that the mirror pair ⟨I, I ′⟩ is backed by I ′′ (or M -backed by I ′′) iff:

M ′
i = Ni||µi, ν ′i = ν ′′i , π

′
ij = π′′ij ↾M

′
i for i ≤T j < η.

Now suppose that ⟨I, I ′⟩ is a mirror pair of length η + 1 backed by I ′′.
Extend I to a potential iteration I+ of length η + 2 by appointing νη such
that EMη

νη ̸= ∅ and νη > νi for i < η. This determines ζ = T (η + 1) and
M∗
η . If we then set: ν ′η = ση(νη), we have determined M

′∗
η and turned

⟨I, I ′⟩ into a potential mirror pair ⟨I+, I ′+⟩. But ν ′η also extends I ′′ to a
potential iteration I

′′+ of length η + 2, determining N∗
η . We then say that

I
′′+ potentially backs ⟨I+, I ′+⟩.

Note that if M∗
η ∈Mξ, then:

M
′∗
η = σξ(M

∗
η ) = N∗

η .

If, however, M∗
η = Mξ, then we have M ′∗

η = M ′
ξ, but if is still possible that

M
′∗
η ∈ N∗

η and even that N∗
η ∈ Nξ. This can happen if M ′

ξ = Nξ||µξ and
µξ ∈ Nξ. There might then be γ > µξ such that τ ′η is a cardinal in Nξ||γ.
Hence M ′∗

η = M ′
ξ ∈ N ′

ξ||γ ⊂ N∗
η . But if the largest such γ is an element of

Nξ, we then have N∗
η ∈ Nξ.

Note. If I+, I ′+, I
′′+ are as above, we certainly have: E

M ′
η

ν′η
= E

Nη

ν′η
.

Using Lemma 3.6.38 we can then prove:

Lemma 3.6.43. Let I+, I ′+, I
′′+ be as above. Suppose that N∗

η is ∗-extendible
by F ′ = E

Nη

ν′η
. Then ⟨I+, I ′+⟩ extends to an actual mirror pair ⟨Î , Î ′⟩ with

ν̂η = νη and I ′′+ extends to an iteration Î ′′ which backs ⟨Î , Î ′⟩.
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Proof. Set π′′ : N∗
η −→∗

F ′ N ′. Then I
′′+ extends uniquely to Î ′′ with:

Nη+1 = N ′, π′′ξ,η+1 = π′′.

Set: π′ =: π′′ ↾M
′+
η . Then:

π′ :M
′∗
η −→Σ∗ M ′

where:

M ′ =

{
π′′(M

′∗
η ) if M ′∗

η ∈ N∗
η

M ′ if not

Then crit(π′) = κ′ν and F ′ = E
M ′

η

ν′η
. Hence by Lemma 3.6.38, ⟨I, I ′⟩ extends

to a mirror ⟨Î , Î ′⟩ of length η + 2 with: M ′ = M ′
η+2. Obviously, Î ′′ backs

⟨Î , Î ′⟩.

QED(Lemma 3.6.43)

Note. If M ′∗
η ∈ N∗

η , then ⟨π′,M ′⟩ is not necessarily an ultraproduct of
⟨M ′∗

η , F
′⟩.

Using Lemma 3.6.37 we also get:

Lemma 3.6.44. Let ⟨I, I ′⟩ be a mirror pair of limit length η which is backed
by I ′′. Let b be a well founded cofinal branch in I ′′. Then ⟨I, I ′⟩ extend
uniquely to ⟨Î , Î ′⟩ of length η+1 such that b = T̂“{η}. Moreover I ′′ extends
uniquely to Î ′′ which backs ⟨Î , Î ′⟩.

The proof is straightforward and is left to the reader.

But by the same lemmata we get:

Lemma 3.6.45. Suppose that N is normally iterable. Let M = N ||µ. Then
M is normally α-iterable.

Proof. Fix a successful iteration strategy S forN . We must define a strategy
S∗ for M . Let:

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

be an iteration of M of length η. We first note:

Claim. There is at most one pair ⟨I ′, I ′′⟩ such that ⟨I, I ′⟩ is a mirror pair
backed by I ′′ and I ′′ is S-conforming.

Proof. By induction on lh(I). We leave this to the reader.
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We now define an iteration strategy S∗ for M . Let I be a normal iteration
of M of limit length η. If there is no pair ⟨I ′, I ′′⟩ satisfying the above claim,
then S∗(I) is undefined. If not, we set:

S∗(I) =: S(I ′′)

b = S∗(I) is then a cofinal well founded branch is I. (Clearly, if we extend
each of I, I ′, I ′′ by the branch b, we obtain ⟨Ĩ , Ĩ ′, Ĩ ′′⟩ satisfying the Claim).
It is then obvious that if I is of length η + 1 and we pick ν > νi(i < η) such
that EMη

ν ̸= ∅, then I extends to an S∗-conforming iteration of length η+1.
Hence S∗ is successful.

QED(Lemma 3.6.45)

This is fairly weak result which could have been obtained more cheaply. We
now show, however, that our methods establish Theorem 3.6.1. We begin by
defining the notion of a full mirror I ′ of a full iteration I.

Definition 3.6.14. Let I = ⟨Ii : i < µ⟩ be a full iteration of M , inducing
Mi, πij (i ≤ j < µ). Let:

Ii = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πhj⟩, T i⟩

By a full mirror of I we mean I ′ = ⟨I ′i : i < µ⟩ such that

I
′i = ⟨⟨M ′i

h ⟩, ⟨π
′i
hj⟩, ⟨σih⟩, ⟨ρi,h⟩⟩

is a mirror of Ii for i < µ, and I ′ induces ⟨M ′
i : i < µ⟩, ⟨π′ij : i ≤ j < µ⟩, ⟨σi :

i < µ⟩, ⟨ρi : i < µ⟩ such that:

(a) σi :Mi −→Σ∗ M ′
i min ρi

(b) π′ij is a partial structure preserving map from M ′
i to M ′

j . Moreover,
they commute and π′i,i = id ↾M ′

i . If α < µ is a limit ordinal, then
M ′
α =

⋃
i<α rng(π

′
i,α).

(c) σjπij = π′ijσi for i ≤ j < µ.

(d) If i ≤ j < µ and [i, j) has no drop point in I, then:

π′ij :M
′
i −→Σ∗ M ′

j and π′ij“ρ
i ⊂ ρi ≤ π′ij(ρi)

(e) M ′
0 =M0 =M ;σ0 = id↾M , and

ρ0 = ⟨ρnM : n < ω⟩

(f) M ′
i+1 = M

′i
li

where Ii has length li + 1. Moreover, σi+1 = σili and
ρi+1 = ρi,li and πi,i+1 = πii,li .
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We leave it to a reader to see that ⟨Mi : i < µ⟩, ⟨π′ij : i ≤ j < µ⟩, ⟨σi : i < µ⟩
are uniquely characterized by (a)-(f), given the triple ⟨M, I, I ′⟩. In particular
if α < µ is a limit ordinal, then:

M ′
α, ⟨π′iα : i < α⟩

is the transitivized direct limit of

⟨M ′
i : i < α⟩, ⟨π′ij : i ≤ j < α⟩.

(This makes sense by (d), since I has only finitely drop points i < α). σα
is then defined by: σαπiα = π′iασi. By the method of §3.6.2 it follows that
there is only one ρα satisfying our conditions and that, in fact, for sufficiently
large i < α we have:

ραn = π′iα(ρ
i
n) for i < ω.

⟨I, I ′⟩ is then called a full mirror pair.

We leave to the reader to verify:

Lemma 3.6.46. Let ⟨I, I ′⟩ be a full mirror pair of limit length µ. Suppose
further, that, if [io, µ) has no drop point, then:

⟨M ′
i : i0 ≤ i < µ⟩, ⟨π′ij : i0 ≤ i ≤ j < µ⟩

has a well founded limit. Then ⟨I, I ′⟩ extends uniquely to a mirror pair of
length µ+ 1.

We recall that a full iteration I = ⟨Ii : i < µ⟩ is called smooth iff Mi = M i
0

for all i < µ. We define:

Definition 3.6.15. Let I = ⟨Ii : i < µ⟩ be a full iteration of M . Let ⟨I, I ′⟩
be a full mirror pair. Let:

I ′′ = ⟨I ′′i : i < µ⟩

be a smooth iteration of M inducing

⟨M ′′
i : i < µ⟩, ⟨π′′0ij : i ≤ j < µ⟩

such that M ′i
0 ◁M ′

i ◁M ′′
i and I ′′i backs ⟨Ii, I ′i⟩ for i < µ.

We then say that I ′′ backs ⟨M, I, I ′⟩.

It is obvious that, if I ′′ backs ⟨M, I, I ′⟩ then I ′′ is uniquely determined by
⟨M, I, I ′⟩. Building on the last lemma we get:



3.6. VERIFYING FULL ITERABILITY 285

Lemma 3.6.47. Let ⟨I, I ′⟩ be a full mirror pair of limit length µ. Let I ′′

be a smooth iteration of M of length µ + 1, such that I ′′|µ backs ⟨M, I, I ′⟩.
Then ⟨I, I ′⟩ extends uniquely to a pair of length µ+1 which is backed by I ′′.

Proof. (Sketch). The extension is easily defined using Lemma 3.6.46 if we
can show:
Claim. I has finitely many drop points.

We first note that if Ii has a truncation on the main branch, then so do
I
′i and I

′′i. Hence there are only finitely many such Ii. Now suppose that
M i

0 ̸= Mi for infinitely many i. Let ⟨in : n < ω⟩ be a monotone sequence
of such i such that [in, in+1) has no drop. Then, letting M ′

i = M ′′
in
||µn for

n < ω, we have: µn+1 < π′′in,in+1
(µn).

Hence π′′in+1,µ
(µn+1) < π′′in,µ(µn). Contradiction!

QED(Lemma 3.6.47)

Now let S be a successful smooth iteration strategy forM . (Thus S is defined
only on smooth iterations I = ⟨Ii : i ≤ η⟩ such that Iη is a normal iteration
of limit length. S(I), if defined, is then a well founded cofinal branch b in
Iη. We call S successful for M iff every S-conforming smooth iteration I of
M can be extended in an M -conforming manner. (This is defined precisely
in §3.5.2).).

Claim. Let I be a full iteration of M . There is at most one pair ⟨I ′, I ′′⟩
such that ⟨I, I ′⟩ is a full mirror pair, I ′′ backs ⟨I, I ′⟩ and is S-conforming.

Proof. By induction on lh(I) and for lh(I) = i + 1 by induction on lh(Ii).
The details are left to the reader.

We now define a full iteration of length i + 1 where Ii is of limit length. If
there exist ⟨I ′, I ′′⟩ as in the above claim, we set S∗(I) = S(I ′′). If not, then
S∗(I) is undefined. It follows as before that an S∗-conforming full iteration
of M can be properly extended in any permissible way to an S∗-conforming
iteration. More precisely:

• If I is of length i+ 1 and Ii is of limit length, then S∗(I) exists.

• If I is of length i + 1 and Ii is of successor length j + 1 and ν > νih
for h < j, where EM

i
ν

ν ̸= ∅, then I extends to and S∗-conforming Î, Îi
extends Ii and νj = ν in Îi.

• If I, i, j are as before and M̃◁M i
j , then I extends to an S∗-conforming

Î of length i+ 1 such that M̃ =M i+1
0 .
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• If I is of limit length µ, then it extends uniquely to an S∗-conforming
iteration of length µ+ 1.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excur-
sion into the combinatorics of normal iteration, using methods which were
manly developed by John Steel and Farmer Schluzenberg. We first answer
a somewhat easier question: Let M be uniquely normally iterable and let
M ′ be a normal iterate of M . Is M ′ normally iterable? Our basis tool in
dealing with this is the reiteration: Given a normal iteration I ′ from M ′

to M ′′, we “reiterate” I, gradually turning it into a normal iteration I∗ to
an M∗. The process of reiteration mimics the iteration I ′. This results in
an embedding σ from M ′′ to M∗, thus showing that M ′′ is well-founded.
However, σ is not necessarily Σ∗-preserving but rather Σ∗-preserving modulo
pseudoprojecta. This means that, in order to finish the argument, we must
draw on the theory of pesudoprojecta developed in §3.6. The above result is
proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous,
however. It is mainly due to Schluzenberg and employs his original and sur-
prising notion of “inflation”. In order to complete the argument (in §3.7.6) we
again need recourse to pseudo projecta. The remaining subsections (§3.7.1,
§3.7.2, §3.7.4, §3.7.5) can be read with no knowledge of pseudoprojecta, and
are of some interest in their own right.

We begin by describing a class of operations on normal iteration called in-
sertions. An insertion embeds or “inserts” a normal iteration into another
one.

3.7.1 Insertions

Let I be a normal iteration of M of length η. Let I ′ be a normal iteration
of the same M having length η′. An insertion of I into I ′ is a monotone

function e : η −→ η′ such that EMi
νi plays the same role in Mi as E

M ′
e(i)

ν′
ẽ(i)

in

M ′
ẽ(i). (This is far from exact, of course, but we will shortly give a proper

definition).

In one form or other, insertions have long played a role in set theory. They are
implicit in the observation that iterating a single normal measure produces
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a sequence of indiscernibles. This situation typically arises when we have a
transitive ZFC− model M and a κ ∈ M which is measurable in M with a
normal ultrafilter U ∈M . Assume that we can iterate M by U , getting:

Mi, κi, Ui, πi,j :Mi ≺Mj (i ≤ j <∞),

where the maps πi,j are commutative and continuous at limits, κi = π0i(κ), Ui =
π0i(U) and:

πi,i+1 :Mi −→Ui Mi+1

Now let e : η −→ ∞ be any monotone function on an ordinal η. e is then
an insertion, inducing a sequence ⟨σi : i < η⟩ of insertion maps such that
σi :Mi ≺Me(i). To define there maps we first introduce an auxiliary function
ê defined by:

ê(i) =: inf{e(h) : h < i}

Thus ê is a normal function and ê(0) = 0.

By induction on i < η we then define maps σ̂i, σi as follows: We verify
inductively that:

σ̂i :Mi ≺Mê(i) and σ̂iπ̄hi = πê(h),ê(i)σ̂h

Since ê(0) = 0, we set: σ̂0 = id ↾M . If σi is given, we know that ê(i) ≤ e(i)
and hence define: σ̃i = πê(i),e(i)σ̂i. Now let i+1 < η. Then ê(i+1) = e(i)+1.
We know that each element of Mi+1 has the form πi,i+1(f)(κi). Hence we
can define σ̂i+1 by:

σ̂i+1(πi,i+1(f)(κi)) = πe(i),ê(i+1)(σi(f))(σi(κi)).

Finally, if λ < η is a limit, then ê(λ) = lub{e(i) : i < λ}, and we can define
σ̂λ by:

σ̂λπhλ = πê(h),ê(λ)σ̂h for h < λ

This completes the construction. The fact that ⟨uh : h < i⟩ is a sequence of
indiscernibles for Mi is proven by using insertions defined on finite η.

This was a simple example, but insertions continue to play a role in the far
more complex theory of mouse iterations. We define the appropriate notion
of insertion as follows:

Let:
I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

be a normal iteration of M of length η. Let

I ′ = ⟨⟨M ′
i⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩
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be a normal iteration of the same M of length η′. Suppose that

e : η −→ η′

is monotone. Define an auxiliary function ê by:

ê(i) =: lub{e(h) : h < i} for i < η

Then ê is a normal function and ê(0) = 0. We call e an insertion of I into
I ′ iff there is a sequence ⟨σ̂i : i < η⟩ of insertion maps with the following
properties:

(a) σ̂i :Mi −→Σ∗ Mê(i), σ̂0 = id.

(b) i ≤T j ←→ ê(i) ≤T ′ ê(j). Moreover:

σ̂jπij = π′ê(i),ê(j) ◦ σ̂i, for i ≤T j.

(c) ê(i) ≤T ′ e(i) for i < η′.

Before continuing the definition, we introduce some notation. Set:

πi = π′ê(i),e(i), σi = πiσ̂i for i < η

We further require

(d) (i) One of the following holds:

• νi ∈Mi ∧ σ̂i(νi) = ν ′ê(i),

• νi = On∩Mi ∧ σ̂i :Mi −→Σ∗ M ′
ê(i).

We shall write: σ̂i(νi) as an abbreviation for ν ′ê(i), whenever νi =
On∩Mi.

(d) (ii) One of the following hold:

• ν ′ê(i) ∈ dom(πi) ∧ πi(ν ′ê(i)) = ν ′e(i)

• ν ′ê(i) = On∩dom(πi) ∧ πi :M ′
ê(i) −→Σ∗ M ′

e(i).

We again write pii(ν
′
ê(i)) as an abbreviation for ν ′e(i), when ν ′ê(i) =

On∩dom(πi).

(e) σ̂i ↾λl = σl ↾λl for l < i < η.

This completes the definition.

Note. The insertion maps σ̂i, σi are uniquely determined by e, but we have
yet to prove this fact.
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Note. The map σ̂i is total on Mi, but σi could be partial.

Note. We shall often write êi, ei for ê(i), e(i).

Note. e, ê are order preserving, and ê takes <T to <T ′ . On the other hand,
i <T j does not imply ei <T ej , although we have:

i <T j −→ êi <T ′ ej and ei <T ′ ej −→ i <T j.

Definition 3.7.1. The identical insertion is id ↾ η, with σ̂i = σi = id ↾Mi

for i < η.

We shall always have:

• σ̂i ↾(Mi||νi) :Mi||νi −→Σ∗ M ′
êi
||ν ′êi

• πi ↾(M ′
êi
||ν ′êi) :M

′
êi
||ν ′êi −→Σ∗ M ′

ei ||ν
′
ei

Since σi = πiσ̂i it follows that one of the following holds:

• νi ∈ dom(σi) ∧ σi(νi) = ν ′ei ,

• νi = On∩dom(σi) ∧ σi :Mi||νi −→Σ∗ M ′
ei .

We write σi(νi) as an abbreviation for ν ′ei when νi = On∩dom(σi).

We then have:

• σi ↾(Mi||νi) −→Σ∗ M ′
ei ||ν

′
ei .

Let κ′i, λ
′
i, τ

′
i(i + 1 < η′) be defined from I ′ as κi, λi, τi(i + 1 < η) where

defined from I. We know:

• ⟨κi, λi⟩ = the unique ordinal pair ⟨α, β⟩ such that α < EMi
νi (α) = β.

• τi = κ+Mi
i .

The same hold of I ′. Hence:

• σ̂i(κi) = κ′êi , σ̂i(λi) = λ′êi , σ̂i(τi) = τ ′êi .

• σi(κi) = κ′ei , σi(λi) = λ′ei , σi(τi) = τ ′ei .
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• πi(κ
′
êi
) = κ′ei , πi(λ

′
êi
) = λ′ei , πi(τ

′
êi
) = τ ′ei .

Note. By (e) we have:

n < i −→ σ̂i ↾J
EMi

λn = σn ↾J
EMn
λn

.

To see this, let:
JEλ = J

EMn
λn

= J
EMi
λn

(since n < i).

Similarly let:

JE
′

λ′ = J
EM′

en
λ′en

= J
EM′

êi
λ′en

(since en < êi).

Let x ∈ JEλ . Then there is a limit ordinal α < λ and a β < α such that:

x = the β-th element of JEλ in <Eα ,

where <Eα is the canonical well ordering of JEα . Let σ̂i(α) = σh(α) = α′,
σ̂i(β) = σ(β) = β′. Then:

σ̂i(x) = σh(x) = the β′-th element of JE
′

α′ in <E
′

α′ .

Lemma 3.7.1. The following hold:

(1) σi ↾λn = σn ↾λn for n ≤ i ≤ η.
Proof. This is trivial for n = i. Now let n < i. Then

σi ↾λn = πiσ̂i ↾λn = πi ◦ (σi ↾λn).

Hence it suffices to prove:

Claim. πi ↾λ′en = id since ξ < λn −→ σn(ξ) < σn(λn) = λ′en .

Proof. If êi = ei, then πi = id ↾Mêi , where λ′en < λ′ei ∈ Mei . Now
let êi < ei. There is a least j such that êi <T ′ (j + 1) ≤T ′ ei. Let
ζ = T ′(j + 1). Then crit(πi) = κ′j ≥ λ′en , since en < ei ≤ j.

QED(1)

(2) Let ζ = T (i+ 1). Then κ′ei < λ′eζ .

Proof. κ′ei = σi(κi) = σζ(κi) < σζ(λζ) = λ′eζ , since ζ ≤ i and κi < λζ

QED(2)

(3) Let ζ = T (i+ 1), ζ ′ = T ′(ei + 1). Then êζ ≤T ′ ζ ′ ≤ eζ .
Proof. ζ ′ is by definition the least such that κ′ei < λ′ζ′ . Hence ζ ′ < eζ
by (2). But êζ <T ′ êi+1 = ei + 1. Hence êζ ≤T ′ ζ ′.

QED(3)

Now we give the full determination of T ′(ei + 1). ζ = T (i+ 1). Then
κ′ei = σi(κi) = σζ(κi) by (1), κi < λζ . Hence κ′ei ∈ ran(σζ) ⊂ M ′

eζ
=

ran(π′eζ ,eζ ). Hence there is a least j ≤T ′ eζ such that κ′ei ran(π
′
j,eζ

) and
π′j,eζ ↾κ

′
ei + 1 = id.
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(4) Let j =≤T ′ eζ be least such that κ′ei ran(π
′
j,eζ

) and π′j,eζ ↾κ
′
ei + 1 = id.

Then j = T ′(ei + 1).

Proof.

Claim 1. κ′ei < λ′j .

Proof. Suppose not. Then j ̸= eζ by (2). Hence j <T ′ eζ . Let
κ = crit(π′j,e′ζ

). Then κ > κ′ei , since π′j,eζ ↾ κ′ei + 1 = id. Let j =

T ′(l + 1) ≤T ′ eζ . Then κ = κ′l < λ′j . Contradiction!

QED(Claim 1)

Claim 2. κ′ei ≥ λ
′
n for n < j.

Proof. Clearly, j ≥ T ′(ei + 1) ≥ êζ by (3). We consider two cases:

Case 1 j = êζ . Then j = T ′(ei + 1). Hence κ′ei ≥ λn for n < j.

Case 2 Case 1 fails.
Then j = lub(A), where A = {n | êζ <T ′ n+ 1 ≤T ′ j}. It suffices
to show: κ′ei ≥ λn for n ∈ A. Suppose not. Let n be the least
counter-example. Then n+ 1 = j, since otherwise crit(π′n+1,j) ≥
λn > κ′ei , contradicting the minimality of j. Let τ = T (n + 1).
Then:

κei = σζ(κi) = πζ σ̂ζ(κi) ∈ ran(πζ ,

where:
πζ = π′jeζ · π

′
êζ ,j

and π′j,eζ ↾κei + 1 = id .

Hence:
κei ∈ ran(π′êζ ,j) ⊂ ran(π′τ,j).

Hence κei ̸∈ [κ′n, λ
′
n), since:

[κ′n, λ
′
n) ∩ ran(π′τ,j) = ∅.

But κ′ei ̸< κ′n by the minimality of j. Hence κ′ei ≥ λn. Contradic-
tion!

QED(4)

Definition 3.7.2. Let ξ = T (i+ 1). We set:

e∗i = T ′(ei + 1), π∗i = π′êξ,e∗i , σ
∗
i = π∗i σ̂ξ

The following are then obvious:

(5) M ′∗
ei =M ′

e∗i
||µ, where µ is maximal such that τ ′ei is a cardinal in M ′

e∗i
||µ.

(6) σ∗i ↾M
∗
i :M∗

i −→Σ∗ M ′∗
ei .
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Note. If M∗
i = Mξ, then τi is a cardinal in Mξ. Hence σ̂ξ(τi) is a

cardinal in M ′
êξ

and τ ′ei = π∗i σ̂ξ(τi) is a cardinal in M ′
e∗i

= M ′∗
ei . If

M∗
i ∈ Mξ, then σ̂ξ(M

∗
i ) ∈ M ′

êξ
and π∗i ↾ σ̂ξ(M

∗
i ) : σ̂ξ(M

∗
i ) −→Σ∗ M ′∗

ei .
(However, we cannot conclude that M ′∗

ei ∈M
′
ei). Hence:

(7) Let ξ = T (i+1). πξ,i+1 is a total function on Mξ iff π′êξ,ei+1
is total on

M ′
êξ

.

Hence, there is a drop point in (α, β]T iff there is a drop point in
(êα, eβ]T ′ .

(8) σ̂i+1πξ,i+1 = π′e∗i ,ei+1σ
∗
i , where ξ = T (i+ 1).

Proof. σ̂i+1πξ,i+1 = π′êξ,êi+1
σ̂ξ = π′e∗i ,ei+1

π∗i σ̂ξ = πe∗i,ei+1σ
∗
i. QED(8)

(9) σi(X) = σ∗i (X) for X ∈ P(κi) ∩M∗
i .

Proof.σi(X) = σξ(X) where ξ = T (i + 1), since X ∈ JE
Mη

λξ
and

σi ↾λξ = σξ ↾λξ by (1). But σξ(X) = π′êξ,eξ σ̂ξ(X) = π′e∗i ,eξ
σ∗i (X), since

π′e∗i eξ
↾κei + 1 = id.

QED(9)

Using notation from §3.2, then we have:

(10) ⟨σ∗i ↾M∗
i , σi ↾λi⟩ : ⟨M∗

i , F ⟩ −→ ⟨M ′∗
ei , F

′⟩ where F = EMi
νi , F

′ = E
M ′

ei
νei

.

Proof. α ∈ F (X)←→ σi(α) ∈ σi(F (X)) = F ′(σ∗i (X)) by (6) and (9).

QED(10)

But we are now, at last, in a position to prove:

(11) The sequence ⟨σ̂i : i < η⟩ of insertion maps is uniquely determined by
e. (Hence so is ⟨σi : i < η⟩, since σi = π′êi,ei ◦ σ̂i).
Proof. Suppose not. Let ⟨σ̂′i : i < η⟩ be a second such sequence. By
induction on i we prove that σ̂i = σ′i. For i = 0 this is immediate. Now
let σ̂i = σ′i. We must show that σ̂i+1 is unique. Let n ≤ ω be maximal
such that κi < ρnMi

. By Lemma 3.2.19 of §3.2, we know that there is
at most one σ such that

σ :Mi −→Σ
(n)
0

M ′
ei , σπξ,i+1 = π′e∗i êi+1

σ∗i , σ ↾λi = σi ↾λi

Hence σ̂i+1 = σ′i+1 = σ by (8).

Now let µ < η be a limit ordinal. Then σ̂µ = σ′µ is the unique σ :
Mµ −→M ′

êµ
defined by: σπi,µ = π′êi,êµ σ̂i for i <T ′ µ.

QED(11)

We also note:
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(12) Let ξ = T (i+ 1). Then π′e∗i ,eξ
↾(τ ′i + 1) = id.

(Hence σ∗i ↾(τi + 1) = σξ ↾(τi + 1) = σi ↾(τi + 1).

Proof. If e∗i = eξ, this is immediate. Now let e∗i < eξ. Set π′ = π′e∗i ,eξ
.

Then κ′ei < κ̃ = crit(π′) where κ̃ is inaccessible in M ′
eξ

. Hence τ ′ei+1 <

κ̃, since τ ′ei = (κ′ei)
+ in M ′

eξ
. QED(12)

(13) σ̂i+1(νi) = ν ′ei .

Proof. Let ξ = T (i+ 1). Then:

σ̂i+1(νi) = σ̂i+1πξ,i+1(τi) = π′e∗i ,ei+1σ
∗
i (τi)

= π′e∗i ,ei+1(τ
′
ei) = ν ′ei

since τ ′e∗i = σi(τi) = σ∗i (τi). QED(13)

Hence:

(14) j ≥ i+ 1 −→ σj(νi) ≥ ν ′ei .
Proof. By (13) it holds for j = i + 1. Now let j > i + 1. Then
κi < λi+1 and

σ̂j(νj) = σi+1(νi) ≥ σi(νi) = ν ′ei .

QED(14)

We also note:

(15) ei <T ′ ej −→ i ≤T j.
Proof. Since ei < êj and êj ≤T ej , we conclude:

êi ≤T ′ ei <T ′ êj ; hence i <T j.

QED(15)

Extending insertion

Given an insertion e of I into I ′, when can we turn it into an e′ which
inserts an extension Ĩ of I into an extension Ĩ ′ of I ′? Some things are
obvious:

(16) If e inserts I into I ′ and I ′′ extends I ′, then e inserts I into I ′′.

(17) If e inserts I of length ν + 1 into I ′ and e(ν) ≤T ′ j in I ′, there is a
unique e′ inserting I into I ′ such that e′ ↾ν = e↾ν and e′(ν) = j.

(18) Let I be of limit length ν and let e insert I into I ′ of length ν ′ = lub e“ν.
Suppose that b′ is a cofinal well founded branch in I ′ and b = e−1“b′

is cofinal in I. Extend I ′ into Ĩ of length η + 1 by setting T“{η} = b.
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Extend I ′ to Î ′ of length η′+1 by: T ′“{η} = b′. Then e extends uniquely
to an insertion ẽ of Ĩ into Ĩ ′ with ẽ(η) = η′.

The proof is left to the reader.

These facts are obvious. The following lemma seems equally obvious, but its
proof is rather arduous:

Lemma 3.7.2. Let e insert I into I ′ where I is of length η and I ′ is of
length η′ + 1, where η′ = e(η). Extend I to a potential iteration of length
η + 2 by appointing νη such that νη > νi for i < η. Suppose ση(νη) > ν ′j for
all j < η′. Then we can extend I ′ to a potential iteration of length η′ + 2 by
appointing: ν ′η′ = ση(νη). This determines ξ = T (η+1), e∗η = T ′(η′+1) and
M∗
i ,M

′∗
ei . If M ′

ei is ∗-extendible by F = EMi
νi , then e extends uniquely to an

ẽ inserting Ĩ into Ĩ ′, where Ĩ ′ is an actual extension of I by νη and Ĩ ′ is an
actual extension of I ′ by ν ′η′ .

Using Lemma 3.2.23 of §3.2 we can derive Lemma 3.7.2 from:

Lemma 3.7.3. Let e, I, I ′, νη, νẽη ,M∗
η ,M

′∗
ẽi
, F, F ′ be as above. Then

⟨σ∗η, ση ↾λη⟩ : ⟨M∗
η , F ⟩ −→∗ ⟨M ′∗

ẽη , F
′⟩

We first show that Lemma 3.7.3 implies Lemma 3.7.2. Since M ′∗
eη is ∗-

extendible by F ′ we can extend I ′ by setting:

π̂′e∗η ,eη+1 :M
′∗
σeη −→

∗
F ′ M ′

eη+1

It follows that F is close to M∗
i ; hence we can set:

π̂ξ,η+1 :M
∗
η −→∗ Mη+1

But by Lemma 3.2.23 there us a unique

σ :Mη+1 −→Σ∗ Mẽη+1

such that σπξ,η+1 = π′e∗η ,ẽη+1σ
∗
η and σ ↾ λη = ση ↾ λη. Extend e to ẽ by:

ẽ(η + 1) = eη + 1. The ẽ satisfies the insertion axioms with ση+1 = σ.

QED(Lemma 3.7.2)

We derive Lemma 3.7.3 from an even stronger lemma:

Lemma 3.7.4. Let I, I ′ be as above. Let A ⊂ Iη be Σ1(Mη||νη) in a param-
eter p and let A′ ⊂ τ ′eη be Σ1(Meη ||ν ′eη) in p′ = ση(p) by the same definition.
Then A is Σ1(M

∗
η ) in a parameter q and A′ is Σ1(M

′∗
eη) in q′ = σ∗η(q) by the

same definition.
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We first show that this implies Lemma 3.7.3. Repeating the proof of Lemma
3.7.1(7), we have:

⟨σ∗η ↾M∗
η , σ̃η ↾λη⟩ : ⟨M∗

η , F ⟩ −→ ⟨M ′∗
eη , F

′⟩

where F = E
Mη
νη , F ′ = E

M ′
eη

ν′eη
.

We can code Fα by an F̃ ⊂ τη such that Fα is rudimentary in F̃ and F̃
is Σi(Mη||νη) in α, τη. Coding F ′

α′ the same way by F̃ ′, we find that F̃ ′ is
Σ1(Meη |νeη) in α′, τ ′eη by the same definition, where ση(α) = α′, ση(τη) = τ ′eη .
Hence by Lemma 3.7.4, F̃ ′ is Σ1(M

′∗
η ) in a q and F̃ ′ is Σ1(M

′∗
eη) in q′ = σ∗η(q)

by the same definition. Hence Fα is Σ1(M
′∗
η ) in q and F ′

α′ is Σ1(M
′∗
eη) in

q′ = σ∗η(q) by the same definition.

QED(Lemma 3.7.3)

Note. We are in virtually the same situation as in §3.2, where we needed
to prove the extendability of the triples we called duplications. Lemma 3.7.2
corresponds to the earlier Lemma 3.4.17 and Lemma 3.7.4 corresponds to
Lemma 3.4.20.

We now turn to the proof of Lemma 3.7.4. Its proof will be patterned on
that of Lemma 3.4.20, which, in turns, we patterned on the proof of Lemma
3.4.4.

Our proof will be rather fuller than that of Lemma 3.4.20, however, since we
will face some new challengers.

Suppose Lemma 3.7.4 to be false. Let I, I ′ be a counterexample with η =
lh(I) chosen minimally. We derive a contradiction. Let ξ = T (η + 1).

(1) ρ1Mη ||νη ≤ τη

Proof. Suppose not. Set ρ = ρ1Mη ||νη , ρ
′ = ρ1M ′

eη
||ν′eη

. Then A ∈

JE
Mη

ρ , A′ ∈ JE
M′

eη

ρ′ .

Moreover, “x = A′” is Σ(1)
0 (M ′

η||ν ′) in p, τη and “x = A′” is Σ(1)
0 (Mη||νη)

in p′, τ ′eη by the same definition. Hence ση(A) = A′. Since A ∈ JEMη

λξ
,

ση ↾ λξ = σξ ↾ λξ and Mξ||λξ = Mξ||λξ, we have: σξ(A) = ση(A) =
A′. But ση(A) = π′e∗η ,eξσ

∗
η(A) where π′e∗η ,eη ↾ τ ′eη + 1 = id by (10).

Hence σ∗η(A) = A′. Hence A is Σ1(M
′∗
η ) in the parameter A, and

A′ is Σ1(M
′∗
eη) in the parameter A′ = σ∗η(A) by the same definition.

Contradiction! since η was a counterexample.
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(2) ξ < η.

Proof. Suppose not. Then A is Σ1(Mη||νη) in p and A′ is Σ1(M
′
eη ||ν

′
eη)

in p′ = ση(p) by the same definition. But ση = π′e∗η ,eησ
∗
η, since ξ = η

and:
π′e∗η ,eη ↾τ

′
eη + 1 = id

Hence A′ is Σ1(Me∗η ||ν
∗) in σ∗η(p) by the same definition, where ν∗ =

σ∗η(νη). But Mη||νη =M∗
η since ρ1Mη ||νη ≤ τη. But ρ1M ′

e∗η
||ν∗ ≤ τ

′
eη , since

σ∗η ↾M
∗
η takes M∗

η in a Σ∗ way to M ′
e∗η
||ν∗

∧
x1(x1 ̸= τη) hold in M∗

η .
But then M ′∗

eη = M ′
e∗η
||ν∗. Hence A is Σ1(M

∗
η ) in p and A′ is Σ1(M

′
eη)

in σ∗η(p) by the same definition. Contradiction! QED(2)

Since ξ < η and τ ′eη = σξ(τη), we have:

τ ′eη = ση(τη) = πησ̂η(τη) = πησξ(τη) = πη(τ
′
eη)

Hence crit(πη) > τ ′eη if êη ̸= eη′ . Hence A′ is Σ1(Mη||νη) in p and A′

is Σ1(M
′
êη
||ν ′eη) in σ̂η(p) by the same definition. But then we can set

I ′′ = I ′|eη + 1 and define e′ inserting I into I ′′ by:

eh =

{
eh if h < η

êη if h = η

⟨e′, η, I, I ′′⟩ is obviously still a counterexample to Lemma 3.7.2. Thus
we may henceforth assume:

(3) eη = êη

(4) νη = ONMη .

Proof. τη < λξ, where λξ is inaccessible in Mη. Hence, if νη ∈Mη, we
would have: ρ1Mη ||νη ≥ λξ > τη, contradicting (1). QED(4)

(5) η is not a limit ordinal.

Proof. Suppose not. Let A,A′, p, p′ be as above. By (2), ξ < η
where ξ = T (η + 1). By (4) Mη = Mη||νη is an active premouse. But
ση :Mη −→Σ∗ M ′

eη and ση(νη) = ν ′eη . Pick l <T η such that:

• crit(πl,η) > λξ,

• πl,η is a total map on Ml,

• p ∈ rng(πl,η).

Set p̄ = π−1
l,η (p). Then A is Σ1(Ml) in p̄ and A is Σ1(Mη) in p by

the same definition. Define a potential iteration Ī of length l + 2
extending I|l + 1 by appointing: ν̄l =: π−1

l,η (νη). Then M̄l = Ml||ν̄l.
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Since πl,η(κη) = κη it follows that κ̄l = κη and M̄∗
l = M∗

η . Define
ē : l + 1 −→ η′ by: ē ↾ l + 1 = e ↾ l + 1, ēl+1 = eη + 1 (hence ˜̄el = eη).
Then ē inserts Ī into I ′, giving the insertion maps:

σ̄i = σi for i < l, σ̄l = σηπl,η

Then κ̄l = κη. It follows easily that M̄∗
l = M∗

η and σ̄∗l = σ∗η. But
l < η, so by the minimality of η there is a q such that A is Σ1(M

∗
η ) in

q and A′ is Σ1(M
′∗
eη) in σ∗η(q) by the same definition. Contradiction!

QED(5)

Now let η = j + 1, h = T (η). Then eη = êη = ej + 1. We know

πh,η ↾M
∗
j :M∗

j −→Σ∗ Mη = ⟨JEνη , Eνη⟩

Hence M∗
j has the form:

(6) M∗
j = ⟨JEν , Eν⟩ where Eν ̸= ∅.

(7) τη < κj .

Proof. τξ ≤ κj since ξ < η = j + 1. Hence τη < λη ≤ λj . But
τη ∈ rng(πh,η), where:

[κj , λj) ∩ rng(πh,η) = ∅

QED(7)

(8) ρ1M∗
j
≤ τη.

Proof. Suppose not. Then τη = πh,η(τη) < π“h,ηρ
1
M∗

j
⊂ ρ1M ′

η
, contra-

dicting (1). QED(8)

Thus:

(9) πh,η :M∗
j −→Eνi

Mη is a Σ0 ultrapower.

(10) σ∗j (τη) = τ ′eη .

Proof. τη < κj < λh by (7). Hence:

τ ′eη = σ̂η(τη) = σh(τη) = π′e∗j ,ehσ
∗
j (τη) = σ∗j (τ

′
η),

since σ∗j (τη) < σ∗j (κj) = κ′ej and π′e∗j ,eh ↾κ
′
ej = id.

QED(10)

(11) ρ1M∗
ej

= τ ′eη .

Proof.
∧
x1(x1 ̸= τη) holds in M∗

j by (8). But:

σ∗j ↾M
∗
j :Mj −→Σ∗ M ′∗

ej

Hence
∧
x1(x1 ̸= σ∗j (τη)) holds in M ′∗

ej , where σ∗j (τη) = τ ′ej . QED(11)

But then:
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(12) π′e∗j ,eη :M ′∗
ej −→Eνej

Meη is a Σ0−ultrapower.

We can now prove:

(13) A is Σ1(M
∗
j ) in an r and A′ is Σ1(M

′∗
ej ) in r′ = σ∗j (r) by the same

definition.
Proof. Let p = πh,η(f)(α), where f ∈ M∗

j , α < λi. Then p′ =

π′e∗j ,eη
(f ′)(α′), where: f ′ = σ∗j (f), α

′ = σ̃j(α). Let F =: E
Mj
νj , F

′ =

E
M ′

ej
νej

. Fα can of course be coded by an F̃ ⊂ τj which is Σ1 < (Mj ||νj)
in α, τj and F ′

α is coded by an F̃ ′ ⊂ τ ′ej which is Σ1(M
′
ej ) in α′, τ ′ej by the

same definition. By the minimality of η we can conclude: Fα is Σ1(M
∗
j )

in a parameter a and F ′
α′ is Σ1(M

′∗
ej ) in the parameter a′ = σ∗j (a) by

the same definition. Now suppose:

A(µ)←→
∨
yB(µ, y, p) and

A′(µ)←→
∨
yB′(µ, y, p′)

where B is Σ0(Mη) and B′ is Σ0(M
′
ej ) by the same definition. Let B∗

be Σ0(M
∗
j ) and B′∗ be Σ0(M

′∗
ej ) by the same definition. Since the map

π = πh,η takes M∗
j cofinally to Mη, we have:

A(µ)←→
∨
u ∈M∗

j

∨
y ∈ π(u)B(µ, y, π(f)(α))

←→
∨
u ∈M∗

j {γ < κj :
∨
y ∈ uB∗(µ, y, f(γ))} ∈ Fα

Hence A is Σ1(M
∗
j ) in r = ⟨a, f⟩. By the same argument, however, A′

is Σ1(M
′∗
ej ) in r′ = ⟨a′, f ′⟩ by the same definition. QED(13)

Now extend I|h+1 to a potential iteration I+ of length h+2 by appointing:
ν+h = π−1

h,η(νη). (Hence M∗
j =Mh||ν+h ). Set: h′ = e∗j . Extend I ′|h′ +1 to I ′+

of length h′ + 2 by appointing: ν ′+h′ = π′h′,eη(ν
′
η). (Hence M ′∗

ej = M ′
h′ ||ν

′+
h′ ).

Obviously, σ∗(ν+h ) = ν ′+h′ . Now extend e↾h to e+ : h+ 1 −→ h′ + 1 by:

e+i =

{
ei if i < h

e∗j if i = h

Then e+ is easily seen to insert I+ into I ′+, giving the insertion maps:

σ+i =

{
σi for i < h

σ∗j = π′êh,h′ ◦ σ̂j for i = h

Then σ+h (ν
+
h ) = ν ′+h′ . We note that τ+h = τη, τ

′+
h′ = τ ′eη . It follows easily

that (M+
h )∗ = M∗

η , (M
′+
h′ ) = M ′∗

eη and (σ+h ) = σ∗η. By the minimality of η
we conclude that A is Σ1(M

∗
η ) and (σ+h )

∗ = σ∗η. By the minimality of η we
conclude that A is Σ1(M

∗
η ) in a q and A′ is Σ1(M

′∗
eη) in σ∗η(q) by the same

definition. Contradiction! QED(Lemma 3.7.4)
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Composing insertions

Lemma 3.7.5. Let e insert I into I ′, with insertion maps σ̂ei , σ
e
i . Let f

insert I ′ into I ′′ with insertion maps σ̂fi , σ
f
i . Then

(i) fe inserts I into I ′′

(ii) f̂ ◦ e = f̂ ◦ ê.

(iii) σfei = σfei ◦ eei

(iv) σ̂fei = σ̂fêi ◦ σ̂
e
i .

Proof. We show that f ◦ e satisfies the insertion axioms (a)-(e) with σ̂fei =

σ̂fei ◦ σ̂ei . In the process we shall also verify (ii), (iii). We first note:

f̂ e(i) = lub(fe)”i = lub f”(lub e”i) = f̂ ê(i)

Axioms (a), (b), (c) then follow trivially. By definition we then have:

σfei = π′′
f̂ ê(i),fe(i)

σ̂efi

= π′′
f̂e(i),fe(i)

◦ π′′
f̂ ê(i),f̂e(i)

◦ σ̂fê(i) ◦ σ̂
e
i

= (π′′
f̂e(i),fe(i)

◦ σ̂fe(i)) ◦ (π
′
ê(i),e(i) ◦ σ̂

e
i )

= σfe(i) ◦ σ
e
i

Axioms (d), (e) then follow easily. QED(Lemma 3.7.5)

We now consider “towers” of insertions. Let Iξ be an iterate of M for ξ < Γ,
where eξ,µ inserts Iξ into Iµ for ξ ≤ µ < Γ. (We take eξ,ξ as the identical
insertion).

Definition 3.7.3. We call:

⟨⟨Iξ : ξ < Γ⟩, ⟨eξ,µ : ξ < µ < Γ⟩⟩

a commutative insertion system iff eζ,µ ◦ eξ,ζ = eξ,µ for ξ ≤ ζ ≤ µ < Γ.

Now suppose that Γ is a limit ordinal. Is there a reasonable sense in which
we could form the limit of the above system? We define:
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Definition 3.7.4. I, ⟨eξ : ξ < Γ⟩ is a good limit of the above system iff:

• I is an iterate of M and eξ inserts Iξ into I.

• eµ ◦ eξ,µ = eξ for ξ ≤ µ < Γ.

• If i < lh(I), then i = eξ(h) for some ξ < Γ, h < lh(Iξ).

Note. Let ηi = ht(Ii) for i < Γ. It is a necessary but not sufficient condition
for the existence of a good limit that:

⟨ηi : i < Γ⟩, ⟨eij : i ≤ j < Γ⟩

have a well founded limit.

If η, ⟨ẽi : i < Γ⟩ is the transitivised direct limit of the above system, then
any good limit must have the form ⟨I, ⟨ei : i < Γ⟩⟩.
Fact. Let η, ⟨ei : i < Γ⟩ be as above. Let ξ < η and let êi(ξi) = ξ for an
i < Γ. For i ≤ j < Γ set:

ξj =: êi,j(ξi) = (êj)−1(ξ)

Then ej(ξj) = êj(ξj) = ξ for sufficiently large j < Γ.

Proof. Suppose not. Then there is a monotone sequence ⟨jn : n < ω⟩ in
[i,Γ) such that ejn,jn+1(ξjn) > ξjn+1 .

Hence ejn+1(ξjn+1) < ejn(ξjn) for n < ω. Contradiction! QED

We then get:

Lemma 3.7.6. Let ⟨Iξ⟩, ⟨eξ, µ⟩ be a commutative system of insertions of
limit length θ. Then there is at most one good limit I, ⟨eξ⟩. Moreover, if
i < lh(I), then |Mi| =

⋃
{rng(σ̃ξh) : e

ξ(h) = i}.

Proof. Let ⟨I⟨eξ⟩⟩, ⟨I ′⟨e′ξ⟩⟩ be two distinct good limits. We derive a con-
tradiction. Set ηξ = lh(Iξ) for ξ < Γ. Then ⟨ηξ⟩, ⟨ẽξ, µ⟩ has a transitive
direct limit η, ⟨f ξ⟩. Moreover η = lh(I) and eξ = e′ξ = f ξ for ξ < Γ. Hence
êξ = ê′ξ = lub{fh : h < ξ} for ξ < Γ. By induction on i < ξ we prove:

(a) Mi =M ′
i

(b) σξh = σ′ξh for eξ(h) = i.

(c) |Mi| =
⋃
{rng σξh : eξ(h) = i}.
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For i = 0 this is trivial. Now let i = j + 1. Then:

νj = ν ′j = σξh(ν
ξ
h) whenever eξ(h) = j

This fixes µ =: T (j + 1) = T ′(j + 1). But then we have: M∗
j = M ′∗

j . Thus
Mi =M ′

i and πµ+i = π′µi are determined by:

πµ+i :M
∗
i −→F Mi, where F = E

Mj
νj = E

M ′
j

ν′j

We must still show:

Claim. If x ∈Mi, then x = σξl (x̄) for a ξ < θ such that eξ(l) = i.

Proof. Let n ≤ ω be maximal such that κi < ρnMi
. Then x = π1i(f)(α)

for an f ∈ Γn(κj ,M
∗
i ). Let either f = p ∈ M∗

i or else f(ξ) ∼= G(ξ, p) where
p ∈ M∗

i and G is a good Σ
(m)
1 (M∗

i ) function for a m < n. Pick ξ < θ such
that there are µξ, jξ, iξ with:

eξ(µξ) = µ, eξ(iξ) = i, eξ(jξ) = j

Assume furthermore that σµ̄(p̄) = p and σξjξ(ᾱ) = α. Since σjξ(ν
ξ
jξ
) = νj , it

follows easily that µξ = T ξ(iξ) and:

σξµ̄ ↾M
ξ∗
iξ

:M ξ∗
iξ
−→Σ∗ M∗

i

Let f̄ be defined from p̄ over M ξ
iξ

as f was defined from p over Mi. Let

x̄ = πξ¯µ,iξ
(f̄)(ᾱ). Then σiξ(x̄) = x by Lemma 3.7.1(5). QED(Claim)

Now let λ < θ be a limit ordinal. We first prove:

Claim. i <T λ iff whenever e(iξ) = i and eξ(λξ) = λ, then iξ <T ξ λξ.

Proof. (−→) is immediate by Lemma 3.7.1(10). We prove (←−). Suppose
not. Let A be the set of ξ < θ such that there are iξ, λξ with eξ(iξ) = i,
eξ(λξ) = λ. Then i ̸<T λ but iξ <T ξ λξ for ξ ∈ A. Then:

êξ(iξ) <T ê
ξ(λξ) ≤T eξ(λξ) = λ.

Set: j = sup{êξ(iξ) : ξ ∈ A}. Then j <T λ by the fact that T“{λ} is club
in λ. Hence j < i. Let ξ ∈ A such that eξ(jξ) = j. Then jξ < iξ, since eξ is
order preserving. Hence:

j = eξ(jξ) < êξ(iξ) ≤ j.

Contradiction! QED(Claim)
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But then T“{λ} = T ′“{λ}. Hence Mλ = M ′
λ, πi,λ = π′i,λ are given as the

transitivized limit of:

⟨Mi : i <T λ⟩, ⟨πi,j : i ≤T j < λ⟩.

Finally, we show that each x ∈ Mλ has the form σξλξ(x̄) for an ξ ∈ A. We
know that x = πi,λ(x

′) for an i <T λ. Pick ξ < θ such that eξ(iξ) =

i, eξ(λξ) = λ and x′ = σξiξ(x̄
′). Set: x̄ = πξiξ,λξ(x̄

′). Then σξλ(x̄) = x by
Lemma 3.7.1(10).

QED(Lemma 3.7.6)

In the following we take a more local approach for forming a good limit and
ask if and when the proven can be break down. It is of course a necessary
condition that the limit be indexed in a well founded way, so we assume that.

In the following let C = ⟨⟨Iξ⟩, ⟨eξ,µ⟩⟩ be a commutative insertion system of
limit length θ. Let ηξ = length(Iξ) for ξ < θ. Suppose that

⟨ηξ : ξ < θ⟩, ⟨eξ,µ : ζ ≤ µ < θ⟩

has the transitivized direct limit:

η, ⟨eξ : ξ < θ⟩

(Thus if C had a good limit, it would have the form ⟨I, ⟨eξ : ξ < θ⟩⟩).

Definition 3.7.5. Let C, η, etc. be as above. Let i < η. Let I be a normal
iteration of M of length i+ 1. I is a good limit of C at i iff whenever γ < θ
and eγ(h) = i, then eγ ↾h+ 1 inserts Iγ |h+ 1 into I.

Note. By Lemma 3.7.6 it follows that there is at most one good limit of C
at i. To see this, let γ < e such that eγ(h) = i and apply Lemma 3.7.6 to
the structure:

C′ = ⟨⟨Ĩξ : γ ≤ ξ < θ⟩, . . . ⟩ where Ĩξ = I|eγ,ξ(h) + 1.

Moreover, if I is a good limit of C at i and h < i, thus I|h + 1 is the good
limit of C at h. Thus we can unambiguously denote the good limit of C at
i, if it exists, by: I|i+ 1. By uniqueness we then have:

(I|i+ 1)|h+ 1 = I|h+ 1 for h < i

It is clear that I is the unique good limit of C iff I|i+ 1 exists for all i < η,
and I =

⋃
i<η I|i+ 1. We also note that I|1 = ⟨⟨M⟩,∅, ⟨ id ⟩,∅⟩ is trivially

the good limit at 0.
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Recall that we call a premouse M uniquely iterable iff it is normally iterable
and has the unique branch property -i.e. whenever I is a normal iteration
of M of limit length, then it has at most one cofinal well founded branch.
(Similarly for uniquely α-iterable). In the later subsection of §3.7 we shall
always assume unique iterability of M and make use of the following two
lemmas:

Lemma 3.7.7. Let C, η be as above and let M be uniquely η-iterable. Let
i+ 1 < η. If I|i+ 1 exists, then so does I|i+ 2.

Proof. Let I = I|i+1. Pick µ < θ such that eµ(iµ) = i and eµ(iµ+1) = i+1.
Set: νi = σµiµ(ν

µ
iµ
). For µ ≤ δ < θ, we have νδ = σδiδ(ν

δ
iδ
) and νδiδ ≥ νδj for

j < iδ.

It follows easily that νi > νj in I whenever j < i. Thus νi determines a
potential extension of I|i+ 1, giving: ξ = T ′(i+ 1),M∗

i . Let F = EMi
νi in I.

Set:
π′η,i+1 :M

∗
i −→∗

F M
′
i+1

This gives us an iteration I ′ of length i+2 extending I, it follows by Lemma
3.7.2 that eµ|iµ + 2 inserts Iµ|iµ + 2 into I ′. But this holds for sufficiently
large µ < θ. Now let µ < θ with eκ = i + 1. Let µ ≥ µ be as above. Then
eµ,µ(h) = iµ + 1, and eµ,µ ↾ h + 1 inserts Iµ|h + 1 into Iµ|iµ + 2. Hence
eµ = eµ ◦ eµ,µ inserts Iµ|h+ 1 into I ′.

QED(Lemma 3.7.7)

Now let δ < η be a limit ordinal and let I|i + 1 be defined for all i < δ. If
I|δ + 1 defined? Not necessarily. Set: I =

⋃
i<δ I|i+ 1. Then I is a normal

iteration of length δ. Hence it has a unique cofinal well founded branch b.
We can then extend I to I ′ of length δ + 1, taking T ′“{δ} = b. However I ′

will only be a good limit of C at δ if a certain condition on b is fulfilled:

Lemma 3.7.8. Let C, I, b, I ′, etc. be as above. Assume that there are arbi-
trarily large γ < θ such that:

(*) eγ(δ) = δ for some δ. Moreover, either êγ(δ) ∈ b or êγ(δ) = δ
and êγ(i) ∈ b whenever i <T γ δ.

Then I ′ is a good limit of C at δ.

Proof. Let γ, δ as in (*). We show that eγ ↾ δ + 1 inserts Iγ |δ + 1 into
I ′|δ + 1. We consider two cases:
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Case 1: êγ(δ) ∈ b.

Let ξ = êγ(δ). Then ξ ≤T ′ δ. It is easily verified that eγ ↾ δ + 1 inserts
Iγ |δ + 1 into I ′ with σ̂ = σ̂γ

δ
, σ = σγγ defined as follows:

By the above Fact there is γ′ > γ such that eγ′(δ′) = ξ, where δ′ = êγ,γ
′
(δ).

Thus eγ′ ↾δ′ + 1 inserts Iδ′ |δ + 1 into I|ξ + 1. Set:

σ̂ =: σ̂γδ′ ◦ σ̂
γ,γ′

δ
, σ =: π′ξ,δ ◦ σ̂

QED(Case 1)

Case 2: eγ(δ) = δ.

Then eγ takes δ cofinally to δ. Thus eγ ↾ δ + 1 inserts Iγ |δ + 1 into I|δ + 1,
where σ = σγ

δ
= σ̂γ

δ
is defined by:

σπγ
i,δ

= πeγ
δ
(i),δ ◦ σ̂

γ
i

The verification is again straightforward.

QED(Case 2)

Now let µ < θ be arbitrary such that eµ(δ′) = δ. Let γ > µ satisfy (*) with
eγ(δ) = δ. Then eµ,γ inserts Iµ|δ′ + 1 into Iγ |δ + 1 and eγ inserts Iγ |δ + 1
into I ′|δ + 1. Hence eµ = eγ · eµ,γ inserts Iµ|δ′ + 1 into I ′|δ + 1.

QED(Lemma 3.7.8)

Remark. It follows that every γ < θ such that δ ∈ rng(eγ) satisfies (*).

Building on what we have just proven, we show that we can disperse with the
iterability assumption if the length of the commutative system has cofinality
greater than ω.

Lemma 3.7.9. Let C be a commutative insertion system of length θ. If
cf(θ) > ω, then C has a good limit.

Proof.

Claim. ⟨ηi : i < θ⟩, ⟨eξ,µ : ξ ≤ µ < θ⟩ has a transitivized direct limit:

η, ⟨eξ : ξ < θ⟩

Proof. Suppose not. Let ⟨u,<∗ ⟩, ⟨eξ : ξ < θ⟩ be a direct limit, where <∗

is a linear ordering of u. Then there are xn (n < ω) such that xn+1 <
∗ xn
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for n < ω. Since cf(θ) > ω, there must be γ < θ such that xn ∈ rng(eγ)
for n < ω. Let eγ(αn) = xn (n < ω). Then αn+1 < αn in ηδ for n < ω.
Contradiction!

QED(Claim)

We now prove by induction on i < η that C has a good limit I|i at i.

Case 1. i = 0. The 1-step iteration of M : ⟨⟨M⟩,∅, ⟨ id ⟩,∅⟩ is the good
limit at 0 (with e00 = ê00 = id↾{0}).

Case 2. i = h+ 1.

Let νi, ξ = T ′(i+ 1),M∗
i , F = EMi

νi be as in the proof of Lemma 3.7.7. The
proof of Lemma 3.7.7 goes through exactly as before if we can show:

Claim. M∗
i is extendible by F .

Proof. Suppose not. Then there are fn ∈ Γ∗(κi,M
∗
i ), αn ∈ λi (n < ω) such

that

{⟨µ, τ⟩ : fn+1(µ) ∈ fn(τ)} ∈ F⟨αn+1,αn⟩ for n < ω

Let pn ∈M∗
i such that either pn = fn or fn is defined by: fn(β) ∼= G(pn, β),

where G is good over M∗
ξ . Since cf(θ) > ω, we can pick γ < θ such that

• eγ(iγ) = i, eγ(ξγ) = ξ

• σγξγ (pn) = pn (n < ω)

• σγiγ (αn) = αn (n < ω)

• [eγ(ξγ), e
γ(ξγ)]T has no drop point in I. (Hence σγ∗ξγ ,M

γ
ξγ
−→Σ∗ Mξ,

since σγξγ = πξγ σ̂
γ
ξγ

).

We note that ξγ = T γ(iγ + 1). (Suppose not. Let t = T γ(iγ + 1). Then
ξ ∈ [êγ(t), eγ(t)] by Lemma 3.7.1 (3). But thus t < ξ and ξ < t are both
impossible. Contradiction!) It follows that:

σγξ ↾M
γ∗
iγ
−→Σ∗ M∗

i

If fn is defined from pn as fn was defined from pn, we then have:

{⟨µ, τ⟩ : fn+1(µ) ∈ fn(τ)} ∈ F ⟨αn+1,αn⟩
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where F = E
Mγ

iγ
νiγ . But:

πγξγ ,iγ :Mγ∗
iγ
−→∗

F
Mγ
iγ+1

Hence Mγ
iγ+1 would be ill founded. Contradiction!

QED(Case 2)

Case 3: i = µ is a limit ordinal.

Let b′ be the set of j < µ such that for some γ < θ and µ < ηγ we have
eγ(µ) = µ and j = êγ(i) for an i ≤T γ µ. Let b be the closure of b′ under
limit points below µ. Then b is a cofinal branch in I. Moreover, b satisfies
(∗).

τin is not a cardinal in Lemma 3.7.8. Hence we can simply repeat the proof
of Lemma 3.7.8 if we can show:

Claim. b is a well founded branch in I.

Proof. We must first show:

Subclaim. b has at most finitely many drop points.

Proof. Suppose not. Let ⟨in : n < ω⟩ be monotone such that in + 1 is a
drop point in b. Since in + 1 is not a limit point in b, we have in + 1 ∈ b′.
Hence for each n there is a γ < θ and a µ such that eγ(µ) = µ, êγ(hn +1) =
in+1, hn+1 <T γ µ. If γ has this property, so will every larger γ′ < θ. Since
cf(θ) > ω, we know that sufficiently large γ < θ will have the property for
all n. We can also suppose without lose of generality that eγ(tn) = tn, where
tn = T (in + 1) in I. Just as in Case 2 we then have In = T γ(hn + 1). As
in Case 2 we can assume γ chosen big enough that [êγ(tn), e

γ(tn))T has no
drop point in I. (Hence the map σγ

tn
is Σ∗-preserving). Then τin is not a

cardinal in Mtn and τin = σγhn(τhn) = σγ
tn
(τhn). Hence τhn is not a cardinal

in Mγ
hn

. Hence hn + 1 is a drop point in Iγ . Hence T γ“{µ} has infinitely
many drop points. Contradiction!

QED(Subclaim)

We now prove the claim. Suppose not, Let b′′ =: b′∖β, where β < µ̄ is big
enough that no i ∈ b′′ is a drop point. Then there is a monotone sequence
⟨in : n < ω⟩ such that in ∈ b′′, xn ∈Min and

xn+1 ∈ πin,in+1(xn) for n < ω

Pick γ < θ big enough that eγ(µ̄) = µ and êγ(hn) = in, where hn <T γ µ̄.
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We can also pick it big enough that xn = σ̂in(x̄n) for n < ω. Hence

x̄n+1 ∈ πγhn,hn+1
(x̄n) for n < ω

Hence Mγ
µ̄ is ill founded. Contradiction!

QED(Lemma 3.7.9)

3.7.2 Reiterations

From now on assume that M is a uniquely normally iterable mouse (i.e.
every normal iteration of limit length has exactly one cofinal well founded
branch). (Our results will go through mutatis mutandis if we assume unique
normal α-iterability for a regular cardinal α > ω).

Interpolating extenders

Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration of M of length η + 1.
A “reiteration" of I occurs when we “interpolate" new extender which were
not on the sequence ⟨νi : i < η⟩. This rounds very vague, or course, but
we can make it more explicit by considering the case of a single extender
F = E

Mη
ν which we had neglected to place on the sequence. Set: τ =

τ+Mη ||ν , κ = crit(F ), λ = λ(F ) =: F (u). For the moment let us assumer
that τ is a cardinal in Mη. The interpolation gives rise to a new iteration
I ′. I ′ coincides with I up to the point at which F should have been applied.
At that point we apply F and thereafter simply copy what we did in I. The
point s at which F should have been applied is defined as follows:

s = the least point such that s = η or s < η and ν < νs

We want I|s+1 = I ′|s+1, but at stage s we apply F instead of EMs
νs . Thus

we set: νs = ν. This determines t = T ′(s+ 1) and M ′∗
s . We then form:

π′t,s+1 :M
′∗
r −→∗

F M
′
s+1

There is then an obvious insertion f of I|t+ 1 into I ′|s+ 2 defined by:

f ↾ t = id, f(t) = s+ 1

f induces the new insertion embeddings:

σ̂t = id↾Mt, πt = π′t,s+1, σt = πtσ̂t

If t = η (hence s = η), then I ′ = I ′|s+ 2 is fully defined. Now let t < η.
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Then M
′∗
s = Mt||µ, where µ ≤ ONMt is maximal with: τ is a cardinal in

Mt||µ. But then τ ∈ JE
Mη

νt ⊂ JE
Mη

ν , so τ is a cardinal in JE
Mη

νt . Hence
µ ≥ νt and σt(νt) is defined. Set: ν ′s+1 = σt(νt). This defines a potential
extension of I ′|s+ 2, since

ν ′s = πt(τ) < πt(νt) = ν ′s+1

where πt = π′t,s+1.

Now define e on η by:

e↾ t = id, e(t+ i) = s+ 1 + i for t+ i ≤ η

Then e ↾ t + 1 = f . It is easily seen that ê(t) = t and e(t) = s + 1. But for
i ̸= t we have ê(i) = e(i). We prove:

Claim. e inserts I into a unique I ′ of length e(η) + 1.

To show this we prove the following subclaim by induction on i:

Subclaim. If t + 1 + i ≤ η, then e ↾ (t + 1 + i + 1) inserts I|(t + 1 + i + 1)
into a unique I ′′ = I ′|(s+ 2 + i+ 1) of length s+ 2 + i+ 1.

Proof. Case 1: i = 0.

We have seen that σt(νt) exists and that σt(νt) > ν ′t. Hence we can appoint
ν ′t+1 = σ(νt), which determines ξ = T ′(s+2) andM ′∗

s+1. M ′∗
s+1 is ∗-extendible

by F = E
M ′

s+1

ν′s+1
by the fact that M is uniquely iterable. By Lemma 3.7.2 we

conclude that e|t+2 inserts I|t+2 into a unique I ′|s+3 extending I ′|s+2.

QED(Case 1)

Case 2: i = j + 1.

Then I ′|s+ 2+ i is given. Set: h = t+ 1+ j. Then e(h) = ê(h) = s+ 2+ j.
We are given: σh(νh) = σ̂h(νh). Set ν ′e(h) =: σh(νh). This determines a
potential extension of I ′|e(h) + 1, since:

ν ′e(h) > σh(νl) ≥ ν ′e(l) for t ≤ l < h

But M ′∗
h is ∗-extendible by E

M ′
e(h)

νe(h) by unique iterability. Hence by Lemma
3.7.2, e|h+ 2 inserts I|h+ 2 into a unique I ′|e(h) + 2 extends I ′|e(h) + 1 by
Lemma 3.7.2.

QED(Case 2)

Case 3: i = λ is a limit ordinal.
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We first observe that the componentwise union I ′ =
⋃
i<λ I

′|e(i) is the unique
iteration of length e(λ) into which e|λ inserts I|λ. Now let b′ be the unique
cofinal well founded branch in I ′|e(λ). Then b = {i : e(i) ∈ b′}is the unique
cofinal well founded branch in I|λ. Hence b = T“{λ}. By Lemma 3.7.1 (18),
e|λ+ 1 inserts I|λ+ 1 into a unique I ′|e(λ) + 1 extending I ′|e(λ).

QED(Case 3)

QED(Claim)

We must still consider the case that τ is not a cardinal in Mη. If t < η, then τ
is not a cardinal in JEMt

λt
since JEMt

λt
= JE

Mη

λt
and λt is a cardinal in Mη. M ′∗

s

thus has the form: Mt||µ = Mη||µ. (Hence we truncate to the same place
that we would if we applied F directly to Mη). Clearly µ < λt < νt if t < η.
Hence the “copying" process we performed in the previous case is impossible.
(Note, too, that t = s, since if t < s, then λt would be inaccessible in JE

Ms
ν

ν

and τ < λt would be a cardinal in JEMs

λt
= JE

Mt

λt
. Contradiction!). We set:

Iν = I|t+ 1

We can extend I∗ to I ′ by setting ν ′t = ν. Set e↾ t = id, e(t) = s+ 1 = t+ 1.
Then e inserts I∗ into I ′.

The I ′ which we have described above is called a simple reiteration of I.
If I ′ is obtained by a chain of simple reiterations, we also call it a simple
reiteration. However, we must still show that an infinite chain of simple
reiterations has a well founded limit. This will require considerable effort.
Before doing that we develop the notion of normal reiteration, which is easier
to deal with.

Now let ⟨Ii : i < ω⟩ be a chain of simple reiterations with

I0 = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πih⟩, T i⟩ of length ηi.

Let Ii+1 be obtained from Ii by interpolating Fi = E
M i

ξi
νi into Ii, giving

rise to the insertion ei of Ii∗ into Ii+1. In an effort to tame the complexity
of these structures, we could impose the normality condition: νi < νj for
i < j < ω. It turns out that we can impose a far more powerful normality
condition by requiring that Fi be interpolated in the earliest possible Ih with
h ≤ i, rather than necessarily into Ii itself. This gives the concept of normal
reiteration, which is clearly analogous to that of normal iteration. First,
however, we must redo our definitions in order to make this notion precise.
To say that Ih is a possible candidate for interpolation of Fi means simply
that h ≤ i and Ih|t + 1 = Ii|t + 1, where t is defined from as before from
νi, I

i. In a normal reiteration it will then turn out that either t = ηh or
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νit ≤ νht (νit will exits if h < i). In a normal reiteration we will then have:
Ij |t+ 1 = Ii|j + 1 for h ≤ j ≤ i.

We now give a precise definition of the operation we perform when we apply
Fi to Ih.

Definition 3.7.6. Let I = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πih⟩, T ⟩ be a normal iteration of M

of length η. Let
I ′ = ⟨⟨M ′i

h ⟩, ⟨ν ′ih ⟩, ⟨π′ih⟩, T ′⟩

be a normal iteration of M of length η′. Let F = E
M ′

η
ν ̸= ∅. Set:

κ =: crit(F ), λ = λ(F ) =: F (κ), τ = κ+M ||ν .

Let s be least such that

s = η′ ∨ (s < η′ ∧ ν ′ < νs)

Let t be least such that:

t = ηi ∨ (t = ηi ∧ κ′ < λ′t)

(Hence t ≤ s).

Assume that I|t+ 1 = I ′|t+ 1 and ν ′t ≤ νt. We define an operation:

W (I, I ′, ν) = ⟨I∗, I ′′, e⟩

by cases as follows:

Case 1: t = η and τ is a cardinal in Mη.

Extend I to I ′′ by appointing ν ′′η = ν. Then π′′η,η+1 : M −→∗
F Mη+1. e is

then the insertion of I into I ′′ defined by e ↾ η = id, e(η) = η + 1. (Hence
πη = π′η,η+1 and ση = id↾Mη, σ̃η = π̃ηση). We set: I∗ = I.

Case 2: t < η and τ is a cardinal in Mη. We set I ′′|s + 1 = I ′|s + 1.
We then appoint ν ′′s = ν. Thus t = T ′′(s + 1) and M ′′∗

s = Mt||µ, where
µ ≤ ONMt is maximal such that τ is a cardinal in Mt||µ. But τ is a cardinal
in JEMt

νt = JE
Mη

νt . Hence µ ≥ νt. Let f be the insertion of I|t+1 into I ′′|s+2
defined by

f ↾ t = id, f(t) = s+ 1.

Then:
σ̂t = id↾Mt, πt = πt,s+1, σt = πt ◦ σt

(Hence σt(νt) > ν ′′t as before).
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Now define e on η + 1 by

e↾ t = id, e(t+ i) = s+ 1 + i.

Set η′′ =: e(η). I ′′ is then the unique iteration of length η′′ + 1 extending
I ′|s+ 2 such that e inserts I into I ′′. We set: I∗ =: I.

The existence and uniqueness proofs are exactly as before.

Case 3: τ is not a cardinal in Mη. If t < η, then τ is not a cardinal in JEMt

νt .
Hence M ′′∗

s = Mt||µ, where µ < νt. Set: I∗ =: I|t + 1. Set: ν ′′s =: ν. This
gives:

π′′t,s+1 :M
′′∗
s −→∗

F M
′′
s+1

which defines I ′′ = I ′′|s+ 2. e is thus the insertion of I∗ into I ′′ defined by:
e↾ t = id, e(t) = s+ 1.

Note that e↾ t = id (hence ê↾ t+ 1 = id in all three cases.)

This completes the definition. We are now in a position to define the notion
of normal reiteration. First, however, we prove a particularly useful lemma:

Lemma 3.7.10. If j ∈ (t, s] and s < µ, then j ̸<T ′′ µ.

Proof. We proceed by induction on µ.

Case 1: µ = s + 1. Then t = T ′′(µ) and j ̸<T ′′ t, since t < j. Hence
j ̸<T ′′ µ.

Case 2: µ > s + 1 is a successor. Let µ = γ + 1. Then γ ≥ s + 1 and
γ = e(γ) where γ̄ ≥ t. Let ξ = T ′′(γ + 1). Let j ∈ (t, s] such that j <T ′′ µ,
then j ≤T ′′ ξ. We derive a contradiction. Let ξ = T (γ + 1). Then:

ê(ξ) ≤T ′′ ξ ≤T ′′ e(ξ).

If ξ = t, then t ≤T ′ ξ ≤T ′′ s + 1. Hence ξ /∈ (t, s] by Case 1. Hence
either ξ = t < j or ξ = s+ 1 >T ′ j, contradicting the induction hypothesis.
If ξ < t then ξ = ê(ξ) = e(ξ) = ξ < j. Contradiction! If ξ > t, then
ξ = ê(ξ) = e(ξ) ≥ s + 1. Hence j <T ′ ξ < µ, contradicting the induction
hypothesis.

QED(Case 2)

Case 3: µ is a limit ordinal.

Pick i <T ′′ µ such that i > s. Then j ̸<T ′′ i by the induction hypothesis.
Hence j ̸<T ′′ µ.
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QED(Lemma 3.7.10)

As we have seen, if e is an insertion of I to I ′ and h = T (i + 1), then the
determination of e∗(i) = T ′(e(i) + 1) is important. In the case of the e
defined above, this determination is as follows:

Lemma 3.7.11. Let h = T (i+ 1). If κi < κ, then ê(h) = h = T ′′(e(i) + 1).
If κi ≥ κ, then e(h) = T ′′(e(i) + 1), where e(h) > s+ 1.

Proof. Let h′ = T ′′(e(i) + 1). We know:

ê(h) ≤T ′ h′ ≤T ′ e(h).

The cases: h < t and h > t are straightforward. Now let h = t. As in Case
2 of the above proof we conclude: h′ = t or h′ = s + 1. But κ′′e(i) = π(κi),
where π = π′′t,s+1. Hence, if κi < κ = crit(π) we have: π(κi) = κi < λt.
Hence h′ = t. If κ ≤ κi, then: π(κi) ≥ π(κ) = λ ≥ λi. Hence h′ = s+ 1.

QED(Lemma 3.7.11)

We now turn to the definition of a normal reiteration.

R = ⟨⟨Ii : i < η⟩, ⟨νi : i + 1 < η⟩, ⟨ei,j : i ≤T j⟩, T ⟩ is a normal reiteration
on M iff the following hold:

(a) η ≥ 1 and each Ii = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πih⟩, τ i⟩ is a normal iteration of M

of length ηi + 1.

(b) T is a tree on η such that iT j −→ i < j.

(c) Fi =: E
M i

ηi
νi ̸= ∅. Moreover, νi < νj for i < j.

Set: κi =: crit(Fi), λi = λ(Fi) =: Fi(κi), τi = τ(Fi) =: κ+J
E
νi , where

E = EM
i
ηi .

(d) ei,j inserts a segment Ii|µ into Ij . Moreover, eh,i = eij ◦ ehi for h ≤T
i ≤T j. eii is the identical insertion on Ii.

(e) Set: s = si =: the least s such that s = ηi or s < ηi and νi < νis. Then:
Ii|s+ 1 = Ij |s+ 1 and νjs = νi for i < j ≤ η.

(f) Let i+1 < η. Let h be least such that h = i or h < i and κi < λh. Then
h is the immediate predecessor of i+1 in T . (In symbols: h = T (i+1)).
Before continuing with the definition, we note some consequences:

Set:

t = ti =: the least t such that t = ηi or t < ηi ∧ κ < λit

(Hence ti ≤ si). In the following assume: h = T (i+ 1), t = ti. Then:
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(1) Ii|t+ 1 = Ih|t+ 1. Moreover νht ≥ νit if t < ηh.
Proof. If h = i this is trivial. Now let h < i. Then

κ < λh = λish by (e).

Hence t ≤ sh. Clearly by (e) we have:

Ih|sh + 1 = Ii|sh + 1 and νish = νh (*)

Hence Ih|t+ 1 = Ii|t+ 1. If t = sh, we then have: νht > νh = νit
if t < ηh. If t < sh, then: νht = νit by (*).

QED(1)
(2) h is least such that Ii|t = Ih|t.

Proof. Let l < t. Then λisl = λl ≤ κ < λit. Hence sl < t. But
νhsl = νl < νlsl if sl < ηl. Hence I l|t ̸= Ih|t.

QED (2)

By (1), the conditions for forming W (Ih, Ii, νi) are given. Our next
axiom reads:

(g) Let h = T (i+ 1). Then eh,i+1 inserts Ii∗ into Ii+1 where:

⟨Ii∗, Ii+1, eh,i+1⟩ =W (Ih, Ii, νi)

We define:

Definition 3.7.7. i + 1 is a drop point (or truncation point) in R iff
τi is not a cardinal in Mh

ηh
where h = T (i+ 1). (This is the only case

in which Ii∗ ̸= Ih is possible).

Our final axioms read:

(h) If λ < η is a limit ordinal, then T“{λ} is club in λ. Moreover, T“{λ}
contain at most finitely many drop points.

(i) If λ is as above and (h, λ)T has no drop points, then ei,λ inserts Ih into
Iλ and:

Iλ, ⟨ei,λ : h ≤T i ≤T λ⟩

is the good limit of:

⟨Ii : h ≤T i <T λ⟩, ⟨ei,j : h ≤T i ≤T j < λ⟩

Note. As usual, we will then refer to Iλ, ⟨ei,λ : i <T λ⟩ as the direct limit
of:

⟨Ii : i ≤T λ⟩, ⟨ei,j : i ≤T j < λ⟩,

since the missing points are supplied by: el,λ = eh,λ ◦ el,h for l ≤ h.
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Definition 3.7.8. If R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩ is a reiteration of length η and
o < µ ≤ η, we let R|µ denote:

⟨⟨Ii : i < µ⟩, ⟨νi : i+ 1 < µ⟩, ⟨ei,j : i ≤T j < µ⟩, T ∩ µ2⟩

Lemma 3.7.12. If R is a reiteration and 0 < i ≤ lh(R). Then R|i is a
reiteration.

Lemma 3.7.13. Let R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨eij⟩, T ⟩ be reiteration of length γ + 1,

where Ii have length ηi+1 for i ≤ γ. Let E
Mγ

ηγ
ν ̸= ∅, where ν > νi for i < γ.

Then there is a unique extension of B to a reiteration R′ of length γ+2 such
that R′|γ + 1 = R and ν ′γ = ν.

Proof. Let i = T ′(γ + 1). Then W (Ii, Iγ , ν) is defined.

A much deeper result is:

Lemma 3.7.14. Let R be a reiteration of limit length η. There is a unique
extension R′ such that R′|η = R and lh(R′) = η + 1.

The proof of this theorem will be the main task of this subsection. It will
require a long train of lemmas.

For now on let:
R = ⟨⟨Iξ⟩, ⟨νξ⟩, ⟨eξ,µ⟩, T ⟩

be a reiteration of limit length η. Let:

Iξ = ⟨⟨M ξ
i ⟩, ⟨ν

ξ
i ⟩, ⟨π

ξ
ij⟩, T

ξ⟩

be of length ηξ + 1 for ξ < η.

Lemma 3.7.15. Let ξ < µ < η. Then:

(a) sξ < sµ

(b) νξ = νµsξ

Proof. (b) holds by (e) in Definition ??. We prove (a). Suppose not.
ηµ > sξ since νµsξ exists. Hence sµ < ηµ. Hence νµ < νµsµ ≤ νµsξ = νξ.
Contradiction!

QED(Lemma 3.7.15)

Lemma 3.7.16. Let ξ + 1 ≤T µ. Then eξ+1,µ ↾sξ + 1 = id.
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We proved by induction on µ. For µ = ξ+1 it is trivial. Now let ξ+1 <T µ+1
and let it hold at γ = T (µ + 1). Then ξ < γ and hence: κµ ≥ λξ = λµsξ .
Hence tµ ≥ sξ + 1 and:

eγ,µ+1 ↾ tµ = id

by (g). Hence:

eξ+1,µ+1(α) = eγ,µ+1eξ+1,γ(α) = α for α ≤ sη.

Now let µ be a limit ordinal and let the induction hypothesis hold at γ for
all γ with: ξ + 1 ≤T γ <T µ. For i ≤T j <T µ we then have: eiµ(α) =
ejµeij(α) = ejµ(α).

Let α ≤ sξ be least such that α < eξ+1,µ(α). Let ξ + 1 ≤T δ <T µ such
that eδ,µ(α) = α. Then α < α = eξ+1,δ(α). Hence eδ,µ(α) = α < α.
Contradiction!

QED(Lemma 3.7.16)

Definition 3.7.9. ŝγ =: lub{sξ : ξ < γ}.

Lemma 3.7.17. Let γ = T (ξ + 1). Then ŝγ ≤ tξ ≤ sγ.

Proof.

(1) ŝγ ≤ tη, since if i < γ, then λi = λγsi ≤ κξ.

(2) tξ ≤ sγ .

This is trivial for γ = ξ. Now let γ < ξ. Then κη < λγ = λξsγ . Hence tξ ≤ sγ .

QED(Lemma 3.7.17)

Definition 3.7.10. X is in limbo at µ iff X ⊂ ŝµ and there is no pair ⟨i, j⟩,
such that i ∈ X, j ≥ ŝµ and i <Tµ j.

Lemma 3.7.18. If ξ + 1 ≤T µ, then (tξ, sξ] is in limbo at µ.

Proof. By induction on µ.

Case 1: µ = ξ + 1 by Lemma 3.7.10.

Case 2: µ = δ + 1 >T ξ + 1.

Let γ = T (δ+1). Then it holds at γ. Moreover, ŝγ ≤ tγ ≤ sγ . Let i ∈ (tξ, sξ]
and i <Tµ j, where j ≥ ŝµ = sδ + 1. We derive a contradiction.
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j ≥ ŝµ = sδ + 1. Hence j = sδ + 1 + l. Hence eγ,µ(k) = j, where k = tδ + l.
Since eγ,µ(i) = i, we conclude: i <T γ k, where ŝγ ≤ tδ ≤ k. Contradiction!

QED(Case 2)

Case 3: µ is a limit ordinal.

Suppose i ∈ (tξ, sξ] with i ≤Tµ h, h ≥ ŝµ. Then h = eγ+1,µ(h) for a γ such
that

ξ + 1 <Tµ γ + 1 <Tµ µ

But eγ+1,µ ↾ sγ + 1 = id by Lemma 3.7.16. Hence h > sγ . Hence h ≥ ŝγ =
sγ + 1. Hence i ̸<T γ+1 h by the induction hypothesis. Hence i ̸<Tµ h.

QED(Lemma 3.7.18)

By Lemma 3.7.16, Iξ|sξ + 1 = Iγ |sξ + 1 for ξ ≤ γ < η. The componentwise
union:

Ĩ =
⋃
ξ<η

Iξ|sξ

is then a normal iteration of length

η̃ = lub{sξ : ξ < η}

For ξ < η̃ set:

Definition 3.7.11. γ(i) =: the least γ such that i ≤ sγ .

(Hence ŝγ ≤ i ≤ sγ). The following lemma establishes an important connec-
tion between the normal iteration Ĩ and the reiteration R.

Lemma 3.7.19. Let i ≤T̃ j. Then γ(i) ≤T γ(i).

Proof. Suppose not. Let i, j be a counterexample. Then γ(i) ̸≤T γ(j).
Hence i < j and γ(i) < γ(j). Set: γ = γ(j). There is µ + 1 ≤T γ such
that T (µ + 1) < γ(i) < µ + 1. Set τ = T (µ + 1). Then sτ < i, since
τ < γ(i). Hence tµ ≤ sτ < i by Lemma 3.7.17. But i ≤ sγ(i) ≤ sµ, since
γ(i) ≤ µ. Hence i ̸<T γ j by Lemma 3.7.18, since j ≥ ŝγ . Hence i ̸<T̃ j, since
Iγ |sγ + 1 = Ĩ|sγ + 1. Contradiction!

QED(Lemma 3.7.19)

Lemma 3.7.20. Let τ = T (ξ + 1) ≤T µ. Then:

crit(eτ,µ) = tξ and eτ,µ(tξ) ≤ ŝµ
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Proof. By induction on µ.

Case 1. µ = ξ + 1. eτ,ξ+1(tξ) = sξ + 1 = ŝξ+1 > tη, but

et,ξ+1(i) = êτ,ξ+1(i) = i for i < tξ

Case 2. µ = δ + 1 is a successor.

Let γ = T (δ + 1). Then:

eτ,µ(tξ) = eγ,µ ◦ eτ,µ(ŝγ)
≤ eγ,µ(tδ) = sδ + 1 = ŝµ

By the induction hypothesis we have:

eτ,µ(tξ) = eγ,µ ◦ eτ,γ(eξ) ≥ eτ,γ(tξ) > tη

For i < tξ we have:

eτ,µ(i) = eγ,µeτ,γ(i) = eγ,µ(i) = i

(since i < tγ).

QED(Case 2)

Case 3. µ is a limit cardinal. Then eτ,µ ↾ tξ = id, since eτ,γ ↾ tξ = id for t ≤T
γ <T µ (cf. the proof of Lemma 3.7.16). Moreover eτµ(tξ) ≥ eτγ(tξ) > tξ.

Claim. eτ,µ(tξ) ≤ ŝµ.

Proof. Let h < eτ,µ(tξ). Then h = eγ,τ (h) where ξ ≤T γ <T µ. Assume
w.l.o.g. that γ = T (δ + 1), where δ + 1 <T µ. Then:

h < eτ,γ(tξ) ≤ ŝγ ≤ tδ.

But eγ,µ ↾ tδ = id by the induction hypothesis.

Hence:
h = eγ,µ(h) = h < ŝγ ≤ ŝµ

QED(Lemma 3.7.20)

In order to prove Theorem 3.7.14 we must find a cofinal branch b in T such
that

⟨Ii : i ∈ b⟩, ⟨ei,j : i < j in b⟩
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has a good limit. An obvious necessary condition is that

⟨ηi : i ∈ b⟩, ⟨ei,j : i < j in b⟩

have a transitivized direct limit:

η, ⟨ei : i ∈ b⟩.

Note. This does not say that ei inserts Ii into a good limit I. It simply
gives us a system of indices which, with luck, might be used to construct a
good limit.

We obtain a rather surprising result:

Lemma 3.7.21. Let b be any cofinal branch in T . Then the commutative
system:

⟨ηi : i ∈ b⟩, ⟨ei,j : i ≤ j in b⟩

has a well founded limit.

Note. This is surprising since, as we shall see, there is only one branch which
yields a good limit, whereas these could be many cofinal branches.

We now turn to the proof of Lemma 3.7.21. Let i0 ∈ b such that there is
no drop point in b∖i0. Hence ei,j(ηi) = ηi for i ≤ j, i, j ∈ b. Let η̂ + 1,
⟨ei : i ∈ b∖i0⟩ be the direct limit of

⟨ηi + 1 : i ∈ b∖i0⟩, ⟨ei,j : i ≤ j in b∖i0⟩

We claim that η̂ is well founded.

Set: κ̃τ =: tξ for τ, ξ + 1 ∈ b∖i0, τ = T (ξ + 1). Using Lemma 3.7.20 it is
straightforward to see that:

(a) êτ,µ ↾ κ̃τ = id for τ ≤ µ in b∖i0.

(b) κ̃τ < eτ,ξ+1(κ̃τ ) ≤ κ̃ξ+1.

(c) eτ,ξ+1(κ̃τ + j) = eτ,ξ+1(κ̃τ ) + j.

(d) If τ is a limit ordinal, then:

ητ =
⋃
{rng ei,τ : i0 < i < τ in b}.

Given this, the conclusion follows from a sublemma, which -in an effort to
simplify notation- we formulate abstractly:
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Sublemma. Let η be a limit ordinal. Let ⟨δi : i < η⟩ be a sequence of
ordinals and eij : δi −→ δj (i ≤ j < η) be a commutative system of order
preserving maps. Let

∆, ⟨ei : i < η⟩
be the direct limit of

⟨δi : i < η⟩, ⟨ei,j : i ≤ j < η⟩

Let <∆ be the induced order on ∆. Assume that κi < δi for i < η such that
the following hold:

(a) ei,j ↾κi = id

(b) κi < ei,i+1(κi) ≤ κi+1

(c) ei,i+1(κi + j) = ei,i+1(κi) + j

(d) δλ =
⋃
i<λ rng(ei,λ) for limit λ < η.

Then <∆ is well founded.

Proof. Set ∆̃ = wfc(⟨∆, <∆ ⟩). Assume w.l.o.g. that ∆̃ is transitive and
<∆ ∩∆̃2 =∈ ∩∆̃2. Thus, our assertion amounts to: ∆̃ = ∆.

(1) κj ≥ κi for j > i.

Proof. Otherwise ei,j+1(κi) > κj where κj < κi, contradicting (a).

(2) κj > κi for j > i.

Proof. κj ≥ κj−1 > κi by (b).

(3) Let ei(h) ∈ ∆̃. Let µ ≤ δi and:

ei,j(h+ l) = ei,j(h) + l for i ≥ j and h+ l < µ.

Then ei(h+ l) = ei(h) + l for h+ l ≤ µ.

Proof. Suppose not. Let l be the least counterexample. Then l > 0.
Let ej(α) = ei(h) + l for a j ≥ i. Then eij(h) < α < eij(h) + l, since

ejeij(h) < ej(k) < ej(eij(h) + l)

Hence α = eij(h) + k for a k < l. Hence:

ej(α) = ej(eij(h) + k) = ei(h) + k < ej(h) + l = ej(α).

Contradiction!

QED(3)

Taking h = 0, we have eij(l) = i for l < κi. Hence:
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(4) κi ⊂ ∆̃ and ei ↾κi = id.

(5) Let eij(h) ≥ κj . Then eij(h+ l) = eij(h) + l for all h+ l < δi.

Proof. By induction on j ≥ i. The case i = j is trivial. Now let
j = k + 1, where it holds at k. Then ei,k(h) ≥ κk, since otherwise:

eij(h) = ek,k+1eik(h) = ei,k(h) < κh < κj .

Hence:

ei,k(h+ l) = ekjeik(h+ l) = ekj(eik(h) + l)

= ekj(h) + l

since if eik(h) = κk + a, then:

ek,k+1(h+ l) = ek,k+1(κk + a+ l) = ek,k+1(κk) + a+ l

= eh,k+1(κk + a) + l = ek,k+1(h) + l

Now let j be a limit ordinal. Then:

δj , ⟨eij : i < j⟩

is the limit of
⟨δi : i < j⟩, ⟨eh,i : h ≤ i < j⟩

and we apply (3).

QED(5)

We now prove ∆ ⊂ ∆̃ by cases as follows:

Case 1: For all i < η, h < δi there is j > i such that eij(h) < κj .

Then ei(h) = ejei,j(h) ⊂ κj , since ej ↾ κj = id. Thus ∆ =
⋃
i rng(ei) ⊂⋃

i κi ⊂ ∆̃.

Case 2: Case 1 fails.

Then there is i such that for some h < δi0 , we have: eij(h) ≥ κi for all j ≥ i.
Since ejkeik(h) ≥ eik(h) ≥ κk for i0 ≤ j ≤ k, there is for each j ≥ i0 a least
hj such that ejl(hj) ≥ κl for all l ≥ j.
Claim. eij(hj) = hj for i0 ≤ i ≤ j.

Proof. Suppose not. Let j be the least counterexample. Using (3) it follows
that j = l + 1 is a successor. Then hj < el,j(hl). But hj ≥ κj ≥ elj(κl).
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Hence hj = elj(κl) + a = el(κl + a), where κl + a < hl. But for j′ ≥ j we
have:

hl,j(κl + a) = hj,j′(el,j(κl) + a) ≥ κj′ .

Hence hl ≤ κl + a < hl. Contradiction!

QED(Claim)

But then ei(hi) = ej(hj) for i0 ≤ i ≤ j < η. Now let h̃ = ei(hi) for
i0 ≤ i < η. Then:

Claim. h̃ =
⋃
{hi : i0 ≤ i < η}.

Proof. h̃ =
⋃
i ei“hi. But if a < hi, then eij(a) < κj for some j ≥ i by the

minimality of hi. Hence ei(a) = ej(ei,j(a)) = ei,j(a) < hj , since ej ↾κj = id.

QED(Claim)

Hence h̃ ∈ ∆̃ and:

ej(hj + l) = h̃+ l for hj + l < δj ,

by (3), (5). Hence rng(ej) ⊂ ∆̃ and ∆ = ∆̃. This proves the sublemma and
with it Lemma 3.7.21.

QED(Lemma 3.7.21)

Note that η0 ≥ κ̃i for i ∈ b∖i0 where ei(ηi) = η̂. Hence as a corollare of the
proof we have:

Corollary 3.7.22. Set η̃i = the least h such that ei,j(h) ≥ κ̃j for all j ≥ i.
Then η̃i is defined for sufficiently large i and ei(η̃i) = η̃. Moreover η̃ =
lub{η̃i : i < η}.

However, in order to prove Theorem 3.7.14 we must find the “right" cofinal
branch in T . Lemma 3.7.19 suggests an obvious strategy: Let b̃ be the unique
well founded cofinal branch in Ĩ. Set:

b̂ = {γ(i) : i ∈ b̃}, b = {τ :
∨
γ ∈ b̂, τ ≤T γ}

Then b is a cofinal branch in T . We show that this branch works, thus
establishing the existence assertion of Theorem 3.7.14.

By Lemma 3.7.21, the commutative system

⟨ηi + 1 : i ∈ b⟩, ⟨ei,j : i ≤ j in b⟩
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has a transitivized direct limit:

η̂ + 1, ⟨ei : i ∈ b⟩

This gives us a system of indices with which to work.

We must show that the commutative insertion system:

⟨Ih : h ∈ b⟩, ⟨eh,j : h ≤ j in b⟩

has a good limit I. By induction on i < η̂ we, in fact, show:

Lemma 3.7.23. Let i < η̂. Then the above commutative system has a good
limit I|i + 1 with respect to i in the sense of Definition 3.7.5 at the end of
§3.7.1. In other words, I|i+1 has length i+1 and eξ ↾h+1 inserts Iξ|h+1i
into I|i+ 1 whenever eξ(h) = i.

Remark on notation. In §3.7.1 we showed that there can be at most
one good limit below i. We denote this, if it exists, by I|i + 1. But then
(I|i+ 1)|h+ 1 = I|h+ 1 by uniqueness.

We recall that we defined: κ̃τ = tξ where τ = T (ξ + 1), ξ + 1 ∈ b, and that
κ̃τ = crit(eτ,j) = crit(eτ ) for τ < j in b.

But then Ĩ =
⋃
τ∈b I

τ |κ̃τ , since if τ = T (ξ + 1), ξ + 1 ∈ b, then:

Iτ |κ̃τ = (Iξ|sη+1)|κ̃τ = Ĩ|κ̃τ .

But
⋃
τ∈b κ̃τ =

⋃
i<η si + 1, since if τ = δ + 1, then:

ŝτ = sδ + 1 ≤ tξ = κ̃τ .

We prove Lemma 3.7.23 by induction on i ≤ η̂.

Case 1. i < η̃ = lh(Ĩ).

Let eξ(h) = i. Let ξ <T τ ∈ b, where i + 1 < κ̃τ . Then eξ|h + 1 =
(eτ |i+ 1)(eξ,τ |h+ 1) where eτ |i+ 1 = id. Hence:

eξ|h+ 1 = eξ,τ |h+ 1 inserts Iξ|h+ 1 into Iτ |h+ 1 = I|h+ 1

QED(Case 1)

Case 2. i = η̃.
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Let b̃ be the unique cofinal well founded branch in Ĩ. Let Mη̃, ⟨π̂i,η̃ : i ∈ b̃⟩
be the transitivized direct limit of: ⟨Mi : i ∈ b⟩, ⟨π̃ij : i ≤T j ∈ b̃⟩. This gives
us I|η̃ + 1. We must prove that whenever eξ(η) = η̃, ξ ∈ b, then eξ inserts
Iξ|η+1 into I|η̃+1. By Lemma 3.7.8 it suffices to show that for arbitrarily
large ξ ∈ b:

(∗) eξ(η) = η̃, where either êξ(η) ∈ b̃ or else êξ(η) = η̃ and
êξ(i) ∈ b̃ for all i <T ξ η.

We know: κ̃τ = crit(eτ,ξ+1) = tξ for τ = T (ξ + 1), ξ + 1 ∈ b. Set:

λ̃τ =: eτ,ξ+1(κ̃τ ) = sξ + 1 for τ = t(ξ + 1), ξ + 1 ∈ b.

Then:

(1) b̃ ∩
⋃
τ∈b(κ̃τ , λ̃τ ) = ∅.

Proof. Suppose not. Let i ∈ b̃ ∩ (κ̃τ , λ̃τ ) where τ ∈ b. Let µ > τ such
that:

µ ∈ b̂ = {γ(i) : i ∈ b̃}.

Let µ = γ(j), j ∈ b̃. Then ŝµ ≤ j ≤ sµ. Then i < j in b̃, since:

i ≤ sξ < ŝµ ≤ j, where τ = T (ξ + 1), ξ + 1 ∈ b.

But T̃ |s = Tµ|sµ + 1. Hence i <Tµ j in Iµ. But:

(κ̃τ , λ̃τ ) = (tξ, sξ].

Hence (κ̃τ , λ̃τ ) is in limbo at µ, since ξ + 1 ≤T µ. Hence i ̸<Tµ j.
Contradiction!

QED(1)

Set:
A = {τ ∈ b : ŝτ < κ̃τ}.

The set A strongly determines what happens at η̃. We first consider
the case:

Case 2.1. A is cofinal in b.

There is then a τ0 ∈ b such that ŝτ = κ̃τ for all τ ∈ b∖τ0. (Recall that,
if T = T (ξ + 1) and ξ + 1 ∈ b, then κ̃τ = tξ and ŝτ ≤ tξ ≤ sτ < λ̃τ by
Lemma 3.7.17.) By (1) we have:

b̃∖τ0 ⊂ B =: {ŝi : τ0 ≤ i in b} = {κ̃i : τ0 ≤ i in b}.
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(2) b̃∖τ0 = B.

Proof. Suppose not. Let i ∈ B∖b̃0 be the least counterexample. Then
i > τ0. Moreover, i is not a limit ordinal, since otherwise i = lub{ŝj :
j ∈ B ∩ i}, where B ∩ i ⊂ b̃ and b̃ is closed in η̃. Hence:

i = ŝξ+1 = sξ + 1, where ξ + 1 ∈ b∖(τ0 + 1).

Let τ = T (ξ + 1). Then τ ≥ τ0 in b and

ŝτ = κ̃τ = tξ, sξ + 1 = λ̃ξ.

Hence ŝτ = T̃ (sξ+1), where ŝτ ∈ B. Clearly ŝτ ∈ b̃, by the minimality
of i. Now let j+1 ∈ b̃ such that ŝτ = T̃ (j+1). Then j+1 ≥ λ̃τ = sξ+1,
since j + 1 > κ̃τ and (κ̃τ , λ̃τ ) ∩ b̃ = ∅. Let γ = γ(j + 1). Then
j + 1 = ŝγ = κ̃γ is a successor ordinal. Hence ŝγ = sδ + 1, where
γ = δ + 1. Let µ = T (δ + 1). Then ŝµ = κ̂µ = T̂ (sδ + 1). Hence
ŝµ = ŝt. Hence µ = τ, δ = ξ and i = ŝξ +1 = j+1 ∈ b̃. Contradiction!

QED(2)

But then every τ ∈ b∖τ0 satisfies (*), since:

(3) Let τ0 ≤ τ ∈ b. Then eτ (κ̃τ ) = η̃ and eτ ↾ κ̃τ = id. (Hence êξ(κ̃τ ) =
κ̃τ ∈ b̃).
Proof. We know that if τ = T (ξ + 1), ξ + 1 ∈ b, then:

eτ,ξ+1 ↾ κ̃τ = id, eτ,ξ+1(κ̃τ ) = λ̃τ = sξ + 1 = κ̃ξ+1

Using this we prove by induction on ξ ∈ b∖τ0 that if τ0 ≤ τ < ξ, τ ∈ b,
then:

eτ,ξ ↾ κ̃τ = id, eτ,ξ(κ̃τ ) = κ̃ξ.

At limit ξ we use the fact that:

eτ,ξ(i) =
⋃

τ≤τ ′∈b
eτ

′,ξ”eτ,τ
′
(i).

But then the same proof shows:

eτ ↾ κ̃τ = id, eτ (κ̃τ ) = η̃,

since:
η̃ = sup

τ∈b∖τ0
κ̃τ = sup

τ∈b∖τ0
ŝτ = sup

ξ+1∈b∖τ0
sξ + 1.

QED(Case 2.1)

Case 2.2. A is cofinal in b.

We shall make use of the following general lemma on normal reiteration:



3.7. SMOOTH ITERABILITY 325

Lemma 3.7.24. Let ξ ≤T µ, i ≤ ηξ such that ŝµ ≤ j < eξ,µ(i). Then
j ∈ rng(eσ,µ).

Proof. Suppose not. Let µ be the least counterexample. Then µ > ξ.

Case 1. µ is a limit ordinal.

Let ζ such that ξ ≤ ζ < µ and j = eζ,µ(j′). Then j′ ≥ κ̃ζ , since
otherwise:

j = j′ < κζ < λ̃ζ < ŝµ.

Contradiction! Thus ŝζ ≤ j′ ≤ eζ,µ(i). By the minimality of µ we
conclude:

j′ ∈ rng(eζ,µ);

hence j = eζ,µ(j′) ∈ rng(eζ,µ). Contradiction!

Case 2. µ = ζ + 1 is a successor.

Let τ = T (ζ + 1). Then j ≥ ŝµ = sζ + 1 = λ̃τ . Moreover:

eτ,µ(κ̃τ + h) = λ̃τ + h for h ≤ ητ .

Let j = λ̃τ + h, eξ,µ(i) = λ̃τ + k. Hence h < k. Set j′ = κ̃τ + h.
Then eτ,µ(j′) = j, where ŝτ ≤ κ̃τ ≤ j′ < eξ,µ(i). By the minimality
of µ we conclude: j′ ∈ rng(eξ,τ ). Hence j = eτ,µ(j′) ∈ rng(eξ,µ).
Contradiction!

QED(Lemma 3.7.24)

Let τ0 ∈ b such that η̃ ∈ rng(ẽτ0). Then η̃ ∈ rng(eτ ) for all τ ∈ b∖τ0.
Set:

η̃τ = (eτ )−1(η̃) for τ ∈ b∖τ0.

Then:

(4) eτ (κ̃τ ) < η̃ for τ ∈ b∖τ0.

Proof. Let τ < γ ∈ A. Then eτ,γ(κ̃i) ≤ ŝγ < κ̃γ by Lemma 3.7.20.
Hence:

eτ (κ̃τ ) = eγ · eτ,γ(κ̃τ ) = eτ,γ(κ̃τ ) < κ̃γ < η̃.

QED(4)

Now set:
B =:

⋃
τ∈b∖τ0

[s̃τ , κ̃τ ).

Note. [ŝτ , κ̃τ ) = ∅ if τ /∈ A.
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(5) Let τ0 ≤ τ ∈ b. Then B ⊂ rng(eτ ).

Proof. Let τ ≤ γ ∈ A. Let j ∈ [ŝγ , κ̃γ). Then

ŝγ ≤ j ≤ η̃γ = eτ,γ(η̃γ).

But then by Lemma 3.7.24 we have:

[ŝγ , κ̃γ) ⊂ rng(eτ,γ).

But eγ ↾ [ŝγ , κ̃γ) = id. Hence:

[ŝγ , κ̃γ) ⊂ rng(eτ ) = rng(ẽγ ẽτ ).

QED(5)

Since B is cofinal in η̃, we conclude:

(6) eτ“η̃τ is cofinal in η̃ for τ ∈ b∖τ0. Using this we then get:

(7) Let τ ∈ b∖τ0. Then:

b̃ ∩ (rng(eτ ) ∪ rng(êτ ))

is cofinal in η̃.

Proof. Suppose not. Then there is a i0 < η̃, such that

b̃ ∩ (rng(eτ ) ∪ rng(êτ )) ⊂ i0.

Note that if γ ∈ A, then [ŝγ , κ̃γ) ⊂ rng(eτ ). Hence (ŝγ , κ̃γ ] ⊂ rng(êτ ).
We shall derive a contradiction by showing that A is not cofinal in b.
In particular, we show:

Claim. Let i0 < j ∈ b̃. Let γ0 = γ(j). Assume that γ ≤ δ ∈ b. Then
ŝδ = κ̃δ ∈ b̃.

Proof. We proceed by induction on δ. There are three cases:

Case 2.2.1. δ = γ0.

It suffices to show: γ0 /∈ A, since then ŝγ0 ≤ j < λ̃γ , j /∈ (κ̃γ0 , λ̃γ0),
where ŝγ0 = λ̃γ0 . Hence j = ŝγ = κ̂γ ∈ b̃. Suppose not. j ∈ [ŝγ , κ̃γ ]
since (κ̃γ , λ̃γ)∩b̃ = ∅. But [ŝγ , κ̃γ ] ⊂ rng(eτ )∪rng(êτ ). Contradiction!,
since j < i0.

QED(Case 2.2.1)

Case 2.2.2. δ = ξ + 1 > γ0 is a successor.

Let µ = T (ξ + 1). Hence, γ0 ≤ µ ∈ b. Then sµ = κ̃µ ∈ b̃. Let
j + 1 be the immediate successor of sµ in b̃. Then κ̃µ < j + 1. Hence
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j + 1 ≥ λ̃µ = sξ + 1, since (κ̃µ, λ̃µ) ∩ b̃ = ∅. Let γ = γ(j + 1). Then
j + 1 ∈ [ŝγ , κ̃γ ]. Hence, as in Case 2.2.1, κ̃γ = ŝγ , since otherwise:

[ŝγ , κ̃γ ] ⊂ rng(eτ ) ∪ rng(êτ ).

Then j+1 = ŝγ = κ̃γ and ŝγ = sξ+1, where γ = ζ+1. Let ξ = T (ζ+1).
Then κ̃η = T̃ (j + 1), where j = sζ . Hence κ̃η = ŝµ = T̃ (j + 1). Hence
η = µ, since otherwise η > µ and ŝµ < ŝη = κ̃η. Hence ξ = ζ, since
ξ + 1 = ζ + 1 = the immediate successor of µ in b. Hence ŝδ = κ̃δ ∈ b̃.

QED(Case 2.2.2)

Case 2.2.3. δ > γ0 is a limit ordinal.

Then ŝδ = supi<δ ŝi ∈ b̃, since b̃ is closed in η̃. But then ŝδ = κ̃δ, since
otherwise:

[ŝδ, κ̃δ) ⊂ rng(eτ ), where ŝδ > i0.

QED(Case 2.2.3)

This proves (7).

We now show that (*) holds for all τ ∈ b∖τ0.

(8) Let τ ∈ b∖τ0. If i <T τ η̃τ , then êτ (i) ∈ b̃.
Proof. Set: b = (êτ )−1”b̃.

Claim 1. b is cofinal in η̃τ .

Proof. Let i < η̃τ . Set i′ = eτ (i). By (7) there is j′ ∈ b̃ such that

j′ > i′ and j′ ∈ rng(eτ ) ∪ rng(êτ ).

If eτ (j) = j′, then j > i and êτ (j) ≤T̃ j′ ∈ b̃. Hence êτ (j) ∈ b̃ and
j ∈ b. If êτ (j) = j′, then êτ (i) < j′ ∈ b̃. Hence j > i and j ∈ b.

QED(Claim 1)

Claim 2. b is a branch in T τ .

Proof. Let i <T τ j ∈ b. Then êτ (i) ≤T̃ êτ (j) ∈ b̃. Hence êτ (i) ∈ b̃
and i ∈ b.

QED(Claim 2)

Claim 3. b is well founded.

This follows by standard methods, given that b̃ is well founded. But
then b = T τ”{η̃τ} by uniqueness.

QED(Case 2)

Case 3. i > η̃.

Then eτ (η̃τ + i) = η̃ + i by Lemma 3.7.24. Using this, it follows easily
by Lemma 3.7.8 and Lemma 3.7.7 that I|i + 1 exists. We leave the
details to the reader.
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QED(Lemma 3.7.23)

This proves the existence part of Theorem 3.7.24. We must still prove unique-
ness.

Definition 3.7.12. Let b be a cofinal branch in:

R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩,

where R is a reiteration of limit length η. b is good for R iff R extends to R′

of length η + 1 with b = T“{η}.

We have proven the existence of a good branch b. Now we must show that it
is the only one. Suppose not. Let b∗ be a second good branch, inducing R∗

of length η + 1 with: b∗ = T ∗“{η}. Since b, b∗ are distinct cofinal branches
in T , there is τ0 < η such that:

(b∖τ0) ∩ (b∗∖τ0) = ∅.

I ′ = (Iη)R
′ has length η̂ and I∗ = (Iη)R

∗ has length η∗. However:

η̃ =
⋃
i<η

si + 1, Ĩ =
⋃
i<η

I|si + 1

remain unchanged. Moreover I = I ′|η̃ = I∗|η̃. Since b̂ is the unique cofinal
well founded branch in Ĩ, we must have:

b̃ = T ′“{η̃} = T ∗“{η̃}.

Now let γ > τi such that:

γ = γ(i) ∈ b̂ = {γ(i) : i ∈ b̃}

Then γ ∈ b∖τ0. Let γ = γ(i) where i ∈ b̃. Then ŝγ ≤ i ≤ sγ .

Let δ be least such that δ ∈ b∗ and δ > γ0. Then δ = ξ + 1 and τ =:
T ∗(ξ + 1) < γ. Then tξ ≤ sτ . But

sτ < ŝγ ≤ i ≤ sγ , where sγ + 1 = ŝγ+1 ≤ ŝξ = sξ + 1.

Hence i ∈ (tξ, sξ]. But then:

i < sξ + 1 = λ̃∗τ ≤ κ̃∗δ = crit(e∗δ)

Hence e∗δ(i) = i ∈ b∗. But i <T ∗ η̃, since i ∈ b̃. Hence, letting e∗δ(η̃∗δ ) = η̃,
we have:

i <T η
∗
δ , where η̃∗δ ≥ ŝ0 = sξ + 1.
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But this is impossible, since (tξ, sξ] is in limbo at δ. Contradiction!

QED(Theorem 3.7.14)

We have shown that, if M is uniquely normally iterable, then it is uniquely
normally iterable in the sense that every normal reiteration of limit length
has exactly one good branch. As we stated at the outset, the result can
be relativized to a regular θ > ω. In this case we restrict ourselves to θ-
reiterations.

Definition 3.7.13. Let θ > ω be regular. A normal reiteration R =
⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩ is called a θ-reiteration iff lh(R) < θ and lh(Ii) < θ
for all i. M is uniquely normally θ-reiterable iff every θ-reiteration of limit
length < θ has one good branch.

We have shown that, if M is uniquely normally θ-iterable, then it is uniquely
normally θ-reiterable. But what if M is, in fact, θ + 1 iterable? Can we
strengthen the the conclusion correspondingly? We define:

Definition 3.7.14. Let θ,R be as above. R is a θ+1-reiteration iff lh(R) ≤ θ
and lh(Ii) < θ for all i. M is uniquelly normally θ + 1 reiterable iff every
θ-reiteration of length ≤ θ has a unique good branch.

Now suppose M be normally θ + 1-iterable. Let R be a θ + 1 reiteration of
length θ. Define Ĩ , b̃, b̂, b exactly as before. Then b is a cofinal branch in T .
(It is also the unique such branch, since if b′ were another such, then b ∩ b′
s club in θ. Hence b = b′). b has at most finitely many drop points, since
otherwise some proper segment of b would have infinitely many drop points.
Suppose that γ ∈ b and b∖γ has no drop points. Then:

⟨⟨Ii : i ∈ b∖γ⟩, ⟨ei,j : i < j ∈ b∖γ⟩⟩

has a unique good limit:
⟨I, ⟨ei : i ∈ b∖γ⟩⟩

by Lemma 3.7.9. Hence b is a good branch. Thus we have:

Lemma 3.7.25. If M is uniquely normally iterable, then it is uniquelly
normally reiterable. Moreover if θ > ω is regular, then:

(a) If M is uniquely normally θ-iterable, then it is uniquely normally θ-
reiterable.

(b) If M is uniquely normally θ + 1-iterable, then it is uniquely normally
θ + 1-reiterable.
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Remark. The assumption thatM is uniquely normally iterable can be weak-
ened somewhat. We define:

Definition 3.7.15. Let S be a normal iteration strategy for M . S is inser-
tion stable iff whenever I is an S-conforming iteration of M and e inserts I
into I, then I is an S-conforming iteration.

Now suppose that M is iterable by an insertion stable strategy S. We can
define the notion of a normal reiteration on ⟨M,S⟩ exactly as before, ex-
cept that we require each of the component normal iterations Ii to be S-
conforming. (We could also call this an S-conforming normal reiteration
on M). All of the assertions we have proven in this subsection go through
for reiterations on ⟨M,S⟩, with nominal changes in formulation and proofs.
For instance, if we alter the definition of good branch mutatis mutandis, our
proofs give:

⟨M,S⟩ is uniquely reiterable in the sense that every reiteration
of limit length has exactly one good branch.

We close this section with two technical lemmas which will be of use later.
Both assume the unique iterability (or θ-iterability) of M .

Lemma 3.7.26. Let I, I ′ be normal iterations of M . There is at most one
pair ⟨R, ξ⟩ such that

R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩,

is a reiteration of M, lh(R) = ξ + 1, I = I0, I ′ = Iξ.

Proof. Assume such R, ξ to exist. Ww show that R, ξ are defined by a
recursion:

R|i+ 1 ∼= F (R|i)

where ξ is least such that F (R|ξ + 1) is undefined. F will be defined solely
by reference to I, I ′. We have:

R|1 = ⟨⟨I⟩,∅, ⟨ id↾ lh(I)⟩,∅⟩.

At limit λ,R ↾ λ + 1 = F (R|λ) is given by the unique good branch in R|λ.
Now let R|i+1 be given. If Ii = I ′, then F (R|i+1) is undefined. If not, let
s = si. Then Ii|s+ 1 = I ′|s+ 1, since νi = νi+1

s = ν ′s. If s+ 1 < lh(Ii), then
νi = ν ′s < νis. Hence Ii|s+ 2 ̸= I ′|s+ 2. We have shown:

s = the maximal s such that s+ 1 ≤ lh(Ii)

and Ii|s+ 1 = I ′|s+ 1.
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But then R|i+ 2 is uniquely defined from R|i+ 1 and νi = ν ′s.

QED(Lemma 3.7.26)

For later reference we state a further lemma about reiterations:

Lemma 3.7.27. Let R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩ be a reiteration of length µ+1.
Let Ii be of length ηi for i ≤ µ. Set:

Aj = ARj =: {i : i <T j and (i, j]T has no drop point in R}

for j ≤ µ. Set:
σi,j = σi,jηi for i ∈ Aj or i = j

. Then:

(a) ei,µ(ηi) = ηµ for i ∈ Aµ.

(b) σi,µ :Mηi −→Σ∗ Mηµ for i ∈ Aµ.

(c) If µ is a limit ordinal, then

Mη =
⋃
i∈Aµ

rng(σi,µ).

Proof. We prove it by induction on µ.

Case 1. µ = 0. Then Aµ = ∅ and there is nothing to prove.

Case 2. µ = j+1 is a successor. If µ is a drop point, then Aµ = ∅ and there
is nothing to prove. Assume that it is not a drop point. Then h = T (µ) is
the maximal element of Aµ. (c) holds vacuously. We now prove (a), (b) for
i = h. By our construction, eh,µ(ηh) = ηh could only fail if µ is a drop point,
so (a) holds. We now prove (b) for i = h. If tj < ηh, then êh,µ = eh,µ and:

σh,µ = σ̂h,µηh = σh,µηh .

Hence (b) holds. Now let tj = ηh. Then ηµ = sj + 1 and:

σh,µηh :Mh
ηh
−→∗

F M
µ
ηµ ,

where F = E
Mj
νj . Hence (b) holds.

Now let i < h. Then i ∈ A
R|h+1
h . This gives us σih = σi,hηi . Then (a)-(c)

holds for R|h+ 1 by the induction hypothesis.

By Lemma 3.7.5 we then easily get:

σh,µσi,h = σi,µ.
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It follows easily that (a), (b) hold at i.

QED(Case 2)

Case 3. µ is a limit ordinal. Then Aµ = [i0, µ)T for a i0 <T µ. We know
that:

ηµ, ⟨ei,µ : i ∈ Aµ⟩

is the transitivized direct limit of:

⟨νi : i ∈ Aµ⟩, ⟨ei,j : i ≤ j in Aµ⟩

Hence (a) holds at µ. But:

Iµ, ⟨ei,µ : i ∈ Aµ⟩

is the good limit of:

⟨Ii : i ∈ Aµ⟩, ⟨ei,j : i ≤ j in Aµ⟩

(where ejµeij = ei,µ). But then (c) holds by Lemma 3.7.7. Hence (b) holds,
since (b) holds for R|i+ 1 whenever i ∈ Aµ (hence Ai = Aµ ∩ i).

QED(Lemma 3.7.27)

3.7.3 A first conclusion

In this section we prove:

Theorem 3.7.28. Let M ′ be a normal iterate of M . Then M ′ is normally
iterable.

We prove it in the slightly stronger form:

Lemma 3.7.29. Let Ĩ = ⟨⟨M̃i⟩, ⟨ν̃i⟩, ⟨π̃i,j⟩, T̃ ⟩ be a normal iteration of M of
length η̃ + 1. Let σ̃ : N −→Σ∗ M̃η̃min ρ̃. Then N is normally iterable.

First, however, we prove a technical lemma. Recalling the Definition 3.7.6
of the function W (I, I ′, ν), we prove:

Lemma 3.7.30. Let W (I, I ′, ν) = ⟨I∗, I ′′, e⟩, where F, ν, κ, τ, λ, s, t are as
in 3.7.6. Let I, I∗, I ′, I ′′ be of length η + 1, η∗ + 1, η′ + 1, η′′ + 1 respectively.
Let σ = σ̃η∗ be induced by e. Set:

M∗ =Mη||µ whose µ is maximal such that τ is a cardinal Mη||µ.

(Hence P(κ) ∩M∗ = P(κ) ∩ JE
M′

η′

ν′ ). Then:
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(a) σ :M∗ −→Σ∗ M ′′
η′′

(b) σ(X) = F (X) for X ∈ P(κ) ∩M∗ (hence κ = crit(σ)).

Proof. Case 1. t = η and τ is a cardinal in Mη.

Then η∗ = η,M∗ =M,η′′ = η + 1 and:

ση = πη = π′′η,η+1 :Mη −→∗
F M

′′
η+1

QED(Case 1)

Case 2. t < η and τ is a cardinal in Mη. Then η∗ = η,M∗ =Mη. Moreover,
σ̂η = ση; hence (a) holds. Set:

M ′′
∗ =Mt||µ where µ is maximal such that τ is a cardinal in Mt||µ.

Then M ′′
∗ =M ′′∗

s and:

σt = πt = π′′t,s+1 :M
′′
∗ −→∗

F M
′′
η+1.

Note that µ ≥ λt, since λt in inaccessible in Mη and τ < λt is a cardinal in
Mη. Then ση ↾λt = σt ↾λt and JEMt

λt
= JE

Mη

λt
. Hence ση ↾JE

Mη

λt
= σt ↾JE

Mt

λt
.

Hence:
ση(X) = σt(X) = F (X) for X ∈ P(κ) ∩M.

QED(Case 2)

Case 3. τ is not a cardinal in Mη. Then η∗ = t, η′′ = s+ 1, and:

σt = πt :M∗ −→∗
F M

′′
s+1

QED(Lemma 3.7.30)

Corollary 3.7.31. Let:

R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩,

be a reiteration where:

Ii = ⟨⟨M i
k⟩, ⟨νik⟩, ⟨πik,l⟩, T i⟩ is of length ηi + 1.

Let ξ = T (i + 1). Let Ii∗ have length η∗ + 1. Set: M i
∗ = M ξ

η∗ ||µ, where µ is
maximal such that τi is a cardinal in M ξ

η∗ . Then:

σξ,i+1
η∗ :M i

∗ −→Σ∗ M i+1
ηi+1

and:

σξ,i+1
η∗ (X) = Eiνi(X) for X ∈ P(κi) ∩M i

∗.
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Note. P(κi) ∩M i
∗ = P(κi) ∩ J

EMi
ηi

νi .

Note. This does not say that M i+1
ηi+1

is a ∗-ultrapower of M i
∗ by E

M ′
ηi

νi .

We now make use of the notion of mirror defined in §3.6.

This suggests the following definition:

Definition 3.7.16. Let I∗ = ⟨⟨Ni⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ be a normal iteration of
length η.

By a reiteration mirror (RM) of I∗ we mean a pair ⟨R, I ′⟩ such that

(a) R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T ⟩ is a reiteration of M of length η, where

Ii = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πihj⟩, T i⟩ is of length ηi.

(b) I ′ = ⟨⟨M ′
i⟩, ⟨π′ih⟩, ⟨σi⟩, ⟨ρi⟩⟩ is a mirror of I∗. (Hence σi(ν∗i ) = νi).

(c) M ′
i =M i

ηi .

(d) If h = T (i+ 1), then

M ′∗
i =Mh

ηh
||µ, where µ is maximal such that τi is a cardinal

in Mh
ηh

and π′h,i+1 = σh,i+1
η∗h

, where η∗h + 1 = lh(Ii∗).

Definition 3.7.17. ⟨I∗, R, I ′⟩ is called an RM-triple if ⟨R, I ′⟩ is an RM of
I∗.

We obviously have:

Lemma 3.7.32. i+ 1 is a drop point in I∗ iff it is a drop point in R.

Moreover:

Lemma 3.7.33. If (i, j]T has no drop point, then π′ij = σijηi .

Proof. By induction on j, using Lemma 3.7.27. We leave this to the reader.

Lemma 3.7.34. Let ⟨I,R, I ′⟩ be an RM-triple of length η+1. Let ENη
ν ̸= ∅,

where ν > νi for i < η. Then ⟨I,R, I ′⟩ extends to a triple of length η + 2,
with ν = νη (hence ν ′η = ση(ν)).
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Proof. By Lemma 3.7.25, R is uniquely reiterable. Hence R extends to Ṙ
of length η + 2 with ν̇η = ση(ν). Set: M ′

η+1 =: the final model of İξ+1, ξ =:

Ṫ (η + 1), π′ =: σξ,η+1
η∗ , where η∗ = ln(Iη∗ ). The choice of νη determines

Ṁ∗
η =M ξ

η ||µ. Then:

π−1 : Ṁ∗
η −→Σ∗ Mη+1, π(X) = E

M ′
η

ν (X) for X ∈ P(κ) ∩ Ṁ∗
η .

The conclusion then follows by Lemma 3.6.38.

QED(Lemma 3.7.34)

By Lemma 3.7.25 and Lemma 3.6.37 we then have:

Lemma 3.7.35. Let ⟨I,R, I ′⟩ be an RM-triple of limit length η. Let b be the
unique good branch in R. Then there is a unique extension to an RM-triple
of length η + 1. Moreover, b = T“{η} in the extension.

Proof. R extends uniquely to Ṙ of length η+1. We now extend I ′ to İ ′ by
taking Ṁ ′ as the final model of İ ′η. Pick i < η such that b∖i has no drop
point in R. For j ∈ b∖i set:

π̇′j,η = σ̇i,ηηj (where ηj + 1 = lh(Ij) in R).

By Lemma 3.7.33, we know:

π̇′j,ηπ
′
h,j = π̇′h,η for h ≤ j in b∖i.

By Lemma 3.7.27 it follows that:

Ṁ, ⟨π̇′j,η : j ∈ b∖i⟩

is the direct limit of:

⟨M ′
h : h ∈ b∖i⟩, ⟨π′h,j : h ≤ j in b∖i⟩.

(For h ∈ b ∩ i, we then set: π̇′h,η = π′i,ηπ
′
h,i.)

The conclusion is immediate by Lemma 3.6.37.

(Lemma 3.7.35)

Now let N, Ĩ be as in the premise of Lemma 3.7.2. In particular, Ĩ is a
normal iteration of M of length η̃ + 1 and:

σ̃ : N −→Σ∗ M̃η̃min ρ̃.
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Using the last two lemmas, we define a successful strategy for N . We first
fix a function G such that whenever Γ = ⟨I,R, I ′⟩ is an RM triple of length
µ + 1 and E

Mµ
ν ̸= ∅ with µ > νj for j < µ, then G(Γ, ν) is an extension of

Γ to an RM triple of length µ+ 1 with νµ = ν. In all other cases G(Γ, ν) is
undefined. Now let I be any normal iteration of N . There can obviously be
only one RM triple Γ = ⟨I, T, I ′⟩ with the properties:

(a) I0 = Ĩ , σ0 = σ̃, ρ0 = ρ̃.

(b) If i+ 1 < lh(I), then:

Γ|i+ 2 = G(Γ|i+ 1, νi),

since Γ|λ+1 is uniquely determined at limit stages λ by Lemma 3.7.35.

Denote this Γ by Γ(I) if it exists. We define the strategy S as follows:

Let I of limit length. If Γ(I) is undefined, then so is S(I). Now let Γ(I) =
⟨I,R, I ′⟩ be defined. Set:

S(I) = the unique cofinal, well founded branch in R.

(This exists by Lemma 3.7.35). We then get:

Lemma 3.7.36. Let I be a normal iteration of N . If I is S-conforming,
then Γ(I) is defined.

Proof. By induction on lh(I), using Lemma 3.7.34 and Lemma 3.7.35.

QED(Lemma 3.7.36)

In particular, if I is of limit length, it follows by Lemma 3.7.35 that S(I)
is defined and is a cofinal, well founded branch in I. This proves Theorem
3.7.28.

Theorem 3.7.28 is stated under the assumption that M is uniquely normally
iterable in V . As usual, we can relativize this to a regular cardinal θ > ω.
We call M ′ a θ-iterate of M is it is obtained by a normal iteration of length
< θ. Modifying our proof slightly we get:

Lemma 3.7.37. Let θ > ω be regular.

(a) If M is uniquely normally θ-iterable and M ′ is a θ-iterate of M then
M ′ is normally θ-iterable.
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(b) If M is uniquely normally θ + 1-iterable and M ′ is a θ-iterate of M ,
then M ′ is normally θ + 1-iterable.

Note. In proving (b) we must restate Lemma 3.7.29 as:

Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ be a normal iteration of length η + 1 < θ. Let
σ : N −→Σ∗ Mηmin ρ. Then M is normally θ + 1-iterable.

Note. In proving Lemma 3.7.37, we restrict ourselves to θ-reiterations R =
⟨⟨Ii⟩, . . . ⟩ meaning that lh(Ii) < θ for i < θ. Thus we restrict to θ-reiteration
mirror ⟨R, I ′⟩, meaning that R is a θ-reiteration. Lemma 3.7.34 is then
stated for RM-triples of length η + 1 < θ. Lemma 3.7.35 is stated for RM-
triples of length η ≤ θ. All steps fo through as before.

Note. An easy modification of the proof shows that, if M is normally
iterable by a insertion stable strategy, then every S-conforming iterate of M
is normally iterable.

This is a relatively weak result, and could, in fact, have been obtained with-
out use of the pseudo projecta. (However, we would not know how to do it
without the use of reiteration). What we really want to prove is that M is
smoothly iterable. The above proof indicates a possible strategy for doing
so, however: If M is “smoothly reiterable”, and:

σ : N −→Σ∗ M min ρ

we could use the same procedure to define a successful smooth iteration
strategy for N . In §3.7.4 we shall define “smooth reiterability” and show
that if holds for M .

3.7.4 Reiteration and Inflation

By a smooth reiteration of M we mean the result of doing (finitely or in-
finitely many) successive normal reiterations. We define:

Definition 3.7.18. A smooth reiteration of M is a sequence S = ⟨⟨Ii : i <
µ⟩, ⟨ei,j : i ≤ j < µ⟩⟩ such that µ ≥ 1 and the following hold:

(a) Ii is a normal iteration of M of successor length ηi + 1.

(b) ei,j inserts an Ii|α into Ij , where α ≤ ηi + 1.

(c) eh,j = ei,j ◦ eh,i.
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(d) If i+ 1 < µ, there is a normal reiteration:

Ri = ⟨⟨I li⟩, ⟨νli⟩, ⟨e
k,l
i ⟩, Ti⟩

of length ηi + 1 such that Ii = I0i , Ii+1 = Iηii and ei,i+1 = e0,ηii .

Note. Ri is unique by Lemma 3.7.21. Hence so is ⟨ei,j : i ≤ j < µ⟩,
which we call the induced sequence.

Call i a drop point in S iff Ri has a truncation on the main branch.

(e) If λ < µ is a limit ordinal, then there are at most finitely many drop
points i < λ. Moreover, if h < λ and (h, λ) is free of drop points, then:

Iλ, ⟨ei,λ : h ≤ i < λ⟩

is the good limit of:

⟨Ii : h ≤ i < λ⟩, ⟨ei,j : h ≤ i ≤ j < λ⟩

This completes the definition. We call µ the length of S.

Note. Since el,λ = eh,λel,h for l < h < λ, we follow our usual convention,
calling:

Iλ, ⟨ei,λ : i < λ⟩

the good limit of:
⟨Ii : i < λ⟩, ⟨ei,j : i ≤ j < λ⟩

We call M smoothly reiterable if every smooth reiteration of M can be prop-
erly extended in any legitimate way. We note:

Fact 1. If I is a normal iteration of M , then ⟨⟨I⟩,∅, ⟨ id↾I⟩,∅⟩ is a smooth
reiteration of M of length 1.

Fact 2. If S = ⟨⟨Ii⟩, ⟨ei,j⟩⟩ is a smooth reiteration of M of length i + 1,
and R = ⟨Ii⟩, ⟨νi⟩⟩ is a normal reiteration of length η + 1 with I0 = Ii,
then S extends to S′ of length i+ 2 with I ′i+1 = Iη and e′i,i+1 = e0,η (hence
R = RS

′
i ).

Fact 3. Let S = ⟨⟨Ii⟩, ⟨ei,j⟩⟩ be a smooth reiteration of M of limit length
λ. Assume:

(a) S has finitely many drop points.

(b) S has a good limit: I, ⟨ei : i < λ⟩.
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Then S extends uniquely to S′ of length λ+ 1 with I ′λ = I, e′i,λ = ei.

Clearly, then, saying thatM is smoothly reiterable is the same as saying that,
whenever S is as in Fact 3, then (a), (b) are true. In the next subsection
(§3.7.5) we shall prove the smooth iterability of M . The proof is, in all
essentials, due to Farmer Schlutzenberg, and is based on his remarkable
theory of inflations. This subsection is devoted an exposition of that theory.

Before proceeding to the precise definition of inflation, however, we give an
introduction to Schlutzenberg’s methods. Let R = ⟨⟨Ii⟩, ⟨νi⟩, ⟨ei,j⟩, T̃ ⟩ be
a reiteration of M . Schultzenberg calls I ′ an “inflation" of I0, since it was
obtained by introducing new extenders into the original sequence. He makes
the key observation that the pair ⟨I0, Ii⟩ determines a unique record of the
changes made in passing from I0 to Ii. We shall call that record the history
of Ii and denote it by hist(I0, Ii).

Definition 3.7.19. Let ηi + 1 = lh(Ii) for i < lh(R). For α ≤ ηi, set:

l(α) = li(α) =: the least i such that Ii|α+ 1 = I l|α+ 1.

Let si, ti, ŝi = lubh<i sh be defined as in §3.7.2. Then:

Lemma 3.7.38. (a) l(α) = that l ≤ i such that ŝl ≤ α and either l = i or
l < i and α ≤ sl.

(b) Ij |α+ 1 = I l|α+ 1 for l ≤ j ≤ i.

Proof.

(a) ŝl ≤ α, since otherwise sj+1 > α for a j < l. Hence Ij |sj+1 = Ii|sj+1
where α+ 1 ≤ sj + 1. Hence j ≥ l. Contradiction!

Suppose l ̸= i. Then α ≤ sl, since otherwise sl +1 ≤ α and Ii|α+1 ̸=
I l|α+ 1, since νisl < νlsl .

QED(a)

(b) Suppose not. Then i ̸= l, α ≤ sl and I l|sl + 1 = Ij |sl + 1 for l ≤ j <
lh(R). Contradiction! QED(Lemma 3.7.38)

Hence ŝi ≤ α −→ li(α) = i.

Lemma 3.7.39. If h ≤ i and Ih|α+ 1 = Ii|α+ 1 then νiα ≤ νhα if α < ηh.

Proof. By induction on i.
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Case 1. i = 0 (trivial).

Case 2. i = h+ 1.

Then Ii|sh + 1 = Ih|sh + 1 and νish ≤ νhsh . Thus it holds for α ≤ sh by the
induction hypotheses. But l(α) = i for α > sh.

Case 3. i is a limit.

Then Ii|sj + 1 = Ij |sj + 1 for j < i. Hence it holds for α < ŝi = lubj<i sj
by the induction hypothesis. But l(α) = i for α ≥ ŝi.

QED(Lemma 3.7.39)

The next lemma is crucial to developing the theory of inflations:

Lemma 3.7.40. Let α ≤ ηi, l = l(α). Set:

a = {γ ≤ η0 : e0,l(γ) < α}.

There is a unique e inserting I0|a + 1 into Ii|α + 1 such that e ↾ a = e0l ↾ a
and e(a) = α.

Proof. By induction on i.

Case 1. i = 0. Set a = α, e = id↾α+ 1.

Case 2. i = h+ 1.

If α ≤ sh, then Ii|α+1 = Ih|α+1. Hence l = lh(α) and the result holds by
the induction hypothesis.

If α > sh, then l(α) = i, since Ii|sh + 1 ̸= Ih|sh + 1. Then α = sh + 1 + j.
Let µ = T̃ (h+1). Then eµ,i(α) = α, where α = th+ j. But ŝµ ≤ th ≤ sµ by
Lemma 3.7.17. Hence lµ(th) = lµ(α) = µ. Clearly:

a = {γ ≤ η0 : e0,µ(γ) < α}

Since µ ≤ h, the induction hypothesis gives a unique f inserting I0|a + 1
into Iµ|α+ 1 such that f ↾a = e0,µ ↾a and f(a) = α. Thus e = eµ,lf has the
desired properties.

QED(Case 2)

Case 3. i is a limit ordinal.

Then Ii|sj + 1 = Ij |sj + 1 for j < i. Hence the assertion holds for α <
ŝi = lubj<i sj by the induction hypothesis. But l(α) = i for ŝi ≤ α. Then
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there is j <T i such that α = ej,i(α). Let j = T (ξ + 1) where ξ + 1 <T i.
Then α ≥ crit(ej,i) = tξ. But ŝj ≤ tξ ≤ sj . Hence lj(α) = lj(tξ) = j. Since
e0,i = ej,i ◦ e0,j , we conclude as in Case 2 that:

a = {γ < η : e0,j(γ) < α}

By the induction hypothesis there is f inserting I0|a+ 1 into Ij |α+ 1 such
that f̂ ↾ a = e0,j ↾ a and f(a) = α. Hence e = ef,i ◦ f has the desired
properties.

QED(Lemma 3.7.40)

Definition 3.7.20. For i < lh(R), α ≤ η0 set:

aiα =: lub{ξ < η0 : e
0l(ξ) < α} where l = li(α)

eiα =: the unique e inserting I0|ajα + 1 into Ii|α+ 1 such

that e↾aij = e0,l ↾aij and e(aiα) = α

It follows easily that:

Lemma 3.7.41. (a) If l = li(α), then α ≤ ηl and l = ll(α), aiα = alα and
eiα = ejα.

(Hence eiα = ehα and aiα = ahα whenever Ii|α+ 1 = Ih|α+ 1).

(b) If eµ,i(α) = α, ŝµ ≤ α, ŝi ≤ α, then:

lµ(α) = µ, li(α) = i, aµα = aiα, and eµ,ieµα = eiα.

(c) eiηi ↾a
i
ηi = ei,ηi ↾aiηi ; e

i
ηi(a

i
ηi) = ηi (lηi = ηi, since ηi ≥ ŝi).

(d) If there is no truncation on the main branch of R|i+1, then e0,i = eiηi
and aηi = η0 (since e0,i(η0) = ηi).

The proof is left to the reader.

We now fix an i < lh(R) and set:

I = ⟨⟨Mα⟩, ⟨να⟩, ⟨πα,β⟩, T ⟩ =: I0

I ′ = ⟨⟨M ′
α⟩, ⟨ν ′α⟩, ⟨π′α,β⟩, T ′⟩ =: Ii

a = ⟨aiα : α ≤ ηi⟩, eα = eiα for α ≤ ηi.

⟨a, ⟨eα : α ≤ η′⟩⟩ is then called the history of I ′ from I. We shall show that
it is completely determined by the pair ⟨I, I ′⟩. aα is called the ancestor of
α in this history.

We prove:
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Theorem 3.7.42. Let I, I ′, a, ⟨eα : α ≤ ηi⟩ be as above. Then:

(1) a : lh(I ′) −→ lh(I) and eα inserts I|aα+1 into I ′|α+1 for α < lh(I ′).
Moreover, eα(aα) = α.

(2) Let aα < η. If ν̃α = σeαaα(νaα) exists and α+ 1 < lh(I ′), then ν ′α ≤ ν̃α.

(3) Let aα < η, α+ 1 < lh(I ′), ν ′α = ν̃α. Then:

aα+1 = aα + 1, eα+1 ↾aα + 1 = eα.

For α+ 1 < lh(Ii), define the index of α (in(α) = ini(α)) as:

in(α) =

{
0 if α is as in (3)

1 if not

(4) If in(α) = 1, γ = T ′(α+ 1), then aα+1 = aγ.

(5) If β ≤T ′ α, then e−1
α ↾β = e−1

β ↾β.

Note. Ignoring our formal definition of ⟨a, e⟩ and using only (1), (5),
we get:

• eα ↾aβ = eβ ↾aβ.

• aβ ≤T aα since:

êα(aβ) = êβ(aβ) ≤T ′ eβ(β) = β ≤T ′ α = eα(aα).

• If α is a limit ordinal, then:

aα =
⋃

β<T ′α

aβ and eα ↾aα =
⋃

β<T ′α

eβ ↾aβ,

since e−1
α ↾α =

⋃
β<T ′α e

−1
β ↾β.

Note. By (1), (4) and (5) we get:

• If in(α) = 1, γ = T ′(α+ 1), then eα+1 ↾aα+1 = eγ ↾aγ.

Note. Since eα, eβ are monotone and abe = e−1
β “β, the statement:

e−1
α ↾β = e−1

β ↾β

is equivalent to:

eβ ↾aβ = eα ↾aβ and eα(aβ) ≥ β.
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(6) If R|i + 1 has a truncation on the main branch, then there is α ∈
(êηi(aηi), ηi]T ′ which is a drop point in I ′.

Note. By Lemma 3.7.41 (a) we have:

êηi(aηi) = lub eηi“aηi = lub e0,i0aη0 = ê0,i(aηi).

We prove Theorem 3.7.42 by induction on i:

Case 1. i = 0.

Trivial, since aα = α, eα = id↾α+ 1.

Case 2. i = h+ 1.

(1) is given.

(2) If α ≤ sh, then Ii|α+1 = Ih|α+1, hence li(α) = lh(α), eiα = ehα, ν̃
i
α =

ν̃hα. By the induction hypothesis νhα = ν̃hα. But νiα < νhα. Now let
α > sh. Then l(α) = i and α = sh+1+j for some j. Let µ = T̃ (h+1).
Then eµ,i(α) = α where α = th + 1. Just as in the proof of Lemma
3.7.40 (Case 2), we have: µ = lµ(th) = lµ(α) and eµ,i ◦eµα = eα. Hence:

ν̃iα = σe
i
α
a (ν0a) = σµ,αα σe

µ
α(ν0a) = σµ,αα (ν̃µα)

(Since if e = e1◦e0, then σeβ = ee1e0(β)◦e
e0
β ). By the induction hypothesis:

νµα ≤ ν̃
µ
α. Hence:

νiα = σµ,αα (νµα) ≤ σ
µ,α
α (ν̃µα) = ν̃ ′α.

QED(2)

(3) If α < sh, then νiα = νhα, ν̃
h
α = ν̃iα, since Ii|sh + 1 = Ih|sh + 1. Hence

νhα = ν̃hα.

Hence ahα+1 = ahα + 1, ehα+1 ↾ a
h
α+1 = ehα by the induction hypothesis.

But li(α + 1) = lh(α + 1). Hence: anα+1 = aiα+1, a
h
α = aiα, e

h
α+1 =

eiα+1, e
h
α = eiα. The conclusion is immediate. Now let α = sh. We

still have ehα = eiα; hence ν̃hα = ν̃iα. But νiα < νhα ≤ ν̃hα. Contradiction!
Now let α > sh. We again have: α = sh + 1 + j, α = eµ,i(α), where
µ = T (h+ 1) and α = th + j. As before, we have li(α) = i, lµ(α) = µ.
Moreover ν̃iα = σµ,iα (ν̃µα) and νiα = σµ,iα (νµα). Hence νµα = ν̃µα. Hence:

aµα+1 = aµα + 1, eµα+1 ↾α+ 1 = eµα.

But i = l′(α) = li(α+1), µ = lµ(α) = lµ(α+1), and eµ,i(α+ 1) = α+1.
Hence:

a = aiα = aµα and aα+1 = aiα+1 = aµα+1 = a+ 1.
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Moreover, we have:

eiα+1 ↾a+ 1 = eµ,ieµα+1 ↾a+ 1 = eµ,ieµα = eα.

QED(3)

(4) If α < sn the result follows by the induction hypothesis, since Ii|α+2 =
Ih|h + 2. Now let α = sh. Then in(α) = 1 as shown above. Let
µ = T̃ (h + 1), γ = th. Then eµ,i(γ) = α + 1. Hence aµγ = aiα+1. But
Ii|γ + 1 = Iµ|γ + 1. Hence lµ(γ) = li(γ) and aiγ = aµγ = aiα+1. Now
let α > sh. Then i = h + 1 is not a drop point in R, since otherwise
ηi = sh + 1 = α. Hence α+ 1 ̸< lh(Ii) = ηi + 1. Contradiction! Then
α = sh+1+j and α = eµ,i(α) where α = th+j and µ = T̃ (h+1). Note
that eµ,i(ξ) = êµ,i(ξ) = lub eµ,i“ξ for ξ > th. Clearly α+1 = eµ,i(α+1).
As in the foregoing proofs we have:

σµ,i(νµα) = νiα; σ
µ,i(ν̃µα) = ν̃iα.

Hence νµα < ν̃µα and in(α) = 1. By the induction hypothesis we con-
clude: aµγ+1 = aµγ , where γ = Tµ(α+ 1). But, as before, aµα+1 = aiα+1,
since eµ,i(α+ 1) = α+ 1, lµ(α+ 1) = µ, li(α+ 1) = i. Thus it suffices
to show:

Claim. aµγ = aiγ , where γ = T i(α+ 1).

We consider two cases:

Case A. κµα > κi. Then eµ,i(γ) = γ by Lemma 3.7.10 (1). As before
lµ(γ) = µ, li(γ) = i and aµγ = aiγ .

Case B. κµα < κi. Then γ = γ by Lemma 3.7.10(1). Then γ ≤ th,
where Ii|th + 1 = Iµ|th + 1. Hence aiγ = aµγ .

QED (4)

(5) If α ≤ sh, then Ih|α + 1 = Ii|α + 1 and ahγ = aiγ , e
h
γ = eiγ for γ ≤ α.

Hence the conclusion follows by the induction hypothesis. Now let
α > sh. Then α = sh + 1 + j for some j. Let µ = T̃ (h + 1). Then
eµ,i(α) = α where α = th + 1. But α ≥ crit(eµ,i) = th ≥ ŝµ. Hence:

lµ(α) = µ, aµα = aiα, e
i
α = eµ,i · eα.

Let β <T i α. We consider two cases:

Case A. β > sh.

Then β = sh + 1 + r for an r < j. Hence, letting β = th + r, we have
eµ,i(β) = β and:

lµ(β) = µ, aµ
β
= aiβ, e

i
β = eµ,i · eβ.



3.7. SMOOTH ITERABILITY 345

It follows easily that β <Tµ α. Hence by the induction hypothesis:

(eµ
β
)−1 ↾β = (eµα)

−1 ↾α.

Hence:

(eiβ)
−1 ↾β = (eµ

β
)−1 · (eµ,i)−1 ↾β

= (eµα)
−1 · (eµ,i)−1 ↾β

= (eiα)
−1 ↾β.

QED(Case A)

Case B. β ≤ sh.
Then β ≤ th, since (th, sh] is in limbo at ŝi = sh+1. Hence eµ,i ↾β = id,
since th = crit(eµ,i). But then:

β = êµ,i(β) ≤Tµ α = eµ,i(α).

Hence β ≤Tµ α. Moreover Ii|β + 1 = Iµ|β + 1, since êµ,i ↾β + 1 = id.
Hence aµβ = aiβ and eµβ = eiβ . But:

(eµα)
−1 ↾β = (eµβ)

−1 ↾β

since β ≤Tµ α. Hence:

(eiα)
−1 ↾β = (eµα)

−1(eµi)−1 ↾β = (eµβ)
−1(eµi)−1 ↾β = (eiβ)

−1 ↾β

QED(Case B)

This proves (5).

(6) If i = h + 1 is a drop point on R|i + 1, then M
′∗
sh
̸= Mti , where

ηi = sh + 1, ti = T i(sh + 1). Hence ηi is a drop point in Ii. Now
suppose that h+ 1 does not drop in R|i+ 1. Let µ = T̃ (h+ 1). Then
there must be a drop point on the main branch of R|µ+ 1. Hence Iµ

has a drop point in (ε, ηµ]Tµ where ε = êµηµ(a
µ
ηµ). Since eµ,i(ηµ) = ηi,

it follows easily from Lemma 3.7.10(7) that there is a drop point on Ii

in (êµ,i(ε), ti]T i . Since ŝµ ≤ ηµ, ŝi ≤ ηi, we have:

µ = lµ =: lµ(ηµ), i = li = li(ηi).

Hence aµηµ = aiηi . Clearly:

êµ,i(ε) = lub eµ,i“ε.

Since eµηµ ↾a
µ
ηµ = e0,µ ↾aµηµ , we have: ε = lub e0,µ“aµηµ . Hence:

êµ,i(ε) = lub e0,i“aiηi = êiηi(a
i
ηi).

Hence Ii has a drop in (êiηi(a
i
ηi), ηi]T i .

QED(6)

This completes Case 2.
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Case 3. i = λ is a limit ordinal.

(1) is given.

(2) Set ŝ = ŝλ = lubi<λ si. Then Iλ|si + 1 = Ii|si + 1 for i < λ. Thus
(2) holds by the induction hypothesis for α < ŝ. Now let α ≥ ŝ then
lλ(α) = λ. Pick µ < λ such that α ∈ rng(eµ,λ) and there is no drop in
(µ, λ)Tλ . Let i = h+1, where µ = T (h+1), h+1 <Tλ λ. If eµ,λ(α̂) = α,
then α̂ ≥ th, since eµ,λ ↾ th = id. Hence α ≥ sh + 1 = ŝi, where
ei,λ(α) = α. Hence li =: li(α) = i. Hence aiα = aλα and eλα = ei,λeiα.
We are assuming that:

ν̃λα = σ
eλα
aλα
(ν0aλα

) exists.

But then:
ν̃iα = σ

eiα
aiα
(ν0aiα

) exists and σi,λα (ν̃iα) = ν̃λα.

Clearly: νλα = σi,λα (νiα). But νiα ≤ ν̃iα by the induction hypothesis.
Hence νλα ≤ ν̃λα.

QED(2)

(3) For α < ŝλ it holds by the induction hypothesis, so let α ≥ ŝλ. Let
µ, h, i, α be as in (2). Then lλ(α) = λ, li(α) = i. We assume inλ(α) = 0,
i.e.:

α < ηλ and νλα = ν̃λα.

But then:
α < ηi and νiα = ν̃iα hence ini(α) = 0

Hence aiα+1 = aiα + 1 and eiα+1 ↾ aiα + 1 = eiα. But li(α + 1) =
i, lλ(α+ 1) = λ. Hence

aλα+1 = aiα+1 = aiα + 1

and

eλα+1 ↾a
λ
α+1 = eiλeiα+1 ↾a

i
α + 1

= eiλeiα = eλα

QED(3)

(4) For α < ŝλ it holds by the induction hypothesis, so let α ≥ ŝλ. Let
µ, h, i, α be as in (2) with the additional stipulation that γ ∈ rng(eµ,λ)
where γ = T λ(α + 1). Let ei,λ(γ) = γ. Then either γ ≥ ŝλ and
γ ≥ ŝi = sh + 1, or γ < ŝλ and γ̄ = γ. It follows easily that γ =
T i(α + 1). Moreover ini(α) = 1, since inλ(α) = 1. But then aiα = aiγ .
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But aiα = aλα. Moreover aiγ = aλγ . (If γ ≥ ŝλ, this is because li(γ) = i.
If γ < ŝλ, it is because Ii|γ + 1 = Ii|γ + 1).

QED(4)

(5) If α < ŝ, it follows by the induction hypothesis, since Iλ|α+1 = Ii|α+1
for ß < λ,α ≤ si. Now let α ≥ ŝ. Fix β <Tλ α. Let µ, i, h, α be as
before with µ chosen big enough that β ∈ rng(eµ,λ) and β < th =
crit(eµ,λ) if β < ŝ. Let α = ei,λ(α), β = ei,λ(β). Since:

ei,λ(β) = β <Tλ α = eiλ(α),

we conclude: β <T i α. Hence:

(eiα)
−1 ↾β = (ei

β
)−1β

by the induction hypothesis. Since ŝi ≤ α, we again have:

aiα = aλα, e
λ
α = ei,λeiα.

If β ≥ ŝ, then ŝi ≤ β and we have :

ai
β
= aλβ, e

λ
β = ei,λei

β
.

Hence:

(eλα)
−1 ↾β = (eiα)

−1(eiλ)−1 ↾β

= (ei
β
)−1(eiλ)−1 ↾β

= (eβ)
−1 ↾β.

Now suppose that β < i. Then β = β < crit(eiλ). Hence Ii|β + 1 =
Iλ|β + 1 and:

aiβ = aλβ, e
i
β = eλβ where eiλ ↾β + 1 = id .

Hence we again have:

ai
β
= aλβ, e

λ
β = eiλei

β
,

and we argue exactly as before.

QED(5)

(6) Suppose R|λ + 1 has a truncation on the main branch. Clearly ηλ ≥
ŝλ, so lλ(ηλ) = λ. Let µ, i, h, α be as in (2) with α = ηλ. Then
[i, λ]Tλ is free of drops. Hence ei,λ(ηi) = ηλ. But R|i + 1 then has a
drop on the main branch. Hence there is a drop in (êiηi(a

i
ηi), ηi]T i+1 .

By Lemma 3.7.1 (7) it follows that there is a drop in (êi,λ(ε), ηλ]Tλ ,
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where ε = eη0(a
i
η0). But li(ηi) = i, since ηi ≥ ŝi. Hence aiηi = aληλ

and ε = êηi(a
i
ηi) = lub e0,i“aiηi . Moreover ei,λ(ε) = lub ei,λ“ε. Hence

êi,λ(ε) = lub eo,λ“aληλ = êληλ(a
λ
ηλ
).

QED(6)

This completes the proof of Lemma 3.7.42.

Inflations

Following Farmer Schlutzenberg we now define:

Definition 3.7.21. Let I be a normal iteration of M of successor length
η+1. Let I ′ be a normal iteration of M . I ′ is an inflation of I iff there exist
a pair ⟨a, e⟩ satisfying (1)-(5) in Theorem 3.7.42 (with e = ⟨eα : α < lh(I ′)⟩).
We call any such pair a history of I ′ from I.

By the remark accompanying the statement of Theorem 3.7.42 we have:

Lemma 3.7.43. Let I ′ be an inflation of I with history ⟨a, e⟩. Then:

(a) If β ≤T ′ α, then aβ ≤T aα and eα ↾aβ = eβ ↾aβ.

(b) If α ≤ lh(I ′) is a limit ordinal, then:

aα =
⋃

β<T ′α

aβ and eα ↾aα =
⋃
βT ′α

eβ ↾aβ.

(c) If α+ 1 < lh(I ′), in(α) = 1, γ = T ′(α+ 1), then:

aα+1 = aγ and eα+1 ↾aα+1 = eγ ↾aga.

Lemma 3.7.44. Let I, I ′ be as above. Then there is at most one history of
I ′ from I.

Proof. Let ⟨a, e⟩ be a history. By the conditions (1)-(5), this history satisfies
a recursion of the form:

⟨aα, eα⟩ = F (⟨⟨a, e⟩ : ξ < α⟩),

where F is defined by reference to the pair ⟨I, I ′⟩ alone. To see this we note:

(a) a0 = ∅, e0(∅) = ∅ by (1).
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(b) Let aα, eα be given. Then:

• aα+1 =

{
aα + 1 if in(α) = 0

aβ where β = T ′(α+ 1) if in(α) = 1

• eα+1(aα + 1) = α+ 1

• eα+1 ↾aα+1 =

{
eα if in(α) = 0

eβ ↾aα+1 if β = T ′(α+ 1) and in(α) = 1

In order to determine in(α), however, we need only to know aα, eα, I, I
′.

(c) If λ is a limit ordinal, then:

aλ =
⋃

α<
T
′λ

aα; eλ ↾aλ =
⋃

α<
T
′λ

eα ↾aα; eλ(aλ) = λ.

QED(Lemma 3.7.44)

Definition 3.7.22. Let I ′ be an inflation of I. We denote the unique history
of I ′ from I by: hist(I, I ′).

Note. Schlutzenberg’s original definition replaced (5) in Definition 3.7.21
by the following statement, which we now prove as a lemma:

Lemma 3.7.45. Let µ ≤ aα such that êα(µ) ≤T ′ β ≤T ′ eα(µ). Then aβ = µ.
Moreover eβ ↾µ = eα ↾µ. (Hence eµ(µ) = β, êβ(µ) = êα(µ) = sup eα“µ).

Proof. Suppose not. Let α be the least counterexample. Let µ ≤ aα, êα(µ) ≤T ′

β ≤T ′ eα(µ). We derive a contradiction by showing:

aβ = µ, eβ ↾aβ = eα ↾aβ.

Case 1. µ = aα.

Then aβ ≤T aα and eβ ↾ aβ = eα ↾ aα. But aβ = aα = µ, since otherwise
eα(aβ) < êα(aα) ≤ β. Hence aβ ∈ e−1

α “β but aβ = e−1
β “β. Hence e−1

α ̸=
e−1
β ↾β. Contradiction!

Case 2. µ < aα.

Then there is γ < α such that:

µ ≤ aγ , eα ↾aγ = eγ ↾aγ .

(Clearly α > 0. This holds by (3) or (4) if α is a successor and by Lemma
3.7.43 if α is a limit.) Hence:

êγ(µ) ≤T ′ β ≤T ′ eγ(µ).
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Hence:
aβ = µ, eβ ↾aβ = aγ ↾aβ = aα ↾aβ

by the minimality of α.

QED(Lemma 3.7.45)

Remark. (5) can be equivalently replaced by Lemma 3.7.45 in the definition
of “inflation”. It can also be equivalently replaced by the conjunction of (a)
and (b) in Lemma 3.7.43.

Extending inflations

By Definition 3.7.21 it follows easily that:

Lemma 3.7.46. Let I ′ be an inflation of I with history ⟨a, e⟩. Let 1 ≤ µ ≤
lh(I ′). Then I ′|µ is an inflation of I with history ⟨a↾µ, e↾µ⟩.

Proof. (1)-(5) continue to hold.

Taking µ = 1 it becomes evident that an inflation might say very little about
the original iteration I. Hence it is useful to have lemmas which enable us to
extend a given inflation I ′ to an I ′′ of greater length, thus “capturing” more
of I. We prove two such lemmas:

Lemma 3.7.47. Let I be a normal iteration of M of length η′ + 1. Let I ′

be an inflation of I of length η′ + 1 with history ⟨a, e⟩, where aη′ < η. Let
ν̃ = σ

eη′
aη′ (ν

′
aη′

) be defined with: ν̃ > ν ′i for i < η. Extend I ′ to I ′′ of length
η′+2 by appointing ν ′η′ = ν̃. Then I ′′ is an inflation of I with history ⟨a′, e′⟩
where:

• a′ ↾η′ + 1 = a, e′η = eη for η ≤ η′,

• a′η′+1 = aη′ + 1, e′η′+1 ↾aη′ + 1 = eη′,

• e′η′+1(aη′ + 1) = η′ + 1.

Proof. We must show that (1)-(5) are satisfied. The only problematical
case is (5). We must show that if γ <T ′′ η′ + 1, then

e−1
γ ↾γ = e′−1

η′+1 ↾γ.

It suffices to prove it for γ = T ′′(η′ + 1). Let γ = T (aη′ + 1). Then

êη′(γ) ≤T ′ γ ≤T ′ eη′(γ)
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by Lemma 3.7.1 (3). Hence

aγ = γ and eγ ↾aγ = eη′ ↾aγ

by Lemma 3.7.46. But then

e−1
γ ↾γ = e−1

η′ ↾γ = (e′η′+1)
−1 ↾γ

since eη′(γ) = e′η′+1(γ) ≥ γ.

QED(Lemma 3.7.47)

Lemma 3.7.48. Let I ′ be an inflation of I of limit length η′. Let b be the
unique cofinal well founded branch in I ′. Extend I ′ to I ′′ of length η′ + 1 by
appointing: {ξ : ξ <T ′′ η′} = b. Then I ′′ is an inflation of I with history
⟨a′, e′⟩, where:

a′ ↾η′ = a, a′η′ = sup
β∈b

a′β, e
′ ↾η′ = e↾η′,

e′η ↾a
′
η′ =

⋃
β∈b

eβ ↾aβ, e
′
η′(a

′
η) = η′.

Proof. (1)-(5) are satisfied.

Composing Inflations

We now show that if I ′ in an inflation of I and I ′′ is an inflation of I ′, then
I ′′ is an inflation of I.

Theorem 3.7.49. Let I, I ′, I ′′ be normal iteration of M with: lh(I) = η +
1, lh(I ′) = η′ + 1. Let I ′ be an inflation of I with:

hist(I, I ′) = ⟨a, e⟩.

Let I ′′ be an inflation of I ′ with:

hist(I ′, I ′′) = ⟨a′, e′⟩.

Then I ′′ is an inflation of I with:

hist(I, I ′′) = ⟨a′′, e′′⟩,

where: a′′α = aa′α , e
′′
α = e′αea′α .
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Proof. We verify (1)-(5).

(1) a′′ = a ·a′ clearly maps lh(I ′′) into lh(I). Since e′α inserts I ′|a′α+1 into
I ′′|α + 1 and ea′α inserts I|a′′α + 1 into I ′|a′α + 1, then e′α · ea′α inserts
I|a′′α + 1 into I ′′|α+ 1.

QED(1)

Now let:

I = ⟨⟨Mα⟩, ⟨να⟩, ⟨πα,β⟩, T ⟩
I ′ = ⟨⟨M ′

α⟩, ⟨ν ′α⟩, ⟨π′α,β⟩, T ′⟩
I ′′ = ⟨⟨M ′′

α⟩, ⟨ν ′′α⟩, ⟨π′′α,β⟩, T ′′⟩

We recall by Lemma 3.7.5 that if e inserts I into I ′ and e′ inserts I ′

into I ′′ then e′e inserts I into I ′′. Moreover:

σe
′·e
ξ = σe

′

e′(ξ) · σ
e
ξ .

Thus, in particular:

σ
e′′α
ξ = σ

e′α·ea′α
ξ = σ

e′α
e′α(ξ)

· σ
ea′α
ξ for ξ < a′′α.

(2) If ν̃ ′′α = σ
ea′′α
a′′α

(νa′′α) exists and α < lh(I ′′), then:

ν̃ ′′α = σ
ea′α
α · σ

ea′α
a′α

(νaa′α
) = σ

ea′α
α (ν̃ ′a′α).

But then ν ′a′α ≤ ν̃
′
a′α

and:

ν ′′α ≤ σe
′
α
α (ν ′a′α) ≤ ν̃

′′
α.

QED(2)

Now let:

in(α) = the index of α with respect to I, I ′,

in′(α) = the index of α with respect to I ′, I ′′,

in′′(α) = the index of α with respect to I, I ′′.

(3) It is easily seen that if in′′(α) = 0, then in(a′α) = in′(α) = 0. Hence:

a′α+1 = a′α + 1, a′′α+1 = aa′α+1
= a(a′α+1) = a′′α + 1.
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Moreover:

e′′α+1 ↾a
′′
α + 1 = e′α+1ea′α+1 ↾aa′α + 1

= e′α+1 · ea′α
= e′α+1 ↾(a

′
α + 1) · ea′α

= e′α · ea′α = e′′α.

QED(3)

(4) Assume in′′(α) = 1. Then either in′(α) = 1 or in(a′α) = 1.

Case 1. in′(α) = 1.

Let γ = T ′′(α+ 1). Thus a′γ = a′α+1. Hence

a′′γ = aa′γ = aa′α+1
= a′′α+1.

Case 2. in(a′α) = 1 but in′(α) = 0.

Let γ = T ′(a′α + 1). Then:

aγ = a(a′α+1) = aa′α+1
= a′′α+1.

Let β = T ′′(α+ 1). Then:

êα(γ) ≤T ′′ β ≤T ′′ eα(γ).

Hence by Lemma 3.7.45:

γ = a′β, a
′′
α+1 = aγ = aa′β = a′′β.

QED(4)

(5) Let β <T ′′ α. Then a′β ≤T ′′ a′α and hence:

a′′β = aa′β ≤T aa′α = a′′α.

But then (e′α)
−1 ↾β = (e′α)

−1 ↾β and

(ea′β )
−1 ↾a′β = (ea′α)

−1 ↾a′β.

Hence:

[(e′′be)
−1 ↾β = (e′a′β

)−1(e′β)
−1 ↾β

= (ea′β )
−1(e′α)

−1 ↾β

= (ea′α)
−1(e′α)

−1 ↾β

= (e′′α)
−1 ↾β.

QED(5)

This proves Theorem 3.7.49.
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3.7.5 Smooth Reiterability

In §3.7.2 we proved that if M is uniquely normally iterable, then it is nor-
mally reiterable. In this section we prove the fact announced in §3.7.4. that
if M is uniquely normally iterable, then it is smoothly reiterable. Just as be-
fore, it will also be of interest to know whether this theorem can be relativized
to a regular cardinal κ > ω. We called a normal reiteration R = ⟨⟨Ii⟩, . . . ⟩
a κ-iteration iff each of its component normal iteration Ii has length less
than κ. If we are given a smooth κ-reiteration S = ⟨⟨Ii⟩, ⟨ei,j⟩⟩, we call it
a smooth κ-reiteration iff each of its induced reiteration Ri (i + 1 < lh(S))
is a κ-reiteration of length less than κ. We proved previously that, if M is
uniquely normally κ-iterable, then it is normally κ-reiterable. In the present
case the proofs are more subtle, and the best we can get is:

Theorem 3.7.50. Let κ > ω be regular. Let M be uniquely normally κ +
1-iterable. Then it is smoothly κ + 1-reiterable. (Hence if M is uniquely
normally iterable, it is uniquely smoothly reiterable).

We don’t see any way to weaken the hypothesis of this theorem. Thus, for
instance, if we only know that M is uniquely normally ω1-iterable, we have
no proof that it is smoothly ω1-iterable.

We prove Theorem 3.7.50. From now on we take “reiteration” as meaning
“κ-reiteration” and “smooth reiteration” as meaning “smooth κ-reiteration”.
We assume M to be uniquely normally κ+1-iterable. The desired conclusion
then is given by:

Lemma 3.7.51. Let S = ⟨⟨Ii⟩, ⟨ei,j⟩⟩ be a smooth reiteration of M of limit
length µ ≤ κ. Then:

(a) S has at most finitely many drop points.

(b) S has a good limit I, ⟨ei : i < µ⟩.

Proof. Case 1. µ = κ.

(a) is immediate by cf(κ) > ω, since if S had infinitely many drop points,
then so would S|γ + 1 for some γ < κ.

To prove (b), let (i, κ) be free of drop points, where i < κ. We must show
that ⟨⟨Ij : i ≤ j < κ⟩, ⟨ehj : i ≤ h ≤ j < κ⟩⟩ has a good limit:

I, ⟨ej : i ≤ j < κ⟩.
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(We then set: eh = ei · eh,i for h < i). But this is immediate by Lemma
3.7.9.

QED(Case 1)

The hard case is:

Case 2. µ < κ.

By induction on µ we prove (a), (b) and:

(c) If i < µ, then I is an inflation of Ii with history ⟨ai, ⟨eiα : α ≤ ηi⟩⟩, where
ηi + 1 = lh(Ii).

(d) If i < µ and (i, µ) has no drop point in S, then aiµ = ηi and eiµ = ei.

Assume that this holds at every limit ordinal λ < µ. Then:

Claim 1. Let i ≤ j < µ. Then

(i) Ij is an inflation of Ii with history ⟨aij , ⟨ei,jα : α ≤ ηj⟩⟩.

(ii) If the interval (i, j) has no drop point in S, then ai,jηj = ηi and ei,j = ei,jηj .

Proof. Suppose not. Let j be the least counterexample. Then i < j since
(i), (ii) hold trivially for i = j. But j is not a limit ordinal since otherwise
(i), (ii) hold by the induction hypothesis. Hence j = h + 1. We first show
that it holds for i = h.

(i) is immediate by Theorem 3.7.42. We now prove (ii) for i = h. Let R, ξ
be the unique objects such that:

R = ⟨⟨I l⟩, ⟨νl⟩, ⟨ek,l⟩, T ⟩

is a normal reiteration of length ξ+1 and Ih = I0, Ij = Iξ. Then eh,j = e0,ξ.
Since R has no truncation on its main branch, eh,j inserts Ih into Ij and
eh,j(ηh) = ηj . But ah,jα = {a < ηh : eh,j(α) < ηj}. Hence ah,jηj = ηh. But:

eh,j ↾ηh = e
hj
ηj ↾ηh and eh,j(ηh) = eh,jηj (ηh) = ηj

Hence ei,h = eh,jηj .

But then i < h. We know that (i), (ii) hold at h and that

ai,jα = ai,h
ah,jα

; ei,jα = eh,jα · e
i,h

ah,jα
,
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where ah,jηi = ηh, a
i,h
ηh = ηi, ei,h = ei,hηh , ehj = eh,jηj . Thus:

ai,jηi = ai,hηh = ηi and

ei,j = eh,j · ei,h = eh,jηj · e
i,h
ηh

= ei,jηj

Contradiction!

QED(Claim 1)

We now attempt to prove (a)-(d), taking an indirect approach. Call I a
simultaneous inflation if it is an inflation of Ii for each i < µ. Our job is
to find a simultaneous inflation which also satisfies the conditions (a), (b)
and (d). There is no shortage of simultaneous inflations. For instance the
normal iteration of length 1:

⟨⟨M⟩,∅, ⟨ id↾M⟩,∅⟩

is a simultaneous inflation. Starting with this, we attempt to form a tower
of simultaneous inflations I(i), where I(ξ) is an iteration of length ξ + 1
extending I(i) for i < ξ. The attempt will have only limited success. If we
have constructed I(ξ) for ξ below a limit ordinal λ, we shall, indeed, be able
to construct I(λ). In attempting to go for I(ξ) to I(ξ+1), however, we may
encounter a “bad case”, which blocks us from going further. Using the κ+1-
normal iterability of M we can, however, show that, if the bad case does
not occur, we reach I(κ). But this turns out to be a contradiction. Hence
the bad case must have occurred below κ. A close examination of this “bad
case” then reveals it to be a very good case, since it gives I = I(ξ) satisfying
(a)-(d).

In the following let:

Ii = ⟨⟨M i
α⟩, ⟨νiα⟩, ⟨πiα,β⟩, T i⟩ be of length ηi + 1.

We attempt to construct:

I = ⟨⟨Mα⟩, ⟨να⟩, ⟨πα,β⟩, T ⟩ of length η + 1

satisfying (a)-(d).

We successively construct:

I(ξ) = ⟨⟨M (ξ)
α ⟩, ⟨ν(ξ)α ⟩, ⟨π

(ξ)
α,β⟩, T

(ξ)⟩ of length η + 1.

The intention is that I(ξ) = I|ξ + 1 will be defined up to an η < θ and that
I = I(η) will have the desired properties (a)-(d). The proof that there is
such an η is highly indirect and non constructive. We shall require:
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(A) I(ξ) is an inflation of Ii with history

⟨a(ξ),i, e(ξ),i⟩ for i < µ.

(B) i < ξ −→ I(i) = I(ξ)|i+ 1.

Note. By (B) we can write Mα, να, πα,β, T, I instead of M (ξ)
α , etc.

without reference to ξ. Similarly we can write ai, ei instead of a(ξ),i, e(ξ),i.
Thus, for α ≤ ξ we have:

aiα ≤ ηi and eiα inserts Ii|aiα + 1 into I|α+ 1.

(C) Let α ≤ ξ. Then α =
⋃
i<µ e

i
α“a

i
α.

By (C) we have:

(1) α = sup{êiα(aiα) : i < µ}, since êiα(aiα) = lub eiα“a
i
α.

Set: ei,j(α) = ei,j
aiα

. Hence by (C) we have:

(2) I|α+ 1, ⟨eiα : i < µ⟩ is the good limit of

⟨Ii|aiα + 1 : i < µ⟩, ⟨ei,j(α) : i ≤ j < µ⟩

Now set: σi(α) = σ
eiα
aiα
, σi,j(α) = σe

e
i,j
(α)

aiα
. Then: σh(α)e

h,i
(α) = eh(α). We can

define σ̂i(α), σ̂
(i)
(α), similarly. Note, however, that σi(α) might be a partial

function on M i
aiα

, whereas σ̂i(α) is a total function. Nonetheless we do
have:

(3) σi(α) :M
i
aiα
−→Σ∗ Mα for sufficiently large i < κ.

Proof. σi(α) = πêi
(α)

(aiα),α
· σ̂i(α), where:

σ̂i(α) :M
i
aiα
−→Σ∗ Mei

(α)
(aiα)

.

By (1) we can pick i big enough that there is no truncation in (eiα(a
i
α), α]T .

Hence πei
(α)

(aiα),α
is Σ∗-preserving.

QED(3)

We construct I(ξ) = I|ξ + 1 by recursion on ξ as follows:

Case 1. ξ = 0.

I(0) = ⟨⟨M⟩,∅, ⟨ id ↾M⟩,∅⟩ is the 1-step iteration of M . (A)-(C)hold
trivially.
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Case 2. ξ = θ + 1 and aiθ < ηi for arbitrarily large i < µ. Let D be
the set of i such that:

aiθ < ηi and σi(θ) :M
i
aiθ
−→Σ∗ Mθ

Then D is unbounded in µ by (3). Clearly:

σi,j(θ) :M
i
aiθ
−→Σ∗ M i

aiθ
for i ∈ D, j ∈ D∖i.

Hence:
σi,j(θ)(ν

i
aiθ
) ≥ νiaiθ for i ∈ D, j ∈ D∖i.

But then for sufficiently large i ∈ D we have:

σi,j(θ)(ν
i
aiθ
) = νiaiθ

for j ∈ D∖i.

(To see this, suppose not. Then there is a monotone sequence ⟨in :
n < ω⟩ such that in ∈ D and

σ
in,in+1

(θ) (νin
ainθ

) > ν
in+1

a
in+1
θ

.

Set γn = σin(θ)(ν
in
ainθ

). Then: γn > γn+1. Hence Mθ is ill founded.

Contradiction!)

Let D′ be the set of such i ∈ D. Then there is ν ∈ Mθ such that
ν = σi(θ)(ν

i
aiθ
) for i ∈ D.

Claim. ν > νδ for δ < θ.

Proof. Pick an i ∈ D large enough that δ ∈ eiθ“a
i
θ. Let eiθ(δ) = δ.

Then νi < νi
aiθ

. Hence

νδ = ν = σi(θ)(ν
i
δ
) < σi(θ)(ν

i
aiθ
) = ν

QED(Claim)

We are now in a position to apply the extension lemma Lemma 3.7.47.
Extend I(θ) to I(θ+1) by setting νθ = ν. For each i ∈ D′, I ′ = I(θ+1) is
an inflation of Ii with history ⟨ai′ , ei′⟩, where:

ai
′
↾θ + 1 = ai, ai

′
e+1 = aie + 1, ei

′
↾aiθ = ei ↾aiθ and ei

′
θ+1(a

i′
θ+1) = θ + 1.

But D′ is cofinal in µ. It follows easily that I ′ is an inflation of each
Ii (i < µ). Thus (A) holds for ξ = θ + 1. (B) follows trivially. (C)
holds trivially for α ≤ θ. But then (c) holds for α = ξ = θ + 1, since
σiθ(a

i
θ) = θ for i < µ and θ =

⋃
δ<µ e

i
θ“a

i
θ.

QED(Case 2)
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Case 3. ξ = θ + 1 and Case 2 fails.

Then aiθ = ηi for sufficiently large i. This is the “bad case” in which
I(θ+1) is undefined.

Case 4. ξ = λ is a limit ordinal.

Let Ĩ = I|λ be the componentwise union: Ĩ =
⋃
γ<λ I

(γ). Ĩ is then an
inflation of Ii (i < µ) with history:

ai ↾λ =:
⋃
γ<λ

ai ↾γ, e′ ↾λ =
⋃
γ<λ

ei|γ.

Let b be the unique well founded cofinal branch in Ĩ . Extend Ĩ to
I ′ = I(λ) of length λ+ 1 by setting: T“{λ} = b. By Lemma 3.7.48, I ′

is then an inflation of each Ii with history ⟨a′i, e
′i⟩ such that:

a
′i ↾λ = ai ↾λ, e

′i ↾λ = ei ↾λ, a
′i
λ =

⋃
β∈b

aiβ, ẽ
i
λ(a

i
λ) = λ.

(A), (B) are then trivially satisfied. But then so is (C) since

⋃
i∈µ

eii“a
i
λ =

⋃
i∈µ

⋃
β∈b

eiβ“a
i
β =

⋃
β∈b

⋃
i<µ

eiβ“a
i
β =

⋃
b = λ.

QED(Case 4)

We note that the construction in Case 4 goes through for λ = κ, since
M is κ + 1-normally iterable. Hence I(κ) would exist if the bad case
did not occur. This is impossible, however, since:

(4) If λ is a limit ordinal and I(λ) exists, then cf(λ) ≤ µ or cf(λ) ≤ ηi for
some i < µ.

Proof. Suppose first that λ > êiλ(a
i
λ) for all i < µ. Since λ =

lubi<µ ê
i
λ(a

i
λ) by (1), we conclude that cf(λ) ≤ µ. Otherwise λ =

êiλ(a
i
λ) = lub eiλ“a

i
λ. Hence aiλ is a limit ordinal. Hence cf λ ≤ aiλ ≤ ηi.

QED(4)

Hence the “bad case” occurs at ξ = δ + 1, where δ < κ. I = I(δ) is
the final element of our tower. For sufficiently large i < µ we have:
aiδ = ηi. Thus if i ≤ j < µ we have:

ai,jηj = ai,j
ajδ

= aiδ = ηi, e
i,j
ηi = ei,j(δ).

We now show:

(5) There are only finitely many drop points h+ 1 < µ in S.

Proof. Suppose not. Since the assertion is true for all µ′ < µ, we
conclude that here are cofinally many truncation points h + 1 < µ in
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S. By (1), we can then pick such an h+ 1 > i, where i is chosen such
that (êiδ(a

i
δ), δ)T has no truncation point in I. But we can also choose i

large enough that ai = ηi. By Theorem 3.7.42(6) there is a drop point:

α ∈ (êi,i+1
ηi (aiηi), ηi+1]T i+1 .

By Lemma 3.7.1(7) we then conclude that there is a drop point in
(êiηi(a

i
ηi), δ)T . Contradiction!

QED(5)

Now suppose i0 is chosen large enough that there is no drop point in (i, δ)
in S, and that aiθ = ηj for i0 ≤ j < θ. By Claim (1)(ii), we have

ai,jηi = ηi and ei,j = ei,jηi = eij(θ)

for i0 ≤ i ≤ j < θ. By (2) we have:

I, ⟨eiθ : i0 ≤ i < µ⟩

is the good limit of

⟨Ii|ηi + 1 : i0 ≤ i < µ⟩, ⟨ei,j : i0 ≤ j < µ⟩

We have thus proven (a), (b) in Lemma 3.7.51. (c) and (d) are immediate
by the construction.

This proves Lemma 3.7.51 and, with it, Theorem 3.7.50.

Note. By the same method we get:

Let S be an insertion stable strategy for M and assume that
⟨M,S⟩ is κ + 1-normally-iterable. Then ⟨M,S⟩ is κ-smoothly-
iterable.

The proofs require only cosmetic changes.

We note the following consequence of Lemma 3.7.51:

Lemma 3.7.52. Let S = ⟨⟨Ii⟩, ⟨ei,j⟩⟩ be a smooth reiteration of M of length
µ, where each Ii is of length ηi + 1. For j < µ set:

Aj = {i < j : (i, j] has no drop points in S}, A∗
j = Aj ∪ {j}.

(Hence i ∈ Aj −→ Ai = i ∩Aj). For i ∈ A∗
j set: πi,j = σ

ei,j
ηi . Then:
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(a) πi,j · πh,i = πh,j for h ≤ i ≤ j in A∗
j .

(b) πi,j :Mηi −→Σ∗ Mηi.

(c) If j = λ is a limit ordinal, then:

Mηλ , ⟨πi,λ : i ∈ Aλ⟩

is the direct limit of:

⟨Mηλ : i ∈ Aλ⟩, ⟨πi,j : i < j in Aλ⟩

Proof.

(a) Since eh,i(ηh) = ηi and ei,j(ηi) = ηj , we have: σeh,j(ηh)
= σ

ei,j
(ηi)
· σeh,i(ηh)

.

We prove (b), (c) by induction on j as follows:

Case 1. j = 0. Then Aj = ∅ and there is nothing to prove.

Case 2. j = i + 1. We must prove (b). If i + 1 is a drop point, then
Aj = ∅ and there is nothing to prove. If not, it suffices to prove it for h = i,
by (a) and the induction hypothesis. Then the main branch of Ri has no
drop point in Ri, where Ri is the unique reiteration from Ii to Ii+1. Then
πi,i+1 = (σ0,γηi )Ri , where γ + 1 = lh(Ri). But:

σ0,γηi :Mηi −→Σ∗ Mηh+1
in Ri.

QED(Case 2)

Case 3. j = λ is a limit ordinal.

It suffices to prove (c), since (b) then follows by the induction hypothesis.
In S we have:

Iλ, ⟨ei,λ : l ∈ Aλ⟩

is the good limit of

⟨Ii : i ∈ Aλ⟩, ⟨πi,j : i ≤ j in Aλ⟩

But then Mη =
⋃
i∈Aλ

rng(σi,ληi ). This implies (c).

QED(Lemma 3.7.52)
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3.7.6 The final conclusion

We now apply the method of §3.7.3 to show that M is smoothly iterable. In
§3.5.2 we defined a smooth iteration of N to be a sequence I = ⟨Ii : i < µ⟩
of normal iterations, inducing sequences ⟨Ni : i < µ⟩, ⟨πi,j : i ≤ j < µ⟩ with
the following properties:

• Ni is the initial model of Ii. Moreover N0 = N .

• Let i + 1 < µ. Then Ii is of successor length. Ni+1 is the final model
of Ii and πi,i+1 is the partial embedding of Ni into Ni+1 determined
by Ii.

• πi,jπh,i = πh,i.

• Call i + 1 < µ a drop point in I iff Ii has a truncation on its main
branch. If the interval (i, j] has no drop point, then:

πi,j : Ni −→Σ∗ Nj .

• If λ < µ is a limit ordinal, i0 < λ and (i, λ) has no drop point, then:

Nλ, ⟨πi,λ : i0 ≤ i < µ⟩

is the direct limit of

⟨Ni : i0 ≤ i < µ⟩, ⟨πi,j : i ≤ j < µ⟩.

⟨⟨Ni⟩, ⟨πi,j⟩⟩ is called the induced sequence.

Call a smooth iteration I critical if it has successor length η+1 and Iη is of
limit length. By a strategy for N we mean a partial function S defined on
critical smooth iterations such that S(I), if defined, is a well founded cofinal
branch in Iη, where lh(I) = η + 1.

A smooth iteration I = ⟨Ii : i < µ⟩ is S-conforming iff whenever i < µ and
λ < lh(Ii) is a limit ordinal, and I∗ = I ↾ i ∪ {⟨Ii ↾λ, i⟩}, then:

T i′′{λ} = S(I∗) if S(I∗) is defined.

S is a successful strategy for N iff every S-conforming smooth iteration I of
N can be properly extended in any legitimate S-conforming way. In other
words:
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(A) Let I have length η + 1 and let Iη have length i + 1. Let Q = Nη
i be

the final model of Iη. Let EQν ̸= ∅, where ν is greater than all the
indices νηj (j < i) employed in Iη. Then Q is ∗-extendible by EQν .

(B) If I is critical, then S(I) is defined.

(C) Let I have limit length µ. Then there are only finitely many drop
points in I. Moreover, if l0 < µ and (i0, µ) is free of drops, then:

⟨Ni : i0 ≤ i < µ⟩, ⟨πi,j : i ≤ j < µ⟩

has a well founded direct limit:

Nµ, ⟨πi,µ : i0 ≤ i < µ⟩

We say that N is smoothly iterable iff it has a successful smooth iteration
strategy.

These concepts can, of course, be relativized to an ordinal α. To this end we
define the total length of I = ⟨Ii : i < µ⟩ to be:

tl(I) =
∑
i<µ

lh(Ii).

The notion of α-successful smooth iteration strategy is then defined as before,
except that we restrict ourselves to iteration of total length less than α.

Note that if κ > ω is regular, then there are only two ways that a smooth
iteration I = ⟨Ii : i < µ⟩ can have total length κ. Either µ = κ and lh(Ii) < κ
for i < κ, or else µ = η + 1 < κ, lh(Iη) = κ and lh(Ii) < κ for i < η.

In this section we shall prove:

Theorem 3.7.53. Let M be uniquely normally iterable. Then it is smoothly
iterable.

Note. There is of course, considerable interest in relativizing this theorem
to α < ∞. We shall later show that, if κ > ω is regular, then the theorem
can be relativized to κ + 1. That will require fairly modest changes in the
proof we give now.

Until further notice, assume M to be uniquely normally iterable. We prove
our Theorem 3.7.53 in the slightly stronger form:

Lemma 3.7.54. Let I be a normal iteration of M of length η + 1. Let:

σ : N −→Σ∗ Mηmin ρ

Then N is smoothly iterable.
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In §3.7.3 we used the premiss of Lemma 3.7.54 to derive the normal iterability
of N . We first briefly review that proof, since our new proof will build upon
it. Our main tool was the reiteration mirror (RM). Given a normal iteration
of N :

I = ⟨⟨Ni⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ of length η,

we define a reiteration mirror of I to be a pair ⟨R, I ′⟩ such that:

(a) R = ⟨⟨Ii⟩, ⟨ν ′i⟩, ⟨ei,j⟩, T ⟩ is a reiteration of M of length η, where:

Ii = ⟨⟨M i
h⟩, ⟨νih⟩, ⟨πih,j⟩, T i⟩ is of length ηi + 1

(b) I ′ = ⟨⟨M ′
i⟩, ⟨π′i,h⟩, ⟨σi⟩, ⟨ρi⟩⟩ is a mirror of I with σi(νi) = ν ′i.

(c) M ′
i =M i

ηi .

(d) If h = T (i+ 1), then:

M
′∗
i =M ′

h||µ where µ is maximal such that τ ′i is a cardinal in M ′
h.

Moreover:
π′h,i+1 = σh,i+1

η∗h
, where η∗h = lh(Ii∗).

⟨I,R, I ′⟩ is called an RM triple of length η if and only if ⟨R, I ′⟩ is an RM of
I.

We observed that:

Lemma 3.7.34 Let Γ = ⟨I,R, I ′⟩ be an RM triple of length η + 1. Let
E
Mη
ν ̸= ∅, where ν > νi for all i < η. Then Γ extends to an RM triple

Γ̇ = ⟨İ , Ṙ, İ ′⟩ of length η + 2 with ν̇ = ν.

We fixed a functionG such that whenever (Γ, ν) is such a pair, thenG(Γ, ν) =
⟨İ , Ṙ, İ ′⟩ is such an extension.

We also observed that:

Lemma 3.7.35. Let Γ = ⟨I,R, I ′⟩ be an RM-triple of limit length η. Let
b be the unique good branch in R. Then there is a unique extension to an
RM-triple Γ̇ of length η + 1. Moreover, b = Ṫ“{η} in this extension.

We also noted that:

Lemma 3.7.32. i+ 1 is a drop point in I iff it is a drop point in R.

Lemma 3.7.33. If (i, j]T has no drop point in I, then π′i,j = σi,jηi .
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Clearly, if Γ = ⟨I,R, I ′⟩ is an RM-triple of length η and 1 ≤ i < η, then
Γ|i = ⟨I|i, R|i, I ′|i⟩ is a RM triple of length i. Now let:

σ : N −→Σ∗ M̃η̃min ρ̃,

where Ĩ = ⟨⟨M̃i⟩, ⟨ν̃i⟩, ⟨π̃i,j⟩, T̃ ⟩ is a normal iteration of M of length η̃ + 1.
We define:

Definition 3.7.23. Let I be a normal iteration of N of length µ. By a good
triple for I we mean an RM triple Γ(I) = ⟨I,R, I ′⟩ such that:

(a) R = ⟨⟨Ii⟩, ⟨ν ′i⟩, ⟨eij⟩, T ⟩, I ′ = ⟨⟨M ′
i⟩, ⟨π′i,j⟩, ⟨σi⟩, ⟨ρi⟩⟩ with I0 = Ĩ , σi =

σ̃, ρ0 = ρ̃.

(b) If i+ 1 < µ, then Γ|i+ 2 = G(Γ|i+ 1, ν ′i).

By the fact that M is uniquely normally iterable and Γ is an RM-triple, it
follows that, if η < µ is a limit ordinal then Γ|η + 1 is obtained from Γ|η as
in Lemma 3.7.35. It follows easily that I can have at most one good triple,
which we denote by Γ(I), if it exists, we then define a strategy S for N as
follows:

Let I be a normal iteration N of limit length. If Γ(I) is undefined, then so
is S(I). If not, then we let:

b = the unique good branch in R,

where Γ(I) = ⟨I,R, I ′⟩. We set: S(I) = b, We then noted:

Lemma 3.7.36. If I is an S-conforming iteration, then Γ(I) is defined.

But this means that I can be extended one step further, using Lemma 3.7.34
and 3.7.35. Hence S is a successful normal iteration strategy.

Building upon this, we now try to define a successful smooth iteration strat-
egy for N . Note that, given the function G, the operation Γ(I) is uniquely
characterized by σ̃, Ĩ, ρ̃. Thus we can write: Γσ̃,Ĩ′,ρ̃(I). We now try to define
Γ(I) for smooth iterations I of N .

Definition 3.7.24. Let I = ⟨Ii : i < µ⟩ be a smooth iteration of N inducing
⟨Ni : i < µ⟩, ⟨πi,j : i ≤ j < µ⟩. Let

Ii = ⟨⟨N i
h⟩, ⟨νih⟩, ⟨πih,j⟩, T i⟩ be of length ηi.

By a Γ-sequence for I, we mean any sequence Γ = ⟨Γi : i < µ⟩ such that:
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(a) Γi = Γİi,σi,ρi(Ii) = ⟨Ii, Ri, I
′
i⟩ is an RM triple where:

σi : Ni −→Σ∗ Ṁimin ρi

and İi is the first iteration in Ri and Ṁi is the final model in İi.

We set:
Ri = ⟨⟨Ihi ⟩, ⟨νhi ⟩, ⟨e

h,j
i ⟩, T

i⟩

I ′i = ⟨⟨M
′(i)
h ⟩, ⟨π

′i
h,j⟩, ⟨σih⟩, ⟨ρi,h⟩⟩

(Hence İi = I0i , Ṁi =M
′i
0 .)

(b) İ = ⟨İi : i < µ⟩ is a smooth reiteration of M such that Ri = the unique
reiteration from İi to İi+1 for i+ 1 < µ.

İ then induces partial insertions ėi,j with:

İi+1 = Iηii , ėi,i+1 = e0,ηii for i+ 1 < µ

and

İλ, ⟨ėi,λ : i < λ⟩ is the good limit of

⟨İi : i < λ⟩, ⟨ėi,j : i ≤ j < λ⟩ for limit λ < µ.

(c) There is a commutative system ⟨π̇i,j : i ≤ j < µ⟩ such that π̇i,j is a
partial map from Ṁi to Ṁj and:

π̇i,i+1 = π
′i
0,ηi for i+ 1 < µ.

Moreover:

Ṁλ, ⟨π̇i,λ : i < λ⟩ is the limit of

⟨Ṁi : i < λ⟩, ⟨π̇i,j : i ≤ j < λ⟩ for limit λ < µ.

(d) σ̇i+1 = σiηi , ρ
i+1 = ρi,ηi for i+ 1 < µ.

(e) Ĩ = İ0, σ̃ = σ̇0, ρ̃ = ρ̇0.

(f) Suppose that I has no drop point in [i, j]. Then:

(i) π̇i,j : Ṁi −→Σ∗ Ṁj

(ii) π̇i,j · σi = σ̇jπi,j

(iii) π̇i,j“ρ̇in ⊂ ρ
j
n ≤ π̇i,j(ρ̇in) for n < ω.

This completes the definition.
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Recall that h + 1 is a drop point in Ri iff it is a drop point in Ii. We call
i+ 1 a drop point in İ iff ri has a drop point on its main branch. Similarly,
i + 1 is a drop point in I iff Ii has a drop point on its main branch. Hence
i+ 1 is a drop in İ iff it is a drop point in I.

Lemma 3.7.55. There is at most one Γ-sequence for I.

Proof. By induction on i < µ we show that the sets:

Γi, İi, ⟨ėh,i : h < i⟩, Ṁi, ⟨π̇h,i : h < i⟩, σi, ρi

are uniquely determined by Γ|i = ⟨Γh : h < i⟩.

Case 1. i = 0.

İ0, σ0, ρ
0 are explicitly given by (e). Hence so are:

Ṁ0 = the final model of İ0,Γİ0,σ̇0,ρ0(I0)

Case 2. i = h+ 1. Then

• İi = Iηhh , ėj,i · ėj,h for h < i.

• Ṁi is defined from İi,j and π̇j,i = π
′h
0,ηh

π̇j,h for h < i.

• σi = σhηh , ρ
i = ρh,ηh .

• Γi = Γİi,σi,ρi(Ii)

Case 3. i = λ is a limit ordinal.

• İλ, ⟨ėh,λ : h < λ⟩ are given by (b).

• Ṁλ, ⟨π̇h,λ : h < λ⟩ are given by (c).

• σλ is defined by: σλπh,λ = π̇h,λσh for [h, λ) drop free in I (by (f)).

• By Lemma 3.6.42, ρλ is the unique ρ such that

σλ : Nλ −→Σ∗ Ṁλmin ρ and

π̇i,λ“ρ
i ⊂ ρ ≤ π̇i,λ(ρi) if (i, λ) is drop free.

• Γλ = Γİλ,σλ,ρλ(Iλ).
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QED(Lemma 3.7.55)

We denote the unique Γ-sequence for I by Γ(I), if it exits. Writing σ̇i,jl for
σ
ėi,j
l and η̇i for lh(İi) we have:

Lemma 3.7.56. Let Γ = Γ(I). If (i, j] has no drop point in I, then π̇i,j =

σ̇i,jη̇i .

Proof. We recall that if i+ 1 is not a drop point, then

π̇i,i+1 = π′′0,ηi = σ
e
0,ηi
i
η̇i

= σ̇i,i+1.

(Here ηi + 1 = lh(Ri), η̇i + 1 = lh(I0i )). Using this and Lemma 3.7.52, we
prove the assertion by induction on j.

QED(Lemma 3.7.56)

Lemma 3.7.57. Let I = ⟨Ii : i < µ⟩ be of limit length µ. Assume that
Γ = Γ(I) exits. Then there are unique: Nµ, ⟨πi,µ⟩, İµ, ⟨ėi,µ⟩, Ṁµ, ⟨π̇i,µ⟩, σµ, ρµ
such that:

(a) Nµ, ⟨πi,µ : i < µ⟩ is the direct limit of:

⟨Ni : i < µ⟩, ⟨πi,j : i ≤ j < µ⟩.

(b) İµ, ⟨ėi,µ : i < µ⟩ is the good limit of

⟨İi : i < µ⟩, ⟨ėi,j : i ≤ j < µ⟩

(c) Ṁµ is the final model of İµ.

(d) Ṁµ, ⟨π̇i,µ : i < µ⟩ is the direct limit of:

⟨Ṁi : i < µ⟩, ⟨π̇i,j : i ≤ j < µ⟩.

(e) σµ : Nµ −→Σ∗ Ṁµmin ρµ.

(f) For sufficient i < µ we have:

σµπi,µ = π̇i,µσi; π̇i,µ“ρ
i ⊂ ρµ ≤ π̇i,µ(ρi)

Proof. (b) is immediate by Theorem 3.7.50. We let Ṁµ be defined as in (c).
Let i < µ such that (i, µ) has no drop points in I, Then (i, µ) has no drop
points in İ = ⟨İi : i < µ⟩. By Lemma 3.7.56 we know that π̇h,j = σ̇h,jη̇h for
i ≤ h ≤ j < µ. Set: π̇h,µ = σ̇h,µη̇h for h ∈ [i, µ). Then (d) follows by Lemma



3.7. SMOOTH ITERABILITY 369

3.7.52. We know that σjπhj = π̇hjσh for i ≤ h ≤ j < µ. Hence we can define
σµ as in (f). σµ is obviously unique. But then there is a unique ρµ satisfying
(e), (f) by Lemma 3.6.42. QED(Lemma 3.7.57)

We now define the strategy S. Let I be a critical smooth iteration. Then
I has length η + 1 and Iη is of limit length. If Γ(I) is undefined, the so is
S(I). If not, then:

ση : Nη −→Σ∗ Ṁηmin ρη

where İ , Ṁη, ση, ρ
η are as in the definition of “Γ-sequence”. Moreover, Γη =

Γİη ,ση ,ρη(Iη). We then set:

S(I) =: Sη(İη) = the unique cofinal, well founded branch in İη.

But then:

Lemma 3.7.58. Let I = ⟨Ii : i < µ⟩ be any S-conforming smooth iteration.
Then Γ(I) exists.

Proof. Let I = ⟨Ii : i < µ⟩. Define a partical function on µ by:

Γi =: the unique x such that Γ(I|i+ 1) = ⟨Γh : h < i⟩ ∪ {⟨x, i⟩}.

By induction on i we show:

Claim. Γi exists.

Case 1. i = 0.

Clearly Γi = ΓĨ,σ̃,ρ̃(I0). But this holds for any I0 which is a normal iteration
of N . Hence by induction on lh(I0), we have: I0 is SĨ,σ̃,ρ̃-conforming, where
SĨ,σ̃,ρ̃ is the normal iteration strategy for N defined from the function ΓĨ,σ̃,ρ̃.

QED(Case 1)

Case 2. i = h+ 1.

Set İi = Iηhh , σi = σhηh , ρ
i = ρh,ηh . Clearly, then:

Γi = Γİi,σi,ρi(Ii)

where İi is a normal iterate of M and:

σ : Ni −→Σ∗ Ṁimin ρi,

Ṁi being the final model of İi. Since this holds for any normal iterate Ii of
Ni, we conclude by induction on lh(Ii) that Ii is Sİi,σi,ρi-conforming. Hence
Γi = Γİi,σi,ρi exists.
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QED(2)

Case 3. i = λ is a limit.

It is easily seen that ⟨Γh : h < λ⟩ = Γ(I ↾ λ). Let İλ, Ṁλ, σλ, ρ
λ be as in

Lemma 3.7.57. Clearly we have: Γλ = Γİλ,Ṁλ,σλ,ρλ
(Iλ). Exactly as before,

we conclude that Iλ is Sİλ,Ṁλ,σλ,ρλ
-conforming, hence that Γλ exists.

QED(Claim)

But then it is easily seen that ⟨Γi : i < µ⟩ = Γ(I).

QED(Lemma 3.7.58)

But then S is successful, since, if I is S-conforming, then I can be extended
un any S-conforming way -i.e. (A)-(C)hold. (A) follows by Lemma 3.7.34.
(B) follows by Lemma 3.7.35. (C) follows by Lemma 3.6.47.

This proves Lemma 3.7.54 and with it Theorem 3.7.53. We now show how
to relativize this to a regular cardinal κ > ω. We assume that M is uniquely
κ + 1-normally iterable. By a κ-reiteration of M we mean a reiteration of
length ≤ κ in which each component normal iteration is of length < κ. If
we understand “reiteration” as meaning a κ-reiteration of length < κ, and
“smooth iteration” as meaning a smooth iteration of total length < κ, then
a literal repetition of the above proof shows:

Lemma 3.7.59. Let M be uniquely normally κ + 1-iterable. Let Ĩ be a
normal iteration of M of length η + 1 < κ. Let

σ : N −→Σ∗ M̃ηmin ρ

Then N is smoothly κ-iterable.

The following strength of κ+1-iterability is needed for this, however, in order
to justify the use of Theorem 3.7.50. We now show that, under the premises
of Lemma 3.7.59, N is in fact, smoothly κ+ 1-iterable. Let I = ⟨Ii : i < µ⟩
be a smooth iteration of N of total length κ. As mentioned earlier, one of
two cases hold, which we consider separately:

Case 1. µ = η + 1 < κ and Iη is of length κ.

We assume I to be S-conforming. Then I|η is S-conforming. Then I|η is
S-conforming and Iη is Sİη ,ση ,ρη -conforming. Hence:

Γİη ,ση ,ρη(Iη) = ⟨Iη, R, I
′⟩ exists,

where R is a reiteration of M of length κ. But then R has a well founded
cofinal branch b. Hence b is cofinal in Iη. b has only finitely many drop points
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in Iη, since otherwise, by the fact that κ > ω is regular, there would be λ ∈ b
such that h ∩ λ = T η“{λ} has infinitely many drop points. Contradiction!
Let i ∈ b such that b∖i has no drop points. Using the fact that κ > ω is
regular, it follows easily that

⟨Mh : h ∈ b∖i⟩, ⟨πh,j : h ≤ j in b∖i⟩

has a well founded limit. (If xn+1 ∈ xn is the limit, these would be a ξ ∈ b∖i
such that xn = N ξ(xn) for n < ω. Hence xn+1 ∈ xn in Nξ. Contradiction!)

QED(Case 1)

Case 2. µ = κ.

I has only finitely many drop points, since otherwise these would be ξ < κ
such that I|ξ has infinitely many drop points. Contradiction! Let the interval
(i, κ) be drop free. Since κ > ω is regular, it again follows that:

⟨Mh : i ≤ h < κ⟩, ⟨πh,j : i ≤ h ≤ j < κ⟩

has a well founded limit.

QED(Case 2)

This proves Theorem 3.6.2.

3.8 Unique Iterability

3.8.1 One small mice

Although we have thus far developed the theory of mice in considerable
generality, most of this book will deal with a subclass of mice called one
small. These mice were discovered and named by John Steel. It turns out
that a great part of many one small mice are uniquely normally iterable.
Using the notion of Woodin cardinal defined in the preliminaries we define:

Definition 3.8.1 (1-small). A premouse M is one small iff whenever EMν ̸=
∅, then

no µ < κ = crit(EMν ) is Woodin in JE
M

κ

Note. Since JEκ is a ZFC model, we can employ the definition of “Woodin
cardinal” given in the preliminaries. An examination of the definition shows
that the statement “µ is Woodin” is, in fact, first order overHτ where τ = µ+.
Thus the statement “µ is Woodin in M ” makes sense for any transitive ZFC−

model M . It means that µ ∈ M and “µ is Woodin” hold in HM
τ where

τ = µ+
M (taking τ = cardM if no ξ > µ is a cardinal in M). We then have:
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Lemma 3.8.1. Let M be a premouse such that EMν ̸= ∅ and let us set:

κ = crit(EMν ), λ = λ(EMν ) =: EMγ (κ), τ = τ(EMγ ) =: κ+E
M
.

The following are equivalent:

(a) No µ < κ is Woodin in JEκ

(b) No µ ≤ κ is Woodin in JEτ

(c) No µ < λ is Woodin in JEλ

(d) No µ ≤ λ is Woodin in JEγ .

Proof: (d)→(c)→(b)→(a) is clear. We now show (a)→(d). Assume (a).
Since JEκ ≺ JEλ we have (c). But then (b) holds. Since π : JEτ −→ JEν
cofinally, we conclude that π is elementary on JEτ . Hence (d) holds. QED
(Lemma 3.8.1).

Recalling the typology developed in §3.3, we have:

Lemma 3.8.2. Every active one-small premouse is of type 1.

Proof: Suppose not. Let M = ⟨JEν , F ⟩ be a counterexample. We derive a
contradiction by proving:
Claim. κ is Woodin in M , where κ = crit(F ).

Proof: Let A ⊂ κ, A ∈ M . We show that some τ < κ is A-strong on JEκ .
It is easily seen that ⟨JEκ , B⟩ ≺ ⟨JEλ , F (B)⟩ whenever B ⊂ κ, B ∈M . Hence
it suffices to find a τ < λ such that τ is F (A)-strong in JEλ .
Claim. κ is F (A)-strong in JEλ .

Proof: Suppose not. Then there is ξ < λ such that whenever G ∈ JEλ is
an extender at κ on JEλ , then F (A) ∩ ξ ̸= G(A) ∩ ξ (where A = F (A) ∩ κ).
Let ξ be the least such. Since M is not of type 1, there is λ̄ < λ such that
F̄ = F ↾λ is a full extender at κ in M . Hence F̄ ∈ JEλ . But:

⟨JEλ̄ , F̄ (A)⟩ ≺ ⟨J
E
λ , F (A)⟩

Since for α1, . . . , αn < λ̄ we have:

⟨JEλ̄ , F̄ (A)⟩ |= φ[α⃗]←→ ⟨JEλ , F (A)⟩ |= φ[α⃗]

←→ ⟨α⃗⟩ ∈ F (e)

where e = {⟨ξ⃗⟩ < κ : ⟨JEκ , A⟩ |= φ[ξ⃗]}. Hence ξ < λ̄ by minimality. Hence
F̄ ∈ JEλ and F (A) ∩ ξ = F̄ (A) ∩ ξ. Contradiction! QED (Lemma 3.8.2).

We leave it to the reader to show:
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• If M is one small and µ ∈M , then M ||µ is one small (for limit µ).

• Let ⟨Mi : i < λ⟩ be a sequence of one small premice. Let πij :Mi −→Σ∗

Mj for i ≤ j < λ, where the πij commute. Let Mλ, ⟨πiλ : i < λ⟩ be the
direct limit of ⟨Mi : i < λ⟩, ⟨πij : i ≤ j < λ⟩. Then Mλ is one small.

It then follows easily that:

Lemma 3.8.3. Any full iterate of a small mouse is one small.

In particular, any normal iterate of a one small mouse is one small.

In §3.8.2 we shall show that there is a large class of one small premice, all of
which have the normal uniqueness property. That will be our main result in
this section.

3.8.2 Woodiness and non unique branches

In the preliminaries we defined the notion of A-strong. We now adapt this
notion to certain admissible structures in place of V .

Definition 3.8.2. N = JEα is a limit structure iff N is acceptable and there
are arbitrarily large τ ∈ N such that N |= τ is a cardinal.

Definition 3.8.3. Let N = JEα is a limit structure. κ ∈ N is strong in N
iff for arbitrarily large ξ ∈ N there is F ∈ N such that:

• F is an extender at κ on N of length ≥ ξ.

• N is extendible by F .

• Let π : N −→ N ′ = JE
′

α′ . Then JE′
ξ = JEξ .

Hence, if ξ is a cardinal in N , it follows that HN
ξ = HN ′

ξ .

Definition 3.8.4. Let A ⊂ N , where N = JEα is as above, κ ∈ N is A-strong
in N iff ⟨N,A⟩ is amenable and for arbitrarily large ξ ∈ N there is F ∈ N
such that

• F is an extender at κ of length ≥ ξ

• N is extendible by F (hence so is ⟨N,A⟩)
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• Let π : ⟨N,A⟩ −→ ⟨N ′, A′⟩ = ⟨JA′
α , A′⟩. Then JEξ = JE

′
ξ and A∩JEξ =

A′ ∩ JEξ .

Definition 3.8.5. N is Woodin for A ⊂ N iff there are arbitrarly large
κ ∈ N which are A-strong in N .

Hence if N = JE
M

ξ , ξ ∈ M , then M |= “ξ is Woodin” if and only if ξ is
Woodin for all A ∈M such that A ⊂ N .

In this subsection we shall prove:

Theorem 3.8.4. Let M be a premouse. Let

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

be a normal iteration of M of limit length η. Set:

η̃ = sup
i<η

κi = sup
i<η

λi; N = JEη̃ =:
⋃
i<η

Mi|vi

Assume that b0, b1 are distinct cofinal well founded branches in T (hence
η̃ = sup bh for h = 0, 1). Then N is Woodin with respect to every A ⊂ N
such that A ∈Mb0 ,Mb1.

The proof will require many steps. We first prepare the ground by reformu-
lating the definition of “strong” and “A-strong”.

Note that if A ⊂ ON, then A∩JEξ = A∩ξ for ξ ∈ N . Thus, if F ∈ N verifies
A-strongness, then so does F |ξ. In the following we shall make frequent use
of this fact. Since, in the book, we have generally worked with full extenders,
we pause now to remind ourselves what it means to say:

F is an extender at κ on M of length ξ

We take M as being acceptable. The above statement then means that the
following hold:

(a) ξ > κ is Gödel closed (i.e. closed under Gödel pairs ≺ , ≻).

(b) κ ∈M and P(κ) ∩M ∈M

(c) F : P(κ) ∩M −→ P(ξ)

(d) F has an extension π̃ characterized by:

• π̃ : HM
κ −→Σ0 H cofinally, where H is transitive
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• F (X) = π̃(X) ∩ ξ for X ∈ P(κ) ∩M
• Each x ∈ H has the form π̃(f)(ξ̄), where ξ̄ < ξ and f ∈ HM

κ is a
function on κ.

Then π̃ is uniquely characterized by F . Moreover, π̃ is definable from F
by an “ultrapower” construction which is absolute in ZFC− models. Thus
π̃ ∈ M if F ∈ M and M |= ZFC−. But then π̃ ∈ M if F ∈ M and M is
a limit structure in the above sense, since then M is a union of transitive
ZFC− models.

π : M −→F M ′ here means that ⟨M ′, T ⟩ is the Σ0 lift-up of M, π̃. We say
that M is extendable by F if ⟨M ′, π⟩ exists.

Definition 3.8.6. Let M = ⟨JEα , B⟩ be acceptable. Let F be an extender
on M at κ ∈ M of length ξ ≤ α. Let π̃ be the extension of F and let
π̃(JEκ ) = JE

′
λ . F is strong with respect to M iff JEξ = JE

′
ξ . If F is strong, we

define a function F̃ on P(JEκ ) ∩M by F̃ (a) =: π̃(a) ∩ JEξ .

Note that F̃ (a) = F (a) for a ⊂ κ.

Note. If M is a premouse, Eν ̸= ∅ and τν is a cardinal in M , then Eν is a
strong extender on M at κ of length λν . If ν ∈ M , then Eν ∈ M , but the
case ν = α can give us trouble.

Definition 3.8.7. Let M,F, κ, ξ be as above. Let A ⊂M . F is A-strong in
M iff

• ⟨M,A⟩ is amenable

• F is strong in M

• F̃ (A ∩ JEκ ) ∩ JEξ = A ∩ JEξ .

We note:

Fact. Let F be an extender on M at κ ∈ M of length η. Let κ < µ < ξ,
where µ is Gödel closed. Define F ′ = F |µ by:

F ′(X) = F (X) ∩ µ for X ∈ P(κ) ∩M.

Then:

(a) F ′ is an extender on M at κ of length µ

(b) If F is strong in M , so is F ′
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(c) If F is A-strong in M and ⟨JEµ , A ∩ JEµ ⟩ is amenable, so is F ′

(d) If M is extendible by F , then it is extendible by F ′.

We sketch the proof of (b). Let π be the extension of F with:

π : JEτ −→Σ0 H cofinally, where τ = κ+M .

Similarly for π′, F ′. Let:

π′ : JEτ −→Σ0 H
′ cofinally

Define:
k : H ′ −→Σ0 H cofinally

by k(π′(f)(ξ)) = π(f)(ξ) where ξ < µ and f ∈ Jκ is a function on κ. Then
k ↾µ = id, since:

k(ξ) = k(π′(id↾τ)(ξ)) = π(id↾τ)(ξ) = ξ

But then k̄ = k ↾JE
′

µ maps JE′
µ cofinally to JEµ , since k(JE′

ξ ) = JEξ for limit
ξ < µ. Now let h′, h be the Σ1 Skolem function of JE′

µ′ , J
E
µ respectively. Then

k̄(h′(i, ⟨ξ⃗⟩)) = h(i, ⟨ξ⃗⟩)

for i < ω, ξ1, . . . ξn < µ. It follows easily that k̄ is an isomorphism of JE′
µ

onto JEµ . Hence k̄ = id, JE′
µ = JEµ . QED (part (b)).

We shall sometimes make use of the following:

F ′ = F |µ, D = F ′ ◦G

Then:

Lemma 3.8.5. Let M be acceptable. Let F be strong on M at κ of length
µ. Let G ∈ M be strong on M at κ̄ < κ of length κ. Assume that M is
extendable by F . Set: D = F ·G. Then:

(a) D ∈M

(b) D is strong on M at κ̄ of length µ.

Proof: Let π : M −→F M ′. The statement: G is strong over M at κ̄ of
length κ is a first order statement:

M |= φ(G, κ̄, κ).
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Hence:
M ′ |= φ(π(G), κ̄, π(κ)).

Set D = π(G)|µ. Then D ∈ M ′ is strong on M ′ at κ̄ of length µ. But for
X ∈ P(κ̄) ∩M we have:

D(X) = π(G)(X) ∩ µ = F ·G(X).

But F ·G ∈ JEτ = HM
τ where τ = κ+M . Hence D = F ·G ∈M . QED

(Lemma 3.8.5)

Note We did not assume: F ∈ M . If we dropped the assumption G ∈ M ,
we would still get (b), though we have not proven this.

Lemma 3.8.6. Let N = JEα be a limit structure. Let F ∈ N be a strong
extender at κ on N of length η, where η is regular in N . Then N is extendible
by F .

Proof: Suppose not. Let

D = {⟨f, α⟩ ∈ N : α < ξ and f is a function on κ = crit(F )}

Let e ⊂ D2 be defined by:

⟨f, α⟩ e ⟨g, β⟩ ←→ ⟨α, β⟩ ∈ F ({⟨ξ, ζ⟩ : f(ξ) ∈ g(ζ)})

Our assumption says that e is ill-founded. Hence there is a sequence ⟨fi, αi⟩i<ω
such that

⟨fi+1, αi+1⟩ e ⟨fi, αi⟩, for i < ω

Let ⟨f0, α0⟩ ∈ JEγ where γ > ξ is regular in N . We can assume without lose
of generality that ⟨fi, αi⟩ ∈ JEγ . If not, replace fi by f ′i where

f ′i(ξ) =

{
fi(ξ) if fi(ξ) ∈ JEγ
0 otherwise

But then e′ = e ∩ JEγ is ill-founded, where e′ ∈ N . Since N is a union of
transitive ZFC− models, it follows by absoluteness that:

N |= e′ is ill-founded.

But then there is ⟨⟨fi, αi⟩ : i < ω⟩ ∈ N such that

⟨fi+1, αi+1⟩ e′ ⟨fi, αi⟩ for i < ω

Let π̃ ∈ N be the extension of F . Then:

π̃ : JEτ −→Σ0 H cofinally.
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Set: Xi = {⟨ξ, ζ⟩ : fi+1(ξ) ∈ fi(ξ) ∈ fi(ζ)}. Let τ = κ+
N , we have ⟨Xi : i <

ω⟩ ∈ JEτ . Set
⟨X̃i : i < ω⟩ = π̃(⟨Xi : i < ω⟩)

Then X̃i ∩ η = F (Xi) for i < ω. Since η is regular in N and F is strong, we
have:

⟨αi : i < ω⟩ ∈ JEξ ⊂ H

But ⟨αi+1, αi⟩ ∈ F (Xi) ⊂ X̃i for i < ω. Hence H satisfies the statement:

There is g : ω −→ π̃(κ) such that ⟨g(i+ 1), g(i)⟩ ∈ X̃i for i < ω

But then JEτ satisfies:

There is g : ω −→ κ such that ⟨g(i+ 1), g(i)⟩ ∈ Xi for i < ω

Hence fi+1(g(i+ 1)) ∈ fi(g(i)) for i < ω. Contradiction! QED (Lemma
3.8.6)

But then by Fact 1, it follows easily that:

Lemma 3.8.7. Let N be a limit structure, κ ∈ N . Then κ is strong in N
iff for arbitrarily large η ∈ N there is F ∈ N which is strong for N at κ of
length η.

Lemma 3.8.8. Let N,κ be as above. Let A ⊂ N . Then κ is A-strong in N
iff for arbitrarily large ξ ∈ N there is F ∈ N which is A-strong for N at κ
of length ξ.

The proofs are left to the reader.

Before embarking on the proof of Theorem 3.8.4 we digress in order to prove
a lemma which will be important later chapter.

Lemma 3.8.9. Let M = ⟨JEν , F ⟩ be an active premouse. Let ρ1M = λ. Then
M |= “κ is Woodin”. (Hence M is not 1-small. )

Proof. We must show that if A ∈ M , A ⊂ JEκ , then there is κ′ < κ which
is A-strong for JEκ at κ′. Since we can canonically code A as a subset of κ,
we shall assume: A ⊂ κ. Let π : JEτ −→ JEν be the extension of F . Since
π ↾JEκ : ⟨JEκ , A⟩ −→ ⟨JEλ , F (A)⟩, it suffices to show that the above statement
holds of ⟨JEλ , A′⟩, where A′ = F (A).

By §3.3 we know: hM (λ). Hence ∈ R1
M , since ρ1M = λ. We shall, in fact,

show:

Claim. Let τ < η < λ such that η is regular in JEλ . Then there is an
extender G ∈ JEλ at κ which is A′-strong.
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Set: N = ⟨JEλ , T ⟩ = M1 = M1,∅. Then N is amenable. Since η is regular
in N , it follows by acceptability that N̄ = ⟨JEη , T ∩ JEη ⟩ is amenable. But
N̄ ≺Σ0 N . By the downward extension lemma, there is a unique M̄ such
that N̄ = M̄1,∅ and ∅ ∈ P 1

M̄
. Moreover, there is a unique σ such that

σ : M̄ −→
Σ

(1)
0

M and ∅ ∈ P 1
M̄ .

M̄ is recoverable from N̄ in any transitive ZFC− model containing N̄ . Hence
M̄ ∈ JEλ . But M̄ = ⟨J Ēν̄ , F̄ ⟩. It follows easily that F̄ is an injective function
and that dom(F̄ ) = dom(F ) = P(κ)∩M = P(κ)∩ M̄ . Moreover F̄ (X) ⊂ λ̄,
where λ̄ = F̄ (κ) is the largest cardinal in M̄ . But for each ξ < M̄ there is
XinP(κ)∩M such that F̄ (X) /∈ JEM

ξ . It follows easily that F̄ is an extender
at κ on JEτ with base |JEτ | and extension F̄ : JEτ −→ J Ēν̄ . Now let G = F̄ ↾η.
Then G ∈M is an extender at κ on M . Let π̃ : |JEτ | −→ H be the extension
of G. Then H = J Ẽν̃ and π̃ : JEτ −→ J Ẽν̃ cofinally. There is a cofinal map
σ̃ : J Ẽν̃ −→Σ0 J

Ē
ν̄ , defined by:

σ̃(π̃(f)(α)) = π̄(f)(α)

for α < η, f ∈ JEτ , f : κ −→ JEτ . Clearly σ̃ ↾ η = id. Hence σσ̃ ↾ η = id.
Hence J Ẽη = JEη and G is strong. Moreover, G(A) ∩ η = A′ ∩ η = A ∩ η and
G is A′-strong.

We are now ready to embark upon the proof of Theorem 3.8.4.

The proof will have many steps. We shall in fact, first prove it under a
simplifying assumption, in order to display the method more clearly.

Since b0, b1 are distinct and T is a tree, there is an α < η such that (b0 ∖
α) ∩ (b1 ∖ α) = ∅. Define a sequence ⟨δi : i < ω⟩ by:

δ0 = the least ξ ∈ bi ∖ (α+ 1)

δ2i+1 = the least ξ ∈ b1 such that ξ > δ2i

δ2i+2 = the least ξ ∈ b0 such that ξ > δ2i+1

By minimality, each δi is a successor ordinal. Note that

T (δ2i+1) < δ2i < δ2i+1

since otherwise, setting ξ = T (δ2i+1), we would have ξ ≥ δ2i, ξ ∈ b1; hence
ξ > δ2i. But then δ2i+1 ≤ ξ < δ2i+1. Contradiction! A similar argument
shows:

T (δ2i+2) < δ2i+1 < δ2i+2

Hence:
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(1) T (δi+1) < δi < δi+1 for i < ω.

Set

(2) γi =: δi − 1, γ∗i = T (δi).

By (1) we then have

(3) κγi+1 < λγ∗i+1
≤ λγi ≤ κγi+2 .

We have λγi ≤ κγi+2 since (γi+1)T (γi+2+1). Now note that for n < ω
we have:

(4) If n is even, then ⟨δn+i : i < ω has the same definition as ⟨δi : i < ω⟩
with δn in place of α. Similarly for n odd, with b0, b1 reversed.

Hence we may without lose of generality assume α chosen large enough
that:

(5) No ξ ∈ (bh ∖ α) is a drop point (h = 0, 1). Thus Mγ∗i
= M∗

γi and we
have:

(6) πγ∗i ,δi :Mγ∗i
−→∗

Eνγi
Mδi .

Clearly

(7) supi<ω γi = supi<ω δi = ν, since otherwise supi<ω γi ∈ (b0∖α)∩(b1∖α).

By (6) we conclude:

(8) τγi is a cardinal in Mξ for ξ ≥ γ∗i .

Set:

(9) N = JE
ξ̃

=:
⋃
i J

EMγi

κγi
=

⋃
i J

EMγi

νγi
.

Until further notice we make the following simplifying assumption:

(SA) E
Mγi
νγi
|κγi+1 ∈Mγi (i < ω)

This would be true e.g. if M were passive and no truncation occurred
in the iteration, since then EMγi

νγi
∈Mγi .

Using this assumption we get:

(10) N |= there are arbitrarily large strong cardinals.

Proof. Since we can choose α (and hence κγ0) arbitrarily large, it
suffices by (4) to show:

Claim. κγ0 is strong in N .
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Proof. Set: Fn = E
Mγn
νγn |κγn+1 . Since κγn+1 < λγn by (3) and

Mγn ||λγn = N ||λγn , we conclude that Fn is strong at κγn on N of
length κγn+1 . But κγn+1 is regular in N . Hence N is extendable by Fn.
But we also have Fn ∈Mγ∗n+1

, since either γ∗n+1 = γn or γ∗n+1 < γn and
λγ∗n+1

is a cardinal in Mγn . But τγn+1 is a cardinal on Mγ∗n+1. Hence:

Fn ∈Mγ∗n+1
||τγn+1 =Mγn+1 ||τγn+1 ⊂ N.

Set G0 = F0. Then G0 ∈ N is strong on N at κγ0 of length κγ1 . If we
then set: Gn+1 = Fn+1 ·Gn for n < ω, we get

Gn+1 ∈ N is strong on κγ0 on N of length κγn+1

by successive application of Lemma 3.8.5. QED (10)

(11) Let A ⊂ OnN , A ∈Mb0 ∩Mb1 . Then N is Woodin for A.

Proof. Assume α is so chosen that A ∈ rng(πγ∗0 ,b0) ∩ rng(πγ∗1 ,b1). It
follows easily that:

Fn(A ∩ κγn) = A ∩ κγn+1 .

Hence Gn(A ∩ κγ0) = A ∩ κγn+1 . Then Gn ∈ N is A-strong for N at
κγ0 of length κγn+1 . QED (11)

We now face the task of redoing this without the special assumption
(SA). We first choose α large enough that we can avoid a certain un-
desirable situation:

Definition 3.8.8. If M = ⟨|M |, F ⟩ is an active premouse, we call F
the top extender of M .

Definition 3.8.9. n ∈ ω is undesirable if and only if Mδn has a top
extender F with crit(F ) ∈ [κγn , κγn+1).

(12) If α is chosen sufficiently large, then no n < ω is undesirable.

Proof: Suppose not. Then there are infinitely many undesirable n.
But then these are undesirable n,m such that n < m and n,m are
both add or both even. Then δn+1 <T δm+1. Let F be a top extender
of Mδn+1 , κ̄ = crit(F ). Then:

κ̄ < κδn+1 = crit(πδn+1,δm+1) by undesirablity.

Hence κ̄ = crit(F ′), where:

πδn+1,δm+1 : ⟨|Mδn+1 |, F ⟩ −→ ⟨|Mδm+1 |, F ′⟩

and F ′ is therefore a top extender of Mδm+1 . But κ̄ < κγn+1 ≤ κγm by
(3). Hence m is not undesirable. Contradiction! QED(12)

From now on let α be chosen as in (12). We wish to prove Theorem
3.8.4. Since α (and with it κγ0) can be chosen as large as we wish, it
will suffice to show:
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(13) There is κ̄ such that

• κγ0 ≤ κ̄ and κ̄ is strong in N

• If A ⊂ On∩N , A ∈ Mb0 ∩ Mb1 such that A ∈ rng(πγ∗0 ,b0) ∩
rng(πγ∗1 ,b1),

then κ̄ is A-strong for N .

Our main tool in proving this will be:

Lemma 3.8.10. Let a ∈ P(κγ1) ∩N such that F (a ∩ κγ1) = a. There
are G, F such that κγ0 ≤ κ̄ < κγ1 and:

• G is strong on N at κ̄ of length κγ1
• G(a ∩ κ̄) = a

• G ∈ N .

Proof. We assume the lemma to be false and derive a contradiction.
Knowing that we must fail, we nonetheless make ω many successive
attempts to produce such a G. But this sequence of attempts give a
descending sequence ⟨βi | i < ω⟩ of ordinals with: βi+1 < βi for i < ω.

Assume α chosen large enough that λ0 < κγ0 . We successively con-
struct

⟨βn, Ḡn, κ̄n⟩(n < ω) such that

• κγ0 ≤ κ̄n < κγ1

• Ḡn is strong on N at κ̄n of length κγ1
• Ḡn(a ∩ κ̄n) = a

• Ḡn = F |κγ1 , where F = E
Mβn
νβn is a top extender of Mβn .

We set β0 = γ0, Ḡ0 = F0, κ̄0 = κγ0 . Since Ḡ0 /∈ N , we have seen that
F = E

Mβ0
νβ0

must be the top extender of Mβ0 . Hence all conditions are
fulfilled at n = 0. Now let ⟨βn, Ḡn, κ̄n⟩ be given. γ∗1 is the least ordinal
η such that κγ1 < λη. Hence γ∗1 ≤ βn. But γ∗1 < βn, since otherwise:

πγ∗1 ,δ1 : ⟨|Mβn |, F ⟩ −→ ⟨Mδ1 , F
′⟩

where F = E
Mβn
νβn . Moreover:

crit(πγ∗1 ,δ1) = κγ1 > κ̄n.

Hence κ̄n = crit(F ′) ∈ [κγ0 , κγ1)T where F ′ is a top extender of Mδ1 .
Hence 1 is undesirable. Contradiction! by (12). Since γ∗1 < βn, there
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must be a least β such that β + 1 ≤T βn, κγ1 < λβ , and (β + 1, βn]T
has no trancation. Set:

βn+1 =: β, κ̄ = κ̄n+1 =: crit(E
Mβ
νβ ), Ḡn+1 = Ḡ =: E

Mβ
νβ |κγ1 .

Let h = T (β + 1), π = πh,βn . Then π : M∗
β −→ Mβn where Mβn

has a top extender F = E
Mβn
νβn . Thus M∗

β has a top extender F ′ and
π(crit(F ′)) = crit(F ) = κ̄n. Hence crit(F ′) = κ̄n < κ̄, since otherwise:

κ̄n = crit(F ) ≥ π(κ̄) ≤ λβ > κγ1 > κ̄n.

Contradiction! We have shown:

(1) κ̄n < κ̄

We now show:
(2) κ̄ ̸= κγn

Suppose not. Then: γ∗1 = h, M∗
β = Mh and πh,δ1 : M

∗
β −→ Mδ1 .

Hence Mδ1 has a top extender F̃ with crit(F̃ ) = crit(F ′) = κ̄n ∈
[κγ0 , κγ1). Hence 1 is undesirable. Contradiction! QED (2)

(2) κ̄ < κγn
Suppose not. Then κγn < κ̄: Hence either γ∗1 = h or γ∗1 < h

and λγ∗1 is a cardinal in Mh. In either case J
M∗

gamma1
τγ1

= JMh
τγ1

and
τγ1 < κ̄ is a cardinal in Mh. But then M∗

β =Mh, since otherwise
F ′ ∈Mh; F ′|κ̄ = F |κ̄, since π ↾ κ̄ = id. Hence:

Ḡn = F ′|κγ1 ∈ JE
Mγ1

τγ1
⊂ N.

Contradiction! But then β+1 is not a drop point. We have seen,
however, that γ∗1 < βn. Hence β is not the least β+1 ≤T βn such
that κγ1 < λβ and (β+1, βn]T has no drop point. Contradiction!
QED (2) Hence:

(3) Ḡ = E
Mβ
γβ |κγ1 is strong on N at κ̄0 of length κγ1 .

Proof. N ||λβ = Mβ|λβ and hence EMβ
νβ is strong on N at κ̄ of

length λβ > κγ1 .
(4) Ḡ(a ∩ κ̄) = a.

Proof. Let G∗ = E
Mβ
νβ , ā = a ∩ κ̄n, a′ = F ′(ā), ã = F (ā). Then

ã ∩ κγ1 = Ḡn(ā) = a. Since:

κ̄ = crit(G∗) = crit(π), ã = π(a′),

we have: a′ ∩ κ̄ = ã ∩ κ̄ = a ∩ κ̄. But G∗(a ∩ κ̄) = G∗(a′) ∩ λνβ =
ã ∩ λνβ , since π(a′) = πβ+12,βnG

∗(a′) and crit(πbeta+1,βn) ≥ λνβ .
Hence

Ḡ(a ∩ κ̄) = ã ∩ κγ1 = a.
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QED (4)
By our assumption we conclude: Ḡ /∈ N . But then:

(5) G∗ = E
Mβ
νβ is a top extender on Mβ .

Proof. Suppose not. Then G∗ ∈ Mβ . But J
Mγ∗1
τγ1

= JE
Mβ

τγ1
and τγ1

is a cardinal in Mβ , since either γ1 = β or γ1 < β and λγ1 is a
cardinal in Mβ . Hence:

Ḡ = G∗|κβ ∈ J
Eγ∗1
τγ1
⊂ J

Eγ∗1
λγ∗1
⊂ N

. QED (5)

This completes the construction. It is evident that β̄n+1 < β̄n for
n < ω. Contradiction! QED(Lemma 3.8.12)

We can now prove (13): Let G be as in Lemma 3.8.12. Set Gn =
Fn+1 ·G. Since G ∈ N is strong on N at κ̄ of length κγ1 and we set

Gn = Fn+1 ·G (n < ω)

it follows by successive application of Lemma 3.8.5 that:

Gn ∈ N is strong on N at κ̄ of length κγn+1 .

Moreover, if A ⊂ On∩N such that

A ∈ rng(πγ∗0 ,b[0) ∩ rng(πγ∗1 ,b1).

Then:
Fn(A ∩ κγn) = A ∩ κγn+1 for n < ω.

Hence F0(A ∩ κγn) = A ∩ κγn+1 and:

Gn(A ∩ κ̄) = A ∩ κγn+1 (n ∈ ω).

Hence κ̄ is A-strong in N . QED (13)

This proves Theorem 3.8.4.

Note Strictly speaking, we have only proven that if A ⊂ On∩N and
A ∈Mb0 ∩Mb1 , then N is Woodin for A.

We now show that this implies the full result. We use the fact that any
A ⊂ N can be coded by a set Ã ⊂ η̃. Let N = JEη̃ and suppose that
α ≤ η̃ is Gödel-closed. By Corollary 2.4.12 we know M = hM”(ω×α),
where M = JEα . Let kα be the canonical Σ1(M) uniformization of

{⟨ν, x⟩ : x = hM ((ν)0, (ν)1)}

Then kα injects M into α and is uniformly Σ1(M). Set k = kη̃. Then:
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(a) kα = k ↾α if α < ξ̃ is Gödel-closed.

(b) k−1
µ = k−1 ↾ µ if µ < η̃ is a cardinal in N (since JEµ is Σ1-

elementary submodel of N).

(c) kα ∈ N for Gödel-closed α < η̃.

(d) Let A ⊂ N and set Ã = k“A. If µ < η̃ is a cardinal in N ,
then Ã∩ µ = k“µ(A∩ JEµ ) (hence ⟨N, Ã⟩ is amenable if ⟨N,A⟩ is
amenable.

Theorem 3.8.4 then follows from

(14) Let A ⊂ N such that ⟨N, Ã⟩ is amenable and N is Woodin with respect
to Ã. Then N is Woodin with respect to A.

Proof: Let G ∈ N be Ã-strong in N at κ of length µ, where µ > ω is
regular in N .

Claim. G is A-strong in N (i.e. G̃(A ∩ JEκ ) = A ∩ JEµ ).

Proof: N is extendable by G. Set:

π : N −→G N
′ = JE

′

x̃i

Let k′, k′α be defined over N like k, kα over N . Since G is strong in N
we have: JEµ = JE

′
µ and kµ = k′µ. Let ν = π(κ). Then k′ν = k′ ↾ JE

′
ν .

Hence for y ∈ JEµ we have:

y ∈ G̃(A ∩ JEκ )←→ kµ(y) ∈ k′ν”G̃(A ∩ JEκ )
←→ kµ(y) ∈ k′ν”π(A ∩ JEκ )
←→ kµ(y) ∈ π(k′ν”(A ∩ JEκ ))
←→ kµ(y) ∈ G(Ã ∩ κ)
←→ kµ(y) ∈ Ã ∩ µ = kµ”(A ∩ JEµ )
←→ y ∈ A ∩ JEκ

This proves (14) and with it Theorem 3.8.4.

Note. The notion of premouse which we develop in this book is based on
the notion developed by Mitchell and Steel in [MS]. However, they employ
a different indexing of the extenders than we do. Their indexing makes it
much easier to prove Theorem 3.8.4, since our special assumption (SA), when
reformulated for their premice, turns out to the outright.

We note a further consequence of our theorem:

Lemma 3.8.11. Let N = JEη̃ be as in Theorem 3.8.4. There are arbitrarily
large ν ∈ N such that Eν ̸= ∅.
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Proof: Suppose not. Let α < η be a strict upper bound of the set of such
ν. Then N is a constructible extension of JEα (in the sense of Definition of
E in §2.5). By Theorem 3.8.4 some κ > α is strong in N . In particular,
there is F ∈ N which is an extender at κ on N and N is extendible by
F . Let π : N −→F N ′. Then ⟨N ′, π⟩ is the extension of ⟨N, π̄⟩ where
π̄ : JEτ −→ JEν is the extension of F (with τ = κ+N ). Then π̄ ∈ N . Hence ν
is not regular in N since τ < ν and ν = sup π̄”τ . Clearly, however, N ′ = JE

′
η′

is a constructible extension of JEα′ , where α′ ≥ α. Hence N ⊂ N ′. ν is
regular in N ′, since ν = π(τ). But then ν is regular in N . Contradiction!
QED(Lemma 3.8.11)

We have actually proven a stronger result than we have stated. Theo-
rem 3.8.4 does, in fact, not require that the cofinal branches b0, b1 be well
founded. Let b be any cofinal branch in I, Let i0 be such that i0 ∈ b and no
i ∈ b \ i0 is a truncation point. Let:

Mb, ⟨πi,b | i ∈ b⟩

be defined by taking
Mb, ⟨πi,b | i ∈ b \ i0⟩

as the direct limit of

⟨Mi | i ∈ b \ i0⟩, ⟨πi,j | i0 ≤ i ≤ j in b⟩

and then setting:
πj,b =: πi0,b · πj,i0 for j ∈ b ∩ i0

Mb may not be well founded, but we assume it to be grounded in the sense
that its well founded core wfc(Mb) is transitive and:

E ∩ wfc(Mb) = EMb
∩ wfc(Mb).

(Mb is thus defined up to isomorphism and wfc(Mb) is defined uniquely. ) If
we define ˜eta, N as in Theorem 3.8.4 it follows easily that η̃, N ⊂ wfc(Mb)
(since πi,b ↾κi = id for i ∈ b). We then obtain the following stronger result
of Lemma 3.8.4:

Theorem 3.8.12. Let M , I, η̃, N be as in Theorem 3.8.4. Let b0, b1 be
distinct cofinal branches in I. Let A = A0 ∩N = A1 ∩N , where Ah ∈ Mbh

for h = 0, 1. Then N is Woodin with respect to A.

As before, the proof is by showing that there are arbitrarily large κ < η̃
which are A-strong in N . The steps are virtually the same, requiring only
cosmetic changes. (Basically, this is because our proofs only talked about
⟨N,A⟩ rather than Mb0 and Mb1 . ) Theorem 3.8.12 will play an important
role in Chapter 5. It was first noticed by Woodin.
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3.8.3 One smallness and unique branches

We now apply the method of the previous subsection to one small mice. We
let M, b0, b1, α, γn(n < ω), etc. be as before, but also assume that M is one
small. It is easily seen that every normal iterate of M must be one small.
Hence Mb0 ,Mb1 are one small. Letting η, η̃, N be as before, we set:

Definition 3.8.10. Q =: JE
N

β , where β = min(OnMb0
,OnMb1

).

By Theorem 3.8.4 we obviously have:

Lemma 3.8.13. η̃ is Woodin in Q.

From now on, assume w.l.o.g. that OnMb0
≤ OnMb1

(i.e. OnMb0
= β). Then:

Lemma 3.8.14. Mb0 = Q.

Proof: Suppose not. Then there is ν ≥ η̃ such that E
Mb0
ν ̸= ∅. But then

ν > η̃, since η̃ is a limit of cardinals in Mb0 and ν is not. Taking ν as
minimal, we then have JE

Mb0

ν = JE
N

ν |= η̃ is Woodin. Hence Mb0 is not one
small. Contradiction! QED (Lemma 3.8.14)

But then we can essentially repeat our earlier argument to show:

Lemma 3.8.15. Let A ⊂ N be Σ∗(Q) such that ⟨N,A⟩ is amenable. Then
N is Woodin for A.

Proof: As before, we can assume w.l.o.g. that A ⊂ OnQ. Let A be Σ∗(Q)
in a parameter p by Σ∗ definition φ. We assume α to be chosen as before,
but now large enough that for h = 0, 1:

• p ∈ rng(πγ∗h , bh)

• If N ̸= Q, then N ∈ rng(πγ∗h,bh)

• If OnMbh
> OnQ (hence h = 1), then Q ∈ rng(πγ∗1 , b1).

Since Mb0 = Q we have

πγ∗2i,b0 :M∗
γ2i −→Σ∗ Q with critical point κ2i.

Let A2i be defined over M∗
γ2i in p2i = π−1

γ∗2i,b0
(p) by φ. Set:

N2i =

{
π−1
γ∗2i,bi

(N) if N ∈ Q
Mγ∗2i

if not
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Then ⟨N2i, A2i⟩ is amenable and:

(πγ∗2i,b0 ↾N2i) : ⟨N2i, A2i⟩ −→Σ0 ⟨N,A⟩

It follows easily that A2i ∩ κγ2i = A ∩ κγ2i and

E
Mγ2i
νγ2i

(A ∩ κγ2i) = πγ∗2i,γ2i+1(A ∩ κγ2i) = A ∩ λγ2i .

If On∩Mb1 = On∩Q, it follows by symmetry that Mb1 = Q. Hence:

πγ∗2i+1,b1
: M∗

2i+1 −→Σ∗ Q with critical point κγ2i+1 .

If we then define A2i+1, N2i+1, p2i+1 as before. We get:

E
Mγi
νγi

(A ∩ κγi) = πγ∗i ,γi+1(A ∩ κγi) = A ∩ λγi

for i ∈ ω. If Mb1 ̸= Q we set:

A2i+1 = π−1
γ∗2i+1,b1

(A), N2i+1 = π−1
γ∗2i+1,b1

(N)

and get the same results. As before we define Fi = E
Mγi
νγi
|κγi+1 . Then :

Fi(A ∩ κγi) = A ∩ κγi+1 for i ∈ ω.

In particular, F is A-strong on N at κγi of length κγi+1. Now let a = A∩κγ1 .
By Lemma 3.8.12 there are G, κ̄ such that κγ0 < κ̄ < κγ1 and :

• G ∈ N is strong on N at κ̄ of length κγ1

• G(a ∩ κ̄) = a.

Successively, define Gn (n ∈ ω) by:

G0 = G,Gn+1 = Fn+1 ·Gn.

Just as before we get: Gn(A ∩ κ̄) = A ∩ κγn+1 and:

Gn is A-strong on N at κ̄ of length κγn+1 .

But this holds for arbitrarily large κ̄, since, by making α large enough, we
can make κγ0 as large as we want. QED (Lemma 3.8.15)

Note that, by lemma 3.8.15, we san conclude that if ρωQ ≥ η̃ and A ∈ Σ∗(Q)
such that A ⊂ N , then N is Woodin with respect to A. We now prove:

Lemma 3.8.16. ρωQ ≥ η̃.
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Proof: Suppose not. We consider two cases:

Case 1 ρnQ ≥ η̃, ρ
n+1
Q < η̃ for any n < ω.

(This includes the case N = Q.) Then there is a Σ
(n)
1 (Q) set B ⊂ η̃ such

that ⟨N,B⟩ is not amenable. Let:

B(ξ)←→
∨
znA(z, ξ),

where A is a Σ
(n)
0 in a parameter p. Define B′ ⊂ η̃ by:

B′(≺ ξ, ζ ≻)←→
∨
z ∈ JEN

ζ A(z, ξ) for ξ, ζ < η̃.

Claim 1 ⟨N,B′⟩ is amenable.

Proof. If τ ∈ N is regular in N , then B′ ∩ τ ∈ N , since:

≺ ξ, ζ ≻∈ B′ ∩ τ ←→
∨
z ∈ JEN

τ A(z, ξ).

By Claim 1 there are arbitrarily large κ < η̃ which are Woodin with respect
to B′. Choose such a κ large enough that B ∩ κ /∈ N .

Claim 2 There is ξ0 ∈ B ∩ κ such that ¬B′(≺ ξ0, ζ ≻) for all ζ < κ.

Proof. If not: B ∩ κ = {ξ |
∨
ζ < κB′(≺ ξ, ζ ≻)}. Hence B ∩ κ ∈ N .

Contradiction. QED(Claim 2)

Let F ∈ N be B′-strong in N at κ of length µ, where
∨
ζ < µB′(≺ ξ0, ζ ≻).

Set: B′′ = {ζ | B′(≺ ξ0, ζ ≻)}. Then:

∅ = F (∅) = F (B′′ ∩ κ) = B′′ ∩ µ ̸= ∅.

Contradiction! QED(Case 1)

Case 2 ρnQ > η > ρn+1
Q for an n < ω.

Let Q∗ = Qn,p
n
Q . Then each element of Q∗ has the form: h(i,≺ p, ξ, η̃ ≻)

where i < ω, ξ < η̃ and h = hQ∗ is the Σ1 Skolem function for Q∗. Set:

f(≺ i, ξ ≻) ≃ h(i,≺ p, ξ, η̃ ≻) if i < ω, ξ < η̃ (3.1)
f(α) undefined otherwise. (3.2)

Then |Q∗| = f”η̃. Set:

f̄(ζ) ≃

{
f(ζ) f(ζ) < η̃

otherwise undefined.
(3.3)
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Then η̃ = f̄”η̃. We consider two subcases:

Case 2.1 There is δ < η̃ such that lub f̄”δ = η̃.

Let:
ζ = f̄(ξ)←→

∨
z ∈ Q∗H(z, ξ, ζ)

where H is Σ
(n)
0 (Q). Let η∗ = ht(Q∗). For γ < η set:

ζ = f̄γ(ξ)←→:
∨
z ∈ SEQ∗

γ H(z, ξ, ζ).

Then f̄γ ∈ Q. Hence lub f̄γ”δ < η̃, since η̃ ∈ Q is Woodin, hence regular in
Q. But: ⋃

γ<η∗

f̄γ”δ = f̄”δ is unbounded in η̃.

Set:
g(µ) = lub{γ < η∗ | f̄γ”δ < µ}

Then:
g(µ) < η∗ for µ < η̃ but lubµ<η̃ g(µ) = η∗.

We are now in a position to imitate the proof in Claim 1. Assume B ∈
Σ
(n)
1 (Q) where B ⊂ η̃ and ⟨N,B⟩ is not amenable. We can suppose δ to be

chosen large enough that B ∩ δ /∈ N . Let:

B(ξ)←→
∨
znA(z, ξ) where A is Σ

(n)
0 (Q).

Set:
B′(≺ ξ, ζ ≻)←→

∨
γ < g(ζ)

∨
z ∈ SEQ∗

γ A(z, ξ)

for ξ, ζ < η̃. Then

B(ξ)←→
∨
ζ < η̃B′(≺ ξ, ζ ≻).

Claim 1 ⟨N,B′⟩ is amenable.

Proof. If τ ∈ N is regular in N , then B′∩τ ∈ N , since: g(ζ) ≤ g(τ) for ζ < τ

and ⟨SEQ∗

γ | γ < g(τ)⟩ ∈ Q. Thus B′ ∩ τ ∈ Q. Hence B′ ∩ τ ∈ N = HQ
η̃ .

QED(Claim 1)

But then there are arbitrarily large κ ∈ N which are Woodin for B′ in N .
Choose such a κ such that κ ≥ δ. Exactly as before we get: Claim 2 There
is ξ0 ∈ B ∩ κ such that ¬B′(≺ ξ0, ζ ≻) for all ζ < κ.

Now let F ∈ N be B′-strong in N at κ of length µ such that µ > ζ for all ζ
such that B′(ξ0, ζ). Set:

B′′(ζ)←→: B′(ξ0, ζ).
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Then:
∅ = F (∅) = F (B′′ ∩ κ) = B′′ ∩ µ ̸= ∅.

Contradiction! QED (Case 2.1 )

Case 2.2 Case 2.1 fails.

Then lub f̄”δ < η̃ for all δ < η̃. We again derive a contradiction. Let
B ⊂ η̃ be Σ1(Q

∗) in q ∈ Q∗ such that ⟨N,B⟩ is not amenable. Note that
f”γ ≺Σ1 Q

∗ whenever γ < η̃ is Gödel closed. Moreover, Q∗ = f”η̃. Let
B ∩ δ /∈ N , where δ < η̃ such that δ is Gödel closed and q ∈ f”δ. Define a
sequence δn (n < ω) by: δ0 = δ, δn+1 = the least δ ⊂ f̄”δn such that δ is
regular in N . Set: δ̃ = lubn<ω δn. We consider two cases:

Case 2.2.1 δ̃ < η̃.

Let X = f”δ̃. Then X ≺Σ1 Q
∗ such that q, η̃ ∈ X. Let σ : Q̄∗ ∼←→ X be the

transitivation of X. Then σ : Q̄∗ −→Σ1 Q
∗. It is easily seen that X ∩ η̃ = δ̃.

Since η̃ ∈ X we have:
δ̃ = crit(σ), σ(δ̃) = η̃.

Let σ(q̄) = q. Then B̄ = B∩δ̃ is Σ1(Q̄
∗) in q̄. By the extension of embeddings

lemma there are Q̄, p̄, σ′ such that Q̄∗ = Q̄n,p̄ and σ′ ⊂ σ such that

σ′ : Q̄ −→
Σ

(n)
1

Q and σ′(p̄) = p.

Since Q = JEα , where E ∈ N and N = JEη̃ , we conclude that Q̄ = J Ēᾱ where
Ē ⊂ N̄ , N̄ = J Ē

δ̃
. Since σ(δ̃) = η̃, σ ↾ δ̃ = id, we conclude Ē = E ∩ N̄ . WE

now show:

Claim ᾱ < η̃.

Proof. Suppose not. Since η̃ is Woodin in Q, we know that Eν ̸= ∅ for
arbitrarily large ν < η̃. Let ν be least such that δ̃ ≤ ν and Eν ̸= ∅. Then
δ̃ < ν, since δ̃ is a limit cardinal in N . Then Eν ̸= ∅ and δ̃ is Woodin in
JEν = J Ēν . Hence N is not 1-small. Contradiction! QED(Claim)

But then Q̄ = J Ēα ∈ N , since Ē = E ∩ N̄ and N = JE
δ̃

. Hence Q̄∗ = Q̄n,p̄ ∈
N̄ . Hence B∩ δ̃ ∈ N since B∩ δ̃ is Σ1(Q

∗). Hence B∩δ ∈ N . Contradiction!
QED(Case 2.2.1)

All that remains is:

Case 2.2.2 δ̃ = η̃.

Let C = {δn | n < ω}. Then C is Q-definable in parameters and ⟨N,C⟩ is
amenable, since u ∩ C is finite for u ∈ N . But then there is κ ∈ N which is
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Woodin with respect to C. Let µ < κ such that C ∩ (κ \ µ) = ∅. Let F be
C-strong at κ in N of length τ such that C ∩ (τ \ κ) ̸= ∅. Then:

∅ = F (∅) = F (C ∩ (κ \ κ)) = C ∩ (τ \ κ) ̸= ∅.

Contradiction! QED(Lemma 3.8.16)

Making use of this we prove:

Lemma 3.8.17. There is no truncation on the branch b0.

Proof: Suppose not. Let µ + 1 be the least truncation point. Let µ∗ =
T (µ + 1) (hence µ + 1 ≤T γ0 + 1 and µ∗ ≤T γ∗0). Then ρωM∗

µ
≤ κµ. Hence

ρωMb0
≤ κµ < η̃, since crit(πµ∗,b) = κµ. Contradiction! QED (Lemma 3.8.17)

Hence π0,b0 :M −→Σ∗ Q. We shall use this fact to garner information about
M . We know:

(a) Q = JEβ is a constructible extension of N = JEη̃ .

(b) η̃ = lub{ν : Eν ̸= ∅}

(c) ρωQ ≥ η̃ (hence Q is sound).

(d) If A ⊂ N = JEη̃ , A ∈ Σ(Q), then N is Woodin for A.

Note. By soundness we have: Σ∗(Q) = Σω(Q).

We shall prove:

Lemma 3.8.18. Let η0 = lub{ν : EMν ̸= ∅}. Then:

(a) η0 ≤ ONM is a limit ordinal. Hence M is a constructible extension of
N0 = JE

M

ν0 .

(b) ρωM ≥ η0. Hence M is sound.

(c) Let A ∈ Σω(M) such that A ⊂ N . Then N0 is Woodin for A.

Proof: Set π = π0,r0 . For i ∈ b0 set: πi = πi,b0 . Then πi : Mi −→Σi

Q. We find prove (a). Suppose not η0 ̸= 0, since otherwise the iteration
would be impossible. Hence there is a maximal ν, such that EMν ̸= ∅. The
statement EMν ̸= ∅ is Σr(M) in ν and the statement “ν is maximal” is
Π1(M). Hence these statement hold in Q of π(ν). But π(ν) < η̃ is not
maximal. Contradiction! QED(a)
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We now prove (b). If not, then ρωM ≤ ν where EMν ̸= ∅. But ρωM ||ν ≤ λ,
where κ = crit(EMν ) and λ = λ(EMν ) =: EMν (κ). Hence ρωM ≤ λ < ν. Hence

ρωQ ≤ π(ρωM ) ≤ π(λ) < π(ν) < η̃

Contradiction! QED(b)

We now prove (c). Let A ⊂ N0 be Σω( , ). Since M is sound, A is Σ∗(M)
by Corollary 2.6.30. Let A be Σ∗(M) in q and let A′ be Σ∗(Q) in q′ = π(q)
by the same definition. Pick n < ω such that ρnM = η0 and ρnQ = η̃. Clearly,
every Σω(H

n
M , A) statement translates uniformly into a statement which is

Σ∗(M) in q. Similarly for Q,A′, q′. Hence:

π ↾N0|⟨N0, A⟩ ≺ ⟨N,A′⟩

But the statement “N is Woodin for A′” is elementary in ⟨N,A′⟩. Hence N0

is Woodin for A. QED(Lemma 3.8.18)

We now define:

Definition 3.8.11. A premouse M is restrained iff it is one small and does
not satisfy the condition (a)-(c) in Lemma 3.8.18.

We have proven:

Theorem 3.8.19. Every restrained premouse has the normal uniqueness
property.

By theorem 3.6.1 and theorem 3.6.2 we conclude:

Corollary 3.8.20. Let n > ω be regular. Let M be a restrained premouse
which is normally κ+ 1-iterable. Then M is fully κ+ 1-iterable.

Hence, if α > ω is a limit cardinal and M is normally α-iterable, then M is
fully α-iterable. This holds of course for α =∞ as well.

We also note the following fact:

Lemma 3.8.21. Let M be restrained. Then every normal iterate of M is
restrained.

Proof: Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πi⟩, T ⟩ be the iteration of M to M ′ =Mµ.

Case 1: There is a truncation on the main brach b = {i : i ≤T µ}. Let
i+ 1 be the last truncation point. Then κi < λh where h = T (i+ 1). Hence
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ρωM∗
h
≤ λh < νh. Hence ρωM ≤ πh,ν(ρ

ω
M∗

h
) < πh,µ(νh), where EM ′

πh,µ(νh)
̸= ∅.

Hence M ′ is restrained.

Case 2: Case 1 fails. Then π0,1 :M −→Σ∗ M ′.

Case 2.1: ρωM < ν for a ν such that EMν ̸= ∅. This is exactly like Case 1.
There remains the case:

Case 2.2: Case 2.1 fails. Then η = lub{ν : EMν ̸= ∅} is a limit ordinal and
M is a constructible extension of JEM

ν . But then there is A ⊂ JEν such that
A ∈ Σω(M) and JE

M

ν is not Woodin for A. Repeating the proof of Lemma
3.8.18, it follows that π0,n is an elementary embedding of M into M ′. If A
is Σω(M) in p and A′ is Σω(M

′) is π(p), it follows that N ′ = JE
M′

ν′ is not
Woodin for A′, where

ν ′ = lub{ν : EM
′

ν ̸= ∅} = π0,µ(η)

Hence M ′ is restrained. QED(Lemma 3.8.21)
Note. We could also show that every smooth iterate of a restrained premouse
is restrained. This does not hold for full iterates, however, since there can
be a restrained M such that M ||µ is not restrained for some µ ∈M .

3.8.4 The Bicephalus

In this section we verify some technical lemmas which will be needed in
Chapter 5. There are we’ll need to consider "two headed mice", also known
as bicephali.

Definition 3.8.12. By a bicephalus we mean a structure M = ⟨|M |, F 0, F 1⟩
s.t,

• |M | = JEν is a passive premouse,

• ⟨|M |, Fn⟩ is an active premouse for n = 0, 1.

The possibility that F 0 ̸= F 1 is not excluded. (Ultimately, however, we will
aim to show that in all interesting cases, we have F 0 = F 1. Using this we
shall show that the inner model Kc constructed in Chapter 5 is uniquely
determined. ) By Theorem 3.3.24 we have;

Lemma 3.8.22. Let M = ⟨|M |, F 0, F 1⟩ be a bicephalus. Let G be an exten-
der at κ ∈M on M . Let;

π : M −→G M
′ = ⟨|M ′|, F ′0, F ′1⟩.

Then M ′ is a bicephalus.
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Note. Here we are using Σ0 ultrapowers. This makes sense if we consider
that M ′ is obtained by first applying G to the ZFC− model |M | and then
recovering F 0′, F 1′ by:

F h
′
=

⋃
u∈M

π(u ∩ F h) for h = 0, 1

When we normally iterate bicephali, we shall apply the Σ0 ultrapowers on
non-truncating branches.

By Theorem 3.3.25 we have:

Theorem 3.8.23. Let M0 = ⟨|M0|, F 0, F 1⟩ be a bicephalus. Let πi,j : Mi −→
Mj (i ≤ j ≤ η) be a system of commuting maps such that

• πi,i+1 : Mi −→Gi Mi+1, where Gi is an extender in Mi,

• Mi is transitive and the πi,j commutes,

• If λ ≤ η is a limit ordinal, then

Mλ, ⟨πi,λ | i < λ⟩

is the transitivased direct limit of:

⟨Mi | i < λ⟩, ⟨πi,j | i ≤ j < λ⟩.

Then each Mi is a bicephalus.

Definition 3.8.13. By a precephalus we mean either a premouse or a pre-
bicephalus. If M is a precephalus, ν ⊂ M is a limit ordinal, and EMν is
uniquely determined, we set: M ||ν = ⟨|M |, EMν ⟩. If, however, ν = ht(M)
and M = ⟨|M |, F 0, F 1⟩ is a bicephalus, we set M ||ν =: M . FMν is then
defined to be :

{EMν } if uniquely defined, {F 0, F 1} if not.

Using this we can define the notion of a normal iteration:

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨Fi⟩, ⟨πi,j⟩, T ⟩

of a precephalus M . This is defined exactly as before in §3.4 except that:

• If h = T (i+ 1), we apply Fi ∈ Fνi to M∗
i

• If i + 1 is not a drop point (i.e. τi is a cardinal in Mh ) and Mh is a
bicephalus, then Mi+1 is the Σ0-ultrapower of Mh:

πh,i+1 : Mh −→Fi Mi+1
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• In all other cases, set:

πh,i+1 : M
∗
i −→n

Fi
Mi+1,

where n ≤ ω is maximal such that κi < ρnM∗
i
.

As usual we set:
κi =: crit(Fi), τi =: κ

+Mi||νi
i .

and:
λi =: Fi(νi) = the largest cardinal in Mi||νi.

(Thm κi, τi are dependent on the choice of Fi, whereas λi depends only on
νi. ) We again have:

T (i+ 1) =: the least h such that κi < λh or i = h.

This, of course, means that in the definition of "normal iteration" given in
§3.4.2, we must make appropriate changes in (b), (c), and (f). If I is the
iteration of a bicephalus M , it follows easily by induction on i that

Mi is a bicephalus if and only if [0, i)T has no drop.

We leave this to the reader. If M is not a bicephalus, then I is a normal
iteration in the new sense if and only if in the old sense, Lemma 3.4.1 and
Lemma 3.4.10 still hold.

Note. It may seem strange that, if h = T (i + 1) and Mh = M∗
i =

⟨|Mh|, F 0
h , F

1
h ⟩ is a bicephalus, we take the Σ0 ultraproduct of Mh rather

that the ∗-ultraproduct. But |Mh| is then a ZFC− model and we are -in
effect- applying EMi

νi to |M |. For this the Σ0-ultrapower is appropriate. We
then recover F 0

i+1, F
1
i+1 by:

F li+1 =
⋃

u∈|Mh|

πh,i+1(u ∩ F lh).

We can turn an iteration:

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨Fi⟩, ⟨τi,j⟩, T ⟩

of length to i+1 into a potential iteration of length i+2 by appointing a pair
of indices ⟨νi, Fi⟩ such that νi > νj for j < i and Fi ∈ FMi

νi . We leave it to
the reader to amend the definition in §3.3.2 appropriately. Given the choice
of νi, Fi we can then define h = T (i + 1), M∗

h = Mh||β (for appropriate β)
as usual. We do not know, however, whether M∗

i is extendable by Fi. In
place of Theorem 3.4.4 we then have:
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Theorem 3.8.24. Let I be a normal iteration of M of length i+1. Extend
it to a potential normal iteration of length i+2 by appointing appropriate νi,
Fi, then Fi is close to M∗

i .

This means that whenever M∗
i is not a bicephalus, we shall have:

πh,i+1 : M
∗
i −→∗

Fi
Mi+1,

whereas we take the Σ0-ultraproduct otherwise.

The proof of Theorem 3.8.24 is a simple variant of the earlier proof.

Our main result here is that Theorem 3.8.4 holds for bicephali as well as
for premice. In fact, we can almost literally repeat the proof. This seems
problematic at first glance, since our proof makes frequent use of the notation
EMi
νi in describing a normal iteration of a precephalus M , although Mi =
⟨|Mi|, F 0, F 1⟩might be a bicephalus. If then νi = ht(Mi), we let EMi

νi denotes
that F ∈ {F 0, F 1} which we chose to apply to M∗

i at stage i. Let M be a
precephalus and let

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨Fi⟩, ⟨πi,j⟩, T ⟩

be a normal iteration of M of limit length η. Let b0, b1 be distinct cofinal
well fouded branches in I. Pick α < η such that (b0 \ α) ∩ (b1 \ α) = ∅ and
define δi, γi, γ∗i exactly as before. If we make the special assumption:

(SA) Eνγi |κγi+1 ∈Mγi ,

We can literally repeat the steps (1)-(11).

We now attempt to redo the proof without (SA). The situation is compli-
cated by the fact that a bicephalus M can have two distinct top extenders.
Nontheless we define the notion undesirable able exactly as before. (Note
that the definition speaks of "a top extender" rather than "the top extender".
) We again prove:

(12) If α is sufficiently large, then no n is undesirable.

Proof. Assign to each undesirable n an integer ⟨in, jn⟩ as follows:

• in =

{
0 n is even
1 n is odd.

• jn = 0 if Mδn is a premouse or Mδn = ⟨|M |, F 0, F 1⟩ is a prebicephalus
with crit(F 0) ∈ [κγn , κγn+1).
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• jn = 1 if not.

(Hence crit(F 1) ∈ [κγn , κγn+1). )

If (12) fails, there are infinitely many undesirable n. In particular, there are
undesirable n, m such that

n < m and ⟨in, jn⟩ = ⟨im, jm⟩.

This gives a contradiction exactly as before. (We leave this to the reader. )

If we have chosen α large enough that (12) holds, we can then literally repeats
the proof of Lemma 3.8.12 and the definition of (13). QED(Theorem 3.8.4)

We call a bicephalus ⟨|M |, F 0, F 1⟩ 1-small if and only if ⟨|M |, F 0⟩, ⟨|M |, F 1⟩
are 1-small premice. (Since |M | is a ZFC− model, this is equivalent to:
|M | |= There is no Woodin cardinal. ) The proofs in §3.8.3 then go through
literally as before for 1-small precephali. In particular, Lemma 3.8.18 goes
through (although we must change the definition of η0 to:

η0 = lub{ν | Fν ̸= ∅}).

If M has top extenders, then η0 is obviously a successor ordinal. Hence M
is restrained. In particular, every prebicephalus is restrained. Hence:

Lemma 3.8.25. Let I be a normal iteration of a prebicephalus M of limit
length. Then I has at most one cofinal well founded branch.



Chapter 4

Properties of Mice

4.1 Solidity

In §2.5.3 we introduced the notion of soundness. Given a sound M , we
were then able to define the n-th projectum ρnM (n < ω). We then defined
the n-th reduct Mn,a with respect to a parameter a (consisting of a finite
set of ordinals). We then defined the n-th set PnM of good parameters and
the set RnM of very good parameters. (Soundness was, in fact, equivalent to
the statement: Pn = Rn for n < ω). We then defined the n-th standard
parameter pnM ∈ RnM for n < ω. This gave us the classical fine structure
theory, which was used to analyze the constructible hierarchy and prove such
theorems as □ in L. Mice, however, are not always sound. We therefore took
a different approach in §2.6, which enabled us to define ρnM ,M

n,a, PnM , R
n
M

for all acceptable M . (In the absence of soundness we could, of course, have:
RnM ̸= PnM ). In fact RnM could be empty, although PnM never is. PnM was
defined in §2.6.

PnM is a subset of [OnM ]<ω for acceptable M = ⟨JAα , B⟩. Moreover, the
reduct Mn,a is defined for any n < ω and a ∈ [OnM ]<ω. The definition of
PnM ,M

n are recapitulated in §3.2.5, together with some of their consequences.
RnM is defined exactly as before, taking = RnM = ∅ if n is not weakly sound.
At the end of §2.6 we then proved a very strong downward extension lemma,
which we restate here:

Lemma 4.1.1. Let n = m + 1. Let a ∈ [OnM ]<ω. Let N = Mn,a. Let
π : N −→Σj N where N is a J-model and j < ω. Then:

(a) There are unique M,a such that a ∈ Rn
M

and Mn,a
= N .

399
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(b) There is a unique π ⊃ π such that:

π :M −→
Σ

(m)
0

M strictly and π((a)) = a.

(c) π :M −→
Σ

(n)
j

M.

In §2.6. we also proved:

Lemma 4.1.2. Let n = m+ 1. Let a ∈ RnM . Then every element of M has
the form F (ξ, a) where ξ < ρnM and F is a good Σ

(m)
1 function.

Corollary 4.1.3. Let n, a, π, π be as in Lemma 4.1.1, wehere j > 0. Then

rng(π) = The set of F (ξ, a) such that F is a good Σ
(m)
1 function and ξ ∈ rng(π)∩ρnM

Proof.. Let Z be the set of such F (ξ, a).

Claim 1. rng(π) ⊂ Z.

Proof. Let y = π(y). Then y = F (ξ, a) where F is a good Σ
(n)
1 (M)

function and ξ < ρn
M

by Lemma 4.1.2. Hence y = F (π(ξ), a), where F has

the same good Σ
(n)
1 definition in M .

QED(Claim 1.)

Claim 2. Z ⊂ rng(π).

Proof. Let y = F (π(ξ), a), where F is a good Σ
(m)
1 (M) function. Then the

Σ
(n)
1 statement: ∨

y y = F (π(ξ), a)

holds in M . Hence, there is y ∈ M such that y = F (ξ, a) where F has the
same good Σ

(m)
1 definition in M . Hence

π(y) = F (π(ξ), a) = y.

QED(Corollary 4.1.3)

Note. rng(π) ⊂ Z holds even if j = 0.

Lemma 4.1.1 shows that a great deal of the theory developed in §2.5.3 for
sound structures actually generalizes to arbitrary acceptable structures. This
is not true, however, for the concept of standard parameter.
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In our earlier definition of standard parameter, we assumed the soundness
of M (meaning that Pn = Rn for n < ω). We defined a well ordering <∗ of
[On]<ω by:

a <∗ b←→
∨
ξ(a∖ξ = b∖ξ ∧ ξ ∈ b∖a).

We then defined the n-th standard parameter pnM to be the <∗-least a ∈
M with a ∈ Pn. This definition stil makes sense even in the absence of
soundness. We know that pn∖ρi ∈ P i for i ≤ n. Hence by <∗-minimality we
get: pn∖ρn = ∅. For i ≤ n we clearly have pi ≤∗ p

n∖ρi by <∗-minimality.
However, it is hard to see how we could get more than this if our only
assumption on M is acceptability.

Under the assumption of soundness we were able to prove:

pn∖ρi = pi for i ≤ n.

It turns out that this does still holds under the assumption that M is fully
ω1+1 iterable. Moreover if π :M −→ N is an iteration map, then π(pnM ) =
PnN . The property which makes the standard parameter so well behaved is
called solidity. As a preliminary to defining this notion we first define:

Definition 4.1.1. Let a ∈M be a finite set of ordinals such that ρω∩a = ∅
in M . Let ν ∈ a. The ν-th witness to a in M (in symbols Mν

a ) is defined as
follows:

Let ρi+1 ≤ ν < ρi. Let b = a∖(ν + 1). Let M = M i,b be the i-th reduct of
M by b. Set: X = h(ν ∪ (b∩M)), i.e. X = the closure of ν ∪ (u∩M) under
Σ1(M) functions. Let:

σ :W←→M |X

be the transitivation of M |X. By the extension of embedding lemma there
are unique W,n, σ ⊃ σ such that:

W =W i,b, σ :W −→
Σ

(i)
1

M,σ(b) = b.

Set: Mν
a = W . σ is called the canonical embedding for a in M and is

sometimes denoted by σνa .

Note. Using Lemma 4.1.3 it follows that rng(π) is the set of all F (ξ⃗, b) such
that ξ1, . . . , ξn ⊂ ν, b = a∖(ν + 1) and F is good Σ

(i)
1 (M) function. This is

a more conceptual definition of Mν
a , σ.

Definition 4.1.2. M is n-solid iff Mν
a ∈ M for ν ∈ a = pnM it is solid iff it

is n-solid for all n.
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pn was defined as the <∗- least element of Pn. Offhand, this seems like
a rather arbitrary way of choosing an element of Pn. Solidity, however,
provides us with a structural reason for the choice. In order to make this
clearer, let us define:

Definition 4.1.3. Let a ∈M be a finite set of ordinals. a is solid for M iff
for all ν ∈ a we have

ρωM ≤ ν and Mν
a ∈M

.

Lemma 4.1.4. Let a ∈ Pn such that a ∩ ρn = ∅. If a is solid for M , then
a = pn.

Proof. Suppose not. Then there is q ∈ Pn such that q <∗ a. Hence
there is ν such that q∖(ν + 1) = a∖(ν + 1) and ν ∈ a∖q. But then q ⊂
ν ∪ (a∖(ν + 1)) ⊂ rng(σ) where σa = σνa is the canonical embedding. Let A
be Σ(n)(M) in q such that A∩ ρn+1 /∈M . Let A be Σ

(n)
1 (Mν

a ) in q = σ−1(q)
by the same definition. Since σ ↾ν = id and ρn ≤ ν, we have:

A ∩ ρn = A ∩ ρn ∈M,

since A ∈ Σn1 (M
ν
a ) ⊂M . Contradiction!

QED(Lemma 4.1.4)

The same proof also shows:

Lemma 4.1.5. Let a be solid for M such that a ∩ ρn = ∅ and a ∪ b ∈ Pn
for some b ⊂ ν such that ab ⊂ ν for all ν ∈ a. Then a is an upper segment
of pn (i.e. a∖ν = pn∖ν for all ν ∈ a.)

Hence:

Corollary 4.1.6. If M is n-solid and i < n, then M is i-solid and pi =
pn∖ρi.

Proof. Set a = pn \ ρi. Then a ∈ P i is M -solid. Hence a = pi.

QED(Corollary 4.1.6)

We set p∗M =:
⋃
n<ω p

n
M . Then p∗ = pn where ρn = ρω.

p∗ is called the standard parameter of M . It is clear that M is solid iff p∗ is
solid for M .
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Definition 4.1.4. Let a ∈ [OnM ]<ω, ν ∈ a with ρi+1 ≤ ν < ρi in M . Let
b = a∖(ν+1). By a generalized witness to ν ∈ a we mean a pair ⟨N, c⟩ such
that N is acceptable, ν ∈ N and for all ξa, . . . , ξr < ν and all Σ(i)

1 formulae
φ we have:

M |= φ(ξ⃗, b) −→ N |= (ξ⃗, c).

Lemma 4.1.7. Let N ∈ M be a generalized witness to ν ∈ a. Assume that
ν /∈ rng(σ), where σ = σνa is the canonical embedding. Then Mν

a ∈M .

Proof. Let W = Mν
a ,W , σ be as in the definition of Mν

a . Then W = W i,b,
where ρi+1 ≤ ν < ρi in M , b = a∖(ν + 1) and σ(b) = b. Since σ ↾ν = id, we
have:

W |= φ(ξ⃗, b) −→ N |= φ(ξ⃗, c),

for ξ1, . . . , ξr < ν and Σ
(i)
1 formulae φ. We can then define a map σ̃ :

W −→
Σ

(i)
1

N by:

Let x = F (ξ⃗, b) where ξ1, . . . , ξr < ν and F is a good Σ
(i)
1 (W ) function.

Then, letting Ḟ be a good definition of F we have:

W |=
∨
x(x = Ḟ (ξ⃗, b)); hence N |=

∨
x(x = Ḟ (ξ⃗, c)).

We set σ̃(x) = y, where N |= y = Ḟ (ξ⃗, c).

If we set: N = N i,c, we have:

σ̃ ↾W :W −→Σ0 N.

Let γ = sup σ̃”OnN , Ñ = N |γ. Then:

σ̃ ↾W :W −→Σ1 Ñ cofinally.

Note that, since σ(ν) > ν and σ ↾ ν = id, we have: ν is regular in Mν
a .

Hence σ(ν) is regular in M and HM
σ(ν) is a ZFC− model. We now code W

as follows. Each x ∈ W has the form: h(j,≺ ξ, b ≻) where h = hW is the
Skolem function of W and σ < ν.

Set:
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∈̇ = {≺≺ j, ξ ≻,≺ k, ζ ≻≻: h(j,≺ ξ, b ≻) ∈ h(k, ⟨ζ, b⟩)}
Ȧ = {≺ j, ξ ≻: h(j, ⟨ξ, b⟩) ∈ A}
Ḃ = {≺ j, ξ ≻: h(j, ⟨ξ, b⟩) ∈ B}

where W = ⟨JAγ , B⟩. Let D ⊂ ν code ⟨∈̇, Ȧ, Ḃ⟩. Then:

D ∈ Σω((̃N)) ⊂M,

since e.g.

∈̇ = {⟨ ≺ j, ξ ≻,≺ k, ζ ≻ ⟩ : hÑ (j, ⟨ξ, c⟩) ∈ hÑ (k, ⟨ζ, c⟩)}

But then D ∈ HM
σ(ν) by acceptability. But HM

σ(ν) is a ZFC− model. Hence
W ∈ HM

σ(ν) is recoverable from D in HM
σ(ν). Hence W ∈ HM

σ(ν) ⊂ N is recov-
erable from W in HM

σ(ν).

QED(Lemma 4.1.7)

We note that:

Lemma 4.1.8. Let a ∈ Pn, ν ∈ a,Mν
a ∈M . Then ν /∈ rng(σνa).

Proof. Suppose not. Then a ∈ rng(σ). Let A be Σ1(M) such that A∩ ρn /∈
M . Let A be Σ1(M

ν
a ) in a = σ−1(a) by the same definition. Then:

A ∩ ρn = A ∩ ρn ∈ Σ∗(Mν
a ) ⊂M.

Contradiction!

QED (Lemma 4.1.8)

But then:

Lemma 4.1.9. Let q ∈ PnM . Let a be an upper segment of q which is solid
for M . Let π :M −→Σ∗ N such that π(q) ∈ PnN . Then π(a) is solid for N .

Proof. Let ν ∈ a,W =Mν
a , σ = σνa . Set:

a′ = π(a), ν ′ = π(ν),W ′ = Nν′
a′ , σ

′ = σν
′
a′ .

We must show that W ′ ∈ N . We first show:
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(1) ν ′ /∈ rng(σ′).

Proof. Suppose not. Let ρi+1 ≤ ν < ρi in M . Then ρi+1 ≤ ν ′ < ρi in N .
Then in N we have: ν ′ = F ′(ξ, b′) where ξ < ν ′, b′ = a′∖(ν ′ + 1), and F ′ is
a good Σ

(i)
1 (N) function.

Let Ḟ be a good definition for F ′. Then in N the Σ
(i)
1 statement holds:

∨
ξ′ < ν ′(ν ′ = Ḟ (ξ′, b′)).

But then in M we have: ∨
ξ′ < ν(ν = Ḟ (ξ′, b))

where b = a∖(ν + 1). Hence ν ∈ rng(σ). Contradiction!

QED(1)

Now set: W ′′ = π(W ). In M we have:∧
ξ < ν(M |= φ(ξ, b) −→W |= φ(ξ, b))

for Σ
(i)
1 formulas φ. But this is a Π

(i)
1 statement in M about ν, b,W . Hence

the corresponding statement holds in N :∧
ξ < ν ′(N |= φ(ξ, b′) −→W ′ |= φ(ξ, b′))

Hence W ′′ is a generalized witness for ν ′ ∈ a′. Hence W = Nν′
a ∈ N .

QED(Lemma 4.1.9)

As a corollary we then have:

Lemma 4.1.10. Let M be n-solid. Let π : M −→Σ∗ N such that π(pnM ) ∈
PnN . Then N is n-solid and π(PnM ) = PnN .

Proof. Let a = pnM . Then a′ = π(a) ∈ PnN is solid for N by the previous
lemma. Moreover, a′ ∩ ρnN = ∅. Hence a′ = pnN .

QED(Lemma 4.1.10)

This holds in particular if ρn = ρω in M . But if π : M −→ N is strongly
Σ∗-preserving in the sense of §3.2.5, then ρn = ρω in N and π”(PnM ) ⊂ PnM .
Hence:
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Lemma 4.1.11. Let M be solid. Let π :M −→ N be strongly Σ∗-preserving.
Then N is solid and π(piM ) = piN for i < ω.

QED(Lemma 4.1.11)

Corollary 4.1.12. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a normal iteration. Let
h = T (i+ 1) where i+ 1 ≤T j. Assume that (i+ 1, j]T has no drop. If M∗

j

is solid, then Mj is solid and πh,j(pnM∗
i
) = pnMj

for n < ω1.

Proof. πh,j is strongly Σ∗-preserving.

We now define:

Definition 4.1.5. Let M be acceptable. M is a core iff it is sound and
solid. M is the core of N with core map iff M is a core and π :M −→Σ∗ N
with π(p∗M ) = p∗N and π ↾ρωM = id.

Clearly M can have at most one core and one core map.

Definition 4.1.6. Let M = ⟨JEα , Eα⟩ be a premouse. M is presolid iff M ||ξ
is solid for all limit η < α.

Lemma 4.1.13. Let M be acceptable. The property “M is presolid” is uni-
formly Π1(M). Hence, if π :M −→Σ1 N , then N is presolid.

Proof. The function:

⟨⊩M ||ξ: ξ is a limit ordinal⟩

is uniformly Σ1(M). But for each i < ω there is a first order statement φi
which says that M is “solid above ρi”, i.e.

Mν
P i
M
∈M for all ν ∈ piM .

The map i 7→ φi is recursive. But M is presolid if and only if:∧
ξ ∈M

∧
i(ξ is a limit −→⊩M ||ξ φi)

QED(Lemma 4.1.13)

We shall prove that every fully iterable premouse is solid. But if M is fully
iterable, then so is every M ||η. Hence M is presolid.

The comparison Lemma (Lemma 3.5.1) tells us that, if we coiterate two pre-
miceM0,M1 of cardinality less than a regular cardinal θ, then the coiteration
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will terminate below θ. If both mice are θ+1-iterable, and we use successful
strategies, then termination will not occur until we reach i < θ such that
M0
i ◁M

1
i orM1

i ◁M
0
i (M◁M ′ is defined as meaning

∨
ξ ≤ OnM ′ ,M =M ′||ξ.)

If M0
i ◁ M

1
i , we take this as making a statement about the original pair

M0,M1 to the effect that M1 contains at least as much information as M0.
However, we may have truncated on the man branch to M1

i , in which case
we have “thrown away” some of the information contained in M1. If we also
truncated on the main branch to M0, it would be hard to see why the final
result tell us anything about the original pair. We now show that, if M0

and M1 are both presolid, then this eventually cannot occur: If there is a
truncation on the main branch of the M1-side, there is no such truncation
on the other side. (Hence no information was lost in passing from M0 to
M0
i .) Moreover, we then have M0

i ◁ M
1
1 .

Lemma 4.1.14. Let θ > ω be regular. Let M0,M1 ∈ Hθ be presolid premice
which are normally θ + 1-iterable. Let:

Ih = ⟨⟨Mh
i ⟩, ⟨νhi ⟩, ⟨πhij⟩, T h⟩ (h = 0, 1)

be the coiteration of length i + 1 < θ by successful θ + 1 strategies S0, S1

(Hence M0
i ◁ M

1
i or M1

i ◁ M
0
i .) Suppose that there is a truncation on the

main branch of I1. Then:

(a) M0
i ◁ M

1
i .

(b) There is no truncation on the main branch of I0.

Proof. We first prove (a). Let l1 + 1 ≤ i be the least point of truncation in
T 1”{i}. Let h1 = T (l1 + 1). Let Q1 = M1∗

l1
. Then Q1 is sound and solid.

Let π1 = π1h1,i. By Lemma 4.1.12, M ′
i is solid and π1(pQ1) = pM1

i
. Hence

Q1 =core(M1
i ) and π1 is the core map. But π1 ̸= id. Hence M1

i is not sound.
If M0

i ⋪ M1
i , we would have: M1

i = M0
i ||η for an η ∈ M0

i . But M0
i ||η is

sound. Contradiction! This proves (a).

We now prove (b). Suppose not. Let l0 + 1 be the last truncation point
in T 00{i}. Let h0 = T 0(l0 + 1). Let Q0, π0 be defined as before. Then
Q0 =core(M0

i ) and π0 ̸= id is the core map. Hence M0
i is not sound. Hence,

as before, we have: M1
i ◁ M

0
i . Hence M0

i = M1
i and Q = Q0 = Q1 is the

core of Mi =M0
i =M1

i with core map π = π0 = π1. Set:

F h =: E
Mh

lh
νlh

(h = 0, 1).

It follows easily that there is κ defined by:

κ = κhlh = crit(F h) = crit(π) (h = 0, 1)
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Thus P(κα) ∩Mh
lh
= P(κ) ∩Q. But:

α ∈ F h[X]←→ α ∈ π(X)

for X ∈ P(κ) ∩ Q,α < λh = F h(κ). Hence l0 ̸= l1, since otherwise λ0 = λ1
and F 0 = F 1. Contradiction!, since νlh is the first point fo difference. Now
let e.g. l0 < l1. Then νl0 is regular in M0

j for l0 < j ≤ i. But then it is
regular in M1

l1
||νl1 , since M1

l1
||νl1 =M0

l1
||νl1 and νl1 > νl0 .

But F 0 = F 1|λl0 is a full extender. Hence F 0 ∈ Ml1 ||λl1 by the initial
segment condition. But then π̃ ∈Ml1 ||λl, where π̃ is the canonical extension
of F 0. But π̃ maps σ = κ+Q cofinally to νl0 . Hence νl0 is not regular in
M1
l1
||νl1 . Contradiction!

Lemma 4.1.14

We remark in passing that:

Lemma 4.1.15. Each Jα is solid.

Proof. Suppose not. Let M = Jα, ν ∈ a = piM , where ρi+1 ≤ ν < ρi in
M . Let Mν

a = Jα and let π : Jα −→ Jα be the canonical embedding. Then
α = α, since Jα /∈ Jα. Let b = a∖(ν + 1), b = π−1(b). Set a = (a ∩ ν) ∪ b.
Then a ∈ P i in Mi. But π”(a) = (a ∩ ν) ∪ b <∗ a where π is monotone.
Hence a <∗ a. Hence a /∈ P i by the <∗-minimality of a. Contradiction!

QED(Lemma 4.1.15)

By virtually the same proof:

Lemma 4.1.16. Let M = JAα be a constructible extension of JAβ (i.e. A ⊂
JAβ , where β ≤ α). Let ρωM ≥ β. Then M is solid.

The solidity Theorem

We intend to prove:

Theorem 4.1.17. Let M be a premouse which is fully ω1+1-iterable. Then
M is solid.

A consequence of this is:

Corollary 4.1.18. Let M be a 1-small premouse which is normally ω1 + 1-
iterable. Then M is solid.
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Proof. If M is restrained, then it has the minimal uniqueness property and
is therefore fully ω1 + 1-iterable by Theorem 3.6.1 amd Theorem 3.6.2. But
if M is not restrained it is solid by Lemma 4.1.16.

QED(Corollary 4.1.18)

It will take a long time for us to prove Theorem 4.1.17. A first step is to
notice that, if M ∈ Hκ, where κ > ω1 is regular and π : H ≺ Hκ, with
π(M) = M , where H is transitive and countable, then M is solid iff M
is solid, by absoluteness. Moreover, M is fully ω1 + 1-iterable by Lemma
3.5.7. Hence it suffices to prove our Theorem under the assumption: M is
countable. This assumption will turn out to be very useful, since we will
employ the Neeman-Steel Lemma. It clearly suffices to prove:

(*) If M is presolid, then it is solid.

To see this, let M be unsolid and let η be least such that M ||η is not solid.
Then M ||η is also fully ω1 + 1-iterable and ν is also presolid. Hence M ||η is
solid. Contradiction!

Now let N be presolid but not solid. Then there is a least λ ∈ p∗N such that
Nλ
a /∈ N , where a = p∗N . Set: M = Nλ

a and let σ : M −→
Σ

(n)
1

N, σ ↾λ = id

where ρn+1
N ≤ λ < ρnN and a∖(λ + 1) ∈ rng(σ). We would like to show:

M ∈ N , thus getting a contradiction. How can we do this? A natural
approach is to coiterate M with N . Let ⟨I0, I1⟩ be the coiteration, I0 being
the iteration of M . If we are lucky, it might turn out that Mµ ∈ Nµ,
where µ is the terminal point of the coiteration. If we are ever luckier,
it may turn out that no point below λ was moved in pairing from M to
Mµ -i.e. crit(π00,µ) ≥ λ. In this case it is easy to recover M from Mµ,
so we have: M ∈ Nµ, and there is some hope that M ∈ N . There are
many “ifs” in this scenario, the most problematical being the assumption
that crit(π00,µ) ≥ λ. In an attempt to remedy this, we could instead do a
“phalanx” iteration, iterating the pair ⟨N,M⟩ against M . If, at some i < µ,
we have F = E

M0
i

νi ̸= ∅, we ask whether κ0i < λ. If so we apply F to N .
Otherwise we apply it in the usual way to Mh, where h is least such that
κ0i < λh. For the sake of simplicity we take: N = M0

0 ,M = M0
1 . νi is only

defined for i ≥ 1. The tree of I0 is then “double rooted”, the two roots being
0 and 1. (In the normal iteration of a premouse, 0 is the single root, lying
below every i ≥ 0). Here, i < µ will be above 0 or 1, but not both.

If we are lucky it will turns out the final point µ lies above 1 in T 0. This
will then ensure that crit(π00,µ) ≥ λ. It turns out that this -still improbable
seeming- approach works. It is due to John Steel.
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In the following section we develop the theory of Phalanxes.

4.2 Phalanx Iteration

In this section we develop the technical tools which we shall use in proving
that fully iterable mice are solid. Our main concern in this book is with one
small mice, which are known to be of type 1, if active. We shall therefore
restrict ourselves here to structures which are of type 1 or 2. When we use
the term “mouse” or “premouse”, we mean a premouse M such that neither
it nor any of its segments M ||η are of type 3.

We have hitherto used the word “iteration” to refer to the iteration of a single
premouse M . Occasionally, however, we shall iterate not a single premouse,
but rather an array of premice called a phalanx. We define:

By a phalanx of length η + 1 we mean:

M = ⟨⟨Mi : i ≤ η⟩, ⟨λi : i < η⟩⟩

such that:

(a) Mi is a premouse (i ≤ η)

(b) λi ∈Mi and JEMi

λi
= JE

Mj

λi
, (i < j ≤ η)

(c) λi < λj (i < j < η)

(d) λi > ω is a cardinal in Mj (i < j ≤ η).

A normal iteration of the phalanx M has the form

I = ⟨⟨Mi : i < µ⟩, ⟨νi : i+ 1 ∈ (η, µ)⟩, ⟨πi,j : i ≤T j⟩, T ⟩

where µ > η is the length of I. M = I|η + 1 is the first segment of the
iteration. Each i ≤ η is a minimal point in the tree T . As usual, ηi is
chosen such that λh < λi for h < i. If h is minimal such that κi < λh then
h = T (i+1) and EMi

νi is applied to an apropiately defined M∗
i =Mh||γ. But

here a problem arises. The natural definition of M∗
i is:

M∗
i = Mh||γ, where γ ≤ OnMh

is maximal such that τi < γ is a
cardinal in Mh||γ.
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But is there such a γ? If λh is a limit cardinal in Mi, then τi < λh and
hence λh is such a γ. For i < η we have left the possibility open, however,
that λh is a successor cardinal in Mi. We could then have: τi = λh. In this
case κi is the largest cardinal in JE

Mh

λi
. If Eλh ̸= ∅ in Mh, it follows that

ρ1Mh||λh ≤ κi < τi. Hence there is no γ with the desired property and M∗
i is

undefined.

In practice, phalanxes are either defined with restrictions which prevent this
eventuality, or -in the worst case- a more imaginative definition of M∗

i is
applied. If h = T (i + 1) and M∗

i is given, then Mi+1, Th,i+1 are, as usual,
defined by:

πh,i+1 :M
∗
i −→

(n)
Eνi

Mi+1,

where n ≤ ω is maximal such that κi < ρnM∗
i
. In iterations of a single

premouse, we were able to show that Eνi is always close to M∗
i , but there is

no reason to expect this in arbitrary phalanx iterations.

We will not attempt to present a general theory of phalanxes, since in this
section we use only phalanxes of length 2. We write ⟨N,M, λ⟩ as an abbre-
viation for the phalanx M of length 2 with M0 = N,M1 = M , and λ0 = λ.
We define:

Definition 4.2.1. The phalanx ⟨N,M, λ⟩ is witnessed (or verified) by σ iff
the following hold:

(a) σ :M −→
Σ

(n)
0

N for all n < ω such that λ < ρnM

(b) λ = crit(σ)

(c) σ is cardinal preserving and regularity preserving, i.e. if τ is a cardinal
(regular) in M then σ(τ) is cardinal (regular) in N .

Note. (c) is superfluous if σ is Σ1-preserving, since being a cardinal or
regular is a Π1 property.

Lemma 4.2.1. Let ⟨N,M, λ⟩ be witnessed by σ. Then the following hold:

(1) Let α ∈M . Then α is a cardinal (regular) in M if and only if σ(α) is
a cardinal (regular) in N .

(2) λ is regular in M .

Proof. Suppose not. Then there is f ∈ M such that f : γ −→ λ and
γ < λ = lub f ′′γ. Hence σ(γ) = γ, σ(f(ξ)) = f(ξ) for ξ < γ. Hence
σ(f) = f and σ(λ) = lub f ′′γ = λ in N . But σ(λ) > λ. Contradiction!

By acceptability it follows that:
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(3) If λ is a limit cardinal in M , then it is a limit cardinal in N . But if
λ = γ+ in M , then σ(λ) = γ+ in N .

Hence:

(4) EMλ = ∅.

Proof. This is trivial if λ is a limit cardinal in M . If λ = γ+ in
M , then ρ1M ||λ ≤ γ. Hence λ is not a cardinal in M . Contradiction!
QED(4)

Hence:

(5) Let κ < λ be a cardinal in M . Set τ = κ+M . There is γ ∈ N such that
γ > τ and τ is a cardinal in N ||γ.

Proof. If τ < λ, take λ = γ. Otherwise τ = λ. But ENλ = EMλ = ∅
and λ is a cardinal in M . Hence M ||λ+ω = N ||λ+ω = J

EM
λ

λ+ω and the
assertion holds with γ = λ+ ω.

QED(Lemma 4.2.1)

Note. It will follow from (5) that if h = T (i + 1) is a normal iteration of
⟨N,M, λ⟩, then M∗

i is defined.

Following our earlier sketch, we define:

Definition 4.2.2. Let ⟨N,M, λ⟩ be a phalanx which is witnessed by σ. By
a normal iteration of ⟨N,M, λ⟩ of length η ≥ 2 we mean:

I = ⟨⟨Mi : i < µ⟩, ⟨νi : i+ 1 ∈ (η, µ)⟩, ⟨πi,j : i ≤T j⟩, T ⟩

such that:

(a) T is a tree on η with iT j −→ i < j. Moreover T”{0} = T”{1} = ∅.

(b) Mi is a premouse for i < η. Moreover M0 = N,M1 = N .

(c) If 1 ≤ i, i + 1 < η, then Mi||νi = ⟨JEνi , Eνi⟩ with Eνi ̸= ∅. We define
κi, τi, λi as usual. We also set: λ0 = λ. We require: νi > νh if 1 ≤ h < i
and λh > λ. (Hence λi > λh for h < i).

(d) Let i > 0. Let h be least such that h = i or h < i and κi < λh. Then
h = T (i+ 1) and JE

Mh

τi = JE
Mi

τi .

(e) πi,j is a partial map of Mi to Mj for i ≤T j. Moreover πi,i = id,
πi,jπh,i = πh,j .
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(f) Let h = T (i + 1). Set: M∗
i = Mh||γ, where γ ≤ OnMh

is maximal
such that τi < γ is a cardinal in Mh||γ. (We call it a drop point in I if
M∗
i ̸=Mk). Then:

πh,i+1 :M
∗
i −→

(n)
Eνi

Mi′+1, where n ≤ ω is maximal s.t.

λh ≤ ρnM∗
i
(where λ0 = λ)

(g) If i ≤T j and (i, j]T has no drop point, then πij is a total function on
Mi.

(h) Let µ < η be a limit ordinal. Then T”µ is a club in µ and contains at
most finitely many drop points. Moreover, if i < µ and (i, µ)T is drop
free, then:

Mµ, ⟨πj,µ : i ≤T j <T µ⟩

is the transitivized direct limit of

⟨Mj : i ≤T j ≤T µ⟩, ⟨πj,k : i ≤T j ≤T k <T µ⟩.

As usual we call Mµ, ⟨πj,µ : j <T µ⟩ the limit of ⟨Mi : i <T µ⟩, ⟨πj,k :
i ≤T j ≤T k <T µ⟩, since the missing points are given by:

πh,j = πi,jπh,i for h <T i ≤T j <T µ⟩

This completes the definition. Note that the existence of M∗
i is guaranteed

by Lemma 4.2.1(5). We define:

Definition 4.2.3. i + 1 is an anomaly in I if i > 0 and τi = λ (hence
0 = T (i+ 1)).

Anomalies will cause us some problems. Just as in the case of ordinary
normal iterations, we can extend an iteration of length η + 1 to a potential
iteration of length η + 2 by appointing νη such that:

E
Mη
νη ̸= ∅, : νη > νi for i ≤ i < η, λη > λ.

This determines M∗
η . In ordinary iterations we know that Eνη is close to

M∗
η . In the present situation this may fail, however, if η + 1 is an anomaly.

We, nonetheless, get the following analogue of Theorem 3.4.4:

Theorem 4.2.2. Let I be a potential normal iteration of ⟨N,M, λ⟩ of length
i + 1. If i + 1 is not an anomaly, then EMi

νi is close to M∗
i . If i + 1 is an

anomaly, then EMi
νi,α ∈ N for α < λ0.
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We essentially repeat our earlier proof (but with one additional step). We
show that if A ⊂ τi is Σ1(Mi||νi), then it is Σ1(M

∗
i ) if i+1 is not an anomaly,

and otherwise A ∈ N. Let I be a counterexample of length i + 1 where i is
chosen minimally. Let h = T (i+1). Let A ⊂ τi be a counterexample. Then:

(1) h < i.

We then prove:

(2) νi = OnMi , ρ
1
Mi
≤ τi.

The first equation is proven exactly as before. The second follows as
before if i+1 is not an anomaly, since then τi < λh. Now let i+1 be an
anomaly. Assume ρ1Mi

> τi and let A ⊂ τi be Σ(Mi). Then A ∈ M1,
since either i = 1 or A ∈ JEMi

λ1
= JE

M1

λ1
where λ1 is a cardinal in Mi.

Hence A = σ(A) ∩ λ ∈ N . Contradiction!

QED(2)

In an extra step we then prove:

Claim. i > 1.

Proof. Suppose not. Then i = 1 and h = 0. Let:

π : JEτ1 −→ JEν1 , π
′ : JE

′

τ ′1
−→ JE

′

ν′1

be the extensions of M,N respectively. Then π, π′ are cofinal and
σπ = π′σ. If τ1 < λ then σ ↾τ1 +1 = id and σ takes M cofinally to N .
Hence σ in Σ1−preserving. If A is Σ1(M) in p, then A is also Σ1(N)
in σ(p), where N =M∗

1 . Contradiction!

Now let τ1 = λ. Then i+1 is an anomaly. Then σ takes ν1, non cofinally
to ν ′1, since π′(λ) > π(ξ) = σπ(ξ) for ξ < λ. Let ν̃ =: supσ”ν1. Then:

σ :M −→Σ1 M̃ cofinally,

where M̃ = ⟨JE′
ν̃ , E′

ν′1
∩ JE′

ν̃ ⟩. Let A′ be Σ1(M̃) in σ(p) by the same
definition as A in p. Then A′ ∈ N and A = A′∩λ ∈ N . Contradiction!

QED(Claim)

(3) i is not a limit ordinal.

Proof. Suppose not. Then as before, we can pick l <T i such that πl,i
is a total function on Ml and l > h. Hence πl,i is Σ1-preserving. Let
Mi = ⟨JEνi , F ⟩. We can also pick l big enough that p ∈ rng(πl,i), where
A is Σ1(Mi) in p. Hence A ∈ Σ1(Ml), where Ml = ⟨J Ẽν̃ , F̃ ⟩, where
ν̃ = OnMl

≥ νl. Extend I|l + 1 to a potential iteration I ′ of length
l + 2 by setting: ν ′l = ν̃. Since l > h, it follows easily that:

κ′l = κi, τ
′
l = τi, h = T ′(l + 1),M∗

i =M ′∗
l .
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By the minimality of i it follows that A ∈ Σ1(M
∗
l ) if i + 1 is not an

anomaly and otherwise A ∈ N . Contradiction!

QED(3)

We then let: i = j + 1, ξ = τ(i). By the claim we have: j ≤ 1.

But:
πξ,i :M

∗
j −→

(n)

E
Mi
νj

Mi = ⟨JEνi , Eνi⟩.

If n = 0, this map is cofinal. Hence in any case πξ,i is Σ1-preserving.
Hence:

(4) M∗
j = ⟨JEν , Eν⟩ where Eν ̸= ∅.

Hence:

(5) τi < κj .

Proof. κi < λh ≤ λj where λj is inaccessible in Mi (since j ≥ 1).
Hence τi < λj . Moreover, κi, τi ∈ rng(πξ,i) by (4). But:

rng(πξ,i) ∩ [λj , λj) = ∅.

QED(5)

Exactly as before we get:

(6) πξ,i :M∗
j −→Eνj

Mi is a Σ0 ultrapower. But then:

(7) i is not an anomaly.

Proof. Let A ⊂ τi be Σ1(Mi) in the parameter p. By (6) we have:
p = πξ,i(f)(α), where f ∈M∗

j , α < λj .

Then:
A(ζ)←→

∨
u ∈M∗

j

∨
y ∈ πζ,i(u)A′(y, ζ, p)

But then:

A(ζ)←→
∨
u ∈M∗

j {γ < κj : A
′
(y, ζ, f(γ))} ∈ (Eνj )α.

But since j < i and j + 1 is an anomaly, we have by the minimality of
i that (Eνj )α ∈ N . Hence A ∈ N . Contradiction!

QED(7)

Since j + 1 is not an anomaly, we have (Eνj )α ∈ Σ1(M
∗
j ). Hence

A ∈ Σ1(M
∗
j ). Hence we have shown:

(8) P(τi) ∩ Σ1(Mi) ⊂ Σ1(M
∗
j ).

We know that M∗
j = Mξ||ν = ⟨JEν , Eν⟩. Moreover, ν > νl for l < ξ,

since λl ≤ κj < λξ < ν; hence νl < λξ < ν. Thus we can extend I|ξ+1
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to a potential iteration I ′ of length ξ + 2 by setting: ν ′ξ = ν. Since
τi < κj , we then have: κi = κ′ξ, τi = τ ′ξ. Hence:

h = T (i+ 1) = T ′(ξ + 1) and M∗
i = (M∗

ξ )
′.

Suppose that i+1 is not an anomaly in I. Then neither is ξ +1 in I ′.
By the minimality of i we conclude:

P(τi) ∩ Σ1(Mξ||ν) ⊂ Σ1(M
∗
i )

where Mξ||ν =M∗
j . Hence by (8):

P(τi) ∩ Σ1(Mi) ⊂ Σ1(M
∗
i ).

Contradiction!

Now let i+1 be an anomaly. Then so is ξ+1 in I ′. But then just as before:

P(τi) ∩ Σ1(Mi) ⊂ P(τi) ∩ Σ1(Mξ||ν) ⊂ N.

Contradiction! QED(Theorem 4.2.2)

We now prove:

Lemma 4.2.3. Let h = T (i + 1) in I, where I is a normal iteration of
⟨N,M, λ⟩. Then:

πh,i+1 :M
∗
i −→Σ∗ Mi+1 strongly.

Proof. If i + 1 is not an anomaly, then EMi
νi is close to M∗

i and the result
is immediate. Now let i + 1 be an anomaly. Then h = 0,M∗

i = N ||η for
an η < τ ′i = σ(λ), since τi = λ. ρωM∗

i
≤ κi, since τi is not a cardinal in

N |η + ω = JE
N

η+ω. But then ρωM∗
i
= κi, since κi is a cardinal in N . Let

ρnM∗
i
> κi ≥ ρn+1

M∗
i

, where n < ω. Let π = πh,i+1. Since Mi+1 is the Σ
(n)
0

ultrapower of M∗
i , we know:

π”ρnM∗
i
⊂ ρnM∗

i+1
and π(ρjM∗

i
) = ρjMi+1

for j < n.

Since Eνi is weakly amenable, Lemma 3.2.16 gives us:

(1) supπ”ρnM∗
i
= ρnMi+1

and π is Σ
(n)
1 -preserving.

We now prove:
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(2) Let H =: |JEMi

νi | = |JE
Mi+1

νi |. Then P(H) ∩ Σ
(n)
1 (Mi+1) ⊂ N .

Proof. Let B be Σ
(n)
1 (Mi+1) in q such that B ⊂ H. Let q = π(f)(α)

where f ∈ Γ∗(κi,M
∗
i ), α < λi. Let:

B(x)←→
∨
y ∈ Hn

Mi+1
B′(y, x, q)

where B′ in Σ
(n)
0 (Mi+1). Let B′ be Σ

(n)
0 (M∗

i ) by the same definition.
Then:

B(x)←→
∨
u ∈ Hn

M∗
i

∨
y ∈ π(u)B′(y, x, π(f)(α))

←→
∨
u ∈ Hn

M∗
i
{γ < κi :

∨
y ∈ u B′

(y, x, f(γ))} ∈ (EMi
νi )

α

But (EMi
νi )

α
∈ N . Hence B ∈ N .

QED(2)

Clearly, if A ⊂ H is Σ∗(Mi+1), then it is Σω(⟨H,B⟩) where B is
Σ
(n)
1 (Mi+1). Hence A ∈ N and ⟨H,A⟩ is amenable, since H = JE

M∗
i

κi =

JE
N

κi , and κi is regular in N . But then ρωMi+1
= ρωM∗

i
= κi. It follows

that:

(3) π is Σ∗-preserving.

Proof. By induction on j we show that if R(x⃗j , z⃗) is Σ
(i)
1 (M∗

i ) and
R′(x⃗j , z⃗) are Σj1(Mi+1) by the same definition (where z⃗ = zh11 , . . . , zhmm
with h1, . . . hm < j), then:

R(x⃗, z⃗)←→ R′(π(x⃗), π(z⃗)).

For j ≤ n this holds by (1). Now let it hold for j = m ≥ n. We show
that it holds for j = m+ 1. Then:

R(x⃗, z⃗)←→ Hz⃗ |= φ[x⃗]

where φ is Σ1 and:
Hz⃗ = ⟨H,Q

1
z⃗, . . . , Q

P
z⃗ ⟩

where Ql(w⃗, z⃗) is Σ
(m)
1 (M∗

i ) and:

Q
l
= {⟨w⃗⟩ ∈ H : Ql(w⃗, z⃗)} for l = 1, . . . , p.

Now let Q′ be Σ
(m)
1 (Mi+1) by the same definition and let H ′

x⃗ be de-
fined like Hx⃗ with Ql

′ in place of Ql (l = 1, . . . , p). By the induction
hypothesis we then have:

R(x⃗, z⃗)←→ Hz⃗ |= φ(x⃗)

←→ Hπ(z⃗) |= φ(x⃗)

←→ R′(x⃗, π(z⃗))←→ R′(π(x⃗), π(z⃗))
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since π(x⃗) = x⃗.

QED(3)

But this embedding π is also strong, since if ρm+1 = κ and A confirms
a ∈ Pm in M∗

i , then if A′ is Σ
(m)
i+1 in π(a) by the same definition, we

have: A ∩ H = A′ ∩ H, where M∗
i ∩ P(H) = Mi+1 ∩ P(H). Hence

A′ ∩H /∈Mi+1.

QED(Lemma 4.2.3)

But then:

Lemma 4.2.4. Let h = T (i+1), where i+1 ≤T j and (i+1, j] has no drop
point. Then:

πh,j :M
∗
i −→Σ∗ Mj strongly.

Proof. By Lemma 3.2.27 and Lemma 3.2.28.

QED(Lemma 4.2.4)

Exactly as in Corollary 4.1.12, we conclude that if M∗
i is solid and i = j+1,

then so is Mj and π(pmi ) = pmj for m < ω.

We intend to do comparison iterations in which ⟨N,M, λ⟩ is coiterated with
a premouse. For this we shall again need padded iteration. Our definition
of a normal iteration of ⟨N,M, λ⟩ encompassed only strict iteration, but we
can easily change that:

Definition 4.2.4. Let ⟨N,M, λ⟩ be a phalanx which is witnessed by σ. By
a padded normal iteration of ⟨N,M, λ⟩ of length µ ≥ 1 we mean:

I = ⟨⟨Mi : i < µ⟩, ⟨νi : i ∈ A⟩, ⟨πi,j : i ≤T j⟩, T ⟩.

Where:

(1) A = {i :<≤ i+ 1 < µ} is the set of active points.

(2) (a)-(b) of the previous definition hold. However (f), (d) require that
i ∈ A. Moreover:

(i) Let 1 ≤ h < j < µ such that [h, j) ∩A = ∅. Then:
• h <T j,Mh =Mj , πh,j = id.
• i ≤ h −→ (i ≤T h←→ i <T j) for i < µ.
• j ≤ i −→ (j ≤T i←→ h <T i) for i < µ.

(In particular, if 2 ≤ i+1 < µ, i /∈ A. Then i = T (i+1),Mi =
Mi+1, πi,i+1 = id).
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Note. 0 plays a special role, behaving like an active point in that λ0 exists,
but ν0 does not exist.

Our previous results go through mutatis mutandis. We shall say more about
that later.

Definition 4.2.5. Let M0 be a premouse and M1 = ⟨M,N, λ⟩ a phalanx
iteration witnessed by σ. By a coiteration of M0,M1 of length µ ≥ 1 with
coindices ⟨νi : 1 ≤ i < µ⟩ we mean a pair ⟨I0, I1⟩ such that:

(a) Ih = ⟨⟨Mh
i ⟩, ⟨νhi : i ∈ Ah⟩, ⟨πhi,j⟩, T h⟩ is a padded normal iteration of

Mh (h = 0, 1).

(b) M0
0 =M0

1 .

(c) νi = the least ν such that EM
0
i

ν ̸= E
M1

i
ν .

(d) If EM
n
i

νi ̸= ∅, then i ∈ Ah and νhi = νj . Otherwise i /∈ Ahi .

Note. We always have M0
0 =M0

1 whereas: M1
0 = N,M1

1 =M .

Definition 4.2.6. Let M0,M1 ∈ Hκ, where κ > ω is regular. Let Sh be a
successful iteration strategy for Mh (h = 0, 1). The ⟨S0, S1⟩-coiteration of
length µ ≤ κ + 1 with coindices ⟨νi : 1 ≤ i < µ⟩ is the coiteration ⟨I0, I1⟩
such that:

• Ih is Sh-conforming.

• Either µ = κ+1 or µ = i+1 < κ and νi does not exist (i.e. M0
1 ◁M1

i

or M1
0 ◁M0

i ).

Note that ◁ was defined by:

P ◁ Q←→ P = Q||OnP

We leave it to the reader to show that the coiteration exists. This is spelled
out in §3.5 for coiteration of premice. We obtain the following analogue of
Lemma 3.5.1:

Lemma 4.2.5. The coiteration of M :M1 terminates below κ1.

The proof is virtually unchanged. We leave the details to the reader. Using
Lemma 4.2.4, we get the following analogue of Lemma 4.1.14:
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Lemma 4.2.6. Let N,M0 be presolid. (Hence M1 is presolid). Let ⟨I0, I1⟩
be the coiteration of M0,M1 terminating at j < κ. Suppose there is a drop
on the main branch of Ih. Then there is no drop on the main branch of Ii−h.
Moreover, M i−h

i ◁Mh
i .

The proof is virtually the same.

At the end of §4.1 we sketched an approach to proving that fully iterable
mice are solid. The basic idea was to coiterate ⟨N,M, λ⟩ with N , where
N is fully iterable and σ witnesses ⟨N,M, λ⟩. In order to do this, we must
know that ⟨N,M, λ⟩ is normally iterable. (The notions “iteration strategy”,
“successful iteration strategy” and “iterability” are defined in the obvious way
for phalanxes ⟨N,M, λ⟩. We leave this to the reader.) We prove:

Lemma 4.2.7. If ⟨N,M, λ⟩ is witnessed by σ and N is normally iterable,
then ⟨N,M, λ⟩ is normally iterable.

For the sake of simplicity we shall first prove this under a special assumption,
which eliminates the possibility of anomalies:

(SA) λ is a limit cardinal in M.

Later we shall prove it without SA.

In §3.4.5 we showed that if σ : M −→Σ∗ N and N is normally iterable,
then M is normally iterable. Given a successful iteration strategy for N , we
defined a successful strategy for M , based on the principle of copying the
iteration of M onto N . In this case, we “copy” an iteration of ⟨N,M, λ⟩ onto
an iteration of N. It suffices to prove it for strict iterations. Let

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

be a strict normal iteration of ⟨N,M, σ⟩. Its copy will be an iteration of N :

I ′ = ⟨⟨Ni⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩

of the same length. We will have N0 = N1 = N . (Thus I ′ is a padded
iteration, even if I is not). There will be copying maps σi(i < lh(I)) with:

σi :Mi −→ Ni, σ0 = id↾N, σ1 = σ.

We shall have ν ′i ∼= σi(νi) for 1 ≤ i. The tree T was “double rooted” with 0,
1 as its two initial points, T ′, on the other hand, has the sole initial point 0.
We can define T ′ from T by:

iT ′j ←→ (iT j ∨ i < 2 ≤ j)
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In I each point i < µ has a unique origin h ∈ {0, 1} such that h ≤T i. Denote
this by: or(i). Using the function or we can define T from T ′ by:

iT j ←→ (iT j ∧ or(i) = or(j))

Thus, each infinite branch b′ in I ′ uniquely determines an infinite branch b
in I defined by:

b =
⋃

i∈b′∖2

{or(i), i}

However, we cannot expect the copying map to always be Σ∗-preserving,
since σ1 = σ is assumed to be Σ

(n)
0 -preserving only for ρnM > λ. In this

connection it is useful to define:

depth(M,λ) =: the maximal n ≤ ω s.t. ρnM > λ.

Modifying our definition of “copy” in §3.4.5 appropiately we now define:

Definition 4.2.7. Let ⟨N,M, λ⟩ be witnessed by σ. Let

I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

be a normal iteration of ⟨N,M, λ⟩ of length µ. Let:

I ′ = ⟨⟨Ni⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩

be a normal iteration of N of the same length. I ′ is a copy of I onto N with
copying maps σi(i < µ) iff the following hold:

(a) σi :Mi −→Σ∗ Ni, σ0 = id↾N, σ1 = σ,N0 = N1 = N .

(b) iT ′j ←→ (iT j ∨ i < 2 ≤ j)

(c) σi ↾λh = σh ↾λh for h ≤ i < µ

(d) σiπhi = π′hiσh for i ≤T h.

(e) ν ′i ∼= σi(νi)

(f) Let 1 ≤T i. If (1, i]T has no drop point in I, then σi is Σ(n)
0 -preserving

for all n such that λ ≤ ρnM . If (1, i]T has a drop point in I. Then σi is
Σ∗-preserving.

(g) If 0 ≤T i then σi is Σ∗-preserving.

Note: N0 = N1, since 0 /∈ A.

Our notion of copy is very close to that defined in §3.4.5. The main difference
is that σi need not always be Σ∗-preserving. Nonetheless we can imitate
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the theory developed in §3.4.5. Lemma 3.4.14 holds literally as before. In
interpreting the statement, however, we must keep in mind that if i ∈ A and
T (i+1) = 0, then T ′(i+1) = 1. In this case τi < λ is a cardinal in N . Hence
M∗
i = N . Moreover τ ′i = σ(τi) = τi. Hence τ ′i is a cardinal in N∗ = N and

N∗
i = N . In all other cases T ′(i + 1) = T (i + 1). Clearly π′0j = π′ij for all

j ≥ 1. Lemma 3.4.14 then becomes:

Lemma 4.2.8. Let I, I ′, ⟨σi : i < µ⟩ be as in the above definition. Let
h = T (i+ 1). Then:

(i) If i + 1 is a drop point in I, then it is a drop point in I ′ and N∗
i =

σh(M
∗
i ).

(ii) If i + 1 is not a drop point in I, then it is not a drop point in I ′ and
N∗
i = Nh.

(iii) If F = EMi
νi , F

′ = ENi

ν′i
. Then:

⟨σh ↾M∗
i , σi ↾λi⟩ : ⟨M∗

i , F ⟩ −→ ⟨N∗
i , F

′⟩

(iv) σi+1(πh,i+1(f)(α)) = π′h,i+1σh(f)(σi(α)) for f ∈ Γ∗(κi,M
∗
i ), α < λi.

(v) σj(νi) ∼= ν ′i for j > i.

(vi) σi is cardinal preserving.

Note. In the general case, where anomalies can occur, Lemma 3.4.14 will
not translate as easily.

Proof. In §3.4.5 we proved this under the assumption that each σi is
Σ∗-preserving. We must now show that the weaker degree of preserva-
tion which we have posited suffices. The proof of (i)-(ii) are virtually un-
changed. We now show that Σ0-preservation is sufficient to prove (iii). Set:
M = Mi||νi, N = Ni||ν ′i. Then σi ↾M is a Σ0 preserving map to N . Let
α < λ,X ∈ P(κi) ∩M . The statement α ∈ F (X) is uniformly Σ1(M) in
α,X. But it is also Π1(M) since:

α ∈ F (X)←→ α /∈ F (κi∖X)

Hence:
α ∈ F (X)←→ σ(α) ∈ F ′(σ(X))

by Σ0-preservation. Finally we note that σi ↾ (Mi ↾ λi) embeds Mi||λi ele-
mentarily into σi(Mi||λi) = Ni||λ′i. Hence:

σi(≺ α⃗ ≻) =≺ σi(α⃗) ≻ for α1, . . . , αn < λi.
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Thus all goes through as before, which proves (iii).

In our previous proof of (iv) we need that σh ↾M∗
i is Σ∗-preserving. This can

fail if 1 ≤T h and [1, h]T has no drop point. But then σh is Σ
(n)
0 -preserving

for λ < ρM in M , where λ ≤ κi. Hence the preservation is sufficient. Finally,
(v) is proven exactly as before.

(vi) is clear if σi is Σ1-preserving. If not, then 1 ≤ i and (1, i] has no
drop. Hence π1,i is cofinal, since only Σ0-ultraproducts were involved. If
α is a cardinal in Mi, then α ≤ β for a β which is a cardinal in M . By
acceptability it suffices to note that σiπ1i(β) = π′1iσ(β) is a cardinal in Ni.

QED(Lemma 4.2.8)

Exactly as before we get the analogue of Lemma 3.4.15:

Lemma 4.2.9. There is at most one copy I ′ of I induced by σ. Moreover,
the copy maps are unique.

As before we define:

Definition 4.2.8. Let ⟨N,M, λ⟩ be a phalanx witnessed by σ. ⟨I, I ′, ⟨σ⟩⟩ is
a duplication induced by σ iff I is a normal iteration of ⟨N,M, λ⟩ and I ′ is
the copy of I induced by σ with copy maps ⟨σi : i < µ⟩.

We also define:

Definition 4.2.9. ⟨I, I ′, ⟨σi : i ≤ µ⟩⟩ is a potential duplication of length
µ+ 2 induced by σ iff:

• ⟨I|µ+ 1, I ′|µ+ 1, ⟨σi : i ≤ µ⟩⟩ is a duplication of length µ+ 1 induced
by σ.

• I is a potential iteration of length µ+ 2.

• I ′ is a potential iteration of length µ+ 2.

• σµ(νµ) = ν ′µ.

To say that an actual duplication of length µ+ 2 is the realization of a po-
tential duplication means the obvious thing. If it exists, we call the potential
duplication realizable.

Our analogue of Theorem 3.4.16 is somewhat more complex. We define:
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Definition 4.2.10. i is an exceptional point (i ∈ EX) iff:

1 ≤T i, (1, i]T has no drop point, and ρ1 ≤ λ in M.

Note. Suppose ρ1 ≤ λ in M . For j ∈ EX we have: ρ1Mj
≤ λ, as can be seen

by induction on j.

Our analogue of Theorem 3.4.16 reads:

Lemma 4.2.10. Let ⟨I, I ′, ⟨σi⟩⟩ be a potential duplication of length i + 2,
where h = T (i+ 1). Suppose that i+ 1 /∈ EX. Then:

⟨σh ↾M∗
i , σi ↾λi⟩ : ⟨M∗

i , F ⟩ −→∗ ⟨N∗
i , F

′⟩

where F = EMi
νi , F

′ = ENi

ν′i
.

Before proving this we note some of its consequences. Just as in §3.4.5 it
provides exact criteria for determining whether the copying process can be
carried one step further. We have the following analogue of Lemma 3.4.17:

Lemma 4.2.11. Let ⟨I, I ′, ⟨σi : i ≤ µ⟩⟩ be a potential duplication of length
µ+ 2 (where µ ≥ 1). It is realizable iff N∗

µ is ∗-extendible by ENµ

ν′µ
.

Proof. If Nν
µ is not ∗-extendable, then no realization can exist, so suppose

that it is. Form the realization Î ′ of I ′ by setting:

π′h,i+1 : N
∗
µ −→∗

F ′ Nµ+1,

where h = T (µ+ 1), F ′ = E
Nµ

ν′µ
. We consider three cases:

Case 1. σh ↾M∗
µ is Σ∗-preserving.

Bu Lemma 4.3.2 we have:

⟨σh ↾M∗
µ, σµ ↾λµ⟩ ⟨M∗

µ, F ⟩ −→∗ ⟨N∗
µ, F

′⟩,

where σh ↾M∗
h is Σ∗-preserving. By Lemma 3.2.23 this gives us:

πh,µ+1 :M
∗
µ −→∗

F Mµ+1,

and a unique:
σµ+1 :Mµ+1 −→Σ∗ Nµ+1

such that σmu+1πh,µ+1 = π′h,µ+1σh, σµ+1 ↾λµ = σµ ↾λµ.
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The remaining verification are straightforward.

Case 2. Case 1 fails and η + 1 /∈ EX.

By Lemma 4.3.2 we again have:

⟨σh, σµ ↾λµ⟩ : ⟨Mh, F ⟩ −→∗ ⟨Nh, F
′⟩.

Moreover σh is Σ
(m)
0 -preserving, where m ≤ ω is maximal such that λ < ρm

in M . Now let n ≤ ω be maximal such that κi < ρn in Mh. Then n ≤ m,
since λ ≤ κi. By Lemma 3.2.19 Mh is n-extendible by F . But then it is
∗-extendible, since F is close to Mh. Set:

πh,µ+1 :Mh −→∗
F Mµ+1.

Since σ is Σ(m)
0 -preserving, it follows by Lemma 3.2.19 that there is a unique:

σµ+1 :Mµ+1 −→Σ
(n)
0

Nmu+1,

such that σ′µ+1πh,µ+1 = π′h,µ+1σh and σ′λµ = σn ↾ λκ. But σ′ is, in fact,

Σ
(m)
0 -preserving. If n = m, this is trivial. If n < m, it follows by Lemma

3.2.24. We let σµ+1 = σ′. The remaining verification are straightforward.

QED(Case 2)

Case 3. The above cases fail.

Then µ + 1 ∈ EX and ρ1 ≤ λ in M . Thus ρ1 ≤ λ ≤ κi in Mh. By Lemma
4.2.8 we have:

⟨σh, σµ ↾λµ⟩ : ⟨Mh, F ⟩ −→ ⟨Nh, F
′⟩.

Hence by Lemma 3.2.19, there are π, σ′ with:

π :Mh −→F Mµ+1, σ
′ :Mµ+1 −→Σ0 Nµ+1

such that σ′π = π′h,µ+1σh and σ′ ↾λµ = σµ ↾λµ. ButMµ+1 is the ∗-ultrapower
of Mh, since ρ1Mh

≤ κi and F is close to Mh. We set: πh,µ+1 = π, σµ+1 = σ′.
The remaining verifications are straightforward.

QED(Lemma 4.3.3)

Our analogue of Lemma 3.4.18 reads:
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Lemma 4.2.12. Let ⟨I, I ′, ⟨σi : i < µ⟩⟩ be a duplication of limit length µ.
Let b′ be a well founded cofinal branch in I ′. Let b =

⋃
i∈b′∖2{or(i), i} be the

induced cofinal branch in I. Our duplication extends to one of length µ + 1
with:

T”{µ} = b, T”{µ} = b′

and σµπi,µ = π′iµσi for i ∈ b.

The proof is left to the reader.

With these two lemmas we can prove Lemma 4.2.7:

Fix a successful normal iteration strategy for N . We construct a strategy
S∗ for ⟨N,M, λ⟩ as follows: Let I be a normal iteration of ⟨N,M, λ⟩ of limit
length µ. If I has no S-conforming copy, then S∗(I) is undefined. Otherwise,
let I ′ be an S-conforming copy. Let S(I ′) = b′ be the cofinal well founded
branch given by S. Set S∗(I) = b, where b is the induced branch in I.
Clearly if I is S∗-conforming, then the S-conforming copy I ′ exists. If I is
of length µ + 1(µ ≥ 1), then by Lemma 4.3.3, if ν ∈ Mµ, ν > νi for i < µ,
then I extends to an S∗-conforming iteration of length µ + 2 with νµ = ν.
By Lemma 4.3.4, if I is of limit length µ, then S∗(I) exists. Hence S∗ is
successful.

QED(Lemma 4.2.7)

We still must prove Lemma 4.3.2. This, in fact turns out to be a repetition
of Lemma 3.4.16 in §3.4. As before we derive it from:

Lemma 4.2.13. Let ⟨I, I ′, ⟨σj⟩⟩ be a potential duplication of length i + 1
where h = T (i + 1). Suppose that i + 1 /∈ EX. Let A ⊂ τi be Σ1(Mi||νi) in
a parameter p. Let A′ ⊂ τ ′i be Σ1(Ni||ν ′i) in σi(p) by the same definition.
Then A is Σ1(M

∗
i ) in a parameter q and A′ is Σ1(N

∗
i ) in σh(q) by the same

definition.

Proof. The proof is a virtual repetition of the proof of Lemma 3.4.20 in
§3.4. As before we take ⟨I, I ′, ⟨σj⟩⟩ as being a counterexample of length
i + 1, where i is chosen minimally for such counterexamples. The proof is
exactly the same as before. The only difference is that σj may not be Σ∗-
preserving if j ∈ EX. But in the case where we need it, we will have that σj
is Σ

(1)
0 -preserving, which suffices.

QED(Lemma 4.3.5).

Hence Lemma 4.2.7 is proven.
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However, we have only proven this on the special assumption that λ is a
limit cardinal in M . We now consider the case: λ = κ+ in M . This will
require a radical change in the proof. Set:

N∗ =: N ||γ where γ is maximal such that λ is a cardinal in N ||γ.

Then λ = κ+N
∗
< σ(λ) = κ+N . An anomaly occurs at i + 1 whenever

τi = λ. Then 0 = T (i + 1) and κ = κi. Clearly N∗ = M∗
j . Thus Mi+1 is

the ultraproduct of N∗ by F = EMi
νi and Ni+1 is the ultraproduct of N∗

i by
F ′ = ENi

νi . In order to define σi+1, we require:

σ(M∗
i ) = N∗

i .

This is false however, since σi ↾λ0 = σ ↾λi where τi < λi. Hence:

τ ′i = σi(τi) = σ(τi) = τ+N .

Hence N∗
i = N ∋ σ(N∗).

The answer to this conundrum is to construct two sequences I ′ and Î. The
sequence:

Î = ⟨⟨N̂i⟩, ⟨ν̂i : i ∈ A⟩, ⟨ ˆπij : i ≤T j⟩, T̂ ⟩

will be a padded iteration of N of length µ in which many points may be
inactive. The second sequence:

I ′ = ⟨⟨Ni⟩, ⟨ν ′i : i ∈ A⟩, ⟨π′ij : i ≤T j⟩, T ′⟩

will have most of the properties it had before, but, in the presence of anoma-
lies, it will not be an iteration . If no anomalies occurs, we will have: I ′ = Î.
If i+ 1 is an anomaly, then π0,i+1 will not be an ultrapower and Ni will be
a proper segment of N̂i = N̂i+1. (Hence i is passive in Î). To see how this
works, let i+1 be the first anomaly to occur in I, then I ′|i+1 = Î|i+1, but at
i+1 we shall diverge. Under our old definition we would have taken N∗

i = N
and π′i,i+1 = π′′, where:

π′′ : N −→∗
F N

′′, F = ENi

ν′i
.

We instead take:

N∗
i = N∗, Ni+1 = π′′(N∗), πi,i+1 = π′′ ↾N∗.

Note that π′′(N∗) = π′(N∗), where π′ is the extension of ⟨JEMi

νi , F ⟩. But
then Ni+1 is a proper segment of JENi

νi hence of Ni = N̂i.

We can then define:
σi+1 :Mi+1 −→ Ni+1
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by:
σi+1(π0,i+1(f)(α)) =: π′(f)(σi(α))

for f ∈ Γ∗(κ,N∗), α < λi. σi+1 will then be Σ
(n)
0 −preserving, where n ≤ ω

s maximal such that κ < ρn in N∗. To see that this is so, let φ be a Σ
(n)
0

formula. Let f1, . . . , fn ∈ Γ∗(κ,N∗) and let α1, · · · , αn < λi. Let:

xj = π0,i+1(fj)(αj), yj = π′(fj)(σi(αj)) (j = 1, . . . , n).

Let X =: {≺ ξ1, . . . , ξm ≻: N∗ |= φ[f1(ξ1), . . . , fn(ξn)]}. Then σiF (X) =
F ′(X), since σi ↾HM

λ = σ0 ↾HM
λ = id. Hence:

Mi+1 |= φ[X⃗]←→≺ α⃗ ≻∈ F (X)

←→≺ σi(α⃗) ≻∈ F ′(X) = π′(X)

←→ σ(N∗) |= φ[y⃗].

Since we had no need to form an ultraproduct at i+ 1, we set: N̂i+1 = N̂i.
i is then an inactive point in Î and Ni+1 is a proper segment of N̂i+1.

We continue in this fashion: The active points in Î are just the points i > 0
such that i + 1 < µ is not an anomaly. If i is active, we set ν̂i = ν ′i. (This
does not, however, mean that N̂i = N ′

i .) If i is any non anomalous point, we
will have: Ni = N̂i. If h < i is also non anomalous, thus π′hi = π̂hi. If i is an
anomaly, we will have: Ni is a proper segment of N̂i. If µ is a limit ordinal it
then turns out that any cofinal well founded branch b′ in I ′, which, in turn,
gives us such a branch b in I. This enables us to prove iterability.

We now redo our definition of “copy” as follows:

Definition 4.2.11. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a strict normal iteration
of ⟨N,M, λ⟩, where ⟨N,M, λ⟩ is a phalanx witnessed by σ.

I ′ = ⟨⟨Mi⟩, ⟨ν ′i⟩, ⟨π′ij⟩, T ′⟩

is a copy of I with copy maps ⟨σi : i < µ⟩ induced by σ if and only if the
following hold:

(I) (a) T ′ is a tree such that iT ′j −→ i < j.

(b) Let µ be the length of I. Then Ni is a premouse and

σi :Mi −→Σ0 Ni for i < µ
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(c) π′ij(i ≤T j) is a commutative system of partial maps from Ni to
Nj .

(II) (a)-(f) of our previous definition hold. Moreover:

(g) Let 0 ≤T j. If (0, i]T have no anomaly, then σi is Σ∗-preserving.

(h) Let h = T (i+ 1). Set:

N∗
i =

{
σh(M

∗
i ) if M∗

i ∈Mh

Nh if not

Then π′h,i+1 : N
∗
i −→Σ∗ Ni+1.

(i) Let h, i be as above. If i+ 1 is not an anomaly, then:

π′h,i+1 : N
∗
i −→∗

F ′ Ni+1

where F ′ = ENi

ν′i
.

(j) Let i+ 1 be an anomaly. (Hence τi = λ = κ+M , where κ = κi is a
cardinal in M , hence in N .)

We then have:
M∗
i = N∗ =: N ||γ,

where γ is maximal such that λ is a cardinal in N ||γ. Let π be the
extension of Ni||νi = ⟨JEν′ , F ′⟩. Then:

Ni+1 = π(N∗) and π′0,i+1 = π ↾N∗.

Moreover, σi+1 :Mi+1 −→ Ni+1 is defined by:

σi+1(π0,i+1(f)(α)) = π′(f)(σi(α))

where f ∈ Γ∗(κ,N∗), α < λi. (Hence σi+1 is Σ
(n)
0 -preserving for κ <

ρnN∗ .)

(k) Let h ≤T i, where h is an anomaly. If (h, i]T has no drop point,
then σi is Σ(n)

0 -preserving for κ < ρn in N∗. If (h, i]T has a drop point,
then σi is Σ∗-preserving.

(III) There is a background iteration:

Î = ⟨⟨N̂i⟩, ⟨ν̂i⟩, ⟨π̂ij⟩, T̂ ⟩

with the properties.

(a) Î is a padded normal iteration of length µ.
(b) i < µ is active in Î iff 0 < i+ 1 < µ and i+ µ is not an anomaly

in I. In this case: ν̂i = ν ′i.
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(c) If i is not an anomaly in I, then N̂i = N ′
i . Moreover, if h < i is

also not an anomaly, then:

h <T̂ i←→ h <T ′ i, π̂h,i = π′h,i if h <T ′ i.

This completes the definition. In the special case that λ is a limit cardinal
in M , we of course have: I ′ = Î and the new definition coincides with the
old one. We note some simple consequence of our definition:

Lemma 4.2.14. The following hold:

(1) If i < j < µ, then σj(λi) = λi. (Hence λ′i < λ′j for j + 1 < µ.)

Proof. By induction on j. For j = 0 it is vacuously true. Now let it
hold for j.

σj+1(λj) = σj+1σh,i+1(κj) = π′h,j+1σh(κj) = π′h,j+1(κ
′
j) = λj .

(Here σh(κj) = σj(κj) = λ′j , since κj < λh and σj ||λh = σh ↾λh.)

For i < j we then have:

σj+1(λi) = σj(λ
′
i)(since λi < λj).

QED(1)

(2) σi is a cardinal preserving for i < µ.

Proof. If σi is Σ1-preserving, this is trivial, so suppose not. Then one
of two cases hold:

Case 1. 1 ≤T i, (1, i]T has no drop, and ρ1 ≤ λ in M .

Then πhj : Mh −→Σ∗ Mj is cofinal for all h ≤T j ≤T iη since each of
the ultrapower involved is a Σ0-ultrapower. Hence, if α is a cardinal
in Mi, then α ≤ π1,i(β) where β is a cardinal in M1. By acceptability
it suffices to show that σiπ1,i(β) is a cardinal in Ni. But σiπ1,i(β) =
π′1tσ(β), where σ and π′1i are cardinal preserving.

Case 2. h ≤T i where h is an anomaly, (h, i]T has no drop and
ρ1 ≤ k = ki in N∗.

The proof is a virtual repeat of the proof in Case 1, with (0, i]T in place
of (1, i]T .

QED(2)

(3) I ′ behaves like an iteration at limits. More precisely:
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Let η < κ be a limit ordinal. Let i0 <T η such that b = (i0, η)T is free
of drops. Then

Nη, ⟨πiη : i ∈ b⟩

is the direct limit of:

⟨Ni : i ∈ b⟩, ⟨πij : i ≤ j in b⟩.

Proof. No i ∈ b ∪ {η} is an anomaly since every anomaly is a drop
point. Hence:

N ′
i = N̂i, π

′
i,j = π̂i,j for i ≤ j in b ∪ {η}.

Since I is an iteration, the conclusion is immediate.

QED(3)

(4) Let i < µ. If i+ 1 is an anomaly, then:

(a) Ni+1 is a proper segment of Ni||ν ′i. (Hence ν ′i+1 < ν ′i).
(b) ρω = λ′i in Ni+1.

Proof. (a) is immediate by II (i) in the definition of “copy”. But
Ni+1 = π(N∗) where π is the extension of Ni||ν ′i. By definition, N∗ =
N ||γ, where γ < σ(λ) = κ+N is the maximal γ such that τi = λ is a
cardinal in N ||γ. Hence ρω = κ in N∗. But then ρω = λ′i in Ni+1.

QED(4)

(5) Let i < µ. There is a finite n such that i + n + 1 is not an anomaly.
(This includes the case: i+ n+ 1 = µ.)

Proof. If not then νi+n+1 < νi+n for n < µ by(4). Contradiction!

(6) Let i < µ. There is a maximal j ≤ i such that j is not an anomaly.

Proof. Suppose not. Then i ̸= 0 is an anomaly and for each j < i
there is j′ ∈ (j, i) which is an anomaly. But then i is a limit ordinal,
hence not an anomaly.

By(5) and (6) we can define:

Definition 4.2.12. Let i < µ. We define:

• l(i) = the maximal j ≤ i such that j is not an anomaly.

• r(i) the least j ≥ i such that j + 1 is not an anomaly.

Definition 4.2.13. An interval [l, r] in µ is called passive iff i is an anomaly
for l < i ≤ r. A passive interval is called full if it is not properly contained
in another passive interval.
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It is then trivial that:

(7) [l(i), r(i)] = the unique full I such that i ∈ I.

(8) Let [l, r] be a full passive interval. Then, for all i ∈ [l, r]:

(a) Nl = Ni.

(b) If j ≤ l and j ≤T̂ i, then j ≤T̂ l.

(c) If j ≥ r and i ≤T̂ j, then r ≤T̂ j.

Proof. This follows by induction on j, using the general fact about padded
iterations that if j is not active, then:

• N̂j = N̂j+1

• h ≤T̂ j ←→ h <T̂ j + 1

• j <T̂ h←→ j + 1 ≤T̂ h. QED(8)

(9) Let b be a branch of limit length in Î. There are cofinally many i ∈ b
such that i is not an anomaly.

Proof. Let j ∈ b. Pick i ∈ b such that i > r(j). Then l(i) > r(j), since
r(j)+1 ≤ i is not an anomaly. Hence l(i) ∈ b and l(i) > j is not an anomaly.

QED(9)

We define N∗
i for i < µ exactly as if I ′ were an iteration: Let h = T ′(i+ 1).

Then:

N∗
i =: Ni||γ where γ is maximal such that τ ′i is a cardinal in Ni||γ.

We then get the following version of Lemma 4.2.8.

Lemma 4.2.15. Let I ′ be a copy of I induced by σ. Let h = T (i + 1). If
i+ 1 is not an anomaly. Then the conclusion (i)-(vi) of Lemma 4.2.8 hold.
If i+ 1 is an anomaly, then (v), (vi) continue to hold.

Proof. If i+ 1 is not an anomaly, the proof are exactly as before. Now let
i + 1 be an anomaly. (iv) is immediate by II (j) in the definition of “copy”.
But then (vi) follows as before.
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QED(Lemma 4.2.15)

Lemma 3.3.20 is strengthened to:

Lemma 4.2.16. I has at most one copy I ′. Moreover the background iter-
ation Î is unique.

Proof. The first part is proven exactly as before (we imagine I ′′ to be a
second copy and show by induction on i that I ′|i = I ′′|i). The second part
is proven similarly, assuming Î ′ to be a second background iteration.

QED(Lemma 4.2.16)

The concept duplication induced by σ is defined exactly as before. Now let:

D = ⟨I, I ′, ⟨σi : i ≤ η⟩⟩

be a duplication of length η+1. We turn this into a potential duplication D
of length η + 2 by appointing a νξ such that νξ > νi for 0 < i < η.

By a realization of D̃ of length η + 2 by appointing a νη such that νη < νi
for 0 < i < η. By a realization of D̃, we mean a duplication D̊ = ⟨I̊ , J̊ , ⟨σ̇i :
i ≤ η + 1⟩⟩ of length η + 2 such that D̊|η + 1 = D and ν̇η = νη. It follows
easily that D̃ has at most one realization.

Our analogue, Lemma 4.3.2, of Lemma 3.4.16 will continue to hold as stated
if we enhance the definition of exceptional point as follows:

Definition 4.2.14. i is an exceptional point (i ∈ EX) iff either:

1 ≤T i, (1, i]T has no drop, and ρ1 ≤ λ in M

or there is an anomaly h ≤T i such that:

(0, i]T has no drop, and ρ1 ≤ κ in N∗.

With this change Lemma 4.3.2 goes through exactly as before. As before,
we derive this form Lemma 4.3.5. The proof is as before. As before the
condition i+1 /∈ EX guarantees that the map σi will always have sufficient
preservation when we need it.

When we worked under the special assumption Lemma 4.3.3 was our ana-
logue of Lemma 3.4.17. In the presence of anomalies the situation is some-
what more complex. We first note:

Lemma 4.2.17. Let D̃ = ⟨I, I ′, ⟨σi : i ≤ η⟩⟩ be a potential duplication of
length η + 2. If η + 1 is an anomaly, then D̃ is realizable.
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Proof. Form Nη+1, π0,η+1 : N
∗ −→ Nη+1 and ση+1 as in II(j). Set: Ñη+1 =

Nη. The verification of I, II, III is straightforward.

QED(Lemma 4.2.17)

Now suppose that η + 1 is not an anomaly. Let h = T (η + 1). Then η is an
active point is any realization of Î, so we set: ν̂η = ν ′η. In order to realize D̃,
we must apply F = E

Mη
νη to M∗

η , getting:

πh,η :M
∗
η −→∗

F Mη+1.

Similarly we apply F ′ = E
Nη

ν′η
to N∗

η getting:

π′h,η : N
∗
η −→∗

F ′ Nη+1.

We then set:
ση+1(πhη(f)(α)) = π′hησh(f)(ση(α))

for f ∈ Γ∗(κη̇,M
∗
η̇ ), α < λη.

We must also extend Î. Since ν̂η = νη and Nη is an initial segment of N̂η,
we have:

F ′ = E
N̂η

ν̂η
.

Now let: k = T̂ (η + 1). (k can be different from h!) III constrains us to set:

π̂k,η+1 : N̂
∗
η −→∗

F N̂η+1.

However, III also mandates that N̂η+1 = Nη+1. Happily, we can prove:

Lemma 4.2.18. Let D̃ = ⟨I, I ′, ⟨σi : i ≤ η⟩⟩ be as above, where η + 1 is not
an anomaly. Then:

(a) N∗
η = N̂∗

η .

(b) D̃ is realizable iff N∗
η is ∗-extendible by F ′.

Proof. We first prove (a). Let h = T ′(η + 1). Set:

l = l(h), r = r(h).

Then h ∈ [l, r] where l is not an anomaly, j + 1 is an anomaly for l ≤ j < r,
and r + 1 is not an anomaly. h is least such that κ′η < λ′ or h = η. k =
T ′(η + 1) is least such that k + 1 is not an anomaly and κ′η < λ′k. Since j is
not an anomaly for l < j ≤ r, we conclude that k = r. Then Nl = N̂j for
l ≤ j ≤ r.
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Case 1. h = l.

Then N̂h = Nh and:
N∗
η = N̂η = Nh||γ

where γ is maximal such that τ ′η is a cardinal in Nh||γ. QED(Case 1)

Case 2. l < h.

Then h = j + 1 where l ≤ j. Nh is a proper segment of N̂h. We again have:
N∗
η = Nh||γ where γ ≤ OnNh

is maximal such that τ ′η is a cardinal in Nh||γ.
We have r = T̂ (η + 1) and N̂∗

η = N̂r||γ̂, where γ̂ ≤ OnN̂r
is maximal such

that τ ′η is a cardinal in N̂r||γ̂. But ρωNh
= κj , where h = j + 1 by Lemma

4.2.14 (4). Since λ′j ≤ κ′η < τ ′η < λ′h and Nh is a proper segment of N̂h = N̂r,
we conclude that γ̂ ≤ OnNh

. Hence γ = γ̂ and N∗
η = N̂∗

η . QED(a)

We now prove (b). If N̂∗
η is not extendable by F ′, then no realization can

exists, so assume otherwise. This gives us Nη+1 and π′h,η+1, where N̂η+1 =
Nη+1 and π̂k,η+1 = π′h,η+1, where k = T ′(η + 1). ση+1 is again defined by:

ση+1(πh,η+1(f)(α)) = π′h,η+1σh(f)(ση(α))

for f ∈ Γ∗(κη,M
∗
η ), α < λη. The verification of I, II, III is much as before.

However Case 2 splits into two subcases:

Case 2.1. 1 ≤T η + 1.

This is exactly as before.

Case 2.2. 0 ≤T η + 1.

Then there is j ≤T h such that j is an anomaly and (0, η+1]T has no drop.
Moreover, ρ1 > κ in N∗. Then σh is a Σ

(m)
0 -preserving where m ≤ ω is

maximal such that κ < ρm in N∗. The rest of the proof is as before.

Case 3 also splits into two subcases:

Case 3.1. 1 ≤T η + 1.

We argue as before.

Case 3.2. 0 ≤T η + 1.

Then j ≤t h, where j is an anomaly and ρ1 ≤ κ in N∗. Hence ρ1 ≤ κh in
Mh and we argue as before. QED(Lemma 4.2.18)

Using Lemma 4.2.14 (9) we get:



436 CHAPTER 4. PROPERTIES OF MICE

Lemma 4.2.19. Let D = ⟨I, I ′, ⟨σi⟩⟩ be a duplication of limit length µ. Let
b̂ be a cofinal well founded branch in Î. Let X be the set of i ∈ b̂ which are
not an anomaly. Let:

b′ = {j :
∨
i ∈ Xj <T i}, b = {j :

∨
i ∈ Xj <T i}.

Then D has a unique extension to a D̃ of length µ+ 1 such that:

T̂”{µ} = b̂, T ′”{µ} = b′, T”{µ} = b.

The proof is left to the reader.

Now let S be a successful normal iteration strategy for N . We define an
iteration strategy S∗ for ⟨N,M, λ⟩ as follows:

Let I be an iteration of ⟨N,M, λ⟩ of limit length µ. We ask whether there
is a duplication ⟨I, I ′, ⟨σ0⟩⟩ induced by σ∗. If not, then S∗(I) is undefined.
Otherwise, we ask whether S(Î) is defined. If not, then S∗(I) is undefined.
If not, then S∗(I) is undefined. If b̂ = S(Î), define b′, b as above and set:
S∗(I) = b. It is easily seen that if I is any S∗-conforming normal iter-
ation of ⟨N,M, λ⟩, then the duplication ⟨I, I ′, ⟨σi⟩⟩ exists. Moreover Î is
S-conforming. In particular, if I is of limit length, then S(I) is defined.
Moreover, if I is of length η+1, and ν > νi for i < η, then by Lemma 4.2.18,
we can extend I to an Ĩ of length η + 2 by setting: νη = ν. Hence S is a
successful iteration strategy.

This proves Lemma 4.2.7 at last!

We note however, that our strategy S∗ is defined only for strict iteration of
⟨N,M, λ⟩. We can remedy this in the usual way. Let:

I = ⟨⟨Mi⟩, ⟨νi : i ∈ A⟩, ⟨πij⟩, T ⟩

be a padded iteration of ⟨N,M, λ⟩, of length µ. Let h be the monotone
enumeration of:

{i : i = 0 ∨ i ∈ A ∨ i+ 1 = µ}.

The strict pullback of I is then:

İ = ⟨⟨Ṁi⟩, ⟨ν̇i⟩, ⟨π̇ij⟩, T̂ ⟩

where:
Ṁi =Mh(i), ν̇i = νh(i), π̇ij = πh(i),h(i)

and:
iT̂ j ←→ h(i)Th(j).
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İ is a strict iteration and contains all essential information about I. We
extend S∗ to a strategy on padded iteration as follows: Let I be a padded
iteration of limit length µ. If A is cofinal in µ, we form İ, which is then also
of limit length. We set:

S∗(I) = b, where S∗(İ) = ḃ,

and b = {i :
∨
j(i ≤T h(j))}. If A is not cofinal in µ, there is j < µ such

that A ∩ [j, µ) = ∅. We set:

S∗(I) = {i < µ : iT j ∨ j ≤ i}.

It follows that I is S∗-conforming iff İ is S∗-conforming.

Since İ is strict, we have I ′, Î, ⟨σi : i < µ̇⟩, (where µ̇ is the length of İ).
We shall make use of this machinery in analyzing what happens when we
coiterate N against ⟨N,M, σ⟩. This will yield the “simplicity lemma” stated
below.

Note. We could, of course, have defined I ′, Î and ⟨σi : i < µ⟩ for arbitrary
padded I, but this will not be necessary.

Building upon what we have done thus far, we prove the following “simplicity
lemma”, which will play a central role in our further deliberations:

Lemma 4.2.20. Let N be a countable premouse which is presolid and fully
ω1+1 iterable. Let ⟨N,M, σ⟩ be witnessed by σ. Set Q0 = N,Q1 = ⟨N,M, σ⟩.
There exist successful ω1+1 normal iteration strategies S0, S1 for Q0, Q1 re-
spectively such that ⟨I0, I1⟩ is the coiteration of Q0, Q1 by S0, S1 respectively
with coiteration indices νi, then the coiteration terminates at µ < ω1 with:

I0 = ⟨⟨Qi⟩, ⟨νi⟩, ⟨π0ij⟩, T 0⟩

I1 = ⟨⟨Mi⟩, ⟨νi⟩, ⟨π1ij⟩, T 1⟩

such that:

(a) Mµ ◁ Qµ.

(b) 1 ≤T 1 µ in I1.

(c) There is no drop point i+ 1 ≤T 1 µ in I1.

In the next section we shall use this to derive the solidity lemma, which says
that all mice are solid. We shall also us eit to derive a number of other
structural facts about mice.
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We now prove the simplicity lemma.

Let N be countable, presolid and fully ω1 + 1.iterable. Let ⟨N,M, λ⟩ be a
phalanx witnessed by σ. (Recall that this entails λ ∈ M and λ = crit(σ).

Moreover, σ is Σ
(n)
0 -preserving whenever λ < ρnM ). Fix an enumeration

e = ⟨e(n) : n < ω⟩ of On∩N . Suppose that σ : N −→Σ∗ N ′. We can define
a sequence e′i ∈ N ′(i < ω) as follows. By induction on i < ω we define:

e′i = the least η ∈ N ′ s.t. there is some σ′ : N −→Σ∗ N ′

with σ′(eh) = e′h for h < i and η = σ′(ei).

It is not hard to see that there is exactly one σ′ : N −→Σ∗ N such that
σ′(ei) = e′i for i < ω. We then call σ′ the e-minimal embedding of N
into N ′. The Neeman-Steel Lemma (Theorem 3.5.8) says that N has an
e-minimal normal iteration strategy S with the following properties:

• S is a successul ω1 + 1 normal iteration strategy for N .

• Let N ′ be an iterate of N by an S-conforming iteration I. Let σ :
N −→Σ∗ M ◁ N ′. Then I has no drop on its main branch M = N ′

and the iteration map π : N −→ N ′ is the e-minimal embedding.

Hence, in particular, if M is a proper segment of N ′ or the main branch of
I has a drop, then there is no Σ∗-preserving embedding from N to M .

From now on let e be a fixed enumeration of OnN and let S be an e-minimal
strategy for N . Let S∗ be the induced strategy for ⟨N,M, λ⟩. Coiterate
Q0 = N against M0 = ⟨N,M, λ⟩ using the strategies S, S∗ respectively. Let
⟨I0, I1⟩ be the coiteration with:

I1 = ⟨⟨Mi⟩, ⟨ν0i ⟩, ⟨π0ij⟩, T 0⟩

I0 = ⟨⟨Qi⟩, ⟨ν1i ⟩, ⟨π1ij⟩, T 1⟩

and coiteration indices ⟨νi : 1 ≤ i ≤ µ⟩ where µ+1 < ω1 is the length of the
coiteration.

We note some facts:

(A) IfN ′ is any S-iterate ofN (i.e. the result of an S-conforming iteration),
then there is no Σ∗-preserving map of N into a proper segment of N ′.

(B) Call N ′ a truncating S-iterate of N iff it results from an S-conforming
iteration with a truncation on its main branch. If N ′ is a truncating
S-iterate, then there is no Σ∗-preserving embedding of N into N ′.
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(C) If N ′ is a non truncating S-iterate of N , then the iteration map π :
N −→ N ′ is the unique e-minimal map.

Now form the strict pullback İ of I1 as before. Let I be of length
µ+ 1. İ will then be of length µ̇+ 1. Let I ′, Î, ⟨σi : i ≤ µ̇⟩ be defined
as before. Set: N ′ =: N ′

µ̇, N̂ =: N̂µ̇, σ
′ = σ′µ̇. The following facts are

easily established:

(D) N̂ is an S-iterate of N . Moreover: σ′ :Mµ −→Σ0 N
′ where N ′ ◁ N̂ .

(E) If there is a drop point i + 1 ≤T 1 µ which is not an anomaly in I1,
then there is i+ 1 ≤T 0 µ̇ which is not an anomaly in İ. Hence N̂ is a
truncating iterate of N and σ′ :Mµ −→Σ∗ N̂ .

(F) If there is no anomaly i + 1 ≤T 1 µ in I, then there is no anomaly
i+ 1 ≤Ṫ µ̇ in İ.

(G) Suppose 0 ≤T 1 µ and no i + 1 ≤ µ is an anomaly. Hence the same
situation holds in İ. Then N̂ is an S-iterate of N by the iteration map
σ′π′0,µ (since σ̇µ̇π̇0,µ̇ = π̂0,µ̇).

We now prove the simplicity lemma. We do this by eliminating all other
possibilities.

Claim 1. Qµ is not a proper segment of Mµ.

Proof. Suppose not. ThenQµ is a non-truncating iterate ofN with iteration
map π00,µ. Hence σ′π00,µ : N −→Σ∗ σµ(Qµ), where σµ(Qµ) is a proper segment
of N̂ and N̂ is an S-iterate of N . Contradiction!

QED(Claim 1)

Claim 2. There is no truncation point i+1 ≤T 1 µ such that i+1 is not an
anomaly in I1.

Proof. Suppose not. Then σ′ : Mµ −→Σ∗ N̂ , where N̂ is a truncating S-
iterate of N . I0 is truncation free on its main branch, since I1 is not. Hence
Q0
µ ◁ Mµ. Hence, Q0

µ ◁ M
′
µ by Claim 1. Hence:

σ′π00,1 : N −→Σ∗ N̂ ,

where N̂ is a truncating iterate of N . Contradiction!

QED(Claim 2)

Claim 3. No i+ 1 ≤T 1 µ is an anomaly in I1.
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Proof. Suppose not. Then κi = κ and τi = λ. Hence τi < σ(λ) = κ+N .
Thus M∗

i = N∗, where N∗ = N ||η, η being maximal such that λ is a cardinal
in N ||η. By Claim 2, there is no drop point j + 1 ≤T 1 µ such that i < j.
Hence:

π′0,µ : N∗ −→Σ∗ Mµ.

κ = ρω in N∗, since ρω ≤ κ by the definition of N∗, but ρω ≥ κ since N∗ ∈ N
and κ is a cardinal in N . But κi = crit(π10,µ). Hence κ = ρω in Mµ.

Qµ =Mµ as above. Moreover the iteration I0 is truncation free on its main
branch, since I1 is not. Thus:

π00,µ : N −→Σ∗ Mµ

Hence κ0i ≥ ρωN for i+ 1 ≤T 0 µ, since otherwise ρωMµ
≥ λi > κ. Hence:

ρωN = ρωQµ
= κ

and:
P(κ) ∩N = P(κ) ∩Qµ = P(κ) ∩Mµ = P(κ) ∩N∗.

This is clearly a contradiction, since N∗ ∈ N and card(N∗) = κ in N . Hence
by a diagonal argument there is A ∈ P(κ) ∩N such that A /∈ N∗.

QED(Claim 3)

It remain only to show:

Claim 4. 1 ≤T 1 µ.

Proof. Suppose not. Then o <T 1 µ. By Claim 3 there is no anomaly on
the main branch of I1. Hence, if κi < λ and i + 1 ≤T 1 µ, we have τi < λ.
But then M∗

ν1i
= N . By claim 2 there is no drop on the main branch of I1.

Hence:
π10,µ : N −→Σ∗ Mµ.

Mµ ◁ Qµ by Claim 1. Hence Mµ = Qµ, since otherwise π10,µ would map N
into a proper segment of an S-iterator of N . Thus we have:

π00,µ;N −→Σ∗ Mµ.

Set: π0 = π00,µ, π
1 = π10,µ. We claim:

Claim. π0 = π1.

Proof. Suppose not. Let i be least such that π0(ei) ̸= π1(ei). Then π1(ei) >
π0(ei) since the map π0, being an S-iteration map, is e-minimal. But σ′π1
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is the S-iteration map from N to N̂ . Hence σ′π1(ei) < σ′π0(ei), since
σ′π0 : N −→Σ∗ N̂ . Hence π1(ei) < π0(ei). Contradiction!

QED(Claim)

Let ih+1 ≤Th µ with o = T h(ih+1) for h = 0, 1. Then κi0 = κi1 = crit(π),
where π = π00,µ = π10,µ. Set:

F 0 = EQ0
νi0
, F 1 = EM0

νi1
.

Then:
F h(X) = πh0,ih+1(X) for X ∈ P(κih) ∩N.

Thus:
α ∈ F h(X)←→ α ∈ π(X) for α < λih ,

since π = πhih+1,µ ◦ πh0,ih+1. But then νi0 ̸< νi1, since otherwise F 0 ∈ JE
Mi1

νi1

by the initial segment condition, whereas νi0 is a cardinal in JE
Mi1

νi1
. Contra-

diction! Similarly νi1 ̸< νi0 . Thus i0 = i1 = i and F 0 = F 1. But then νi is
not a coiteration index! Contradiction.

QED(Claim 4)

This proves the simplicity lemma.

4.3 Solidity and Condensation

In this section we employ the simplicity lemma to establish some deep struc-
tural properties of mice. In §4.3.1 we prove the Solidity Lemma which says
that every mouse is solid. In §4.3.2 we expand upon this showing that any
mouse N has a unique core N and core map σ defined by the properties:

• N is sound.

• σ :−→Σ∗ N .

• ρω
N

= ρωN and σ ↾ρωN := id.

• σ(pi
N
) = piN for all i.

In §4.3.3 we consider the condensation properties of mice. The condensation
lemma for L says that if π : M −→Σ1 Jα and M is transitive, then M ◁
Jα. Could the same hold for an arbitrary sound mouse in place of Jα? In
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that generality it certainly does not hold, but we discover some interesting
instances of condensation which do hold.

We continue to restrict ourselves to premice M such that M ||α is not of type
3 for any α. By a mouse we mean such a premouse which is fully iterable.
(Though we can take this as being relativized to a regular cardinal κ > ω,
i.e. card(M) < κ and M is fully κ+ 1-iterable.)

4.3.1 Solidity

The Solidity lemma says that every mouse is solid. We prove it in the slightly
stronger form:

Theorem 4.3.1. Let N be a fully ω1+1-iterable premouse. Then N is solid.

We first note that we may w.l.o.g. assume N to be countable. Suppose not.
Then there is a fully ω1 + 1 iterable N which is unsolid, even though all
countable premice with this property are solid. Let N ∈ Hθ, where θ is a
regular cardinal. Let σ : H ≺ Hθ, σ(N) = N , where H is transitive and
countable. Then H is a ZFC− model. Since σ ↾N : N ≺ N , it follows by a
copying argument that N is a ω1+1 fully iterable (cf. Lemma 3.5.6.). Hence
N is solid. By absoluteness, N is solid in the sense of H. Hence N is solid
in the sense of Hθ. Hence N is solid. Contradiction!

Now let a = pnN for some n < ω. Let λ ∈ a. Let M = Nλ
a be the λ−th

witness to a as defined in §4.1. For the reader’s convenience we repeat that
definition here. Let:

ρl+1 ≤ λ < ρl in N ; b =: a∖(λ+ 1)

Let N = N l,b be the l-th reduct of N by b. Set:

X = h(λ ∪ b) where h = hN is the Σ1-Skolem function of N.

Then X = h”(ω × (λ × {b})) is the smallest Σ1-closed submodel of N con-
taining λ ∪ b. Let:

σ :M ←→ N |X where M is transitive.

By the extension of embedding lemma, there are unique M,σ, b such that
σ ⊃ σ and:

M =M l,b, σ :M −→Σ′
1
N and σ(b) = b.

Then Nλ
a =:M and σλa =: σ.
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It is easily seen that σ witnesses the phalanx ⟨N,M, λ⟩. Employing the
simplicity lemma, we coiterate ⟨N,M, λ⟩ against N , getting ⟨IN , IM ⟩, ter-
minating at η, where:

• IN = ⟨⟨Ni⟩, ⟨νNi ⟩, ⟨πNij ⟩, TN ⟩ is the iteration of N .

• IM = ⟨⟨Mi⟩, ⟨νMi ⟩, ⟨πMij ⟩, TM ⟩ is the iteration of ⟨N,M⟩.

• ⟨νi : i < η⟩ is the sequence of coiteration indices. We know that:

• Mη ◁ Nη.

• IM has no truncation on its main branch.

• 1 ≤TM η.

It follows that κi ≥ λ for i <TM η. Moreover νi > λ for i < η, since
M |λ = N |λ.

We consider three cases:

Case 1. Mη = Nη and IN has no truncation on its main branch.

We know that ρl+1
M ≤ λ, since every x ∈ M is Σ

(l)
1 (M) in λ ∪ b. But κi ≥ λ

for i <TM η.

Hence:

(1) P(λ) ∩M = P(λ) ∩Mη and ρhM = ρhMη
for h > i. But then κj ≥ ρl+1

N

for j <TN η, since otherwise:

κi < supπNh,j+1”ρ
l+1
N ≤ ρl+1

Nη
= ρl+1

Mη
≤ λ < κj

where h = TN (j + 1). Hence for h > l we have:

(2) ρhM = ρhN and P(ρh) ∩M = P(ρh) ∩N .

Recall, however, that a = pnN , where m > l. Since every x ∈ M is Σ
(i)
1 (M)

in λ ∪ b, there is a finite c ⊂ λ such that c ∪ b ∈ PnM . Let A be Σ
(n)
1 (M) in

c∪b such that A∩ρn /∈M . Let A be Σ
(n)
1 (N) in c∪b by the same definition.

Then:
A ∩ ρn = A ∩ ρn ∈ N,

since c ∪ b <∗ a = pnN . Thus,

P(ρn) ∩M ̸= P(ρn) ∩N,
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contradiction! QED(Case 1)

Case 2. Mη is a proper segment of Nη.

ThenMη is sound. HenceM did not get moved in the iteration andM =Mη.
But then N is not moved and N = Nη, η = 0, since otherwise ν1 is a cardinal
in Nη. But then λ < ν1 ≤ OnM and ρωM ≤ λ < ν1, where M is a proper
segment of Nη. Hence ν1 is not a cardinal in Nη. Contradiction!

QED(Case 2)

Case 3. The above cases fail.

Then Mη = Nη and IN has a truncation on its main branch. We shall again
prove: M ∈ N .

We first note the following:

Fact. Let Q. be acceptable. Let π : Q −→∗
F Q′, where ρi+1 ≤ κ < ρi in

Q, κ = crit(F ). Then:

Σ
(n)
1 (Q′) ∩ P(κ) = Σ

(n)
1 (Q) ∩ P(κ) for n ≥ i.

Note. It follows easily that:

Σ
(n)
1 (Q′) ∩ P(H) = Σ

(n)
1 (Q) ∩ P(H)

where H = HQ
κ = HQ′

κ .

We prove the fact. The direction ⊃ is straightforward, so we prove ⊂ by
induction on n ≥ i. The first case is n = i. Let A ⊂ κ be Σ

(i)
1 (Q′) in the

parameter a. Then:

Aξ ←→
∨
z ∈ H i

Q′ B′(z, ξ, a)

where B′ is Σ
(1)
1 (Q′). But then π takes H ′

Q cofinally to H i
Q′ . Hence:

Aξ ←→
∨
u ∈ H i′

Q

∨
z ∈ π(u)B′(τ, ξ, a).

Let a = π(f)α where f ∈ Γ∗(κ,Q) and α < λ(F ) = F (κ). Let B be Σ
(i)
0 (Q)

by the same definition as B′. Then:

Aξ ←→
∨
u ∈ H i

Q{ζ < κ :
∨
z ∈ uB(z, ξ, f(α))} ∈ Fα,

where Fα ∈ Σ1(Q) by closeness.
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This proves the case n = i. The induction step uses the fact that ρnQ = ρnQ′ ,
for n > i. (Hence Hn

Q = Hn
Q′ .)

Let n = m+ 1 > i and let it hold at m. Let A ⊂ κ be Σ
(m)
1 (Q′). Then:

Aξ ←→ ⟨Hn
Q′ , B1

ξ , . . . , B
r
ξ ⟩ ⊢ φ

where φ is a Σ1 sentence and:

Bh
ζ = {z ∈ Hn

Q : ⟨ξ, z⟩ ∈ Bh} (h = 1, . . . , r)

and Bh is Σ
(m)
1 (Q′). We may assume w.l.o.g. that Bh ⊂ H. But then Bh is

Σ
(m)
1 (Q). Hence A is Σ

(n)
1 (Q).

QED(Fact)

Recall that ρl+1 ≤ λ < ρl in M . Using this we get:

(1) There is a Σ
(l)
1 (M) set B ⊂ λ which codes M (in particular, if Q is a

transitive ZFC− model and B ∈ Q, then M ∈ Q.)

Proof. Recall from the definition of M that:

M =M l,b = hM (ω × (λ× {c})), where c = b ∩ ρlM .

Thus we can set:

Ṁ = {≺ i, ξ ≻∈M : i < ω, ξ < λ, and hM (i, ⟨ξ, c⟩) is defined}.

For ≺ i, ξ ≻∈ Ṁ set: h(≺ i, ξ ≻) = hM (i,≺ ξ, c ≻). Let M = ⟨JEα , F ⟩.
We set:

• ∈̇ =: {⟨x, y⟩ ∈ Ṁ2 : h(x) ∈ h(y)}
• İ =: {⟨x, y⟩ ∈ Ṁ2 : h(x) = h(y)}
• Ė =: {x ∈ Ṁ : h(x) ∈ E}
• Ḟ =: { x ∈ Ṁ : h(x) ∈ F}

Then:
⟨Ṁ, ∈̇, Ė, Ḟ ⟩/I ∼= ⟨JEα , F ⟩ =M.

Let B be a simple coding of ⟨Ṁ, ∈̇, Ė, Ḟ ⟩, e.g. we could take it as the
set of ≺ ξ, j ≻ such that one of the following holds:

• j = 0 ∧ ξ∈̇Ṁ
• j = 1 ∧ ξ =≺ ξu, ξ1 ≻ with ξ0∈̇ξ1
• j = 2 ∧ ξ =≺ ξ0, ξ1 ≻ with ξ0Iξ1
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• j = 3 ∧ ξ ∈ Ė
• j = 4 ∧ ξ ∈ Ḟ .

It is clear that if B ∈ Q and Q is a transitive ZFC− model, then M
is recoverable from B in Q by absoluteness. Hence M ∈ Q. But
M =M l,b and M is recoverable from M in Q by absoluteness. Hence
M ∈ Q.

QED(1)

Let j+1 be the final truncation point on the main branch of IN . Then:

(2) B is Σ
(l)
1 (Nj+1).

Proof. Let B be Σ
(l)
1 (M) in the parameter p. Let B′ be Σ

(θ)
1 (Mη)

in π(p) by the same definition, where π = πM1,η. Then B = λ ∩ B′ is
Σ
(l)
1 (Nη). Let i be the least i ≥T j+1 in IN set. B is Σ(l)

1 (Ni). i is not a
limit ordinal, since otherwise lub{κh : h ≤TN i} = lub{kh : h < i} > λ
and there is h ≤TN i such that κh > λ and a ∈ rng(πNhi), where B is
Σ
(l)
1 (Ni) in the parameter a. Hence B is Σ(l)

1 (Nh). Contradiction! But
then i = k + 1. Let t = TN (k + 1). If k > j, then t ≥ j + 1 and
κk ≥ λj ≥ λ > ρl+1

M = ρl+1
Nξ

= ρl+1
Nt

. By the above Fact we conclude

that B ∈ Σ
(l)
1 (Nt) where t < i. Contradiction! Hence i = j + 1.

QED(2)

We consider two cases:

Case 3.1. κj ≥ λ.

By the Fact, we conclude that B is Σ
(i)
1 (N∗

j ) is a proper segment of

Nt, where t = TN (j + 1). Hence B ∈ Σ
(i)
1 (N∗

j ) ⊂ N . But then
B ∩ P(λ) ∩N ⊂ JE

N

σ(λ), since σ(λ) > λ is regular in N . Hence JEN

σ(λ) is

a ZFC− model and M ∈ JEN

σ(N) ⊂ N .

QED(Case 3.1)

Case 3.2. Case 3.1 fails.

Then κj < λ. But τj ≥ λ, since otherwise τj < λ is a cardinal in M ,
hence in N . Hence N∗

j = N and no truncation would take place at
j + 1. Contradiction! Thus:

λ = τ =: τj , N
∗
j = N∗ = N ||γ, κj = κ,

where κ is the cardinal predecessor of λ in M and γ > λ is maximal
such that τ is a cardinal in N ||γ. Then:

(1) π : N∗ −→∗
F Nj+1 where π = πN0,j+1, F = E

Nj
νj
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Since:
πj+1,η : Nj+1 −→Σ∗ Mη and crit(πj+1,η) > λ,

we know that:

(2) ρl+1 < λ < ρl in Nj+1

By the definition of N∗ we have: ρωN∗ < λ. But ρωN∗ ≥ κ, since κ is a
cardinal in N and N∗ ∈ N . Hence:

(3) ρωN∗ = κ.

Now let: ρi+1 ≤ κ < ρi in N∗. Then:

ρi+1 ≤ κ < λ ≤ ρi in Nj+1,

since:
λ < supπ”λ = λ(F ) ≤ supπ”ρiN∗ = ρiNj+1

.

Hence i = l and:

(4) ρl+1 = κ < ρl in Nj+1.

We now claim:

(5) B ∈ Def(N∗), i.e. B is definable in parameters from N∗. Hence
B ∈ N .

Proof. For ξ < λ define a map gξ : κ −→ κ as follows:

For α < κ set:

• Xα = the smallest X ≺ JEN∗

λ such that α ∪ {ξ} ∈ X.

• Cξ = {α < κ : Xξ ◦ k ⊂ α}.

For α ∈ Cξ, let σξ : Qξ
∼←→ Xξ be the transitivator of Xξ. Set:

gξ(α) =:

{
σ−1
ξ (ξ) if α ∈ Cξ

∅ if not

It is easily seen that:

π(gξ)(κ) = ξ where π = πN0,j+1.

Since B is Σ
(l)
1 (Nj+1) we have:

Bζ ←→
∨
z ∈ JE

Nj+1

ρlNj+1

B′(z, ζ, a)

for some a ∈ Nj+1. But π takes cofinally to ρlNj+1
. Hence:

Bζ ←→
∨
u ∈ JENv

ρN∗

∨
z ∈ π(u)B′(z, ζ, u).
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Let f ∈ Γ∗(κ,N∗) such that a = π(f)(α), α < λ. We know that
ξ = π(gξ)(κ) for ξ < λ. But then the statement Bζ is equivalent to∨

u ∈ JENv

ρf
N∗
{⟨µ, δ⟩ :

∨
x ∈ uB′′(x, gζ(µ), f(δ))} ∈ F⟨K,α⟩

where F = E
Nj
νj and B′′ is Σ(l)

0 (N∗) by the same definition. But F⟨κ,α⟩
is Σ1(N

∗) by closeness. QED(5)

But then B ∈Def(N∗) ⊂ JEN

σ(λ) ⊂ N . Hence M ∈ N .

QED(Lemma 4.3.1)

4.3.2 Soundness and Cores

Let N be any acceptable structure. Let m < ω. In §2.5 we defined the set
RnN of very good n-parameters. The definition is equivalent to:

a ∈ Rn iff a is a finite set of ordinals and for i < n, each x ∈ N ||ρi

has the form F (ξ, a) where F is a Σ
(i)
1 (N) map and ξ < ρi+1.

We said that N is n-sound iff RnN = PnN . It follows easily that N is n-sound
iff pn ∈ Rn, where pn = pnN is the <∗-least p ∈ Pn. We called N sound iff
it is n-sound for all n. It followed that, if N is sound, then ρn∖ρi = pi for
i ≤ n < ω.

We have now shown that, if N is a mouse then pn∖ρi = pi for i ≤ n < ω,
regardless of soundness. We set: p∗ =

⋃
n<ω p

n. Then p∗ = pn whenever
ρn = ρω in N . We know:

Lemma 4.3.2. If N is a mouse and π : N −→Σ∗ N strongly, then N is a
mouse and π(p∗

N
) = p∗N∗.

Proof. N is a mouse by a copying argument. Hence N is solid. But then
π(pi

N
) = P iN for all i < ω, by Lemma 4.1.11.

QED(Lemma 4.3.2)

We know generalize the notion RnN as follows:

Definition 4.3.1. Let ρωN ≤ µ ∈ N, a ∈ R
(µ)
N iff a is aa finite set of ordinals

and for some n,

• ρn ≤ µ < ρn−1 in N .
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• Every x ∈ N ||ρn−1 has the form F (ξ⃗, a), where ξ1, . . . , ξr < µ and F

is Σ
(n−1)
1 (N).

• If j < n− 1, then a ∈ RjN .

We also set:

Definition 4.3.2. N is sound above µ iff for some n, ρn ≤ µ < ρn−1 in N

and whenever p ∈ PnN then p∖µ ∈ R(µ)
N .

(It again follows that N is sound above µ iff pnN∖µ ∈ R
(µ)
N .) We prove:

Lemma 4.3.3. Let N be a mouse. Let ρωN ≤ µ ∈ N . There is a unique pair
σ,M such that:

• σ :M −→Σ∗ N

• M is a mouse which is sound above µ

• σ ↾µ = id and σ(p∗M ) = p∗N .

Before proving this, we develop some of its consequences.

Definition 4.3.3. Let N be a mouse. If M,σ are as above, we call M the
µ-th core of N , denoted by: coreµ(N), and σ the µ-th core map, denoted
by σNµ .

We also set: core(N) = coreρωN (N) and σN = σNρωN
, M = core(N) is the core

of N , and σN is the core map.

We leave it to the reader to prove:

Corollary 4.3.4. Let N be a mouse. Then:

• coreµ(coreµ(N)) = coreµ(N).

• N is sound above µ iff N = coreµ(N).

• Let M = coreµ(N), µ ≤ µ,M = coreµ(M). Then M = coreµ(M) and
σNµ σ

M
µ = σNµ .

We now turn to the proof of Lemma 4.3.3. By Löwenheim-Skolem argument
it suffices to prove it for countable N . We first prove uniqueness. Suppose
not. Let M,π and M ′, π′ both have the property. If x ∈ M , then x =
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F (ξ⃗, P ∗
N ) where F is good and ξ1, . . . , ξr < µ, since M is sound above µ.

Hence:
π(x) = F̃ (ξ⃗, P ∗

N )

where F̃ has the same good definition over N . But then in N the Σ∗ state-
ment holds: ∨

y y = F̃ (ξ⃗, P ∗
N ).

(This is Σ∗ since it results from the substitution of F̃ (ξ⃗, P ∗
N ) in the formula

ν = ν.) Hence in M ′ we have:∨
y y = F ′(ξ⃗, P ∗

N ),

where F ′ has the same good definition over M ′. Thus rng(π) ⊂ rng π′−1 and
π′−1π is a Σ∗-preserving map of M to M ′. A repeat of this argument then
shows that rng(π′) ⊂ rng(π−1) and π′−1π is an isomorphism of M onto M ′.
But M,M ′ are transitive. Hence M =M ′ and π = π′.

QED

This prove uniqueness. We now prove existence. Let a = p∗N . Let ρn+1 ≤
µ < ρn. Set N = Nn,a. Let b = a ∩ ρnN and set:

X = hN (µ ∪ b) = the closure of µ ∪ b under Σ1(N) functions.

Let σ : M
∼←→ N |X be the transitivazation of N |X. By the downward

extension lemma, there are unique M,σ ⊃ σ, a such that:

M =Mn,a, σ :M −→
Σ

(n)
1

N, σ(a) = a.

Clearly, σ ↾µ = id. Moreover, a ∈ R(µ)

M
. It suffices to prove:

Claim. σ is Σ∗-preserving and a = p∗M .

If σ = id and M = N , there is nothing to prove, so suppose not. Let
λ = crit(σ). (Hence µ ≤ λ.) There is then a h ≤ n such that ρh+1 ≤ λ < ρh

in N . λ is a regular cardinal in M , since σ(λ) > λ. It follows easily that
σ witnesses the phalanx ⟨N,M, λ⟩. Note that ρωM ≤ µ ≤ λ, since a ∈ R(µ)

M
.

We now apply the simplicity lemma, coiterating N, ⟨N,Mλ⟩ with:

IN = ⟨⟨Ni⟩, ⟨νNi ⟩, ⟨πNi,j⟩, TN ⟩

IM = ⟨⟨Mi⟩, ⟨νMi ⟩, ⟨πMi,j⟩, TM ⟩

being the iteration ofN, ⟨N,M, λ⟩ respectively. We assume that the iteration
terminates at an η < ω1 and that ⟨νi : 1 ≤ i < η⟩ is the sequence of coindices.
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It is now time to mention that some of the steps in the proof of solidity go
through with a much weaker assumption on the phalanx ⟨N,M, λ⟩ and its
witness σ. In particular:

Lemma 4.3.5. Let σ witness ⟨N,M, λ⟩, where R(λ)
M ̸= ∅. If cases 2 or 3

hold, then M ∈ N .

The reader can convince himself of this by an examination of the solidity
proof. But the premiss of Lemma 4.3.5 is given. Hence:

(1) Case 1 applies.

Proof. Suppose not. Let A be Σ
(h)
1 (N) in a such that A ∩ ρh+1

N /∈ N .
Let A be Σ

(h)
1 (M) in a by the same definition. Then A ∩ ρh+1

N =

A ∩ ρh+1
N ∈ N , since A ∈ Σω(M) ⊂ N . Contradiction!

QED(1)

Then Mη = Nη and there is no truncation on the main branch of IN .
Then πM1,η : M −→Σ∗ Mη. Hence, by a copying argument, M is a
mouse, hence is solid. Since crit(πM1,η) ≥ λ, we have:

(2) P(λ) ∩M = P(λ) ∩Mη and ρiM = ρiMη
for i > h.

But:

(3) crit(πN1,η) ≥ ρh+1.

Proof. Suppose not. then there is j + 1 ≤TN η such that κj < ρh+1.
Let j be the least such. Let t = TN (j + 1). Then:

κj < sup πt,j+1”ρ
h+1
N ≤ ρh+1

Nj+1
≤ ρh+1

Nη
= ρh+1

M > κj .

Contradiction!

QED(3)

Hence:

(4) ρiN = ρiM for i > h. Moreover if ρi = ρiN , then P(ρi) ∩N = P(ρi) ∩M
for i > h.

Using this we get:

(5) σ :M −→Σ∗ N .

We first show that σ is Σ∗-preserving. By induction on i ≥ h we show:

Claim. σ is Σ
(i)
1 -preserving.
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For i = h, this is given. Now let i = k + 1 ≥ h and let it hold for k.
Let A be Σ

(i)
1 (M). then:

Ax←→ ⟨H i, B1
x, . . . , B

r
x⟩ |= φ

where φ is a Σ1-sentence and:

Bi
x{z ∈ H i : ⟨z, x⟩ ∈ Bl},

where Bl is Σ
(k)
1 (M) for l = 1, . . . , r. Let A′ be Σ

(k)
1 (M) by the same

definition. Then:

Bl
zx ←→ Bl′

zσ(x) for z ∈ H i
M = H i

N .

Hence Ax←→ A′σ(x).

QED(5)

But

(6) σ is strongly Σ∗-preserving.

Proof. Let ρm = ρω in M and N . Let A be Σ
(m)
1 (M) in x such that

A∩ρm /∈M . Let A′ be Σ
(m)
1 (M) in σ(x) by the same definition. Then

A ∩ ρn = A′ ∩ ρm /∈ N , since P(ρm) ∩M = P(ρm) ∩N .

QED(6)

But then σ(P ∗
M ) = P ∗

N . Hence P ∗
M = a = σ′(P ∗

N ). We know that
a ∈ R(µ)

M . Hence M is solid above µ.

QED(Lemma 4.3.5)

4.3.3 Condensation

The condensation lemma for L says that if M is transitive and π :M −→ Jα
is a reasonable embedding, then M ◁ Jα. It is natural to ask whether the
dame holds when we replace Jα by an arbitrary sound mouse. In order to
have any hope of doing this, we must employ a more restrictive notion of
reasonable. Let us call σ : M −→ N reasonable iff either σ = id or σ
witnesses the phalanx ⟨N,M, λ⟩ and ρωM ≤ λ. We then get:

Lemma 4.3.6. If N,M are sound mice and σ : M −→ N is reasonable in
the above sense, then M ◁N .

It ifs not too hard to prove this directly from the solidity lemma and the
simplicity lemma. We shall, however, derive it from a deeper structural
lemma:
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Lemma 4.3.7. Let N be a mouse. Let σ witness the phalanx ⟨N,M, λ⟩.
Then M is a mouse. Moreover, if M is sound above λ, then one of the
following hold:

(a) M = coreλ(N) and σ = σNλ .

(b) M is a proper segment of N .

(c) π : N ||γ −→∗
F M , where F = FNµ such that:

(i) λ < γ ∈ N such that ρωN ||γ < λ.

(ii) λ = κ+N ||γ where κ = crit(F ).
(iii) F is generated by {κ}.

Remark. In case (c) we say that M is one measure away from N . Then
γ is maximal such that λ is a cardinal in N ||γ. Hence ρN ||γ ≤ κ. But κ
is a cardinal in N and N ||γ ∈ N . Hence ρN ||γ = κ. But π ↾ κ = id and
π(p∗N |γ) = p∗M . Hence N ||γ = core(M) and π is the core map. Clearly, µ is
least such that EMµ ̸= ENµ .

Remark. Lemma 4.3.6 follows easily, since the possibilities (a) and (c) can
be excluded. (a) cannot hold, since otherwise M = coreλ(N) = N by the
soundness of N . Hence σλN = id. Contradiction, since crit(σλN ) = λ. If (c)
held, then N∗ = core(M) where N∗ = N ||γ, and π is the core map. But M
is sound. Hence M = N∗ = core(M) and π = id. Contradiction!

Remark. Lemma 4.3.7 has many applications, through mainly in setting
where the awkward possibility (c) can be excluded (e.g. when λ is a limit
cardinal in M). We have given a detailed description of (c) in order to
facilitate such exclusions.

We now prove Lemma 4.3.7. We can again assume N to be countable by
Löwenheim-Skolem argument. We again coiterate against ⟨N,M, λ⟩ getting
the iterations:

IN = ⟨⟨Ni⟩, . . . , TN ⟩, IM = ⟨⟨Mi⟩, . . . , TM ⟩

with coiteration indices ⟨νi : i < η⟩, where the coiteration terminates at
η < ω1. Then π1,η :M −→Σ∗ Mη and M is a mouse by a copying argument.
Now let M be sound above λ. We again consider three cases:

Case 1. Mη = Nη and IN has no truncation on the main branch.

We can literally repeat the proof in cases of Lemma 4.3.5, getting:

σ is strongly Σ∗-preserving.
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Hence σ(p∗M ) = p∗N where M is sound above λ and σ = σNλ .

QED(Case 1)

Case 2. Mη is a proper segment of Nη.

We can literally repeat the proof in Case 2 of the solidity Lemma, getting:
M is a proper segment of N .

Case 3. The above cases fail.

Then Mη = Nη and IN has a truncation on the main branch. Let j + 1 be
the last truncation point on the main branch. Then M is a mouse and πM1,η is
strongly Σ∗-preserving. Hence πM1,η(p∗M ) = p∗Mξ

. But κi ≥ λ for all i ≤TM η.
Hence crit(π1,η) ≥ λ. Hence:

M = coreλ(Mη) and π1,η = σ
Mξ

λ ,

since M is sound above λ. We also know:

κi ≥ λj ≥ λ for j + 1 <TN i+ 1 <TN η.

Hence crit(πNj+1,η) ≥ λ and πNj+1,η(p
∗
Nj+1

) = p∗Nη
= p∗Mη

. Hence:

M = coreλ(Nj+1) and σNj+1

λ = (πNj+1,η)
−1 ◦ πM1,η.

We consider two cases:

Case 3.1. κj ≥ λ.

Then N∗
j is a proper initial segment of Nj , hence is sound. Since κj ≥ λ,

it follows as before that M = coreλ(N
∗). Hence M = N∗

j by the soundness
of N∗

j . But this means that M was not moved in the iteration IM up to
t = TN (j + 1), since if h < t in the least point active in I∗, then EMνh ̸= ∅
and hence ENt

νh
= E

N∗
j

νh = ∅. Hence N∗
j ̸=M . Contradiction!

Thus Mt = M = N∗
j is a proper segment of Nt. Hence the coiteration

terminates at t < η. Contradiction!

QED(Case 3.1)

Case 3.2. Case 3.1 fails.

Then κj < λ. But τj ≥ λ, since otherwise τj is a cardinal in N and N∗
j = N .

Hence j + 1 is not a truncation point in IN . Contradiction!
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Thus τj = λ. λ is regular in M , since σ(λ) > λ. But then λ = κ+i in M
and σ(λ) = κ+j in N . Hence λ is not a cardinal in N . EMλ = ∅, since λ is
a cardinal in M . But ENλ = ∅, since otherwise κj , being a cardinal in N ,
would be a cardinal in N ||λ. Hence N ||λ would be an active premouse of
type 3. Contradiction!

But 0 is inactive in IN and ν1 = the least ν such that EMν ̸= ENν . Hence
νi ≥ ν1 > λ for all i which are active in IN . Hence no i < t is active in IN ,
since otherwise κj < λi. But t = T (j + 1) is the least t such that t is active
in IN and κj < λt. Contradiction!

But then N = Nt and N∗
j = N∗ = N ||γ, where γ is maximal such that τ = λ

is a cardinal in N ||γ. Hence κj = κ = the cardinal predecesor of τ in N∗.
κ = ρωN∗ , since κ is a cardinal in N and N∗ ∈ N . We have:

κi ≥ λ for 1 ≤TM i+ 1 ≤TM η

Hence crit(πM1,η) ≥ λ. But:

κi ≥ λt ≥ λ for j + 1 <TN i+ 1 <TN η

Hence crit(πNj+1,η) ≥ λ. Hence:

M = coreλ(Nj+1), (π
N
j+1,η)

−1 ◦ πM1,η = σ
Nj+1

λ ,

ρωN∗ ≤ κ. But then ρωN∗ = κ since κ is a cardinal in N and N∗ ∈ N . Set
⟨Ñ , F̃ ⟩ = Nj ||νj . Then:

πt,j+1 : N
∗
j −→∗

F̃
Nj+1

By closeness we have: F̃κ ∈ Σ1(N
∗). Hence F̃κ ∈ Σ1(N

∗) ⊂ N ||σ(τ),
where σ(τ) is regular in N and γ < σ(τ). Set: Q̄ = N ||τ . By a standard
construction there is a unique triple ⟨Q,F, π̄⟩ such that F is a full extender
at κ with base Q̄, π̄ : Q̄ −→F Q is the extension of ⟨Q̄, F ⟩, F is generated by
{κ} and Fκ = F̃κ. (To see this we note that F̃κ is a normal ultrafilter on Q̄
at κ. Hence we can form the ultraproduct π̄ : Q̄ −→F̃κ

Q. Q is well-founded
, since each element of Q has the form π̄(f)(κ) where f ∈ Q̄, f : κ −→ Q̄
and:

π̄(f)(κ) ∈ π̃(g)(κ) ⇐⇒ {ξ : f(ξ) ∈ g(ξ)} ∈ F̃κ
⇐⇒ πNt,i+1(f)(κ) ∈ πNt,i+1(g)(κ).

Set: F = π̄ ↾ P(κ). Then Q, F , π have the above properties. ) The
construction of Q, F , π̄ can be carried out in the ZFC− model N ||σ(τ), since
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Q̄, F̃κ ∈ N ||σ(τ). Then Q,F, π̃ ∈ N . It is easily seen that F is close to N∗.
Hence we can form the Σ∗ ultrapower:

π : N∗ −→∗
F M

′.

M ′ is transitive, since each of its element has the form π(f)(κ), where f ∈
Γ∗(κ,N∗) and as before:

π(f)(κ) ∈ π(g)(κ) ⇐⇒ πNt,i+1(f)(κ) ∈ πNt,i+1(g)(κ).

There is a Σ
(n−1)
0 preserving map σ : M ′ −→ Ni+1 defined by:

σ(π(f)(κ)) = πt,i+1(f)(κ)

for f ∈ Γ∗(κ,N∗). Since π takes ρn−1
N∗ cofinally to ρn−1

M ′ and πt, i+ 1 takes
ρn−1
N∗ cofinally to ρn−1

Nj+1
, we know that σ′ takes ρn−1

N∗ cofinally to ρn−1
N ′ . Hence

why σ is Σ
(n−1)
1 -preserving. Since σ ↾κ = id and κ ≥ ρnN∗ , it follows easily

that σ′ is Σ∗ preserving.

Claim 1. M ′ is sound above τ . Hence M =M ′ = coreτ (Nj+1).

Proof. Let ρn ≤ κ < pn−1 in N∗. Hence κ = ρn = ρω in N∗. Let x ∈ M ′.
Then x = π(f)(κ), where f ∈ Γ∗(κ,N∗).

By the soundness of N∗ we may assume:

f(ξ) = F (ξ, a, ζ⃗)

where F is a good Σ
(n−1)
1 (N∗) function, a = pnN∗ and ζ1, . . . , ζr < κ. Hence:

π(f)(κ) = F ′(κ, π(a), ζ⃗)

where F ′ is Σ(n−1)
1 (M ′) by the same good definition, π(a) = pnM ′ , and ζ⃗ < τ .

But κ < τ , where ρn < τ < ρn−1 in M ′.

QED(Claim 1)

All that remains is to show:

Claim 2. ⟨Q,F ⟩ = N ||µ for a µ ≤ γ.

Proof. We note that if ⟨Q,F ⟩ = N ||µ, then we automatically have µ ≤ γ,
since τ is then a cardinal in N ||µ and γ is maximal s.t. τ is a cardinal in
N ||γ.
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(1) ⟨Q,F ⟩ ∈ N .

Proof.(ENγ
νj )κ = Fκ ∈ N ||σ(τ), where N ||σ(τ) is a ZFC− model.

Hence ⟨Q,F ⟩ ∈ N ||σ(τ) since the construction of ⟨Q,F ⟩ can be carried
out in N ||σ(τ) by absoluteness.

(2) ρ1⟨Q,F ⟩ ≤ τ .

Proof. As above, let π : N ||σ(τ) −→ Q be the extension map given by
F . By §3.2 we know that π is Σ1(⟨Q,F ⟩) and that ⟨Q,F ⟩ is amenable.
But then there is a Σ1(⟨a, π⟩) partial map G of N ||τ onto Q defined
by: G(f) = π(f)(κ) for f ∈ N ||τ, : f : κ −→ N ||τ .

QED(2)

Define a map σ̃ : ⟨Q,F ⟩ −→ Nj ||νj by:

σ̃(π(f)(κ)) := π̃(f)(κ) for f ∈ N |τ, f : κ −→ N ||τ,

where π̃ = πNt,i ↾(N ||τ) is the extension of ⟨Nj ||τ, F ⟩.
Then:

(3) σ̃ : ⟨Q,F ⟩ −→Σ0 Nj ||νj . In fact, it is also cofinal.

(4) σ̃ ↾τ + 1 = id.

Proof. Set:

i+ =: the least η > i such that η = η ≥ ω in Q
pl := ⟨i+ : i < κ⟩.

Then π(pl)(κ) = κ+Q = κ+Nj ||νj = π̃(pl)(κ).

Set:

Γ =: {f ∈ N ||τ : f : κ −→ κ ∧ f(i) < i+ for i < κ}
<̇ = {⟨f, g⟩ ∈ Γ : {i : f(i) ∈ g(i)} ∈ Fκ}

Then every ξ < τ has the form π(f)(κ) fo an f ∈ Γ. Clearly, f<̇g ←→
π(f)(a) < π(g)(a) for f, g ∈ Γ. Hence by <̇-induction on g ∈ Γ:

π(g)(κ) = {π(κ) : f<̇g}.

But Fκ = (E
Nj
νj )κ. Hence the same holds for π̃ in place of π. Thus, by

<̇-induction on g ∈ Γ:

π̃(g)(κ) = {π̃(κ) : f<̇g} = {π(κ) : f<̇g} = π(f)(κ).

Hence σ̃ ↾τ = id. But:

σ̃(τ) = σ̃(π(pl)(κ)) = π(pl)(κ) = τ

QED(4)

Redoing the proof of (2) with more care, we get:
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(5) ∅ ∈ R(τ)
⟨Q,F ⟩.

Proof. X ⊂ κ and X = κ are both Σ1(⟨Q,F ⟩), since:

X ⊂ κ←→ X ∈ dom(F ), X = κ←→ X ∈ On∩dom(F ).

Thus this suffices to show that π is Σ1(⟨Q,F ⟩). We note that if f :

X
onto−→ u and u is transitive, then π(f) : π(X)

onto−→ π(u) and π(u) is
transitive. But π(X) = F (X) for X ⊂ κ. Hence y = π(x) can be
expressed by saying that there are:

X,Y, f, u,X ′, Y ′, f ′, u′

such that:∨
u
∧
X,Y ∈ dom(F ) ∧ f : X

onto−→ u ∧ x = f(0)

∧
∧
ξ, ζ ∈ X(f(ξ) ∈ f(ζ)←→≺ ξ, ζ ≻∈ Y )

∧X ′ = F (X) ∧ Y ′ = F (Y ) ∧ f ′ : X ′ onto−→ u′ ∧ y = f ′(0)

∧
∧
ξ, ζ ∈ X ′(f ′(ξ) ∈ f ′(ζ)←→≺ ξ, ζ ≻∈ Y ′)

QED(5)

We then prove:

(6) One of the following holds:

(a) ⟨Q,F ⟩ = coreτ (Nj ||νj) and σ̃ is the core map.
(b) ⟨Q,F ⟩ is a proper segment of Nj ||νj
(c) ρω > τ in ⟨Q,F ⟩.

Proof. If σ̃ = id, ⟨Q,F ⟩ = Nj ||νj , then (a) holds. Now let σ̃ ̸= id.
Let λ̃ = crit(σ̃). Then λ̃ > τ by (4). We know ρ1 ≤ τ < λ̃ in
⟨Q,F ⟩. Moreover σ̃ is Σ0-preserving. It follows easily that σ̃ verifies
the phalanx ⟨Nj ||νj , ⟨Q,F ⟩, λ̃⟩. ⟨Q,F ⟩ is then a mouse. Moreover, it is
sound above τ since ∅ /∈ R(σ)

⟨Q,F ⟩. Hence it is sound above λ̃ since τ < λ̃.
We then coiterate Nj ||νj against ⟨Nj ||νj , ⟨Q,F ⟩, λ̃⟩, using all that we
have learned up until now. We consider the same three cases. In case
1, (a) holds. In case 2, (b) holds. We now consider case 3, using what
we have learned up to now. We know that λ̃ is a successor cardinal in
⟨Q,F ⟩ and that its predecessor κ̃ is a limit cardinal in ⟨Q,F ⟩. Since
τ < λ̃ is a successor cardinal in ⟨Q,F ⟩, we conclude: τ < κ̃ = ρω.

(7) ⟨Q,F ⟩ is a proper segment of N .

Proof. Suppose not. We derive a contradiction. (c) cannot hold, since
ρω ≤ τ in ⟨Q,F ⟩. We now show that (b) cannot occur. In fact, we
show:
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Claim. There is no i ≤ η such that ⟨Q,F ⟩ is a proper segment of Ni.

Proof. Suppose not, Then Ni ̸= N . Hence there is a least h < i which
is active in IN . Then JE

Ni

νh
= JE

N

νh
, where νh > τ is regular in Ni.

But ρω⟨Q,F ⟩ ≤ τ . Hence ⟨Q,F ⟩ is a proper segment of JEN

νh
, hence of

N . Contradiction! QED(Claim)

We now show that (a) cannot occur. If νj ∈ Nj then N ||νj is sound,
hence sound above τ . Hence:

⟨Q,F ⟩ = coreτ (Nj ||νj) = Nj ||νj

is a proper segment of Nj . Contradiction! Thus Nj = Nj ||νj . If there
is no truncation on the main branch on IM |j + 1, then N = Nj . But
τ then a cardinal in Nj and not in N . Contradiction! Hence there is
a least truncation point (i + 1) ≤T j. Let h = T (i + 1) and π = πh,j .
Then:

π : N∗
i −→Σ∗ Nj , κi = crit(π),

Nj has the form ⟨JEγ , F ′⟩. Hence Ni has the form ⟨JE∗
ν∗ , F

∗⟩ where
κi = crit(F ∗), τi = τ(F ∗). But then π(τi) = τ = τ(F ′). Hence
τ ∈ rng(π). Hence κi > τ , since (κi, λi) ∩ rng(π) = ∅. Since N∗

i is
sound, being a proper segment of Nh. Hence it is sound above τ . Since
π(p∗Ni

) = p∗Nj
and π ↾τ = id, we conclude:

N∗
i = core(Nj) = ⟨Q,F ⟩.

But then ⟨Q,F ⟩ is a proper segment of Nh. Contradiction!

QED(7)

QED(Lemma 4.3.7)

Using the condensation lemma, we prove a sharper version of the initial
segment condition for mice:

Lemma 4.3.8. Let N = ⟨JEν , F ⟩ be an active mouse. Let λ ∈ N . Let
F = F |λ be a full extender. Set:

M = ⟨JEν , F ⟩ where π : JEτ −→ JE is the extension of F⃗

. Then M is a a proper segment of N .

Proof. Let κ = crit(F ). Define τ = τF , λ = λF , ν = νF as usual. Hence:
τ = κ+N , λ = F (λ). Then τ = τF , λ = λF , ν = νF . Let π : JEτ : JEν be the
extension of F . Define: σ : JEτ −→ JEτ by:

σ(π(f)(α)) = π(f)(α) for α < λ, f ∈ JEτ ,dom(f) = u.
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Then λ = crit(λ), σ(λ) and σ is Σ0-preserving, where:

ρωM ≤ λ and ∅ /∈ R(λ)
M .

This is because π is Σ1(M) and each element of M has the form π(f)(α)
where f ∈ JEτ and α < λ. It follows easily that σ witnesses the phalanx
⟨N,M, λ⟩. Applying the condensation lemma, we see that one of the possi-
bilities (a), (b), (c) holds. (c) cannot hold since λ is a limit cardinal in M .
(a) cannot hold, since M ∈ N by the initial segment condition. If (a) holds,
we would have: σ(p∗M ) = p∗N , σ ↾λ = id, where σ is Σ∗-preserving. But then
ρωM = ρωN . Let ρ = ρωN . Let A be Σ∗(N) in p∗N such that A ∩ ρ /∈ N . Let A
be Σ∗(M) in p∗M by the same defition. Then:

A ∩ ρ = A ∩ ρ ∈ Σ∗(M) ⊂ N.

Contradiction! Thus, only the possibility (b) remains.

QED(Lemma 4.3.8)

As a corollary of the proof of Lemma 4.3.7, we obtain a lemma which will
be very useful in the next chapter. We first define:

Definition 4.3.4. Let M be a premouse. Set:

ρ = ρM =: ρωM , µ = µM = {ξ ∈M | card(ξ) ≤ ρ in M}.

Lemma 4.3.9. Let N be a fully iterable premouse. Let M = core(N). Let
µ = µM . Then µ = µN and M ||µ = N ||µ.

Proof. If N = M there is nothing to prove, so assume N ̸= M . Let
σ : M −→ N be the core map. Since σ ̸= id, it has a critical point λ.
Clearly λ ≥ ρ = ρM = ρN , since σ|ρ = id. It is easily seen that σ verifies the
phalanx ⟨N,M, λ⟩. Note that the two possibilities (b), (c) in the conden-
sation lemma(4.3.7) cannot hold, since (b) would require: M ∈ N and (c)
would imply that M is unsound. Coiterate ⟨N,M, λ⟩, N to get IM , IN as
in the proof of lemma 4.3.7. Then the cases 2 and 3 cannot hold, since then
either (b) or (c) would follow. Hence case 1 holds-i.e. Mζ = Nζ and IN has
no truncation on its main branch. We know that IM has no truncation on
its main branch, where κi ≥ λ ≥ ρ for i on the main branch. Thus ρ = ρNζ

and κi > ρ for all i.

Then µ = µM = ρ+M = ρ+Nζ and M ||µ = Nζ ||µ. Now suppose κi = ρ,
where i + 1 is the first point above 1 on the main branch. Then π1,i+1 :
M −→

E
Mi
νi

Mi+1 where ρ = ρMi+1 and µ = τi = ρ+M . But then τi = ρ+Mi+1

and M ||τi = Mi+1||τi. Since κj ≥ λi for j + 1 on the main branch with
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j + 1 >T i + 1, we conclude: τi = ρ+Mζ = µNζ
and M ||τi = Nζ ||τi, since

πMi+1,ζ |λi = id. We have shown:

Claim 1. µ = µNζ
and M ||µ = Nζ ||µ.

But since ρ = ρωNζ
we must have κi ≥ ρ for all i + 1 on the main branch of

IN , since otherwise πN0ζ(ρ) = ρωNζ
> ρ. Hence we can respect the above proof

on the N -side to get:

Claim 2. Let µ = µN . Then µ = µNζ
and N ||µ = Nζ ||µ.

QED(Lemma 4.3.9)

We have defined µ = µM in such a way that µ ̸∈ M is possible.In fact we
could have: ρ = µ = ht(M). However, by the above proof:

Lemma 4.3.10. Let N be fully iterable and N ̸= M = core(N). Then for
all fully iterable N ′ with M = core(N ′) we have:

Let µ′ = µN ′. Then µ′ ∈ N ′ and µ = ρ+N
′ .

We also note:

Lemma 4.3.11. Let JAα be a constructible extension of JAβ (i.e. β ≤ α and
A ⊂ JAβ ). Assume: ρ = ρJ

A
α ≥ β. Then JAα = core(JAα ) and σ = id is the

core map.

4.4 Mouselikeness

In §3 we showed that every normally iterable premouse which has the unique
branch property is fully iterable. In the present chapter we have derived
several deep structural properties of fully iterable premice. We shall call a
premouse which has these properites mouselike, be it iterable or not. We
define:

Definition 4.4.1. Let N be a premouse. N is condensable if and only if

(i) N is solid

(ii) Let M = core(N), ρ = ρωM = ρωN and µ = ρ+N . Then µ = ρ+M and
M ||µ = N ||µ.

(iii) Let σ witness the phalanx ⟨N,M, λ⟩, where M is sound above λ. Then
one of the alternatives (a), (b), (c) in lemma 4.3.7 hold.
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Definition 4.4.2. N is mouselike if and only if every initial segment N ′ ◁N
is condensible.

Definition 4.4.3. N is precondensible(or pre-mouselike) if and only if every
proper initial segment N ′ ◁ N is condensible.

We have seen that every fully iterable premouse W is condensible. Since
every N ′ ◁ N is then also fully iterable, we conclude that N is mouselike.

The definition of “condensible” becomes simpler if we assume N to be sound
and solid. The conditions (i), (ii) are then vacuously true. (iii) then says
that, if σ witnesses ⟨N,M, λ⟩ and M is sound above λ, then either (b) or
(c) hold. (If (a) holds, then M = coreλ(M) and σ = σλM . But by soundness,
M = core(M) and σλM = σM = id, contradicting the fact that λ = crit(σ).)

In §4.1 we defined a premouse to be presolid if and only if all of it’s proper
initial segments are solid. Lemma 4.1.13 said that the property of being
presolid is uniformly Π1(M) for premice M . Hence:

Lemma 4.4.1. Let M,N be premice. Then

• If M is presolid and π :M −→Σ1 N , then N is presolid.

• If N is presolid and π :M −→Σ0 N , then M is presolid.

We shall prove:

Lemma 4.4.2. The property of being pre-mouselike is uniformly Π1(M) for
premice M .

Hence:

Lemma 4.4.3. Let M,N be premice. Then:

• If M is pre-mouselike and π :M −→Σ1 N , then N is pre-mouselike.

• If N is pre-mouselike and π :M −→Σ0 N , then M is pre-mouselike.

As preparation for the proof of lemma 4.4.2, we list a series of facts which
are implicit in what we have done this far, but may not always have been
made explicit.

Definition 4.4.4. M = ⟨|M |, E, F ⟩ is a set model if and only if |M | is
transitive and E,F ⊂ |M |.

(Note we can, of course, generalize this to models with more than two pred-
icates.)
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In the following let U be any set which is transitive and closed under rudi-
mentary functions.

Fact 1. The set {M ∈ U :M is a model} is uniformly ∆1(U).

Models have a first order language L with predicate symbols ∈̇, =̇, Ė, Ḟ .
∈̇, =̇ are interpreted by ∈,= respectively and Ė, Ḟ by E, F . We assume an
“arithmetization” of L, whereby the formulae of L are identified with objects
in ω or Vω in such a way that the normal syntactic relation and operation
become recursive. (In §1.4.1 we proposed an arithmetization of languages
over an admissible set. If we take the admissible set as Vω, we get a suitable
arithmetization of L.)

Definition 4.4.5. The satisfaction relation is defined as follows: M |= φ[f ]
means:

• M is a model

• φ is a formula of L.

• f is a variable interpretation -i.e. f is function such that dom(f) is a
finite set of variables and ran(f) ⊂M

• All variables occurring free in φ lie in dom(f)

• φ becomes a true statement in M if each v ∈ dom(f) is interpreted by
f(v).

(Note informally we write: M |= φ[a1, . . . , am/v1, . . . , vm] for M |= φ[f ]
where dom(f) = {v1, . . . , vm} and ai = f(vi) for i = 1, . . . , n. When the
context permits, it is customary to omit the list of variables and write:
M |= φ[a1, . . . , am].)

Fact 2. {⟨M,φ, f⟩ |M ∈ U ∧M |= φ[f ]} is uniformly ∆1(U).

Definition 4.4.6. A model M is amenable if and only if
∧
x ∈M(E∩x, F ∩

x ∈M).

Definition 4.4.7. M is a J-model if and only if M is amenable and |M | =
Jα[E] where α = On∩|M |.

(Note: we write ht(M) for On∩|M |.)

Fact 3. There is a Π2 sentence φ such that

M is a J-model←→M |= φ.

(Hence {M ∈ U |M is a J-model} is uniformly ∆1(U).)
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Definition 4.4.8. M is acceptable if and only if it is a J-model and, when-
ever η ≥ ω is a cardinal in M(i.e. η < ht(M) and for all ξ < η there is no
f ∈M mapping ξ onto η.), then:∧

ξ < η P(ξ) ∩M ⊂ JEη .

Fact 4. There is a Π2 sentence φ such that for J-model M :

M is acceptable←→M |= φ

(Hence {M ∈ U |M is acceptable} is uniformly ∆1(U).)

In §1.6 we expanded the language L to a many sorted language L∗ which is
more suitable for analyzing acceptable structures N . L∗ contains variables
of type n for n < ω, two original variables of L being of type 0. Variables
of type i range over N i = JE

ρiN
, where ρi ≤ ht(N) and ρ0 = ht(N). We then

defined an appropriate satisfaction relation for L∗ formulae. R(xi11 , . . . , x
in
n )

is an L∗-definable relation on N(with arity ⟨i1, . . . , in⟩) if and only if there
is an L∗-formula φ(vi11 , . . . , v

in
n ) with:

R(x⃗))←→ N |= φ[x⃗].

We defined a hierarchy Σ
(m)
n (n = 0, 1) of L∗-formulas and defined a Σ

(m)
n (N)

relation to be a relation which is N -definable by a Σ
(m)
n -formula. This hier-

archy is better suited to acceptable structures than the Levy hierarchy.

The following fact is implicit in §2.6. As far as we can tell, however, we have
hitherto not stated it explicitly, although we have made tacit use of it(for
instance in the proof of Lemma 4.1.13).

Fact 5. Let N be acceptable. Let φ(vi11 , . . . , v
im
m ) be any formula in the

many sorted language L∗ developed in §2.6. There is a formula φ̃ in the first
order language L of N such that

N |= φ[x1, . . . , xm]←→ N |= φ̃[x1, . . . , xm]

for xj ∈ H
ij
N (j = 1, . . . ,m). Moreover the function φ 7→ φ̃ is recursive.

Proof(sketch). Let Lm consist of formulas with variables of type i ≤ m.
By induction on m, we construct the function φ 7→ φ̃ for φ ∈ Lm. It clearly
suffices to have ρ̃i, H̃ i (i ≤ m), since we can then form φ̃ by replacing

∧
vi . . .

by
∧
v(H̃ iv → . . . ) everywhere. We proceed by induction on m. The case

m = 0 is trivial, since L0 is the set of non sorted formulas in the language
of N . Moreover we have: ρ0 = ht(N), H0 = |N |. Now let it hold at m.
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Let Tm(xm, . . . , x0) be the predicate defined in §2.6 preceding the proof of
lemma 2.6.17. Set:

T ′(i, z, x⃗)←→ ⟨JEρm , Tm,xm−1,...,x0⟩ |= φi[z, xm]

where Tm,xm−1,...,x0 = {y | Tm(y, xm−1, . . . , x0)} and ⟨φi | i < ω⟩ is a fixed
enumeration of Σ1 formulae with two free variables. Thus T ′ is Σ

(m)
1 (N).

Moreover, it is universal in the sense that, if D is any Σ
(m)
1 (N) subset of

Hm, then there are i < ω, x⃗ such that

D(z)←→ T ′(i, z, x⃗).

But then:
ξ < ρm+1 ←→

∧
i < ω

∧
x⃗(T x⃗i ∩ ξ) ∩ ξ ∈ N

and:
x ∈ Hm+1 ←→

∨
ξ < ρmx ∈ JEξ .

These definitions of ρn, Hn are by formulae lying in Lm. That gives us
ρ̃m+1, H̃m+1.

QED(Fact 5)

In §2.6.3 we introduced the class of m-sound acceptable models. N is sound
if and only if it is m-sound for every m < ω.

Fact 6. For m < ω there is an L-sentence φm such that,

N is n-sound←→ N |= φm.

Moreover m 7→ φm is a recursive function. Hence {N ∈ U | N is sound} is
uniformly Π1(U).

In §3.3 we introduced the class of premice and proved:

Fact 7. There is an L-sentence φ such that

N is a premouse ←→ N |= φ.

(Hence {N ∈ U | N is a premouse} is uniformly ∆1(U).)

In §4.1 we defined the class of m-solid premice. We call N solid if and only
if it is m-solid for all m < ω. Using Fact 5:

Fact 8. For m < ω there is an L-sentence φm such that

N is m-solid ←→ N |= φm.
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Moreover m 7→ φm recursive. (Thus {N ∈ U | N is solid} is uniformly
Π1(U).)

In §4.3.2 we defined what it means for a premouse N to be sound above λ,
where λ ∈ N . The definition was equivalent to:

Definition 4.4.9. Let λ ∈ N . N is m-sound above λ if and only if

• ρm ≤ λ < ρm−1 and N is i-sound for i < m.

• Let a ∈ PmN . Set b = a ∩ ρm−1
N , N̄ = Nn,a\ρm−1 . Then every x ∈ N̄

has the form h(i, ⟨ξ, b⟩) where i < ω, ξ < λ and h is the canonical
Σ1-Skolem function for N̄ .

Definition 4.4.10. N is sound above λ if and only if it is m-sound above λ
for some m.

By Fact 5 it follows that:

Fact 9. Let λ ∈ N . For each m < ω there is a formula φm ∈ L such that

N is m-sound above λ if and only if N |= φm[λ].

Moreover, the function m 7→ φm is recursive. Hence:

Fact 10.

• {⟨N,λ⟩ ∈ U | N is m-sound above λ} is ∆1(U)

• {⟨N,λ⟩ ∈ U | N is sound above λ} is Σ1(U)

In §4.2 we defined what it means to say that σ witnesses the phalanx
⟨N,M, λ⟩. We aim to prove the following lemma, which in turn, implies
lemma 4.4.2:

Lemma 4.4.4. Let N be sound and solid. Let N ∈ U , where U is transi-
tive and rudimentarily closed. ‘N is condensible’ is uniformly Π1(U) in the
parameter N .

The proof will stretch over several sublemmas. U could be quite small-
e.g. it could be the closure of |N | ∪ {N} under rudimentary functions. We
call ⟨σ,M, λ⟩ a counterexample to the condensibility of N if σ witnesses
⟨N,M, λ⟩, M is sound above λ, and (b), (c) both fail. At first glance it
might seem that there could be a counterexample in V which is not in U .
But this is not so:
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Lemma 4.4.5. Let σ witness ⟨N,M, λ⟩, where M is sound above λ. Then
M ∈ N and σ ∈ U .

Proof. Let ρn ≤ λ < ρm in M , where n = m + 1. Let ā ∈ [ht(M)]<ω such
that, letting ā(i) = ā ∩ ρi for i = 0, . . . ,m, we have:

• Every x ∈Mm,ā is Σ1(M
m,a) in parameters ā(m), ξ such that ξ < λ

• ā(i) ∈ RiM for i < m.

Set: a = σ(ā), a(i) = σ(ā(i)) = a∩ρiN . Then σ|Mm,ā :Mn,ā −→Σ0 N
n,a and

ā, M is the unique pair b,Q such that b ∈ RmQ and Qm,b =Mm,ā. Moreover
σ is the unique σ ⊃ σ|Mm,ā such that σ(ā) = a and σ : M −→Σ(n)0

N
strictly. We consider two cases:

Case 1. m = 0(Hence N = Nm,a, M =Mm,ā)

We consider two subcases:

case 1.1. supσ”ρ0M < ρ0N . Set:

ρ̃ = supσ”ρ0M ; Ñ = N |ρ̃ = ⟨JEN

ρ̃ , ENν ∩ JE
N

ρ̃ ⟩

where ν = ρ0N = ht(N). Then Ñ is amenable and Ñ ∈ N , since N is
amenable. We have: σ : M −→Σ1 Ñ cofinally. Let h̃ = hÑ , h = hM .
Clearly a = σ(ā) ∈ Ñ . Set:

h̃a(ξ) ≃ h̃((ξ)0, ⟨(ξ)1, a⟩) for ξ < λ,

where ξ =:≺(ξ)0, (ξ)1≻ . Set:

hā(ξ) ≃ hM ((ξ)0, ⟨(ξ)1, ā⟩) for ξ < λ.

Then σ(hā(ξ)) ≃ h̃a(ξ). Set: M̃ = ⟨|M̃ |, ∈̃, =̃, Ẽ, F̃ ⟩, where:

• |M̃ | =: dom(h̃a)

• ξ∈̃ζ ←→: h̃a(ξ) ∈ h̃a(ζ)

• ξ=̃ζ ←→: h̃a(ξ) = h̃a(ζ)

• Ẽξ ←→: h̃a(ξ) ∈ EN

• F̃ ξ ←→: h̃a(ξ) ∈ ENν
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Then:

(1) M̃ ∈ N , since Ñ ∈ N . hā(hence M) is recoverable from M̃ by the
recursion:

hā(ξ) = {hbara(ζ) | ζ∈̃ξ} for ξ ∈ M̃.

λ is easily seen to be a regular cardinal in M , since σ(λ) > λ. Hence σ(λ) is
a regular cardinal in N . Hence:

|M̃ | ∈ P(λ)N ⊂ JE
N

σ(λ)

by acceptability. Hence M can be recovered from M̃ in the ZFC− model
JE

N

σ(λ). Hence:

(2) M ∈ N

But then:
σ = {⟨h̃a(ξ), hā(ξ)⟩ | ξ ∈ |M |}

where h̃a, hā ∈ N . Thus:

(3) σ ∈ Σω(N) ⊂ U .

QED(Case 1.1)

Case 1.2. Case 1.1 fails.

Then Ñ = N, h̃a = ha, where ha(ξ) ≃ hN ((ξ)0, ⟨(ξ)1, a⟩) for ξ < λ. We have
σ :M −→Σ1 N cofinally.

Case 1.2.1. λ < ρωN .

Then M̃ ∈ N , since ⟨JEN

ρωN
, B⟩ is amenable whenever B ⊂ JE

N

ρωN
is σ∗(N).

The rest of the proof is exactly like Case 1.1.

QED(Case 1.2.1)

Case 1.2.2. The above cases fail.

Then ρω ≤ λ in N . We conclude that:

(4) p∗ \ λ ̸⊂ a, where p∗ = p∗N .

Proof. If not, ρω ∪ p∗ ⊂ ran(σ) ≺Σ1 N . But then M = N , σ = id by the
soundness of N . Contradiction! Since λ = crit(σ).

QED(4)
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Let η ∈ (p∗ \ λ) \ a be maximal.(Hence η ≥ λ) Then a \ η = p∗ \ (η+1). Let
ρi+1 ≤ η < ρi in N .(Since we core in Case 1, we know that i = 0, but we
preserve the more general formulation for later use.) Let X = hN i,a\η(η∪(a\
η)). Let π̄ : Q′ ∼←→ X be the transitivation of X. Then π̄ : Q′ ≺Σ1 N

i,a\η

and by solidity we have: N̄ ∈ N , where N̄ , b are the unique objects such
that N̄ i,b = Q′. Moreover; there is unique π ⊃ π̄ such that

π : N̄ −→
Σ

(i)
1

N and π(b) = a \ η.

In the present case we know that i = 0 and η ≥ λ. Let π−1(a) = b′ =
b ∪ (a ∩ (λ, η)).

π−1(a) = b′ = b ∪ (a ∩ (λ, η)).

Set: hb′(ξ) ≃ hN̄ ((ξ)0, ⟨(ξ)1, b′⟩) for ξ < λ. Then |M̃ | = dom(hb
′
) and:

ξ∈̃ζ ←→ hb
′
(ξ) ∈ hb′(ζ) for ξ, ζ ∈ λ,

etc. Thus M̃ ∈ N , since N̄ ∈ N . The rest of the proof is exactly as in Case
1.1.

QED(Case 1)

Case 2. m > 0. Let m = r + 1.

There is a good Σ
(m)
1 (M) function Ḡ such that each x ∈ M has the form

Ḡ(ζ, ā) for an ζ < ρmM . Let G be a good Σ
(m)
1 (N) function by the same good

definition. Then:

σ(Ḡ(ζ, ā)) ≃ G(σ(ζ), a) for ζ < ρmM .

Set: Q̄ = Mm,ā, Q = Nm,a. Then σ|Q̄ : Q̄ −→
Σ

(m)
0

Q. Let ρ̃ = supσ”ρmM .
Set:

Q̃ = Q|ρ̃ =: ⟨JEN

ρ̃ , Tm,aN ∩ JEN

ρ̃ ⟩.

Then σ : Q̄ −→
Σ

(m)
1

Q̃ cofinally. We now set:

• hā(ξ) ≃ hQ̄((ξ)0, ⟨(ξ)1, ā⟩).

• h̃a(ξ) ≃ hQ̃((ξ)0, ⟨(ξ)1, a⟩).

• Ḡā(ξ) ≃ Ḡ(h̄ā(ξ), ā).

• G̃a(ξ) ≃ G(h̃a(ξ), a).
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Then σ(Ḡā(ξ)) = G̃a(ξ) for ξ < λ. Moreover, each x ∈ M has the form
Ḡā(ξ) for an ξ < λ. Set:

• M̃ = dom(G̃a)

• ξ∈̃ζ ←→ G̃a(ξ) ∈ G̃a(ζ) for ξ, ζ < λ

• ξ=̃ζ ←→ G̃a(ξ) = G̃a(ζ) for ξ, ζ < λ

• Ẽξ ←→ G̃a(ξ) ∈ EN for ξ < λ

• F̃ ξ ←→ G̃a(ξ) ∈ ENν for ξ < λ, where ν = ht(N).

Then M̃/=̃ is isomorphic to M and the function G̃a is obtainable from M̃
by the recursion:

Ḡa(ξ) = {G̃a(ζ) | ζ∈̃ξ}.

Hence it suffices to prove:

Claim. M̃ ∈ N .

Since just as before we will then have:

|M̃ | ∈ P(λ) ∩N ⊂ JEN

σ(λ)

and we can recover M from M̃ in the ZFC− model JEN

σ(λ) by the above recur-
sion. But then: σ = {⟨G̃a(ξ), Ḡā(ξ)⟩ | ξ ∈ |M̃ |}. Hence σ ∈ Σω(N) ⊂ U by
the above Fact. We prove the Claim by cases as before:

Case 2.1. ρ̃ < ρmN .

Then M̃ ∈ N , since Nm,a is amenable.

Case 2.2. Case 2.1 fails.

Case 2.2.1. λ < ρωN .

Then M̃ ∈ N for the same reason as before.

Case 2.2.2. The above cases fail.

Just as before we conclude:

(5) p∗ \ λ ̸⊂ a.

We again let η be maximal. Let ρi+1 ≤ η < ηi in N . Hence i ≤ m. As
before let:

X = hN i,a\η(η ∪ (a \ η)).
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Let π̄′ : Q′ ∼←→ X be the transitivation of X. Then π̄′ : Q′ ≺Σ1 N
i,a\η.

But then as before, N ′ ∈ N , where N ′, b are the unique objects such that
N ′i,b = Q′. Moreover, there is a unique π′ ⊃ π̄′ such that

π′ : N ′ −→
Σ

(i)
1

N and π′(b) = a \ η.

Let π′−1(a) = a′ = b ∪ (a ∩ (λ, η)). Now let Q = N ′m,a′ . Let G′(ζ, a′) be
Σ
(m)
1 (N ′) by the same good definition as G(ζ, a). Then:

π′(G′(ζ, a′)) = G(π′(ζ), a)

for ζ < ρmN ′ . Let ρ′ = supπ′−1 ◦ σ”ρmM . Set:

Q′ = Q|ρ′ =: ⟨JEN′

ρ′ , Tm,a
′

N ′ ∩ JE
N′

ρ′ ⟩.

h′a
′
(ξ) ≃ hQ′((ξ)0, ⟨(ξ)1, a′⟩)

for ξ < λ. Set:
G′a′(ξ) ≃ G′(h′a

′
(ξ), a′) for ξ < λ.

Then: |M̃ | = dom(G′a′), ξ∈̃ζ ←→ G′a′(ξ) ∈ G′a′(ζ) for ξ, ζ < λ, etc. But
since N ′ ∈ N , we conclude M̃ ∈ N .

QED(Lemma 4.4.5)

Tweaking this proof a bit, we get:

Lemma 4.4.6. For each n < ω there is a formula φn ∈ L such that for
all sound and solid N , N |= φn[M,λ, λ̃] if and only if there is σ witnessing
⟨N,M, λ⟩ such that the following hold:

• ρn+1 ≤ λ < ρn in M

• M is sound above λ

• λ̃ = σ(λ)

Proof. N |= φn[M,λ, λ̃] says that there are a, ā, b, b̄ such that

• a ∈ [ρ0N ]
<ω, ā ∈ [ρ0M ]<ω

• b = a ∩ ρnN , b̄ = ā ∩ ρnM

• ā ∈ Pn+1
M̄

and ρn+1 ≤ λ < ρn in M
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• M is sound above λ

• Mn,ā |= φ[ξ⃗, b̄] → Nn,a |= φ[ξ⃗, λ̃, b] for all Σ0 formulas φ and all
ξ0, . . . , ξn−1 < λ.

• λ̃ > λ

• For m = 0: Let h, h̄ be the Skolem function for N,M respectively. If
h̄(i, ⟨ξ, ā⟩) is a cardinal in M , then h(i, ⟨ξ, a⟩) is a cardinal in N(where
ξ < λ).

We see that this can be expressed by an L-formula φn using Fact 5 and the
facts:

• M -satisfaction relation is uniformly ∆1(N) in M

• Nn,a satisfaction relation for Σ0-formulae is uniformly Σ1(N
n,a).

The direction (←) of an equivalence then follows easily by lemma 4.4.5. To
prove the other direction we note that if h is the canonical Skolem function
for Nn,a and h̄ is the Skolem function for Mn,ā, then for all ξ < λ:

⟨i, ⟨ξ, b̄, λ⟩⟩ ∈ dom(h̄) −→ ⟨i, ⟨ξ, b, λ̃⟩⟩ ∈ dom(h).

Hence we can define σ̄ :Mn,ā −→Σ0 N
n,a by:

σ̄(h̄(i, ⟨ξ, b̄, λ⟩)) =

{
h(i, ⟨ξ, b, λ̃⟩), if h̄(i, ⟨ξ, b̄, λ⟩) is defined;
otherwise undefined.

Applying the downward extension lemma, we get:

There are unique M ′, a′ with M ′n,a′ =Mn,ā and a′ ∈ RnM ′ .

By uniqueness we conclude: M ′ = M,a′ = ā. But then there is a unique
σ′ ⊃ σ̄ such that σ′ : M −→

Σ
(n)
0

N and σ′(ā) = a. Thus, by uniqueness,
σ′ = σ.

QED(Lemma 4.4.6)

Condensability for N says that if σ,⟨N,M, λ⟩ are as in lemma 4.4.3, then
one of the conclusions (b), (c) hold.
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Lemma 4.4.7. Let σ,⟨N,M, λ⟩ be as in lemma 4.4.6. Then there is a for-
mula χ ∈ L such that

N |= χ[M,λ, σ(λ)]←→ (b) or (c) hold.

Proof. χ says that either
∨
α ∈ N(M = N ||α), or that there are κ, γ, µ ∈ N

such that

• λ is the cardinal successor of κ in M .

• ρ1N ||λ = κ.

• µ ≤ γ, ENµ ̸= ∅ and crit(ENµ ) = κ, ENµ is generated by {κ}.

• (N ||λ̃) |= There is π such that π : N ||γ −→EN
µ
M .

This can be written as an L-formula by Fact 5 and the fact that for Q ∈ N ,
Q-satisfaction is uniformly ∆1(N) in Q. The asserted equivalences then hold
because statements of the form:∨

π π : Q −→∗
F Q

′

are absolute in transitive ZFC− models.

QED(Lemma 4.4.7)

Set:
ψn =:

∧
u
∧
v
∧
w(φn(u, v, w) −→ χ(u, v, w)).

Then obviously:

Lemma 4.4.8. Let N be sound and solid. Then

N |= ψn ←→ N is condensable.

It is apparent from the above proofs that the function n 7→ ψn is recursive.
Hence, if N is sound and solid, then:∧

n N |= ψn ←→ N is condensable.

But
∧
n N |= ψn is uniformly Π1(U) in N , since N -satisfaction is uniformly

∆1(U) in N . This proves lemma 4.4.4.

Lemma 4.4.2 then follows, since it says:∧
α ∈M(Lim(α) −→

∧
n (N ||α) |= ψn).

QED(Lemma 4.4.2)
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4.4.1 Σ1-acceptability

Definition 4.4.11. Let N = ⟨JAα , B⟩ be a J-model. N is Σ1-acceptable if
and only if it is acceptable and whenever γ > ω is a limit cardinal in N ,
then JAγ ≺Σ1 J

A
α .

Lemma 4.4.9. Every pre-mouselike premouse is Σ1-acceptable.

Proof. We proceed by induction on α = ht(N). If α = ω, the assertion is
vacuously true. If α is a limit of limit ordinals, then the assertion is trivial,
since any cardinal γ in N is a cardinal in N ||β for β > γ. There remains
the case: α = β + ω. Let M = ⟨JEβ , F ⟩, where F = Eβ . Then N = ⟨JE′

α , ∅⟩,
where

E′ = E ∗ F = E ∪ ({β} × F ).

Let ρ = ρωM . Then ρ is the largest cardinal in N . Let γ > ω be a limit
cardinal in N . Then γ ≤ ρ. If ρ < β, then γ, ρ are cardinals in M . Now let
ψ be a Σ1 formula such that

JE
′

α |= ψ[x] where x ∈ JE′
γ .

We must prove:

Claim. JE′
γ |= ψ[x].

We first note that:

|N | = rud(|M | ∪ {M}) = rud(|M | ∪ {E} ∪ {F}),

where rud(Y ) is the closure of Y under rudimentary functions. Let ψ =∨
vψ′, where ψ′ is Σ0 in the language of N . Then:

(1) N |= ψ′[t, x] for a t ∈ N

Since N = JE
′

α and E′ = E ∗ F , (1) can be equivalently written as:

(2) N |= φ[t, x, |M |, E, F ], where φ is a Σ0 formula containing only the
predicate ∈.

Let t = f(x, z, |M |, E, F ) where f is rudimentary and z ∈ M . Recall that
rudimentary functions are simple in the sense of §2.2. This means that, given
the function f : (2) reduces uniformly to:

(3) N |= φ′[x, z, |M |, E, F ], where φ′ is a Σ0 formula containing only the
predicate ∈.
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But this can easily be converted into an equivalent statement of the form:

(4) M |= χ′[x, z], where χ′ is a first order formula in the language of M . Set
χ =

∨
vχ′. Then:

(5) M |= χ[x].

In order to derive Claim 1, we show:

Claim 2. There is β̄ < γ such that, letting M̄ = M ||β̄, N̄ = M ||ᾱ,
ᾱ = β̄ + ω, we have: M̄ |= χ[x].

But then M̄ |= χ′[x, z] for a z ∈ M̄ . We then reverse the above chain
of equivalent reductions to get: N̄ |= ψ′[t̄, x], where t̄ = f(x, z, |M̄ |, Ē, F̄ )
and f is the above mentioned rudimentary function. Thus: N̄ |= ψ[x] and
JEγ |= ψ[x], since N̄ ◁ JEγ , proving Claim 1.

Our procedure will be to first define M̄ and then, using the condensability
of M , show that M̄ is a proper segment of JEγ . We can assume that w.l.o.g.
that the formula χ is a Σm-formula for some m < ω. Choose n < ω such
that n ≥ m and ρωM = ρnM . Since M is sound, it has a standard parameter
a. Hence a ∈ PnM . Hence a ∈ Rnm by soundness. Now let δ′ be the least
cardinal in M such that x ∈ JEδ′ . Then δ′ is a successor cardinal in M(hence
in N). Let δ be the immediate successor cardinal of δ′ in M (and N). Then
δ < γ. Let X be the smallest X ≺Σ1 M

n,a such that (δ′ +1)∪ a ⊂ X. Then
X = h̃”δ′, where

h̃(≺ i, ξ≻ ) ≃ h(i, ⟨ξ, δ′, a⟩)

and h is the Skolem function forMn,a. Let π̄ : Q̄
≃←→ X be the transitivation

of X. Then π̄ : Q̄ −→Σ1 M
n,a. By the downward extension of embeddings

lemma(Lemma 2.6.32) we conclude:

(a) There are unique M̄, ā such that ā ∈ Rn
M̄

and M̄n,ā = Q̄.

(b) There is a unique π ⊃ π̄ such that π̄ : M̄ −→
Σ

(n)
1

M and π(ā) = a.

But M is sound and a is its standard parameter. Hence M̄, ā, π are the
unique objects given by our earlier downward extension lemma and we have:

(6) π : M̄ −→Σn+1 M .

We now show:

(7) M̄ ∈ JEδ .
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Proof. h̃ is Σ
(n)
1 (M) in a ∪ {δ′} and is a partial map of δ′ unto X. Thus

h̄ = π̄−1h̃ is Σ(n)
1 (M) in ā∪ {δ′} and is a partial map of δ′ onto M̄n,ā. Since

ā ∈ Rn
M̄

, there is a partial map ḡ of M̄n,ā onto M̄ which is Σ
(n)
1 (M̄) in ā.

Let g be Σ
(n)
1 (M) in a by the same definition. Then k̄ = ḡh̄ is a Σ∗(M̄) map

of δ′ onto ran(π), since gπ̄ = πḡ. Set:

• |M̃ | =: dom(k) ⊂ δ′.

• x∈̃y ←→: k(x) ∈ k(y) for x, y ∈ |M̃ |.

• x=̃y ←→: k(x) = k(y) for x, y ∈ |M̃ |.

• Ẽx←→: k(x) ∈ E, F̃ x←→: k(x) ∈ F for x ∈ |M̃ |.

Set: M̃ =: ⟨|M̃ |, ∈̃, =̃, Ẽ, F̃ ⟩. Then M̃ ∈ JEγ , since ⟨JEρ , D⟩ is amenable for
all Σ∗(M) sets D, and δ is a cardinal in JEρ . But JEδ is a ZFC− model, since
δ is a successor cardinal in JEρ . Ẽ is well founded. Hence j ∈ JEδ , where
j : M̃ −→ M̄ is defined by the recursion: j(x) = j”∈̃”{x} for x ∈ |M̃ |.
Hence M̄ ∈ JEδ .

QED(7)

Set: δ̄ = π−1(δ). It follows easily that π ↾ δ = id. But π(δ̄) = δ > δ̄, sicne
δ̄ ∈ JEδ . Thus δ̄ = crit(π). Using this, we show:

(8) π verifies the phalanx ⟨M,M̄, δ̄⟩.

Proof.

• π : M̄ −→M .

• π is Σ
(n)
1 -preserving, where δ̄ < ρn

M̄
.

• ρn+1
M̄

< δ̄, since h̄ is a Σ
(n)
1 (M̄) partial map of δ′ < δ̄ onto M̄n,a.

• ξ is a cardinal in M̄ if and only if π(ξ) is a cardinal in M , by (6).

QED(8)

But M is condensable. Hence M̄ satisfies one of the three conditions (a),
(b), (c) in the condensation lemma. But:

(9) (a) does not hold, since otherwise:

ρnM̄ = ht(M̄n,ā) < δ < ρ.



4.4. MOUSELIKENESS 477

But we can also show:

(10) (c) does not hold.

Proof. Suppose not. Then there is η ∈ M such that ρω
JE
η

= κ < δ, where

κ is the largest cardinal in JEδ . Moreover, there is µ ≤ η such that σ :
JEη −→F M̄ , where F = Eµ and κ = crit(F ). But then κ = δ′ would be a
limit cardinal in M̄ . Contradiction!, since δ′ is a successor cardinal.

QED(10)

Thus (b) holds, and M̄ ◁ M . Since β̄ = ht(M̄) < δ, we have:

(11) M̄ =M ||β̄ = ⟨J Ē
β̄
, F̄ ⟩ where β̄ < δ.

Moreover, if ᾱ = β̄ + ω and N̄ =M ||ᾱ, we have:

(12) N̄ =M ||ᾱ = J Ē∗F̄
ᾱ .

By (6) we know: M̄ |= χ[x], hence:

(13) M̄ |= χ′[x, z] for a z ∈ M̄ .

Reversing our earlier chain of equivalences, we see that (13) is equivalent to:

(14) N̄ |= φ′[x, z, |M̄ |, Ē, F̄ ].

Set t̄ = f(x, z, |M̄ |, Ē, F̄ ) where f is the rudimentary function used above.
Then (14) is equivalent to:

(15) N̄ |= φ[t̄, x, |M̄ |, Ē, F̄ ],

which is, in turn, equivalent to:

(16) N̄ |= ψ′[t̄, x].

Hence N̄ |= ψ[x], where N̄ ◁ JEδ .

QED(Lemma 4.4.9)

Call a premouse N fully preiterable. If every proper M ◁N is fully iterable.
By lemma 4.4.9 we of course have:

Corollary 4.4.10. Every fully preiterable premouse is Σ1-acceptable.

(Hence of course, every fully iterable premouse is Σ1-acceptable.)
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4.4.2 Mouselikeness in 1-small premice

The reader may wonder why we develop theory of mouselikeness and pre-
mouselikeness in such detail, when we already know that these properties
hold for all fully iterable mice. The reason is that we may encounter itera-
tions where we can verify the mouselikeness of a structure without yet know-
ing it to be fully iterable. We give an example involving 1-small premice,
which were introduced in §3.8 and will be our main object of investigation
in the ensuing chapters. We call a 1-small premouse N unrestrained if and
only if

• N = JEα is a constructible extension of JEβ , where β ≤ ρωN .

• β is Woodin in JEN

α+ω, where α = ht(N).

Otherwise we call N restrained. Restrained premice have the unique branch
property-i.e. any normal iteration of limit length has at most one cofinal
well founded branch. Hence, by Theorem 3.6.1 and Theorem 3.6.2 we know
that N is fully iterable if it is normally iterable. Happily, however, it turns
out that if N is unrestrained and pre-mouselike, then it is mouselike. We, in
fact, prove:

Lemma 4.4.11. Let N = JEα be 1-small, where β ≤ α is Woodin in JEα+ω.
If JEβ is pre-mouselike; then N is mouselike.

Proof. Since β is Woodin in JEα+ω. We have β ≤ ρωN , N is then a con-
structible extension of JEβ by 1-smallness,

(1) N is sound, by Lemma 2.5.22.

(2) N is solid, by Lemma 4.1.16.

Now let σ witness ⟨N,M, λ⟩ where M is sound above λ. By Lemma 4.4.5:

(3) M ∈ N , σ ∈ Σω(N).

Claim. One of the conditions (b), (c) holds.

(4) If λ ≥ β, the (b) holds.

Proof. λ ̸= β, since otherwise σ(λ) > β is Woodin in N . Contradiction!
But then σ(β) = β. Hence M is a constructible extension of JEβ , since
σ :M −→Σ0 N . But then M ◁N is a proper segment of N and (b) holds.
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QED(4)

From now on assume: λ < β. Thus:

(5) M ∈ JEβ .

Proof. Let γ = ht(M). There is f ∈ N such that f : λ
onto−→ γ, since M is

sound above λ. Moreover M is coded by a b ⊂ λ. Hence b ∈ JEβ , since β
is a cardinal in N . But β is a regular limit cardinal in N . Hence JEβ is a
transitive model of ZFC. Hence b can be decoded in JEβ . Hence M ∈ JEβ .

QED(5)

(6) σ(λ) ≤ β

Proof. Otherwise β < σ(λ) is the unique Woodin cardinal in N . Hence
some β̄ < λ is the unique Woodin cardinal in M . Hence β = σ(β̄) = β̄ < β,
and β̄ < λ. Contradiction!

QED(6)

Let φm ∈ L be the formula in Lemma 4.4.6, where ρm+1 ≤ λ < ρm in
M . Without loss of generality, suppose φm to be Σr in the Levy hierarchy.
Pick n ≥ r such that ρn = ρω in N . Let a ∈ PnN . Let Q = Nn,a. Let
h be the canonical Σ1 Skolem function for Q. Working in JEα+ω, we define
sequences Xi ≺Σ1 Q, αi < α for i < ω as follows: let β0 < β such that
M ∈ JEβ0 and σ(λ) < β0 if σ(λ) < β. Set: Xi = h(βi) =: {h(i, ξ) | ξ < βi},
βi+1 = lubβ ∩Xi.

Since β is a regular limit cardinal in JEα+ω, it follows that βi < β for i < ω,
where the sequence ⟨βi | i < ω⟩ is defined from φ. Hence ⟨βi | i < ω⟩ is
N -definable by Fact 5. Hence ⟨βi | i < ω⟩ ∈ JEα+ω and

β̄ =: sup
i<ω

βi < β.

Set X = h(β̄) =
⋃
i<ωXi. Then X ∈ JEα+ω. Let π̄ : Q̄

≃←→ X. Thus
π̄ : Q̄ ≺Σ1 Q and by the downward extension Lemma there are unique N̄ , ā
such that ā ∈ Rn

N̄
and N̄n,ā = Q̄. Moreover there is a unique π ⊃ π̄ such that

π(ā) = a and π : N̄ −→Σ1 N . Since a ∈ RnN , we then get: π : N̄ −→Σn N .
But then N̄ |= φm[M,λ, λ̃], where λ̃ = σ(λ) if σ(λ) < β and λ̃ = β̄ is
σ(λ) = β̄. Hence:

(7) There is σ̄ witnessing ⟨N̄ ,M, λ⟩ where σ̄(λ) = σ(λ) if σ(λ) < β and
σ̄(λ) = β̄ if σ(λ) = β.
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Clearly N̄ is a constructible extension of JE
β̄

and β̄ is Woodin in N̄ if β < α.
Using this, we get:

(8) N̄ ◁ JEβ , where ht(N) < β.

Proof. Since β̄ < β, there is a least ν < β such that Eν ̸= ∅. But then JEν
is a constructible extension of JE

β̄
and β̄ is not Woodin in JEν by 1-smallness.

Hence ᾱ < ν, where ᾱ = ht(N̄) and N̄ = JEβ ||ᾱ.

QED(8)

Since JEβ is pre-mouselike, we conclude that N̄ |= χ[M,λ, σ̄(λ)]. We can
w.l.o.g. assume n to be chosen so that χ is Σn in the Levy hierarchy. But
then:

N |= χ[M,λ, σ(λ)], since π(σ̄(λ)) = σ(λ).

Hence (b) or (c) hold.

QED(Lemma 4.4.11)



Chapter 5

The Model Kc

5.1 Introduction

From now on we make the assumption: There is no inner model with a
Woodin cardinal.(However, we may from time to time, prove individual re-
sults under more general assumptions.) Under this assumption we define
an inner model known as the core model, denoted by ’K’, and examine its
properties. K will be a Weasel -i.e. it will be a class K = JE∞ = ⟨L[E],∈, E⟩
such that E ⊂ K and K||η is a premouse for every limit ordinal η. Thus
it remains quite "L-like" in its internal structure. It also satisfies a set of
propositions which we collectively call the "covering lemma". They say that
the global structure of cardinals and cofinalities in V is not very different
from K, although huge local differences are possible. In addition, K has a
definition which is absolute in all set generic extensions of V . Finally, K
is normally α-iterable for all α < ∞. If M is any (set) premouse which is
∞-iterable, then the coiteration of M and K will terminate below ∞ and
there will be no truncation on the M -side(hence the K-side "absorbs" M),
K is in this sense "universal".

Before attempting the construction of K, however, we shall construct an
auxiliary model known as Kc. We shall "extract" K from Kc. Kcis uni-
versal in the same sense as K, but it lacks the covering properties and the
absoluteness properties.

The investigation of K has a long history. The original construction by
Jensen assumed that 0# does not exist, and K was L. The covering lemma
for L had the simple form:

481



482 CHAPTER 5. THE MODEL Kc

If X is a set of ordinals of cardinality > ω, then it is covered by a set
Y ∈ L of the same cardinality.

This implies among other things that successors of singular cardinals are
absolute in L -i.e. if β is a singular cardinal in V , then β+ = β+L.(This
statement will continue to hold for the K constructed here.) Jensen then
went a step further by constructing the core model under the weaker limiting
assumption: There is no inner model with a measurable cardinal. In this
version the covering lemma became somewhat weaker. In the sequel, Tony
Dodd, Bill mitchell and Jensen did a variety of core model constructions,
each with its own limiting assumption. Mitchell was the first to divide the
construction into two parts: The construction of Kcfollowed by the "extrac-
tion" of K from Kc. Finally, after the discovery of Woodin cardinals, John
Steel realized that an inner model with the properties listed above could not
exist in the presence of an inner model with a Woodin cardinal. He then took
the nonexistence of an inner model with a Woodin cardinal as his limiting
assumption and proved the existence of the core model. However, he was
still not able to do this within the theory ZFC. He needed a higher order set
theory. Following this, Steel, Mitchell and Schindler, and Jensen indepen-
dently proved the existence of Kcin ZFC, on the above limiting assumption.
Steel and Jensen thereupon proved the full result, which is presented in this
book.

We now develop some consequences of our assumption that there is no inner
model with a Woodin cardinal. We define:

Definition 5.1.1. LetM = ⟨JEν , F ⟩ be an active premouse. F is ω-complete
in M if and only if the following hold:

Let U ⊂ λ = λ(F ), W ⊂ P(κ) ∩M be countable sets(where κ = crit(F ),
λ = F (κ)). Then there is a g : U → κ such that whenever (α1, . . . , αn) ∈ U
and X ∈W , then:

≺g(α⃗)≻ ∈ X ↔≺ α⃗≻ ∈ F (X).

We prove:

Lemma 5.1.1. Let F be ω-complete in M . Then:

M |= there is no Woodin cardinal.

(Hence M is 1-small and restrained in the sense of §3.8.)

Proof. We first define:
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Definition 5.1.2. M is top iterable if and only if there is a sequence ⟨Mi :
i <∞⟩ and ⟨πij : i ≤ j <∞⟩ with:

• Mi = ⟨JEi
νi , Fi⟩

• M0 =M and πi,i+1 :Mi −→F Mi+1

• πij ◦ πki = πkj for k ≤ i ≤ j

• if η is a limit ordinal, then:

Mη, ⟨πi,η : i < η⟩

is the transitivized direct limit of: ⟨Mi : i < η⟩, ⟨πij : i ≤ j < η⟩.

(Note we have only Σ0 ultrapowers in this definition.) We first prove:

Claim 1. If M is top iterable, then

M |= there is no Woodin cardinal.

Proof. Suppose not. Let γ be Woodin in M . Then ν = ν0 is a cardinal
in Mi for i > 0. By acceptability it follows that γ is Woodin in Mi. Hence
W =

⋃
i<∞ JEi

νi is an inner model with a Woodin cardinal. Contradiction!

QED(Claim 1)

We then show:

Claim 2. If F is ω-complete in M , then M is top iterable.

Proof. Suppose not. Then Mα is not defined for some α. Let θ be regular
such that α,M ∈ Hθ. Let X ≺ Hθ be countable with α,M ∈ X. Let
σ : H

∼←→ X be the transitivation of X. Let σ(α) = α, σ(M) = M .
Then H |= “Mα does not exist”. By absoluteness Mα does not exist. But
α is countable. We derive a contradiction by recursively constructing M ξ, σξ
(ξ ≤ α) such that M ξ exists and σξ :M ξ −→Σ0 M . We proceed by cases as
follows:

Case 1. M0 =M , σ0 = σ ↾M .

Case 2. M i, σi are given. By ω-completeness there is g : λi → κi such that
for all α1, . . . , αn < λi and all X ∈ P(κi) ∩M i, we have :

≺g(α⃗)≻ ∈ X ←→≺ α⃗≻ ∈ Fi(X).

We know by §3.2 that the transitivized ultrapowers:

πi,i+1 :M i −→Fi M i+1
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exists if and only if there are no sequences ⟨αn | n < ω⟩, ⟨fn | n < ω⟩ such
that αn < λi, fn ∈M i maps κi into M i, and:

⟨αi+1, αi⟩ ∈ Fi({⟨ξ, ζ⟩ | fi+1(ξ) ∈ fi(ζ)}).

But there can be no such sequence, since otherwise:

fi+1(g(αi+1)) ∈ fi(g(αi)), for i < ω.

Contradiction! We then define σi+1 by:

σi+1(πi,i+1(f)(α)) = σi(f)(g(α))

for α < λi, f : κi →M i, f ∈M i.

Case 3. η is a limit ordinal and mi, σi are given for i < η. Let

Mη, ⟨πi,η | i < η⟩

be a direct limit of:

⟨M i | i < η⟩, ⟨πij | i ≤ j < η⟩.

We can define ση :Mη −→Σ0 M by: σηπiη = σi for i < η. Hence Mη is well
founded and we can take it as being transitive.

QED(Lemma 5.1.1)

We recall that every 1-small mouse M either has a γ ∈M which is Woodin
in M or is restrained. If M is restrained, it has the unique branches property.
Moreover, if on the other hand, M is not restrained, then it is a constructible
extension of M ||ρωM . We prove:

Lemma 5.1.2. Suppose that M is restrained and countably normally iter-
able. Then M is normally ∞-iterable.(Hence M is fully α-iterable for all
α)

Note. Since M has the unique branches property, being normally∞-iterable
is the same as being normally α-iterable for all α.

Proof. Let I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩ be a (potential) normal iteration of M .
We must prove:

(A) If I is a potential iteration of length i+ 1, then it extends to an actual
iteration of that length.

(B) If I is of limit length, then it has a cofinal well founded branch.
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We first prove (A). Let I ∈ H, where H is a transitive ZFC− model. Let
X ≺ H be countable with I ∈ X. Let σ : H

∼←→ X be the transitivation
of X. Let σ(I) = I. Then I being countable, does extend to an actual
iteration. Letting:

I = ⟨⟨M i⟩, ⟨νi⟩, ⟨πij⟩, T ⟩, be of length i+ 1,

this means that the ultrapower

π :M
∗
i −→∗

F M i+1 exists, where F = EM i
νi
.

That is equivalent to saying that there is no pair of sequences

⟨αn | n < ω⟩, ⟨fn | n < ω⟩

such that fn ∈ Γ∗(κn,Mn), αn < λn and

≺αn+1, αn≻ ∈ F ({ ≺ξ, ζ≻ | fn+1(ξ) ∈ fn(ζ)}).

But the same holds of I.

QED(A)

(B) Let I be of limit length η. Let H be any transitive ZFC− model con-
taining I as an element. Let σ : H ≺ H, σ(I) = I be as above. Then I is a
countable normal iteration of limit length η, where σ(η) = η. Hence it has
a unique cofinal well founded branch b. We consider two cases:

Case 1. H,H can be so chosen that OnMb
∈ H. Let Mb ∩ On = α. We

consider the following language L on the admissible set H:

Predicate: ∈̇

Constants: x (x ∈ H), ḃ

Axioms:

• ZFC−

• ∧v(v ∈ x←→
∨∨
z∈x

v = z) for x ∈ H

• ḃ is a cofinal branch in I yielding a limit model Ṁḃ such that On∩Ṁḃ =
α

L is obviously consistent, since ⟨Hω1 , b⟩ is a model. But then the correspond-
ing language L′ on H is consistent(with σ(α) playing the role of α). If we
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force to make H countable, then in the resulting generic extension L′ has a
model A. Set b = ḃA. Then b is a cofinal well founded branch in I. But M
is still restrained. Hence b is the unique such branch. But then

b = {i | L′ ⊢ i ∈ ḃ} ∈ V,

since otherwise there would be a model of L′ yielding a different cofinal well
founded branch.

QED(Case 1)

Case 2. Case 1 fails. Let θ be a regular cardinal such that card(I)+ < θ.
Let λ = lub

i<η
λi and JEλ =

⋃
i<η
JE

Mi

λi
. Then λ+L

E
< θ. Let X ≺ Hθ be

countable such that I ∈ X. Let σ : H
∼←→ X be the transitivation of X.

Let σ(I) = I. Since I is countable, it has a unique cofinal well founded
branch b. But On∩H ≤ OnMb

, where M b is the limit model. Hence the
following language L on H is consistent: The predicates and constants are
as before. The axioms are:

• ZFC−

• ∧v(v ∈ x←→
∨∨
z∈x

v = z) for x ∈ H

• ḃ is a cofinal well founded branch in I

• Let Ṁḃ be the limit model. Then ξ ∈ Ṁḃ for all ξ ∈ H.

L is consistent, since if b is the unique cofinal branch, then ⟨Hω1 , b⟩ is a
model. By §1.4 however, L then has an ill founded model A such that
On∩H = wfcore(A).(This is by lemma 1.4.11) Set b′ = ḃA. Then b′ ̸= b,
since b′ yields an ill founded limit model. Defining λ, JE

λ
from I and λ, JEλ

from I, we have by theorem 3.8.12:

H |= (λ is Woodin in LE).

Hence:
Hθ |= (λ is Woodin in LE).

But λLE
< θ. Hence λ is Woodin in (LE)Hθ = LEθ . But we can choose θ

arbitrarily large. Hence λ is Woodin in the inner model LE . Contradiction!

QED(5.1.2)

As a consequence:
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Lemma 5.1.3. Suppose that M is restrained and that whenever σ : P ≺M
and P is countable, then P is countably normally iterable . Then M is
normally iterable.

Proof. Suppose not. Let I be a normal iteration which cannot be continued.
Let I ∈ H = Hθ, where θ is regular. Let X ≺ H be countable such that
I ∈ X. Transitivize X to get σ : H

∼←→ X. Let σ(I) = I. Then H thinks
that I is an iteration that cannot be continued. Hence, by absoluteness,
it cannot be continued. Contradiction!, since I is a countable iteration of
P = σ−1(M).

QED(5.1.3)

Note that every smooth iterate of a restrained premouse is restrained. Hence
by lemma 3.6.2:

Corollary 5.1.4. Let M be as above. Then M is smoothly iterable.

Hence by Lemma 3.6.1:

Corollary 5.1.5. Let M be as above. Then M is fully iterable.

5.2 The Steel Array

In this chapter we employ our machinery to construct inner models of set
theory. These models will present themselves as weasels. We define:

Definition 5.2.1. A weasel is a proper class N = JE∞ = ⟨|N |, E⟩ such that
N ||ν is a sound premouse for all limit ν ∈ On.

(In other words, a weasel is "a passive premouse of length∞". The minimal
inner model L is a weasel by lemma 2.5.21. A weasel can be defined induc-
tively like the definition of L, except that we allow certain stages to be an
active premouse. If Ni = ⟨JE

i

νi , E
i
νi⟩ is the i-th stage, we have as before:

N0 = ⟨Jω, ∅⟩.

At successor stages, however, we can have either:

Ni+1 = ⟨JE
i+1

νi+1
, ∅⟩ = ⟨Def(Ni), Ei, ∅⟩

or, if possible:

Ni+1 = ⟨JE
i

νi , F ⟩, where ⟨JEi

νi , F ⟩ is an active premouse.
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In the choice of F we are guided by a "background condition" which tells us
whether F is viable. For smaller weasels, it suffices that F is ω-complete. For
the "fully backgrounded" construction, the requirement is that F = F ∗∩|Ni|,
where F ∗ is an extender on V at κ = crit(F )(hence κ is inaccessible in V ).
We shall require that ⟨JEi

νi , F ⟩ satisfy a condition called robustness, which is
intermediate between these extremes. However, the use of these background
conditions means that ⟨JEi+1

νi , F ⟩ = Ni+1||νi is not necessarily sound. If for
instance F is the first extender inserted in the sequence, then ω-completeness
requires that Ni+1 is a rather long iterate of 0#, hence is unsound. In order
to rectify this, we must, having searched a given Ni, ask whether Ni is solid.
If so, replace Ni with the sound structure:

Mi = core(Ni).

If not, we must discontinue the construction.

But this is no longer a linear construction. We are now constructing a double
sequence Mi, Ni. Given Mi, we construct Ni+1 from Mi by one of the above
two options and then "core down" Ni+1 to Mi+1 if necessary. At limit points
λ we cannot take:

Nλ =
⋃
i<λ

Mi

since Mi is not necessarily a submodel of Mj for i < j < λ. Instead we take:

Nλ =
⋃
i<λ

Mi||µi

where µi is a carefully chosen point such that

Mi||µi =Mj ||µi for i ≤ j < λ.

However, we ensure:
∧i<λ ∨j<λ µi<µj .

Thus, if λ = κ is regular, then Nκ will have length κ. Similarly, N∞ has
length ∞ and is, therefore a weasel. The succession of models Mi, Ni gen-
erated by this process is called a Steel array. We now turn to the formal
definition.

We shall, in fact, require that each of the models Mi, Ni in the array be
not only solid but mouselike in the sence of §4.4. Our construction will
guarantee that Ni is pre-mouselike if all previous stages were mouselike.
(Hence Ni will be Σ1-acceptable by §4.4.) If we assume that there is no inner
model with a Woodin cardinal, then all premice are 1-small. If Ni is 1-small
and unrestrained, then by §4.4 it will be mouselike. If, on the other hand,
Ni is restrained, then it suffices to show that whenever σ : P ≺ Ni and P is
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a countable premouse, then P is normally ω1 + 1 iterable. By 1-smallness
P is then uniquely iterable and hence by §3.8 is fully ω1 + 1 iterable. If
Ni ∈ Hθ, where θ is a regular cardinal and σ : H ≺ Hθ, σ(P ) = Ni, where
N is countable and transitive, then we can conclude that Ni is mouselike,
since P is.

We define:

Definition 5.2.2. Let N be a premouse, η ≤ On∩N . We let:

µN (η) = {α ∈ N | α ≤ η in N}

If N is mouselike, then it is sound. Moreover, if ρ = ρωN , µ = µN (ρ) and
M = core(N), then µ = µM (ρ) and N ||µ =M ||µ. We have shown in §4 that
if N is of type 1 or 2 (which we shall always assume in this chapter) and is
fully ω1 + 1 iterable, then it is mouselike.

We sometimes write SA for “Steel array”.

Definition 5.2.3. By a quasi SA we mean a sequence ⟨Mi | i < Ω⟩ (Ω ≤ ∞)
of premice ⟨JEi

νi , F
i⟩ such that

(a) Mi is sound and mouselike

(b) M0 = ⟨J∅
ω, ∅⟩

(c) Let i + 1 < Ω. Then Mi+1 = core(N) where N is mouselike and
satisfies one of the following options:
Option 1. N = ⟨JEνi+ω, ∅⟩ where:

E = Ei ∪ {⟨x, νi⟩ | x ∈ F i}.

Option 2. N = ⟨JEi

νi , F ⟩ is an active premouse, where F i = ∅.

(d) Let i ≤ j < Ω. Set:

κij =: min{ρωMn
| i ≤ n ≤ j}, µij =: µMi(κij)

Let i < n ≤ j. Then κin is a cardinal in Mn. Moreover:

Mi||µij =Mn||µij

Lemma 5.2.1. Let ⟨Mi | i < Ω⟩ be a quasi SA. Then:

1. κij ≤ κnj, κin ≥ κij for i ≤ n ≤ j.
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2. µij ≤ µnj for i ≤ n ≤ j.

Proof. (1) is immediate. We prove (2). If α < µij then α ≤ κij in Mi. By
acceptability then: α ≤ κij in Mi||µij . If i ≤ n ≤ j, it follows that α ≤ κij
in Mn||µij , hence α ≤ κij in Mn. If κij < κnj , then α < κ+Mn

ij ≤ κnj ≤ µnj .
If κij = κnj , then α < µMn(κnj) = µnj .

QED(Lemma 5.2.1)

Lemma 5.2.2. Let ⟨Mn | n ≤ i⟩ be a quasi SA. Let N be formed from Mi

as in Option 1 or in Option 2. Suppose that N is mouselike. Set: Mi+1 =:
core(N). Then ⟨Mn | n ≤ i+ 1⟩ is a quasi SA.

Proof. (a), (b), (c) in the definition of quasi SA hold trivially. We prove
(d). We must show that if l < n ≤ i + 1, then κl =: κl,i+1 is a cardinal in
Mn and Ml||µl =Mn||µl, where µl =: µl,i+1.

Case 1. l = i.

Set: ρ = ρωN = ρωMi+1
. Then ρ ≤ ρωMi

. If N is obtained by Option 1 in (c)
of the definition of quasi SA, then this holds by: Mi ∈ N . If Option 2 was
used, then ρωMi

= νi and ρ < νi is a cardinal in N , hence in Mi. But then
ρ = κi =: κi,i+1. Let µi =: µi,i+1 = µMi(ρ) and µ = µN (ρ). Clearly µi ≤ µ.
By mouselikeness we have N ||µ = Mi+1||µ. Hence Mi||µi = (N ||µ)||µi =
(Mi+1||µ)||µi =Mi+1||µi.

QED(Case 1)

Case 2. l < i

Set: κl =: κl,i+1. Then κl = min{κli, ρ}, where ρ is defined as in Case 1.

Case 2.1. ρ > κl,i

Then κl = κl,i. It suffices to show that κl is a cardinal in Mi+1 and Ml||µl =
Mi+1||µl, where µl =: µl,i+1 = µli. κl is a cardinal in Mi||ρ where ρ is a
cardinal in Mi+1 by acceptability. But then:

Ml||µl =Mi||µl = (Mi||ρ)||µl = (Mi+1||ρ)||µl =Mi+1||µl

QED(Case 2.1)

Case 2.2. ρ = κi

Then κl = κli = ρ. κl is trivially a cardinal in Mi+1, since ρ is. Then
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µl =: µl,i as before. Then:

Ml||µl =Mi||µl = (Mi||µi)||µl =Mi+1||µl,

since µi = µi,i+1 = µMi+1(ρ).

QED(Case 2.2)

Case 2.3. ρ < κli

Then κl = ρ. For l < n ≤ i, we have: ρ is a cardinal in Mn||κli where κli is
a cardinal in Mn. Hence ρ is a cardinal in Mn. But:

Ml||ρ = (Ml||κl)||ρ = (Mn||κl)||ρ =Mn||ρ

Now let n = i. Then ρ = κi =: κi,i+1 and µMi(ρ) = µi = µi,i+1, as
we have seen in Case 1. ρ = ρωMi

∈ Mi+1 is clearly a cardinal in Mi+1:
moreover Mi||µi = Mi+1||µi. But µl = µMl

(ρ) ≤ µMi(ρ), since ρ < κl and
Ml||κl =Mi||κl. Hence:

Ml||µl =Mi||µl = (Mi||µi)||µl = (Mi+1||µi)||µl =Mi+1||µl.

QED(Lemma 5.2.2)

We now consider quasi SA’s of the form ⟨Mi | i < η⟩ where η is a limit
ordinal.

Lemma 5.2.3. Let ⟨Mi | i < η⟩ be a quasi SA where η is a limit ordinal.
Set:

κ̃i = κ̃i,η =: min{ρωMi
| i < η}

µ̃i = µ̃i,η =: µMi(κ̃i). Then:

(1) κ̃i = min{κij | i ≤ j < η} is a cardinal in Mj for i ≤ j < η.

(2) µ̃i = min{µij | i ≤ j < η} is a cardinal in Mj for i ≤ j < η.

(3) µ̃i ≤ µ̃j for i ≤ j < η.

(4) Mi||µ̃i =Mj ||µ̃i for i ≤ j < η.

(5) ∧i<η ∨j<η µ̃i<µ̃j.

Proof. It is easily seen that:

κ̃i = κij for sufficiently large j < η.
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Hence
µ̃i = µij for sufficiently large j < η.

(1)-(4) follow easily from this and 5.2.2. We prove (5).

Case 1. ∧i<η ∨j<η κ̃i<κ̃j .

Given i, pick n, j such that κ̃i < κ̃n < κ̃j . If α < κ̃i, then α ≤ κ̃i is Mi.
Hence α ≤ κ̃i in Mi||κ̃i by acceptability. Hence α ≤ κ̃i in Mj ||κ̃i, hence Mj .
But then α ≤ κ̃n < κ̃j ≤ µ̃j , since κ̃n is a cardinal in Mj .

QED(Case 1)

Case 2. κ̃i = κ̃j for i ≤ j < η.

Given i pick j > i such that κ̃j = ρωMj
. Consider Mj+1. If N is derived from

Mi by Option 1 of (c) in the definition of quasi SA, then ρωMj+1
= κ̃j , since

ρωMj+1
≤ ρωMj

. But then µ̃j+1 = µN (κ̃j) = νj + ω > νj ≥ µ̃j ≥ µ̃i. Now
suppose that Option 2 of (c) was used. Then N = ⟨JEνj , F ⟩, where F ̸= ∅
and Mj ||νj = ∅. Hence Mj is a ZFC model and ρωMj

= κ̃i = νj . But then
κ̃i ≤ ρωMj+1

= ρωN < νj , contradiction!

QED(Lemma 5.2.3)

But then N = ⟨ ∪
i<η

JE
i

µ̃i
, ∅⟩ is a premouse. If N is mouselike, we can extend

the sequence ⟨Mi | i < η⟩ by setting: Mη = core(N).

Lemma 5.2.4. Let ⟨Mi | i < η⟩ be a quasi SA, where η is a limit ordinal.
Let N be defined as above and let Mη = core(N). Then ⟨Mi | i ≤ η⟩ is a
quasi SA.

Proof. (a), (b), (c) in the definition of quasi SA hold trivially. We prove
(d). Set:

κi = κi,η, µi = µi,η for i ≤ η

κ̃i = κ̃i,η, µ̃i = µ̃i,η for i < η

ρ = ρωMη
= ρωN

Then κη = ρ, κi = min{κ̃i, ρ} for i < η. Clearly:

ρ = On∩N and N =Mη or ρ is a cardinal in Mη.

We must show:

Claim. If i < n ≤ η, then κi is a cardinal in Mn and Mi||µi =Mn||µi.

Proof.
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Case 1. κ̃i < ρ. Then κi = κ̃i and it suffices to prove the claim for n = η.
Mi||κ̃i = N ||κ̃i where κ̃i < ρ. Hence κ̃i is a cardinal in N ||ρ =Mη||ρ, hence
in Mη. But µi = µ̃i and: Mi||µ̃i = N ||µ̃i = (N ||ρ)||µ̃i = (Mη||ρ)||µ̃i =
Mη||µ̃i.

QED(Case 1)

Case 2. κ̃i = ρ. Hence κ̃i = ρ ∈ N is a cardinal in N , hence in Mη, But
then µi = µMi(ρ) = µ̃i. Set:

µ = µη,η = µN (ρ) = µMη(ρ).

Then Mi||µ̃i = N ||µ̃i = (N ||µ)||µ̃i = (Mη||µ)||µ̃i =Mη||µ̃i.

QED(Case 2)

Case 3. ρ < κ̃i. Then κi = ρ < κ̃i. Let i < n ≤ η. If n < η, then ρ is
a cardinal in Mi||κ̃i = Mn||κ̃i, where κ̃i is a cardinal in Mn. Hence ρ is a
cardinal in Mn. But µi = µMi(ρ) ≤ κ̃i and:

Mi||µi = (Mi||κ̃i)||µi = (Mn||κ̃i)||µi =Mn||µi.

Now let n = η. Then ρ is a cardinal in N , hence in Mη. Let µ = µN (ρ) =
µMη(η) =Mη. Then:

Mi||µi = (Mi||κ̃i)||µi = (N ||κ̃i)||µi = N ||µi = (N ||µ)||µi = (Mη||µ)||µi =Mη||µi.

QED(Lemma 5.2.4)

We can now define:

Definition 5.2.4. A Steel array is a sequence ⟨Mi | i < Ω⟩ such that Ω ≤ ∞
and:

(1) ⟨Mi | i < Ω⟩ is a quasi SA.

(2) Let λ < Ω be a limit ordinal. Set:

N = ⟨ ∪
i<λ

JE
i

µ̃i,λ
, ∅⟩.

Then N is mouselike and Mλ = core(N).

Now suppose that ⟨Mi | i < Ω⟩ is a Steel array and Ω > ω is a regular
cardinal. By induction on i we have: M i < Ω for i < Ω. If we then set:
N = ∪

i<Ω
JE

i

µiΩ
, then N = JEΩ is of height Ω. But then:
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Lemma 5.2.5. Let ⟨Mi | i < Ω⟩, N be as above, where Ω > ω is regular.
Then N models ZFC−.

Proof. We first show that N satisfies the comprehension axiom: Let u ∈ N
and a = {z ∈ u | N |= φ(z)}.

Claim. a ∈ N

Proof. Let u ∈ Ni =: JE
i

µi,Ω
. Let X be the smallest elementary submodel

of N with Ni ⊂ X. By regularity we have X ⊂ Nj for a j > i. But by
induction on the formula ψ we can prove:

X |= ψ[x⃗] −→ Nj |= ψ[x⃗] for x1, . . . , xm ∈ X.

Hence X ≺ Nj and a is Nj definable. Hence a ∈ N since Nj ∈ N .

QED(Claim)

It follows easily by the regularity of Ω that the replacement axiom holds in
the form: ∧x∈u ∨y φ→ ∨σ ∧ x∈u ∨y∈σφ. Hence N models ZFC−.

QED(Lemma 5.2.5)

N is then sound with: ρωN = Ω. Hence N is mouselike and we can set:
MΩ = N . If Ω is inaccessible-i.e. 2κ < Ω for κ < Ω, then N models full
ZFC. By virtually the same argument it follows that if Ω = ∞, then N is
and inner model of ZFC. We can then set: M∞ =: N .

Thus the Steel array can be a tool for creating inner models. The simplest
inner model is obtained by using only the first option in (c) of the definition
of quasi SA. We then get ⟨Mi | i <∞⟩ with:

Mi = ⟨Jωi, ∅⟩

Hence N =M∞ = L.

Larger inner models can be obtained by making judicious use of the second
option(in (c) of the definition of quasi SA). There are two ways of ensuring
that the construction does not break down before ∞. The first is to ensure
that an extender used in Option 2 satisfy a “background condition” which
normally says that the extender is very large. The second is to restrict the
complexity of the premice Mi, which makes it harder to apply Option 2.
This chapter is devoted to the construction of a specific inner model called
Kc. Our background condition is called robustness. We shall require that
all of the premice Mi be 1-small.

clearly for every Steel array ⟨Mi | i < Ω⟩, there is a unique associated
sequence ⟨Ni | i < Ω⟩ defined by:
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Definition 5.2.5. Let ⟨Mi | i < Ω⟩ be a Steel array. By recursion on i < Ω
we define:

• N0 =M0 = ⟨J∅
ω, ∅⟩

• Ni+1 is defined from Mi by Option 1 or Option 2(in (c) of the definition
of quasi SA) and Mi+1 = core(Ni+1)

• If i = η is a limit ordinal, then:

Nη = ⟨ ∪
n<η

JE
n

µ̃n,η
, ∅⟩ and Mη = core(Nη)

Obviously ⟨Mi | i < Ω⟩ is definable from the associated sequence ⟨Ni | i < Ω⟩
and we shall often commit the sin of referring to ⟨Ni | i < Ω⟩ as a Steel array.
We also define:

Definition 5.2.6. ⟨Ni | i ≤ Ω⟩ is a putative Steel array if and only if
⟨Mi | i < Ω⟩ is a Steel array, where Mi = core(Ni), and either Ω = i+1 and
NΩ is obtained from Mi by Option 1 or 2, or else Ω is a limit ordinal and
NΩ is the canonical completion: NΩ = ∪

i<Ω
JE

i

µ̃i,Ω
, ∅⟩.

Thus a putative Steel array ⟨Ni | i ≤ Ω⟩ is a Steel array of length Ω + 1 if
and only if NΩ is mouselike. NΩ is obviously pre-mouselike

Let M be a premouse with: ν ∈M , EMν ̸= ∅. Set:

Definition 5.2.7. B = B(M,ν) =: the set of β ∈M such that:

ρωM ||β < ν ≤ β and ρωM ||γ > ρωM ||β for all γ ∈ [ν, β).

Then ν ∈ B since ρ1M ||ν < ν. Moreover, if γ, β ∈ B, then:

γ < β −→ ρωM ||β < ρωM ||γ .

Hence B is finite. Set:

Definition 5.2.8. β = β(M,ν) =: maxB(M,ν).

Lemma 5.2.6. Let β = β(M,ν). Then ρωM ||β is a cardinal in M .

Proof. Suppose not. Let M be a counterexample with ht(M) chosen min-
imally. Then ht(M) > β and ht(M) is not a limit of limit ordinals, since
otherwise ρωM ||β would fail to be a cardinal in M ||γ for a γ ∈ (β,ht(M)).
Hence ht(M) = γ + ω, where γ ≥ β. Since M ||γ is sound, we have:

Σω(M ||γ) = Σ∗(M ||γ).
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But |M | is the rudimentary closure of |M ||γ| ∪ {M ||γ}. Hence:

P(M ||γ) ∩M = Σω(M ||γ).

Since ρ = ρωM ||γ is not a cardinal in M , there is an f ∈M mapping an α < ρ

onto ρ. But then f ∈ Σ∗(M ||γ). Hence ρ = ρωM ||γ < α < ρ. Contradiction!

QED(Lemma 5.2.6)

Using this we prove:

Lemma 5.2.7. Let ν ∈ Nξ, β = β(Nξ, ν). Then Nξ||β =Mη for an η < ξ.

Proof. Suppose not. Let Nξ be a counterexample with ξ chosen minimally.
We derive a contradiction as follows:

Case 1. ξ is a limit ordinal. Then Nξ = ∪
i<ξ
Mi||µ̃iξ and Mi||µ̃iξ =Mj ||µ̃iξ =

Nξ||µ̃iξ for i ≤ j < ξ.

Case 1.1. There is i < ξ such that β < κ̃i =: κ̃i,ξ. Then β = β(Mi||κ̃i, ν)
since Mi||κ̃i = Nξ||κ̃i and β = β(Nξ, ν). Hence ρ = ρωNξ||β is a cardinal in
Mi||κ̃i. Let σ :Mi −→ Ni be the core map. Since ρωMi

≥ κ̃i, we conclude that
ρ is a cardinal in Ni. Hence β = β(Ni, ν), where i < ξ and Ni||β = Nξ||β.
Hence ξ was not minimal.

Case 1.2. Case 1.1 fails. Pick i such that β < µ̃i =: µ̃i,ξ. Then β =
β(Mi||µ̃i, ν), since Mi||µ̃i = Nξ||µ̃i and β = β(Nξ, ν). Clearly κ̃i ≤ βi. κ̃i is
the largest cardinal in Mi||µ̃i and ρ = ρωMi||β is a cardinal in Mi||µ̃i. Hence
ρ ≤ κ̃i. But ρ is a cardinal in Mi by acceptability since κ̃i is a cardinal in
Mi. Let σ : Mi −→ Ni be the core map. Then crit(σ) ≥ ρωMi

≥ κ̃i. Hence
ρ < ν is a cardinal in Ni and β = β(Ni||µ̃i, ν). Hence β = β(Ni, ν), where
i < ξ and Ni||β = Nξ||β. Thus, ξ was not chosen minimally. Contradiction!

QED(Case 1)

Case 2. ξ = i+ 1.

Case 2.1. Option 1 was used at i. Then Nξ = ⟨JEi

γ+ω, ∅⟩ where Mi =

⟨JEi

γ , Eiγ⟩. Then β ≤ γ, since γ is the largest limit ordinal in Nξ. If β = γ,
then Nξ||β = Mi where i < ξ. Hence ξ is not a counterexample. Contra-
diction! Hence β < γ. But then β < µ =: µMi(ρ) where ρ = ρωMi||β and let
σ : Mi −→ Ni be the core map. Then crit(σ) ≥ ρ. Hence ρ is a cardinal in
Ni and Mi||µ = Ni||µ. Hence Ni||β = Nξ||β where i < ξ. Hence ξ was not
minimal. Contradiction!

QED(Case 2.1)
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Case 2.2. Option 2 was applied. Then Nξ = ⟨JE
i

γ , F ⟩ where Mi = ⟨JE
i

γ , ∅⟩
is a ZFC− model. Hence Ni = Mi, since, letting ρ =: ρωNi

= ρωMi
, we have:

µNi(ρ) = µMi(ρ) = ht(Mi). In particular, Ni||β =Mi||β where i < γ. Hence
γ is not minimal.

QED(Lemma 5.2.7)

Now let ⟨Ni | i < Ω⟩ be a (putative) Steel array. Let N = NΩ and let
ENν ̸= ∅. It seems clear that N ||ν “originated” at a stage i + 1 ≤ Ω and
Ni+1 = ⟨JEνi , F ⟩ where JEνi =Mi. Using 5.2.5 we can trace back to the origin
in a finite sequence of steps. Following Steel, we call this the resurrection
sequence, since it “resurrects” the original ancestor of N ||ν.

Definition 5.2.9. Let N = NΩ and let N ||ν be an active premouse. The
resurrection sequence for ⟨N, ν⟩ is a finite sequence ⟨ηi, νi⟩(i ≤ p) such that
Nηi ||νi is active and ηi+1 < ηi for i < p. We define:

• η0 = Ω, ν0 = ν.

• If νi ̸∈ Nηi , then i = p and the sequence terminates.

• If νi ∈ Nηi , let β = β(Nηi , νi). Then:

ηi+1 =: that η′ such that Nηi ||β =Mη.

• Let k :Mηi+1 −→ Nηi+1 be the core map. Then

νi+1 =

{
k(νi) if νi ∈Mηi+1

On∩Nηi+1 if not

Np||νp is then the origin which we sought. We define:

Definition 5.2.10. β0 = On∩N , βi+1 ≃ β(N ||βi).

It follows easily that βi is defined for i ≤ p and that there are unique maps:

ki : N ||βi −→Σ∗ Nηi

defined by k0 = id; ki+1 = k · ki where:

k :Mηi+1 −→ Nηi+1 is the core map.

kp is then called the resurrection map for ⟨N, ν⟩. It is easily seen that if
i ≤ p, then kp = k ·ki, where k is the resurrection map for Nηi ||νi. Moreover,
⟨ηi+n, νi+n⟩(n ≤ p− i) is the resurrection sequence for ⟨Nηi , νi⟩.

A proof similar to that of lemma 5.2.7 shows:
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Definition 5.2.11. Let N be a premouse, α ∈ N a limit ordinal. α is
cardinally absolute if and only if for all β < α:

N ||α |= β is cardinal −→ N |= β is a cardinal.

Lemma 5.2.8. Let α ∈ Nξ be cardinally absolute such that ENξ
α = ∅. Then

there is i < ξ such that Nξ||α =Mi and Ni+1 is formed by Option 1.

Proof. Suppose not. Let Nξ be a counterexample with ξ chosen minimally.
We derive a contradiction.

Case 1. ξ is a limit ordinal.

Case 1.1. There is i < ξ such that α < κ̃i =: κ̃i,ξ. Then Mi||κ̃i = Nξ||κ̃i.
Thus α < κ̃i is cardinally absolute in Mi and EMi

α = ∅. Let σ :Mi → Ni be
the core map. Then crit(σ) ≥ ρωMi

≥ κ̃i. Hence α is cardinally absolute in
Ni and ENi

α = ∅. Moreover, Ni||α =Mi||α. Thus i is a counterexample and
ξ was not chosen minimally. Contradiction!

Case 1.2. Case 1.1 fails. Pick i < ξ such that α < µ̃i =: µ̃i,ξ. Then
κ̃i ≤ α < µ̃i and Mi||µ̃i = Nξ||µ̃i. Let σ : Mi −→ Ni be the core map.
Then crit(σ) ≥ ρωMi

≥ κ̃i = α. Hence µ̃i = µNi(κ̃i) and α ∈ Ni||µ̃i =Mi||µ̃i.
Thus Ni||α =Mi||α. Hence ENi

α = ∅. But then i is a counterexample, where
i < ξ. Hence ξ was not minimal. Contradiction!

Since α is a limit ordinal, we know that α ̸∈ N0 = J∅
ω, so there remains only

the case:

Case 2. ξ = i+ 1

Case 2.1. Nξ is formed by option 2. Then Nξ = ⟨Mi, F ⟩ and α ∈ Mi. But
Mi = Ni is a ZFC− model. Hence Ni||α = Mi||α = Nξ||α. Hence ENi

α = ∅.
Thus i < ξ is a counterexample and ξ is not minimal. Contradiction!

Case 2.2. α ∈Mi and Nξ is formed by option 1. Let:

τ = sup{β < α | β is a cardinal in Nξ||α}.

Then τ is a cardinal in Nξ. Hence τ < ρ where ρ = ρωMi
= ρωNi

. Let
µ = µMi(ρ) = µNi(ρ). Then Ni||µ = Mi||µ and α ≤ µ, since τ ≤ ρ. Clearly
α is then cardinally absolute in Ni, since τ ≤ ρ is a cardinal in Ni. But
ENi
α = EMi

α = E
Nξ
α = ∅. Hence i < ξ is a counterexample.

Case 2.3. The above cases fail. Then α = ht(Mi) is the largest limit ordinal
in Nξ, where ENξ

α = ∅. Then Mξ||α = Mi||α, where i < α and Ni+1 is
formed by option 1. Hence ξ is not a counterexample. Contradiction!
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QED(Lemma 5.2.8)

5.3 Robust Premice

5.3.1 The Chang hierarchy

The logician C. C. Chang proposed a modification of the constructible hi-
erarchy in which, when passing to the next level, we include not only the
previous level as a set but also the set:

αω =: {f | f : ω −→ α}

where α is the previous level. There are various ways of organizing this
hierarchy (although any of them ultimately reaches the same inner model).
We shall construct the hierarchy, indexing the level by the limit ordinals.
We define:

Definition 5.3.1. The Chang hierarchy

⟨C̄α | α is a limit ordinal⟩

is defined inductively by:

C̄ω = Jω = Hω

C̄α+ω = rud(C̄α ∪ {C̄α} ∪ αω)

C̄ωλ =
⋃
ξ<λ

C̄ωξ for limit λ

(Here: rud(X)=the closure of X under rud functions).

Then each C̄α is transitive and rudimentarily closed. Moreover, α = On∩C̄α =
rank(C̄α). Using the methods developed in Chapter 2 we get:

• ⟨C̄ξ | ξ ∈ Lim∩ η⟩ ∈ C̄α for η < α

• ⟨C̄ξ | ξ ∈ Lim∩α⟩ is uniformly C̄α-definable for

α a limit of limit ordinals. (Hence: Lim=:the class of limit ordinals. )
However, the definition of ⟨C̄ξ | ξ ∈ Lim∩α⟩ is not necessarily Σ1(C̄α). In
order to remedy this we set:

Definition 5.3.2. Cα = ⟨C̄α; ⟨C̄ξ | ξ ∈ Lim∩α⟩⟩.
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Then Cα is amenable and we trivially have:

⟨Cξ | ξ ∈ Lim∩α⟩ is uniformly Σ1(Cα).

We shall often write ⟨Cξ | ξ < α⟩ as an abbreviation for ⟨Cξ | ξ ∈ Lim∩α⟩.
The condensation lemma for the C-hierarchy has a much stronger hypothesis
than the condensation lemma for L, to wif:

Lemma 5.3.1. Let α be a limit ordinal. Let X ≺ Cα such that (X∩α)ω ⊂ X.
Then X ≃ Cᾱ for an ᾱ ≤ α.

Note If α is closed under Gödel pairing, we can replace (X ∩ α)ω ⊂ X
by: [X ∩ α]ω ⊂ X, where [Y ]ω =:the set of countable subsets of Y . This
simplification is possible since if f : ω −→ X ∩α, then f is recoverable from:
{≺ δ, ξ ≻| f(δ) = ξ}, which is a countable subset of X ∩ α.

We leave the proof of Lemma 5.3.1 to the reader. If we wished, we could
define the Chang hierarchy relative to a class E by:

Definition 5.3.3. For limit ordinals α such that:

C̄ω[E] = Jω = Hω

C̄α+ω[E] = rud(C̄α[E] ∪ {C̄α[E]} ∪ {E ∩ C̄α[E]} ∪ αω)

C̄ωλ[E] =
⋃
ξ<λ

C̄ωξ[E] for limit λ

We can then define:

CEα = ⟨C̄α[E], E ∩ C̄α[E], ⟨C̄ξ[E] | ξ ∈ Lim∩α⟩⟩.

We leave it to the reader to formulate the condensation for the CE-hierarchy.
We shall, however, be more interested in a different modification of the Chang
hierarchy: Let e be a set or class. Let τ , η be limit ordinals with τ ≤ η. Ceτ,η
then denotes the result of first constructing from e up to τ , getting Jeτ , and
therefore applying the operations of the Chang hierarchy without reference
to e. We define:

Definition 5.3.4. Let e be any class or set. Let τ be a limit ordinal. For
limit α ≥ τ we define Ceτ,α by induction on α as follows:

C̄eτ,τ = Jeτ

C̄eτ,α+ω = rud(C̄eτ,α ∪ {C̄eτ,α} ∪ αω)

C̄eτ,τ+ωλ =
⋃
i<λ

C̄eτ,τ+ωi.
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Clearly C̄eτ,η is rudimentarily closed and transitive. Moreover:

η = On∩C̄eτ,η = rank(C̄eτ,η.

We set:

Definition 5.3.5. Ceτ,η = ⟨C̄eτ,η, e ∩ Jeτ , ⟨C̄eτ,ξ | τ ≤ ξ < η⟩⟩

Note When using this notation we will often tacitly assume that e = e∩Jeτ .
In most cases, we will also assume that η is much greater than τ .

The condensation lemma for Ceτ,η reads:

Lemma 5.3.2. Let X ≺Σ1 C
e
τ,η such that τ ∈ X and (X ∩ η)ω ⊂ X. Then

X ≃ C ēτ̄ ,η̄ for a τ̄ ≤ τ and an η̄ ≤ η. Moreover, if τ ⊂ X, then τ̄ = τ and
ē = e. (if η is closed under Gödel pairing we can again replace (X∩η)ω ⊂ X
by: [X ∩ η]ω ⊂ X. )

5.3.2 Robustness

Without further ado we can now define:

Definition 5.3.6. Let N = ⟨JEν , F ⟩ be an active premouse, as usual set:
κ = κν =: crit(F ), τ = τν =: κ+N , λ = λν =: F (κ). F is robust in N if
and only if whenever U ⊂ λ, W ⊂ P(κ)∩N are countable sets, then there is
g : U −→ κ such that

(a) ≺ g(α⃗) ≻∈ X ←→≺ α⃗ ≻∈ F (X) for α1, . . . , αn ∈ U , X ∈W .

(b) Let τ = lub(U), τ⃗ = lub(g”U). Let φ be a Σ1 formula. Then for all
v1, . . . , vm ⊂ U we have:

CEτ̄,κ |= φ(g”v1, . . . , g”vm)←→ CEτ,∞ |= φ(v1, . . . , vm).

Remark. It follows easily that if α1, . . . , αn ∈ U , then:

CEτ̄,κ |= φ(g”v⃗, g(α⃗))←→ CEτ,∞ |= φ(v⃗, α⃗).

Note. In the following we shall use the notation, if N is a premouse, set:

EN =: that E such that N = ⟨JEα , F ⟩ = ⟨Jα[E], E, F ⟩.

(Recall that JEα is defined to be ⟨Jα[E], E ∩ Jα[E]⟩. )
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If ν ≤ α is a limit ordinal, we write:

ENν = that F such that N ||ν = ⟨JEν , F ⟩.

Note. If we omitted (b) in the definition of robustness, we would have the
familiar condition of ω-completeness.

We now refine our definition as follows:

Definition 5.3.7. Let N = ⟨JEν , F ⟩ be an active premouse. Let κ ≤ γ ≤ λ,
where κ, λ are as above. F is robust up to γ in N if and only if whenever
U ⊂ λ, W ⊂ P(κ) ∩N are countable, then there is g : U −→ κ such that

(a) ≺ g(α⃗) ≻∈ X ←→≺ α⃗ ≻∈ F (X) for α1, . . . , αn ∈ U , X ∈W .

(b) Let τ = lub(U ∩ γ), τ⃗ = lub(g”(U ∩ γ). Let φ be a Σ1 formula. Then
τ̄ < κ for all v1, . . . , vm ⊂ U ∩ γ we have:

CEτ̄,κ |= φ(g”v1, . . . , g”vm)←→ CEτ,∞ |= φ(v1, . . . , vm).

We then define:

Definition 5.3.8. A premouse M is robust if and only if whenever M ||ν =
⟨JEν , F ⟩ is active and γ ∈ [κF , λF ] is a cardinal in M , then F is robust up to
γ in M ||ν.

As usual, let: κ = κν , τ = τν , λ = λν . Let γ ∈ [κ, λ] be a cardinal in N . We
note the following consequences:

(1) Let U ⊂ λ, W ⊂ P(κ) ∩ N be countable and let g : U −→ κ be as in
the above definition. Let ψ be a Σ1 formula. Let γ̄ = lub(g”γ). Let
α1, . . . , αm ∈ U ∩ γ, v1, . . . , vn ⊂ U ∩ γ. Then:

CE
N

γ,∞ |= ψ[α⃗, v⃗]←→ CE
N

γ̄,κ |= ψ[g(α⃗), g”v⃗].

(2) If, in addition, we assume:

ω ⊂ U , {ξ} ∈W for ξ ∈ U ∩ κ,

then
g(ξ) = ξ for ξ ∈ U ∩ κ.

To see this note that:

g(α) ∈ {ξ} ←→ α ∈ F ({ξ}) = {ξ} for α ∈ U .
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But then g”b = b for b ⊂ ω. Hence: if b1, . . . , bl ⊂ ω, then:

CE
N

γ,∞ |= ψ[⃗b, α⃗, v⃗]←→ CE
N

γ̄,κ |= ψ[⃗b, g(α⃗), g”v⃗].

Taking γ = κ we have:

(3) If κ is a cardinal in N and U ⊂ κ is countable and γ̄ = lub(U), then
γ̄ < κ and

CE
N

γ̄,∞ |= ψ[⃗b, α⃗, v⃗]←→ CE
N

γ̄,κ |= ψ[⃗b, α⃗, v⃗]

for b1, . . . , bl ⊂ ω, α1, . . . , αm ∈ U ∩ κ, v1, . . . , vn ⊂ U ∩ κ. Thus
cf(κ) > ω. Hence every hereditarily countable set x lies in Cκ and is
coded by a b ⊂ ω such that the Σ1 statement "b codes x" holds in Cκ.
Hence by (2):

(4) Let x1, . . . , xr be hereditarily countable. Let the assumption of (2) be
given. Let α1, . . . , αm ∈ U ∩ γ, v1, . . . , vn ⊂ U ∩ γ. Then:

CE
N

γ,∞ |= ψ[x⃗, α⃗, v⃗]←→ CE
N

γ⃗,κ |= ψ[x⃗, g(α⃗), g”v⃗].

By (3) we have:

Lemma 5.3.3. Let N be robust, F = ENν ̸= ∅ and let κ = κν be a cardinal
in N . Let x1, . . . , xr be hereditarily countable. Let U ⊂ κ be countable. Set:
γ̄ = lub(U). Then γ̄ < κ. Let α1, . . . , αr ∈ U , v1, . . . , vn ⊂ U . Let ψ be a Σ1

formula. Then:

CE
N

γ̄,∞ |= ψ[x⃗, α⃗, v⃗]←→ CE
N

γ̄,κ |= ψ[x⃗, α⃗, v⃗].

In the usual application of robustness, we assume that there is a countable
premouse N̄ = ⟨J Ē

N̄
, F̄ ⟩ and a map σ : N̄ −→Σ0 N ||ν such that:

U = rng(σ) ∩ λ,W = rng(σ) ∩ P(κ) ∩N.

Note that the assumptions in (2) are then automatically satisfied. Then by
(4) we have

Lemma 5.3.4. Let N be robust, F = ENν ̸= ∅ and κ = κν , τ = τν , λ = λν
in N . Let:

σ : N̄ −→Σω N ||ν

where N̄ = ⟨J Ē
N̄
, F̄ ⟩ is a countable premouse. Let κ̄ = κν̄ , λ̄ = λν̄ in N .

There is g : λ̄ −→ κ such that

(a) Let α1, . . . , αm < λ̄.

≺ g(α⃗) ≻∈ σ(x)←→≺ α⃗ ≻∈ F̄ (x) for x ∈ P(κ̄) ∩ N̄
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(b) Let γ ∈ [κ, λ] be a cardinal in N . Let x1, . . . , xr be hereditarily count-
able. Let α1, . . . , αm < λ such that g(αi) < γ (i = 1, . . . ,m). Let
v1, . . . , vm ⊂ λ such that g”vi ⊂ γ (i = 1, . . . , n). Let ψ be a Σ1

formula. Then:

CE
N

γ,∞ |= ψ[x⃗, σ(α⃗), σ”v⃗]←→ CE
N

γ̄,κ |= ψ[x⃗, g(α⃗), g”v⃗].

Lemma 5.3.3 and 5.3.4 are our main lemmas on robustness.

Definition 5.3.9. A (putative) Steel array is robust if and only if whenever
Ni+1 = ⟨JE

i

νi , F ⟩ is obtained by Option 2, then F is robust in Ni+1.

Lemma 5.3.5. Let ⟨Ni⟩ be a (putative) robust Steel array. Then each Ni is
a robust premouse.

Proof. Let i be the least counterexample. Then i > 0.

Case 1. i = j + 1 and Ni is formed according to Option 1. Let Ni||ν =
⟨JEν , F ⟩ be active. Let κ ≤ γ ∈ Ni||ν, where γ is a cardinal in Ni.

Claim. F is robust up ti γ in Ni||ν.

We know that ν ≤ On∩Mj , since Ni is passive and On∩Ni = (On∩Mj)+ω.
Hence Mj ||ν = Ni||ν and γ is a cardinal in Mj . Hence γ ≤ ρωMj

, since
otherwise it would not be a cardinal in Ni. Let σ : Mj −→ Nj be the core
map. Then σ ↾γ = id and σ(γ) is a cardinal in Nj , where

σ(κ) ≤ σ(γ) ∈ Nj ||σ(ν) = ⟨JE
′

σ(ν), F
′⟩.

Hence F ′ is robust up to σ(γ) in Nj ||σ(ν), since Nj is robust. It follows
easily that F is robust up to γ in Mj ||ν. QED(Case 1)

Case 2. i = j + 1 and Option 2 applied.

Let Ni||ν = ⟨JEν , F ⟩ be active. Let κ ≤ γ ∈ Ni||ν where γ is a cardinal in
Ni.

Claim. F is robust up to γ in Ni||ν.

If ν ∈ Ni this is trivial, since Nj ||ν = Ni||ν and γ is a cardinal in Nj =Mj ,
where Nj is robust. Now let ν = On∩Ni. Then Ni = ⟨Nj , F ⟩ where F is
robust in Ni||ν. QED(Case 2)

Case 3. i = η is a limit ordinal.

Then Nη is passive. Let Nη||ν = ⟨JEν , F ⟩ be active where κ ≤ γ ∈ Nη||ν
and γ is a cardinal in Nη. The definition of Nη tells that Nη||ν = Nj ||ν
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and γ ∈ Nj ||ν is a cardinal in Nj for sufficiently large j < η (it suffices that
ν < µ̃j,η and γ < κ̃j,η). But then F is robust up to γ, since Nj is robust.

QED(Lemma 5.3.5)

We shall prove:

Lemma 5.3.6. Assume there is no inner model with a Woodin cardinal. Let
⟨Ni | i ≤ µ⟩ be a putative robust Steel array. Then it is a Steel array (i.e.
Nµ is mouselike).

It will suffice to show:

Lemma 5.3.7. Let Nµ be restrained. Let σ : P −→Σ∗ Nµ, where P is a
countable premouse. Then P is countably normally iterable.

We first show that Lemma 5.3.7 implies Lemma 5.3.6. Suppose not. Let Ω
be least such that Lemma 5.3.6 fails. Then ⟨Ni | i < Ω⟩ is a robust Steel
array. Hence NΩ is pre-mouselike.

Case 1. NΩ is restrained. We first show that NΩ is mouselike. Let NΩ ∈ Hθ,
where θ > Ω is regular. Let X ≺ Hθ be countable such that NΩ ∈ X.
Let σ : H̄ ∼←→ X be the transitivation of X. Let σ(P ) = NΩ. Then P is
pre-mouselike and restrained. Moreover, σ ↾ P : P −→Σ∗ NΩ. By Lemma
5.3.7, P is then uniquely normally iterable. Hence P is mouselike. Hence,
by absoluteness, P is mouselike in H̄. Hence NΩ is mouselike in Hθ. Hence
NΩ is mouselike, by absoluteness. But then MΩ = core(NΩ) ∈ X and
P ′ = core(P ) ∈ H̄. Hence σ′σ : P ′ −→Σ∗ NΩ, where σ′ = σMΩ

is the core
map. Hence P ′ is fully iterable by Lemma 5.3.6. Hence P ′ is mouselike. But
then MΩ = σ(P ′) is mouselike. QED(Case 1)

Case 2. N = NΩ is unrestrained. Then N is a constructible extension
of N ||α for an α ≤ ht(N). Moreover, α is Woodin in N ′ = JEβ+1, where
N = JEβ . (Hence ρωN ≥ α and E ⊂ JEα . ) By Lemma 4.4.11 it follows that
N is mouselike. But since N is a constructible extension of JEα and ρωN ≥ α,
it follows that N is sound and core(N) = N =MΩ. QED(Case 2)

(Note: we can actually prove stronger result. By Corollary 5.1.4 and 5.1.5
we have:

Lemma 5.3.8. Let Nµ be restrained. Then Nµ itself is smoothly ∞-iterable
and fully α-iterable for all α <∞. )

Before tackling this, however, we shall prove a much weaker theorem which
will enable us to display some of our methods:
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Lemma 5.3.9. Let N be a robust premouse which is pre-mouselike. Let
σ : P −→Σ∗ N , where P is a countable premouse. Let:

I = ⟨⟨Pi⟩, ⟨vi⟩, ⟨πi,j⟩, T ⟩

be a non truncating normal iteration of P of length ω. Then I has a cofinal
well founded branch b. ( In fact, there is a map σ′ : Pb −→Σ0 N such that
σ′π0,b = σ. )

Before beginning the proof of Lemma 5.3.9, we establish the following iter-
ation fact, which we will employ frequently:

Lemma 5.3.10. Let P be pre-mouselike. Let I = ⟨⟨Pi⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ be
a potential iteration of P . Let i < lh(I). There is a ν such that P ∗

i ||ν =
⟨JEν , F ⟩ with F ̸= ∅, κi = crit(F ), τi = τ(F ).

Proof. We first recall that the statement: P is pre-mouselike is uniformly
Π1(P ) by Lemma 4.4.2. Moreover, if P is pre-mouselike, then every Q◁P is
trivially pre-mouselike. It follows easily that every Pi is pre-mouselike. By
Lemma 4.3.11 it then follows that every Pi is Σ1-acceptable.

Assume the Lemma to be fails. Let I be a counterexample with i chosen
minimally. We derive a contradiction. Let h = T (i+ 1). Then:

(1) h ̸= i.

Proof. If not, take ν = νi. Then i is not a counterexample.

(2) νi /∈ Pi.

Proof. λh is a cardinal in Pi by (1).

Pi||λh = Ph||λh = P ∗
i ||λh.

In Pi we have:∨
νV |= (Eν = F ∧ κi = crit(F ) ∧ τi = τ(F ) = τ+J

E
ν )

This is a Σ1 statement about κi, πi where κi, τi < λh. Hence by a Σ1-
acceptability the statement holds in Pi||λh = P ∗

h ||λh. Hence i is not a
counterexample. Contradiction!

(3) i is not a limit ordinal.

Proof. Suppose not. Since λi = lub{κj | j+1 <T i}, we can choose j+1 <T i
such that κj > κi and (j, i]T has no truncation. F = Eνi is then the top
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extender of Pi, by (2). Since πj,i : Pj −→ Pi, κj = crit(πj,i), then Pj has a
top extender F ′. Then κi = crit(F ′) since κi = πj,i(κi) = crit(F ). Then i is
not a minimal counterexample, since, letting I ′ be defined by I ′|j+1 = I|j+1
and ν ′j = ht(Pj), then I ′ is a counterexample of length j + 2 where j < i.
Contradiction. QED(3)

Now let i = k + 1, t = T (k + 1). Then πt,i : P ∗
k −→ Pi. Hence P ∗

k has a top
extender F ∗. Let κ∗ = crit(F ∗). Then πt,i(κ∗) = κi. But then

(4) κ∗ < κi

Proof. Suppose not. Let F ∗ = EPk
ν . Then κi = crit(F ∗), where ν > νj for

all j < t. Define a potential iteration I ′ pf length t+ 2 by:

I ′|t+ 1 = I|t+ 1, νt = ν.

Then I ′ is a counterexample where t < i. Hence i was not minimal. Contra-
diction! QED(4)

But then κk ≤ κ∗, since otherwise πt,i(κ∗) = κ∗ < κi. Hence κi = πt,i(κ
∗) ≤

λk. But κi < λh. Hence h = i. Contradiction! by (1)

QED(Lemma 5.3.10)

5.4 Worlds

Our main tool in the proof of lemma 5.3.6 is the concept of world. Prior to
defining this we let:

Definition 5.4.1. ZFC∗ is the theory ZFC− together with the additional
axiom:

∧
x ([x]ω is a set).

Recall that we defined:

LA1,...,An
α = JA1,...,An

α =: ⟨Jα[A⃗], ∈, A1 ∩ Jα[A⃗], . . . , An ∩ Jα[A⃗]⟩

where ⟨Jα[A⃗] | α <∞⟩ is the constructible hierarchy relative to A1, . . . , An.

We now define:

Definition 5.4.2. A world of height α is a set W = LAα such that A ⊂ α
and:

• W |= ZFC∗
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• W is reflexive in the sense that there are arbitrarily large β < α with:
LAβ ≺ LAα .

• W ∈ V [G] for some G which is set generic over V .

• [α]ω ∩W = [α]ω ∩ V

Remark. We think of a world as being an ideal object, whose properties we
can discuss in V , although it might not actually be present in V . Note that
neither direction of the above final equation is vacuous.

Lemma 5.4.1. Let W be a world of height α. Then:

(a) cf(α) > ω in V . Moreover, if β ∈W , then:

cf(β) = ω in V ←→ cf(β) = ω in W.

(b) Let e, τ ∈ W . Then Ceτ,ξ = (Ceτ,ξ)
W for ξ ∈ W . (Hence Ceτ,α =

(Ceτ,∞)W .)

(c) Let a1, . . . , am ∈ W . Let t ⊂ ω code the complete theory of ⟨W,∈
, a1, . . . , am⟩. Then t ∈W (hence t ∈ V ).

Proof.

(a) By [α]ω ∩W = [α]ω ∩ V

(b) By induction on ξ ∈W

(c) By reflectivity, t codes the complete theory of ⟨LA⃗β ,∈, a⃗⟩ for a β < α.
Hence t ∈W .

QED(Lemma 5.4.1)

Note. Taking τ = 0 in (b) we have: Cξ = CWξ for ξ ∈W .

Note. Let coll(ω, γ) be the canonical set of finite conditions for collapsing γ
to ω. It is known that any complete Boolean algebra is a complete subalgebra
of the algebra generated by the condition coll(ω, γ) for a sufficiently large γ.
Thus:

W ∈ V [G] for a set generic G

means the same as

W ∈ V [G] where G is coll(ω, γ)-generic

and γ is sufficiently large.
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We shall often make statements of the form:

There is a potential world W with property . . . ,

meaning that, for sufficiently large γ, the existence of such a world is forced
by coll(ω, γ). It is often convenient to reformulate such statements using
Barwise theory. For instance:

Lemma 5.4.2. Let α < ν, where Cν is admissible. There is a language
L = Lα on Cν such that

L is consistent←→ there is a potential world of height α.

(Note:“Lα is consistent” will be uniformly Π1(Cν) in α.)

Proof. The language L has:

Predicate: ∈

Constants: x (x ∈ C), Ȧ, Ẇ

Axioms:

(a) ZFC−

(b)
∧
v(v∈̇x←→

∧∧
z∈x
v = z) for x ∈ Cν

(c) Ẇ = J Ȧα where Ȧ ⊂ α

(d) Ẇ |= ZFC∗, Ẇ is reflexive.

(e) [α]ω = ([On]ω)Ẇ (where [α]ω = {u ⊂ α | u = ω}.)

Note. (a), (b) constitute the “standard axioms”. They will be present in
every language on an admissible structures which we consider. (c) says that
Ẇ has height α. Given (c), (d) and (e) then say that Ẇ is a world. Note
that (e) implies: cf(α) > ω.

We now prove the lemma. We first prove (−→). Let Lα be consistent. If
G is coll(ω, γ)-generic for a sufficiently large γ, then Cν is countable and Lα
has a model M. Set: W = ẆM, A = ȦM. Then W = JAα ∈ V [G] is a world
of height α. Conversely, suppose W ∈ V [G] to be such a world. Let κ > ν be
regular. Then L has a model M = ⟨Hκ[G],W, . . . ⟩(with xM = x for x ∈ Cν).
Hence L is consistent.

QED(Lemma 5.4.2)

The proof of lemma 5.4.2 is a template for many similar proofs. For instance:
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Lemma 5.4.3. Let α < ν where Cν is admissible. Let φ(v1, . . . , vm) be a
first order formula. Let x1, . . . , xm ∈ Cν . There is a language L = Lα,x⃗ on
Cν such that L is consistent if and only if there is a potential world W of
height α with: W |= φ[x⃗].

Proof(sketch). Lα,x⃗ is Lα with the additional axiom: Ẇ |= φ[x⃗]. We leave
the details to the reader.

QED(Lemma 5.4.3)

Lemma 5.4.4. Let α < ν, where Cν is admissible. Let t ∈ Cω. There is a
language L = Lα,t on Cν such that L is consistent if and only if there is a
potential world W of height α with a1, . . . , am ∈W and:

t = the complete theory of ⟨W,a1, . . . , am⟩.

Proof(sketch). Add to Lα the constants ȧ1, . . . , ˙am and the axioms:

• ȧ1, . . . , ˙am ∈ Ẇ

• t = the complete theory of ⟨Ẇ , ȧ1, . . . , ˙am⟩.

QED(Lemma 5.4.4)

Another variant is:

Lemma 5.4.5. Let γ < α < ν. Let Ceγ,ν be admissible. There is a language
L = Leγ,α on Ceγ,ν such that L is consistent if and only if there is potentially
a world W of height α such that Leγ ∈W .

Proof(sketch). The standard axiom (b) is now formulated for x ∈ Ceγ,ν
instead of Cν . We add the additional axiom: Leγ ∈ Ẇ . The rest is left to
the reader.

QED(Lemma 5.4.5)

All the lemmas relativize to an arbitrary world W ′ in place of V . The
relativization of lemma 5.4.2 for instance reads:

Lemma 5.4.6. Let W ′ be a world. Let α < ν ∈ W ′ such that Cν is admis-
sible. There is a language L = Lα on Cν such that

L is consistent if and only if W ′ |= there is a potential world W of height α.

(Note that “L is consistent” is absolute to W ′.)
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Proof(sketch). L = Lα is defined exactly as before. The direction (−→) is
exactly as before. We prove (←). Let W ∈ W ′[G] be a world of height α.
Then L has a model M = ⟨W ′[G],W, . . . ⟩(with xM = x for x ∈ Cν).

QED(Lemma 5.4.6)

Note. If W ′ has a largest cardinal it might not be possible to find a κ > γ, ν
which is regular in W ′.

The other lemmas stated above can be similarly relativized to a world W ′.
We leave this to the reader.

5.4.1 Good Worlds

Definition 5.4.3. A world W = LAα is good if and only if there is β < α
such that in W the following hold:

• β is the largest cardinal

• β = card(Vβ), LAβ = Vβ

• cf(β) > ω1

β = βW is then uniquely determined.

Definition 5.4.4. Let W be good. Let βi = βWi be the monotone enumer-
ation of the γ ≤ α such that γ > βW and W |γ =: LAγ is a world.(Note that
cf(γ) > ω if W |γ is a world. Hence the sequence βi can be discontinuous at
places.) By the rank of W we mean that i such that βi = α.

Suppose now that β = card(Vβ) and cf(β) > ω1 in V . Choose A ⊂ β+ such
that Lβ[A] = Vβ and β is the largest cardinal in Lβ+ [A]. Then W = LAβ+

is a good world and βWi is defined for i ≤ β+. However, we shall often be
interested in good worlds which are present in V [G] for a set generic G, but
not necessarily in V .

Lemma 5.4.7. Let α < ν where Cν is admissible. Let i ≤ α. Then there is
a language L = Lα such that L is consistent if and only if there is a potential
good world W such that i ≤ rank(W ).

Proof(sketch). Add to Lα a constant β̇ and the axioms:

• Ẇ |= β̇ is the largest cardinal
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• Ẇ |= β̇ = card(Vβ) ∧ Lβ̇[Ȧ] = Vβ̇ ∧ cf(β̇) > ω1

• β̇i exists.

The rest is left to the reader.

QED(Lemma 5.4.7)

We now turn to the proof of lemma 5.3.9.

5.4.2 The Relation R

We are assuming that:

I = ⟨⟨Pi⟩, ⟨νi⟩, ⟨πij⟩, T ⟩

is a nontruncating normal iteration of length ω. Moreover P = P0 is count-
able and there are σ, N such that

N is robust and pre-mouselike and σ : P −→Σ∗ N.

From this we wish to derive that I has a wellfounded branch. We define:

Definition 5.4.5. σ ∈ Di if and only if i < ω and the following hold:

• σ : Pi −→ N

• Let n ≤T i(hence σπni : Pn −→ N). Let m ≤ ω be maximal such that
λj < ρmPn

for all j < m. Then σπni is Σ
(m)
0 -preserving.

We set: D =
⋃
i<ωDi.

Note that for each σ ∈ D there is a unique i = i(σ) such that σ ∈ Di.(We
are assuming that D0 ̸= ∅.) We then define a relation R ⊂ D2 as follows:

Definition 5.4.6. ⟨σ′, σ⟩ ∈ R if and only if for some i we have: σ′ ∈ Di and
σ = σ′πni for an n <T i.

It will suffice to prove:

Claim. R is illfounded.
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To see that this suffices, let σn+1Rσn for n < ω, where σn ∈ Din . Set:

b = {j | ∨nj ≤T in}.

Then b is a cofinal branch. For j ∈ b such that:

σj = σnπj,in for j ≤ in.

Then σjRσi for i < j in b. b is wellfounded, since there is σ̃ : Pb −→Σ0 N
defined by:

σ̃πib = σi for i ∈ b.

Thus we shall assume R to be well founded and derive a contradiction. This
assumption implies that each σ ∈ D has a level defined by:

level(σ) = lub{level(σ′) | σ′Rσ}.

Note. The relation R is easier to think of if we imagine that N,P0 are ZFC−

models. Then each Pi is a ZFC− model and πij : Pi ≺ Pj for i ≤T j. Di

is simply the set of σ such that σ : Pi ≺ N for some i < ω, and σ′Rσ says
that σ : Pi ≺ N for some i and σ′ : Pn ≺ N for some n <T i. In the general
case, the maps πij will still be Σ∗-preserving, but the degree of preservation
of σ : Pi ≺ N such that σ ∈ Di may drop as i increases, and may eventually
fall to Σ0. However, this still will suffice to prove lemma 5.3.9.

Now choose (in V ) a cardinal β such that

β = card(Vβ), N ∈ Vβ and cf(β) > ω1.

Since card(N) < β and β is a limit cardinal, it follows easily that card(D) =
card(R) < β. Hence level(σ) < β for σ ∈ D. Then choose A′ ⊂ β such
that Lβ[A′] = Vβ . Pick A′′ ⊂ [β, β+) such that β is the largest cardinal in
Lβ+ [A], where A = A′ ∪ A′′. (To do this, we could pick fξ : ξ

onto−→ β for
ξ ∈ [β, β+) and set:

A′′ = {⟨ξ, i, j⟩ | fξ(i) < fξ(j) ∧ ξ ∈ [β, β+)}.)

We then set: W0 = LAβ+ , N0 = N . It is easily seen that W0 ∈ V is a good
world of rank β+.

Starting with this, we construct a sequence

⟨⟨Wi, Ni⟩ | i < ω⟩

such that for all i < ω we have:

(A) Wi = LAi
αi

is a good world
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(B) ⟨W0, N0⟩ ≡ ⟨Wi, Ni⟩

where ≡ means ’elementarily equivalent’. However, we will not necessarily
have: Wi, Ni ∈ V . The construction will take place in V [G], where G is
(β+, ω)-generic.

Now define ⟨βij | j ≤ rank(Wi)⟩ from Wi as ⟨βj | j ≤ rank(W0)⟩ was defined
from W0. Set:

Wi|βij =: LAi

βi
j
.

Then by reflexiveness:

Wi|βin ≺Wi|βij (n ≤ j ≤ rank(Wi)).

It follows that Ni ∈Wi|βi0 and:

⟨W0, N0⟩ ≡ ⟨Wi|βij , Ni⟩ for j ≤ rank(Wi).

Let Ri be defined from Wi, Ni as R was defined from W0, N0. Let

Di =
⋃
j<ω

Di
j

be defined in Wi from Ni as D =
⋃
j<ω

Dj was defined in W0 from N0.

Note that if σ : Pn −→Σ0 Ni, then σ ∈ Wi. This is because, letting α =
On∩Pn and α̃ = On∩Nn, σ|α ∈ CWi∞ ⊂ Wi, since σ|α is a countable subset
of α̃× α ∈ CWi∞ . But σ is the unique f : Pn −→Σ0 Ni such that f |α = σ|α.

The i-th level function, ⟨ leveli(σ) | σ ∈ Di⟩ is defined in Wi from Ni as
the original level function was defined in W0 from N0. We shall construct
⟨σi | i < ω⟩ such that

(C) σi ∈ Di
i and leveli(σi) ≤ rank(Wi)

(D) αi < αn for n < i (where αn = On∩Wn)

(D) gives the desired contradiction. We set:

γi =: the largest γ ∈ (κi, λi] which is a cardinal in Pi.

Since I is a nontruncating iteration, τi will always be a cardinal in Pn, where
n = T (i + 1). But τi is then a cardinal in Pi, since either n = i or τi < λn,
where λn is inaccessible in Pi. Hence τi ≤ γi. We ensure that for i < ω:

(E) σn|γn = σi|γn for n ≤ i

(F) JENn

γ̃n
= JE

Ni

γ̃n
for n ≤ i, where γ̃n =: lubσn”γn.
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Note. (E) seems paradoxical at first glance. This is because, if we assume:

σ0 : P0 −→ N, σ1 : P1 −→ N, σ1π01 = σ0,

then σ1(κ0) < σ1π01(κ0) = σ0(κ0), where κ0 < γ0. In fact, (E), (F) are only
possible because Nn, Ni are different premice in different worlds for n ̸= i.

W0, N0, σ0 are given. Moreover (A)-(F) are vacuously true for i = 0. Now let
Wi, Ni, σi be given such that (A)-(F) hold. We construct Wi+1, Ni+1, σi+1

and verify (A)-(F) at i+ 1. Let:

t =: the complete theory of ⟨W0, N0⟩.

Let κ, τ, λ = σi(κi, τi, λi). Let ν = σi(νi) if νi ∈ Pi and ν = OnN if not. By
lemma 5.3.4 there is g : λi −→ κ such that

(a) Let α1, . . . , αn < λi. Let X ∈ P(κi) ∩ Pi, then

⟨g(α⃗)⟩ ∈ σi(X)←→ ⟨α⃗⟩ ∈ ENi
νi (X).

(b) Let γi ∈ [κi, λi] be maximal such that γi is a cardinal in Pi. Let
α1, . . . , αn < γi. Let v1, . . . , vn ⊂ γi. Let x1, . . . , xn be hereditarily
countable. Let Ψ be Σ1. Then in Wi:

CE
Ni

γ̃i,∞ |= Ψ[x⃗, σi(α⃗), σi”v⃗]←→ CE
Ni

γ̄i,κ |= Ψ[x⃗, g(α⃗), g”v⃗],

where γ̃i = lubσi”γi, γ̄i = lub g”γi.

Since (CE
Ni

γ̃i,∞)Wi = CE
Ni

γ̃i,αi
, we have:

CE
Ni

γ̃i,αi
|= Ψ[x⃗, σi(α⃗), σi”v⃗]←→ CE

Ni

γ̄i,κ |= Ψ[x⃗, g(α⃗), g”v⃗].

Now let n = T (i+ 1). Let π = πn,i+1. Then:

π : Pn −→∗
E

pi
νi

Pi + 1.

It follows easily that:

κi < ρmPn
←→ λi < ρmPi+1

for m ≤ ω.

Every element of Pi+1 has the form:

π(f)(α) where α < λi, f ∈ Γ∗(κi, Pn).

Using this we prove:

(1) There is σ : Pi+1 −→ Nn such that
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• σ is Σ
(m)
0 -preserving for λi < ρmPi+1

• σ|λi = g

• σπ = σn

Proof. Let m ≤ ω be maximal such that λi < ρmPi+1
. Let A be Σ

(m)
0 (Pi+1).

Let Ā be Σ
(m)
0 (Pn) by the same definition. Let Ã be Σ

(m)
0 (Nn) by the same

definition. Write e.g. Ā(f⃗(ξ⃗)) as an abbreviation for Ā(f1(ξ1), . . . , fm(ξm)).
We make use of lemma 2.7.13. Note that both of the embeddings:

π : Pn −→ Pi+1, σn : Pn −→ Nn

are Σ
(m)
0 -preserving.

Set: X = {⟨ξ⃗⟩ < κi | Ā(f⃗(ξ⃗))}. Then X ∈ P(κi) ∩ Pn = P(κi) ∩ Pi and
σn(X) = σi(X). Then, if α1, . . . , αm < λi, we have:

A(π(f⃗)(α⃗)) ←→ ⟨α⃗⟩ ∈ ENi
νi (X)

←→ ⟨g(α⃗)⟩ ∈ σn(X)

←→ Ã(σn(f⃗)(g(α⃗))).

Hence there is a unique σ : Pi −→Σ
(m)
0

Nn defined by:

σ(π(f)(α)) = σn(f)(g(α)) for α < λi, f ∈ Γ∗(κi, Pn).

The conclusion follows easily.

QED(1).

But then σ ∈ Wn. Since σπn,i+1 = σn ∈ Dn and σ : Pi+1 −→Σ
(m)
0

Nn, we
have: σ ∈ Dn

i+1, σR
nσn. Hence:

leveln(σ) < leveln(σn) ≤ rank(Wn).

Pick j < rank(Wn) such that leveln(σ) ≤ j. Set:

α′ =: βnj ,W
′ =:Wn|βj =: JAn

α′ .

Pick ν > α′ such that ν ∈Wn and CEγ̄i,ν is admissible, where E = ENn .(Note
that: CEγ̄i,ν = CE

Ni

γ̄i,ν , since γ̄i < κ = σi(κi).) Let t be the complete theory of
⟨W0, N0⟩. Let L′ = Lα′,I,t,g”γi be the following language on CEγ̄i,ν :

Predicate: ∈̇

Constants: x(x ∈ CEγ̄i,ν), Ẇ , Ȧ, Ṅ , σ̇

Axioms:
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Standard axioms:
• ZFC−

•
∧
v(v∈̇x←→

∧∧
z∈x
v = z) for x ∈ CEγ̄i,ν

Ẇ is a world of height α′:
• Ẇ = J Ȧα′

• Ẇ |= ZFC∗

• Ẇ is reflexive

• [α′]ω = ([On]ω)Ẇ

Axioms about σ̇:
• σ̇ : Pi+1 −→Σ

(m)
0

Ṅ

• σ̇πn,i+1 : Pn −→Σ
(m)
0

Ṅ

• σ̇”γi = g”γi

• JEγ̄i = JE
Ṅ

γ̄i , where γ̄i = lub g”γi.
The elementary equivalence axiom:

• t = the complete theory of ⟨Ẇ , Ṅ⟩

(By this, it follows that Ẇ is a good world and β̇ = βẆ is defined
as the largest cardinal in Ẇ . Hence rank(Ẇ ) is defined. Define
Ḋ, Ṙ in ⟨Ẇ , Ṅ⟩ as D0, R0 were defined in ⟨W0, N0⟩. It follows
that: “Ṙ is wellfounded” holds in Ẇ . Hence the level function,
level′ is definable in ⟨Ẇ , Ṅ⟩ as level0 was definable in ⟨W0, N0⟩.
Our final axioms read:

• σ̇πn,i+1 ∈ Ḋn (Hence σ̇ ∈ Ḋi+1)

• level(σ̇) ≤ rank(Ẇ ).

It is obvious that ⟨Wn,Wn|α′, A ∩ α′, σ, . . . ⟩ is a model of L. Hence L is
consistent. The statement that there are α, ν such that α < ν, CEγ̄i,ν is
admissible and Lα′,I,t,g”γi is consistent, is inWn a Σ1(C

E
γ̄i,∞) statement about

I, t, g”γi. By the iteration fact (lemma 5.3.10) there is ν > κi such that
EPn
ν ̸= ∅ and κi = crit(EPn

ν ), where κi is a cardinal in Pn. Since Nn is robust
in Wn we have ENn

σn(ν)
̸= ∅ and κ = crit(ENn

σn(ν)
), where κ = σn(κi) = σi(κi) is

a cardinal in Nn. By lemma 5.3.3 it then follows that the same Σ1 statement
about I, t, g”γi is true in CEγ̄i,κ = CE

Ni

γ̄i,κ . Since Ni is robust in Wi, it follows by
our assumption on g that the same statement holds in (CE

Ni

γ̄i,∞)Wi of I, t, σi”γi.
Hence there are α, ν ∈ Wi such that α < ν, CENi

γ̄i,ν is admissible and (2)
Lα,I,t,σi”γi is consistent.

Set: αi+1 = α. Let M be a model of Lα,I,t,σi”γi . Set Wi+1 = ẆM, Ai+1 =
ȦM, σi+1 = σ̇M. It is straightforward to see that (A)-(D) hold at i + 1.
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But σi|γl = σl|γl for l ≤ i and σi+1|γi = σi|γi and JE
Ni+1

γ̃i
= JE

Ni

γ̃i
since in

Lα,I,t,σi”γi , the axioms:

σ̇”γi = σi”γi, J
ENi

γ̃i = JE
Ṅ

γ̃i

hold. Hence (E), (F) hold at i+ 1. This completes the contradiction.

QED(Lemma 5.3.9).

Lemma 5.3.9 proves a special case of Lemma 5.3.7, which says that if Nµ

is restrained and σ : P −→Σ∗ Nµ, P being countable, then P is countably
normally iterable i.e. each countable normal iteration I of P of limit length
has a cofinal well foun ded branch. If I happens to have length ω and be
truncation free, this follows by applying Lemma 5.3.9 to N = Nµ. But what
if I has length ω and is not truncation free? We can, in fact, still carry out
a similar proof but we must utilise the entire Steel array N = ⟨Ni | i ≤ µ⟩
rather than just the model Nµ. In the old proof, Di was a set of maps
σ : Pi −→ Nµ. For each h ≤T i we could then define a unique σh ∈ Dh by:

σh = σiπh,i.

If, however, there is a truncation point in (h, i]T , we cannot recover σh in
this way, since πh,i is only a partial function on Ph. We shall instead define
Di to be a set of σ = ⟨σj | j ≤T i⟩ such that σ ↾(j+1) ∈ Dj for j ≤T i. Such
σ ∈ Di is called a realisation of Pi in N. We shall have: σj : Pj −→ Nµj for
j ≤T i, where µj is uniquely determined by σ ≤ j, given I. We inductively
define Di. For i = 0 we set: µ0 = µ and D0 =the set of σ = {⟨σ0, 0⟩} such
that σ0 : P0 −→Σ∗ Nµ. Now let Dj be given for j ≤ i. Let h = T (i + 1).
If i + 1 is not a truncation point, we set: µi+1 = µh and Di+1 is the set of
σ = ⟨σj | j ≤T i⟩ such that the following hold:

• σi+1 : Pi+1 −→Σ
(n)
0

Nµ+1 where n ≤ ω is maximal such that λi < ρnPi+1

• σ ↾h+ 1 ∈ Dh

• σh = σi+1πh,i+1.

Now suppose that i+ 1 is a truncation point. Let σ = ⟨σj | j ≤T i+ 1⟩ and
suppose that σ ↾ (h + 1) ∈ Dh. Then P ∗

i = Ph||β, where β ∈ Ph is maximal
such that τi is a cardinal in Ph||β. Let β̄ = σh(β), τ̄i = σh(τi). Clearly
νh ∈ Ph, since otherwise λh is a cardinal in Ph, hence so is τi, since τi < λh
is a cardinal in JE

Ph

λh
= JE

Pi

λh
. Contradiction! Set ν̄h = σh(νh), κ̄h = σh(κh).

We know that σh : Ph −→Σ0 Nµh . τ̄i is a cardinal in Nµh ||β̄, but not in
Nµh ||β̄ + ω. Hence ρω

Nµh
||β̄ < τ̄i < ρωNµh

||ξ for ξ < β̄ such that κ̄h ≤ ξ.
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Hence, letting ⟨ηi, νi⟩ be the resurrection sequence for ⟨Nµi , ν̄i⟩, we see that
β̄ = βj for some j ≤ p, where ⟨β̄j , kj⟩ is the associated sequence defined in
§5.2. Then kj : Nµh ||β̄ −→Σ∗ Nηj . We set: µi+1 = ηj , σ∗i = kj · σh. Then
σ∗i : P

∗
i −→Σ∗ Nµi+1 . Note that µi+1 is defined only from σh and τi, where

τi is given by I. We then define Di+1 as the set of σ = ⟨σj | j ≤T i+1⟩ such
that the following hold:

• σi+1 : Pi+1 −→Σ(n)0 Nµi+1 where n ≤ ω is maximal such that λi <
ρnPi+1

• σ ↾(h+ 1) ∈ Dh

• σ∗i = σi+1πh,i+1.

This defines Di and D =
⋃
i<ωDi. We again have that σ ∈ D, there is

exactly one i such that σ ∈ Di (since Pi = dom(σi)).

Definition 5.4.7. Let b be an infinite branch in T . We call σ = ⟨σi | i ∈ b⟩
a realization of b if and only if σi+1 realizes Pi for i ∈ b.

It follows as before that every realizable branch is wellfounded.

Definition 5.4.8. σ′Rσ if and only if for some i, σ′ realizes Pi and σ =
σ′|n+ 1 for an n ≤T i.

It follows as before that if R is illfounded, then I has a wellfounded cofinal
branch.

Thus we again assume R to be wellfounded in order to derive a contradiction.
To this end we again construct(in a suitable generic V [G]) a sequence:

⟨⟨Wi,Ni, σi⟩ | i < ω⟩, where:

• Wi is a world
• Ni = ⟨N i

l | l ≤ µi⟩ is a Steel array in Wi

• σi = ⟨σin | n ≤T i⟩ is a realization of Pi in Ni.

N0 = N is our original array and W0 is defined as before, pick β such that

β = card(Vβ),N ∈ Vβ, cf(β) > ω1.

The sequence ⟨Wi,Ni⟩ will satisfy:

(A) Wi is a world and Ni ∈Wi

(B) ⟨W0,N0⟩ ≡ ⟨Wi,Ni⟩
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Thus each Wi is a good world and Ni is a robust Steel array in Wi. Just as
before we define the sequence

βij (j ≤ rank(Wi))

such that each Wi|βij is a component world of Wi and βij = αi = OnWi for
j = rank(Wi). Di is the set of realizations of Pj for j < lh(T ). Ri is defined
from Ni in Wi as R was defined from N in W0. We ensure that:

(C) σi is a realization of Pi in Ni and: leveli(σi) ≤ rank(Wi)

(D) αi < αn for n < i (where αi = On∩Wi)

(D) gives the desired contradiction. Now let σi have the form:

σi = ⟨σin | n ≤T i⟩ where σin : Pn −→ N i
µin
,

σin being Σm0 -preserving where m ≤ ω is maximal such that ρmPn
> λl for

l < n. Let:
N̂i = N i

µii
, ν̂i = σii(νi) for i < ω.

Set σ̃i = k · σii, where k is the resurrection map for N̂i||ν̂i. Then:

σ̃i : Pi||νi −→ Ñi = ⟨JEν̃i , F ⟩

where ⟨JEν̃i , F ⟩ is the origin of N̂i||ν̂i. Set λ̃i = σ̃i(λi). In place of the previous
conditions (E), (F), we have:

(E) σ̃n”λn = σ̃i”λn for n ≤ i

(F) J Ẽn

λ̃n
= J Ẽ

i

λ̃n
for n ≤ i, where Ñi = ⟨J Ẽ

i

ν̃i
, F i⟩ and λ̃i = lub σ̃i”λi.

Without going into further detail, we mention that E = ⟨⟨Wi,Ni, σi⟩ | i < ω⟩
will be what we shall call an enlargement of I. It will enable to essentially
carry out our previous proof in a new setting . In the next section we develop
the theory of enlargement and use it to prove Lemma 5.3.7.

5.5 Enlargements

In this section, we prove Lemma 5.3.7. We are given a putative Steel array
N = ⟨Ni | i ≤ µ⟩, where Nµ is a restrained 1-small premouse. Since N is a
putative Steel array, we know that Nµ is pre-mouselike. We are also given
a countable premouse P and a map σ : P −→Σ∗ Nµ. Hence P is restrained
and pre-mouselike. Because P is restrained, we know that P satisfies the
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unique branch condition – i.e. if I is any countable normal iteration of P of
limit length, then I has at most one cofinal well founded branch. But P is
also pre-mouselike. Hence I satisfies the “iteration fact” (Lemma 5.3.10). We
must show that P is countably normally iterable – i.e. that any countable
normal iteration I of P can be continued in the following sense:

(*) If I is of length i + 1 and νi such that EPi
νi ̸= ∅ is so chosen that it

extends I to a potential iteration of length i + 2, then there is a map
π : P ∗

i −→n
F Pi+1 where F = EPi

νi and n ≤ ω is maximal such that
ρnP ∗

i
> κi.

(**) If I is of limit length, then I has a cofinal well founded branch.

Lemma 5.3.9 gave a positive answer to that question in the special case that
I has length ω and is truncation free. That case is very special. Nonetheless,
the reader should keep that proof in mind, since it contained the seed of the
proof of the full Lemma 5.3.7.

In the proof of Lemma 5.3.9, we defined for i < ω the set Di of what we call
realization of Pi in Nµ: D0 was the set of all σ : P0 −→Σ∗ Nµ. Di+1 was
then the set of σ : Pi+1 −→ Nµ such that σ is Σ

(n)
0 -preserving for all n such

that λi < ρnPi+1
and has the further property that σπh,i+1 lies in Dh, here

h = T (i+ 1).

If, however, we drop the requirement that I be drop free, then this definition
will not work, since πh,i+1 is only a partial function on Ph if i+ 1 is a drop
point. Hence σπh,i+1 is a partial function on Ph and it will not be possible
to recover an element of Dh from σ alone. In fact, in order to handle this
case, we must give up the requirement that σ map Pi+1 into Nµ. It will map
Pi+1 into some smaller Nµi+1 where µi+1 < µ and we shall have:

σπh,i+1 : P
∗
i −→Σ∗ Nµi+1 .

The right notion of realisation of Pi is then a sequence σ = ⟨⟨σj , µj⟩ | j ≤T i⟩
such that σj : Pj −→ Nµj . This encompasses not only the map σi but also
its “history”, which cannot be recovered from σi alone. Without further ado
we give the full definition of “realization”

Let I = ⟨⟨Pi⟩, ⟨νi⟩, ⟨πi⟩, T ⟩ be any countable normal iteration of P of length
η. By induction on i < η we define the set Di of realization of Pi in N. Each
σ ∈ Di will be a sequence :

σ = ⟨⟨σj , µj⟩ | j ≤T i⟩
such that σj : Pj −→ Nµj for j ≤T i.

We shall inductively verify:
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• µi ≤ µj for j ≤T i.

• σi : Pi −→Σ
(n)
0

Nµi whenever λj < ρnPi
for all j < i.

• If (j, i]T is drop free, then µj = µi and σj = σiπj,i.

We define Di by the cases as follows:

Case 1 i = 0. D0 is the set of σ = {⟨σ0, µ0⟩} such that µ0 = µ and
σ0 : P0 −→Σ∗ Nµ.

Case 2 i = j + 1. Let h = T (i+ 1). We split into two subcases:

Case 2.1 j + 1 is not a drop point.

Then σ = ⟨⟨σl, µl⟩ | l ≤T i⟩ ∈ Di if and only if the following hold:

• σ ↾h+ 1 ∈ Dh

• µi = µh and σh = σiπh,i

• σi : Pi −→Σ
(n)
0

Nµi whenever λj < ρnPi
.

Case 2.2 j + 1 is a drop point.

Then P ∗
j = Ph||β where β =the maximal β ∈ Ph such that τj is a cardinal

in Ph||β. Set: β̄ = σh(β). Then β̄ is the maximal β̄ ∈ Nµh such that
σh(τj) = σj(τj) is a cardinal in Nµh ||β̄. Note that νh ∈ Ph, since τj is a
cardinal in Ph||λh but not in Ph. Hence β ∈ B(Ph, νh) as defined in §5.2.
Hence β̄ ∈ B(Nµh , σh(νh)). Let ⟨ηl, νl⟩ (l ≤ p) be the ressurection sequence
for ⟨Nµh , νh⟩ as defined in §5.2. Let ⟨β̄l, kl⟩ be the auxiliary sequence defined
there. Then ⟨β̄i | i ≥ 1⟩ is the enumeration of B(Nµh , σh8νh) in descending
order. Let β̄ = β̄l, l ≥ 1. Then kl : Nµh ||β̄ −→Σ∗ Nηl . We set:

σ∗j =: klσh.

Then σ∗j : P
∗
j −→Σ∗

Nηl . We define: σ = ⟨⟨σξ, µξ⟩ | ξ ≤T i⟩ ∈ Di if and only
if the following hold:

• σ ↾h+ 1 ∈ Dh

• µi = ηl and σ∗h = σiπh,i

• σi : Pi −→Σ
(n)
0

Nµi whenever λj < ρnPi
.
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(Note: If the Case 2.1 holds we also set: σ∗j = σh. Hence we will always
have: σ∗j = σπh,j+1 for j + 1 < η. )

Case 3 i = η is a limit ordinal.

Then σ = ⟨σj | j ≤T η⟩ ∈ Dη if and only if the following hold:

• σ ↾j + 1 ∈ Dj for j ≤T η

• If i <T η such that (i, η]T is frop free, then µi = µη, ση : Pη −→ Nµη ,
and σi = σηπi,η.

The verification is straightforward.

Definition 5.5.1. Let b be a branch in I. We call a sequence σ = ⟨⟨σi, µi⟩ |
i ∈ b⟩ a realisation of b in N (in symbols σ ∈ Db), if and only if σ ↾(i+1) ∈ Di

for i ∈ b.

Note that the existence of a realization σ for b means that b has only finitely
drop points, since, if in (n ∈ ω) were an ascending sequence of drop points,
then µin+1 < µin . Contradiction! Hence:

(1) Let b be a realizable branch in I of limit length. Then it is well founded.

Proof. Let j ∈ b such that no i ∈ b \ (j + 1) is a drop point. Define
σb : Pb −→ Nµj by: σbπi,b = σi for i ∈ b \ (j + 1). Then Pb is well
founded, since Nµj is. QED(1)

In the proof of 5.3.9, we assumed that I was of length ω and used a natural
relation R on the set D =

⋃
i<ωDi of all realization to prove that I has a

cofinal well founded branch. We now require only that the length η of I be
at most countable.

We now define a new relation R on D =
⋃
i<ωDi which will play a role

similar to that of the old relation R.

Definition 5.5.2. Let n∗ be an injection of lh(I) into ω. Set :

n(i) = min{n∗(j) | i ≤T j}

(Hence n(i) = n(j) −→ i ≤T j for i ≤ j in I. )

Definition 5.5.3. i survives at j if and only if

i ≤ j ∧ n(i) = n(j) ∧ n(h) ≤ n(j) whenever h ∈ [i, j].
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Definition 5.5.4. σ′Rσ if and only if:

i <T j ∧ σ′ realizes Pj ∧ σ = σ′ ↾ i+ 1 ∧ i does not survive at j.

Then:

(2) If R is ill founded, then I is of limit length and has a cofinal well
founded branch.

Proof. Let σn+1Rσn for n ∈ ω. Let σn realize Pjn . Set: b = {h | ∧nh ≤T
jn}, σ =

⋃
n σn. Then b is of limit length η = lub{jn | n ∈ ω}. Moreover,

σ is realization of b. If η = ht(I), we are done. If not, then η < ht(I).
Then b and b′ = {j | j <T η} are both well founded branches of height η.
Since P is restrained, I is an iteration by unique branches. Hence b = b′.
From this, we derive a contradiction. Let n = n(η). For sufficient i < η we
then have: n(i) ≥ n and n(i) = n if i ∈ b = b′. Now let i < jm. Then
jm does not survive at jn+1. Hence either n = n(jm) < n(jm+1) or there is
h ∈ (jm, jm+1) such that n(h) < n. Contradiction! QED(2)

From now on we assume:

(***) R is well founded.

If I is of successor length, then (***) is simply true by (2), and we
shall use this in proving (*). If lh(I) is a limit ordinal, we deliberately
posit (***) in hope of deriving a contradiction. Thus proving (**).

The sequence ⟨⟨wi,Ni, σi⟩ | i < ω⟩ which we constructed in §5.4 was the first
example of a class of structures which we call enlargemnts. We define

Definition 5.5.5. Let P be a set of conditions and let G be a P-generic
over V . Let 0 < l ≤ lh(E). By an enlargement of I|l in V [G] we mean any
structure:

E = {⟨Wi,Ni, σi⟩ | i < l} ∈ V [G]

which satisfies the following conditions:

(A) Wi is a good world.

(B) Ni = ⟨N i
h | h ≤ µi⟩ is a putative robust Steel array in the sense of Wi

for i ≤ l.

(C) σi ∈Wi is a realisation of Pi in Ni for i < l.

Thus σi = ⟨⟨σih, µih⟩ | h ≤T i⟩ where σih : Ph −→ N i
µih

for h ≤T i. Set:

N̂i =: N i
µii
, σ̂i = σii.
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(D) σ̂i(λj) is a cardinal in N̂i for j < i < l.

Now suppose that i < l such that i + 1 < lh(I). Then I gives us
the point νi such that EPi

νi ̸= ∅. Let k be the resurrection map for
⟨N̂i, σ̂i(νi)⟩. Then:

k : N̂i||σ̂i(νi) −→Σ∗ N i
η = ⟨JEν , F ⟩

where ⟨JEν , F ⟩ is the "origin" of N̂i||σ̂i(νi) in Ni. Set:

Ñi =: N i
η, σ̃i =: k · σ̂i, λ̃i =: lub σ̃i”λi.

(Note If νi = ht(Pi), we let σ̂i(νi) denote ht(N̂i). In this case, we
have: k =: id, Ñi = N̂i, σ̃i = σ̂i, λ̃i = lub σ̂0”λi. )

The next axioms read:

(E) σ̃h ↾λh = σ̂i ↾λh for h < i < l.

(F) JE
Ñh

λ̃h
= JE

N̂i

λ̃h
for h < i < l.

Note If we define:

⟨JEα , F ⟩|β =: JEβ for limit β ≤ α,

we can express (F) by:

Ñh|λ̃h = N̂i|λ̃h for h < i < l.

Note The iteration I assigns a νi with EPi
νi ̸= ∅ if and only if i+ 1 <

lh(I). Hence we shall sometimes write “νi exists” or “νi is defined” to
mean: i+ 1 < lh(I).

(3) Let h ≤ i < l such that νi exists. Then: σ̃h ↾λh = σ̃i ↾λh.

Proof. h = i is trivial. Now let h < i. Then σ̂i(λh) is a cardinal in N̂i.
Thus if k is the resurrection map for ⟨N̂i, σ̂i, Ni⟩, then k ↾ σ̂i(λh) = id.
Hence σ̂ ↾λi = σ̃i ↾λi QED(3)

Let Ri be defined in Wi from Ni, I, n∗ as R was defined in V form N,
I, n∗.

(G) Ri is well founded in wi.

But then we can define the level function in Wi:

leveli(σ) =: lub{leveli(σ′) | σ′Riσ}.

The next axiom reads:
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(H) level(σi) ≤ rank(Wi)

We shall impose on E an additional requirement which we did not
impose in the previous section. In order to formulate this requirement
we define:

Definition 5.5.6. For i < l set:

• δi = δi(E) =

{
σ̃i ↾λi if νi exists
σ̃i ↾ht(Pi) if not

• ti = ti(E) = the complete theory of

⟨Wi,Ni, σi, I, l, δ ↾ i, t↾ i⟩

The trace of E is defined by:

trace(E) =: ⟨δ, t⟩,

where δ = ⟨δi | i < l⟩, t = ⟨ti | i < l⟩.

Our final axiom reads:

(I) trace(E) ∈ V .

This completes the definition of “enlargement”.

Note E is an ideal object, which might not exist V . Its trace, however, does
lie in V and encodes vital information about E.

Note The axiom (I) is only needed in the case that E is of limit length. This
follows by:

Lemma 5.5.1. let E be of length i+1 satisfying (A)-(H) and let E↾ i satisfy
(A)-(I). Then E satisfies (I).

Proof. rng(δi) is a countable set of ordinals in Wi. Hence rng(δi) ∈
V . is countable in V , since Wi is a world. Hence δi ∈ V , since δi is the
monotone enumeration of rng(δi). But ti ∈Wi by reflexivity, Moreover, ti is
hereditarily countable in Wi. Hence ti ∈ CWi

ω1
= Cω1 ⊂ V . QED(Lemma

5.5.1)

Definition 5.5.7. Let P, G be as above. Let e ∈ V [G]. E ∈ V [G] is an
e-enlargement of I|l if and only if the following hold:

• νi exists for i < l
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• E is an enlargement of I|l

• JE
Ñi

λ̃i
= Je

λ̃i
for i < λ.

We leave it to the reader to prove the following two lemmas:

Lemma 5.5.2. Let E ∈ V [G] be an enlargement of I ↾ l with trace ⟨δ, t⟩.
Let 0 < i < l. Then E ↾ i is an EN̂i-enlargement of I ↾ i. Moreover,
trace(E↾ i) = ⟨δ ↾ i, t↾ i⟩.

Lemma 5.5.3. Let E ∈ V [G] be an enlargement of I ↾ l. Let e ∈ V [G]. Let
i < l such that E↾ i is an e-enlargement of I ↾ i. Let F ∈ V [G] such that F is
an e-enlargement of I ↾ i and trace(F) = trace(E↾r). Set:

E′ = F ∪ E↾ [i, l).

Then E′ is an enlargement of I ↾ l and trace(E′) = trace(E).

Lemma 5.5.3 is called the interpolation lemma. Both lemmas will be used
frequently (though sometimes tacitly).

Definition 5.5.8. ⟨δ, t⟩ is a trace if and only if there is a set of conditions
P which forces that , if G is P-generic over V , then there is an enlargement
E ∈ V [G] such that ⟨δ, t⟩ = trace(E).

In fact, we only need to consider the sets of conditions Col(γ, ω) where
Col(γ, ω) is the set of finite conditions for collapsing γ to ω. If P is any set
of conditions and γ is sufficiently large, Col(γ, ω) will force the existence of
a set G which is P-generic over V . Hence we can always take P in the above
definition as being of the for Col(γ, ω).

The verification that something is a trace is greatly simplified by:

Lemma 5.5.4. There is a Σ1 formula φ such that

⟨δ, t⟩ is a trace ←→ C∞ |= ψ[δ, t, I, n∗].

In order to prove this, we first define:

Definition 5.5.9. An enlargement E = ⟨⟨Wi,Ni, σi⟩ | i < l⟩ is α-bounded if
and only if ht(Wi) < α for i < l.

Definition 5.5.10. ⟨δ, t⟩ is an α-bounded trace if and only if there is a set
of conditions P which forces the existence of an α-bounded enlargement E
with trace ⟨δ, t⟩.
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Definition 5.5.11. ⟨δ, t⟩ is a potential trace if and only if δ, t are functions
and : 0 < dom(δ) = dom(t) ≤ lh(I) and:

• rng(δi) is a set of ordinals for i < dom(δ)

• ti is hereditarily countable for i < dom(δ).

Lemma 5.5.4 follows easily from:

Lemma 5.5.5. Let ⟨δ, t⟩ be a potential trace. Let ω1 < α < ν such that Cν
is admissible and δ, t ∈ Cα. There is a language L = Lα,I,δ,t on Cν such that

L is consistent if and only if ⟨δ, t⟩ is an α-bounded trace.

To derive Lemma 5.5.4 from Lemma 5.5.5, we let φ be the Σ1 formula such
that C∞ |= φ[I, δ, t] says that there are α, ν with Cν is admissible, ν > α,
⟨δ, t⟩ ∈ Cα is a potential trace, and Lα,I,δ,t is consistent.

We prove Lemma 5.5.5. We first describe the language L. L has:

Predicate: ∈̇

Constants: x (x ∈ Cν), Ė, Ẇ , Ȧ, Ṅ, σ̇, α̇

Axioms:

(1) The standard axioms:

• ZFC−

•
∧
v(v ∈ x←→

∨
z∈x v = z) for x ∈ Cν

(2) Ė = ⟨⟨Ẇ , Ṅ, σ̇i⟩ | i < l⟩ and dom(Ẇ ) = dom(Ṅ) = dom(σ̇) = l

where l = dom(δ) = dom(t).

(3) Ẇi is a world for i < l -i.e.

• Ẇi |= ZFC∗ ∧ Ẇi = J Ȧi
α̇i

, where α̇i < α

• Ẇi is reflexive

•
∧
x(Ẇi |= x ∈ [On]ω)←→ (x ∈ [α]ω ∧ x ∈ Ẇi)

(4) Ẇi is a good world (i < l) -i.e. there is β̇i such that

• Ẇi |= β̇i is the largest cardinal

• Ẇi |= (Vβi = Lβ̇i [Ȧi] ∧ cf(βi) > ω1)
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(5) For i < l the following hold in Ẇi:

• Ni = ⟨N i
h | h ≤ µi⟩ is a putative robust Steel array of length µi.

• Each N i
h is 1-small

• N i
µi is restrained

(6) For i < l the following hold in Ẇi:

• σ̇i is a realization of P i in Ni (where P = ⟨Pi | i < l⟩.)
• σ̇i = ⟨⟨σin, µin⟩ | n <T i in I⟩

It follows that:

µii = µi, σin : Pn −→ N i
µii

for n ≤T i in I.

Set:
N̂i = N i

µii
, σ̂i = σii, λ̂i = lub σ̂i”λi,

where λ = ⟨λi | i < l⟩.

(7) σ̂i(λh) is a cardinal in N̂i h < i < l

For i < l such that i + 1 < lh(I) let ki : N̂i||σ̂i(νi) −→ N i
ηi be the

resurrection map for ⟨N̂i, σ̂i(νi)⟩ in the sense of Ẇi, where ν = ⟨νj |
j + 1 < lh(I)⟩.
Set: Ñi = N i

ηi , σ̃i = kiσ̃l, λ̃i = lub σ̃i”λi where λ = ⟨λi | i+1 < lh(I)⟩.

(8) σ̃h”λh = σ̂i”λh for h < i < l

(9) Ñh|λ̃h = N̂i|λ̃h for h < i < l

(10) Ṙi is well founded

(where Ṙi is defined in Ẇi from Ṅi, I, n∗ as R was defined in V from
N, I, n∗. )

(11) leveli(σ̇i) ≤ rank(Ẇi) for i < l

(12) • δi = σ̂i”λi for i < l

• δi = σ̂i ↾ht(Pl) for i = l

• ti = the complete theory of: ⟨Ẇi, Ṅi, σ̇i, I, δ ↾ i, t↾ i⟩ for i < l

This describes the language L. If L is consistent and γ ≥ card(Cν), then
forcing with Col(γ, ω) yields a model A of L. E = ĖA is then an enlargement
with ⟨δ, t⟩ = trace(E). Moreover, E ∈ V [G] where G is Col(γ, ω)-generic.
Conversely, if there is such an E ∈ V [G], then G is set generic over Hθ for
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a regular θ. ⟨Hθ[G],E, · · · ⟩ is a model of L. L is therefore consistent. This
proves Lemma 5.5.5 and with it Lemma 5.5.4.

Many of the arguments we have been making can be carried out if we replace
V with an arbitrary world W . We have seen that:

• If α = ht(W ), then CWξ = Cξ for ξ < α. (Hence CW∞ = Cα. )

• I ∈W , since I ∈ Cω1 ⊂W .

We leave it to the reader to show:

• Let W ′ ⊂W . Then:

If G is set generic over W , we can relativize the definition of “en-
largement” to W [G], letting W play the role of V . Axiom (I) in the
definition of “enlargement” thus becomes:

(I) trace(E) ∈W .

However, by the definition of trace, we know that trace(E) ∈ CW∞ =
Cα ⊂ V .

Relativizing the definition of “trace” to a world W , we have:

Let W be a world. Let ⟨δ, t⟩ ∈ W . Them W |= (⟨δ, t⟩ is a trace ) if
and only if there is a set of conditions P ∈ W which forces that if
G is P-generic over W , then there is an enlargement E ∈ W [G] with
⟨δ, t⟩ = trace(E).

But then Lemma 5.5.4 and 5.5.5 relativize to an arbitrary world, yielding:

Lemma 5.5.6. Let W be a world. Let ⟨δ, t⟩ ∈W . There is a Σ1 formula φ
such that in W we have:

⟨δ, t⟩ is a trace ←→ C∞ |= φ[δ, t, I].

This follows from:

Lemma 5.5.7. Let W be a world. Let ⟨δ, t⟩ ∈ W be a potential trace. Let
ω1 < α < ν ∈ W such that Cν is admissible and δ, t ∈ Cν . There is a
language L = Lα,I,δ,t on Cν such that

L is consistent ←→W |= ⟨δ, t⟩ is an α− bounded trace.

Lemma 5.5.6 follows from Lemma 5.5.7 exactly as before. We prove Lemma
5.5.7:
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(−→) in exactly as before. If L is consistent, then in Col(γ, ω)-generic over
W , then L has a model A in W [G]. ĖA is then α-bounded enlargement with
trace ⟨δ, t⟩ in W [G].

(←−) Let G be set generic over W such that there is an enlargement E ∈
W [G] which is α-bounded and ⟨δ, t⟩ =t race(E). Then ⟨W [G],E, . . . ⟩ models
L. Hence L is consistent. QED(Lemma 5.5.7)

The following definition seems natural:

Definition 5.5.12. Let ⟨δ, t⟩, e ∈ V . ⟨δ, t⟩ is an e-trace if and only if there
is a set of conditions P ∈ V which forces that, if G is P-generic over V , then
there is E ∈ V [G] which is an e-enlargement with trace ⟨δ, t⟩.

We can of course relativize this definition to an arbitrary world W with
⟨δ, t⟩, e ∈ W . The relativization is then of course in interest, since e is
not necessarily an element of V . We can also state and prove the version
of Lemma 5.5.4 and Lemma 5.5.5 for e-trace. These also relativize to an
arbitrary world. We now state and prove the relativized versions of these
lemmas for e-traces, since the relativized version is the more useful one.

Lemma 5.5.8. There is a Σ1 formula φ such that whenever W is a world,
e, δ, t ∈W , then in W we have:

⟨δ, t⟩ is an e-trace for I|l if and only if Ceλ,∞ |= φ[δ, t, I, n∗]

where l = dom(δ) and λ = lub{λi | i < l}.

Note We have seen that if W is a world and ξ ∈ W , then CWξ = Cξ.
Similarly, if W , W ′ are worlds, e ∈W ∩W ′ and λ < ξ ∈W ∩W ′, then:

(Ceλ,ξ)
W = (Ceλ,ξ)

W ′
.

Lemma 5.5.8 follows in the usual way from:

Lemma 5.5.9. Let ⟨δ, t⟩ be a potential trace, where l = dom(δ) = dom(t)
and l < lh(I). Let λ̃ = lubj<l δj”λj. Let λ̃ < α < ν ∈ W such that Ce

λ̃,ν
is

admissible. There is a language L = Lα,I,δ,t on Ce
λ̃,ν

such that L is consistent
if and only if ⟨δ, t⟩ is e-trace.

To prove Lemma 5.5.9 we add to our previous language L = Lα,δ,t from
Lemma ?? the axiom:

∧i < li+ 1 < lh(I), J
e

λ̃i
= JE

Ñi

λ̃i
for i < l.

The proof is just as before.

In passing, we mention the following lemma:
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Lemma 5.5.10. Let W , W ′ be worlds such that e, α ∈ W ∩W ′. Let G be
set genetic over W ′. Let E ∈W ′[G] such that

• E is an α-bounded e-enlargement

• ⟨δ, t⟩ = trace(E).

Then W |= ⟨δ, t⟩ is an α-bounded e-trace.

Proof. Let λ = lub{λ̃i | i < l} in E. Hence λ < α. Let ν be limit such that
α < ν, δ, t ∈ Ceλ,ν such that Ceλ,ν is admissible in W . Then ν ∈W ′ and

(Ceλ,ν)
W = (Ceλ,ν)

W ′
.

But then ⟨W ′[G],E, . . . ⟩ models Lα,δ,t on Ceλ,ν in W . hence L is consistent.
QED(Lemma 5.5.10)

We have seen that if E is an enlargement of I ↾ l with trace ⟨δ, t⟩, then for
0 < i < l we have: E ↾ i is an EN̂i-enlargement of I ↾ i with trace ⟨δ ↾ i, t ↾ i⟩.
Since EN̂i ∈ Wi, it is natural to ask whether Wi thinks ⟨δ ↾ i, t ↾ i⟩ is an
EN̂i-trace. In general, we do not know the answer to this question, but the
question suggests the following definition:

Definition 5.5.13. Let E be an enlargement of I|l with trace ⟨δ, t⟩. E is
neat (or self justifying) if and only if for 0 < i < l we have

Wi |= ⟨δ ↾ i, t↾ i⟩ is an EN̂i-trace.

Definition 5.5.14. ⟨δ, t⟩ is a neat trace if and only if there is a set of
conditions P which forces, if G is P-generic over V , then there is a neat
enlargement E ∈ V [G] with trace ⟨δ, t⟩.

It is apparent that any neat trace must satisfy a syntactical condition of the
form: xi ∈ ti for 0 < i < l.

But then any enlargement with trace ⟨δ, t⟩ will be a neat enlargement. Thus,
⟨δ, t⟩ is neat if and only if it is a trace and satisfies the syntactical condition:
xi ∈ ti for 0 < i < l.

A similar question is the following: Let E an enlargement of I ↾ i+ 1, where
i + 1 < lh(I). Then νi is given and E is an EÑi-enlargement of I ↾ i + 1,
where EÑi ∈ Wi. Set: ⟨δ, t⟩ = trace(E). It follows easily that ⟨δ, t⟩ ∈ Wi.
Does Wi think that ⟨δ, t⟩ is an EÑi-trace? The answer will be yes if Wi has
a property which we call pride. We define:
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Definition 5.5.15. Let W be a good world. Let W = JAα and let β = βW

be the largest cardinal in W . W is proud if and only if for all γ < β there is
W̄ ∈ JAβ such that

(a) W̄ = J Āᾱ

(b) W |= W̄ is a good world

(c) rank(W̄ ) ≥ min(γ, rank(W ))

(d) If ξ1, · · · , ξn < γ and φ is any first-order formula, then:

W̄ |= φ[ξ⃗]←→W |= φ[ξ⃗].

(Note; (b) implies that W̄ is a good world, (d) implies that JAγ = J Āγ . )

Lemma 5.5.11. Let G be generic over V . Let E ∈ V [G] be a neat enlarge-
ment of I|i + 1 such that Wi is proud and i + 1 < lh(I). Let ht(Wi) be
collapsed to ω in V [G]. Let ⟨δ, t⟩ = trace(E). Then:

Wi |= ⟨δ, t⟩ is an EÑi-trace.

Proof. Let e = EÑi . For β = βWi we know that Vβ = LAi
β and cf(β) > ω1

in Wi. Hence there is γ < β such that LAi
γ = Vγ and Ni ∈ Vγ in Wi. Let

W̃ ∈Wi be as above with respect to γ. It follows easily that:

(1) W̄ |= φ[x⃗]←→W |= φ[x⃗],

whenever φ is a first-order formula and x1, . . . , xn ∈ JAi
γ . Note that among

the elements of LAi
γ are:

I,Ni, xi, Ri, level
i, σ̂i, σ̃i, N̂i, Ñi

where:

Wi |= (xi is the set of all realizations of some Pj in Ni).

Clearly leveli mapsXi into γ. Since leveli(σi) ≤ rank(Wi) and leveli(σi) < γ,
we have:

rank(W̄ ) ≥ min(γ, rank(Wi) ≥ leveli(σi).

Using (1) it follows easily that E′ is an e-enlargement of I ↾ i+ 1, where

E′ ↾ i = E↾ i,E′
i = ⟨W̄ ,N, σi⟩
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But E′ ∈ V [G]. Clearly ⟨δ, t⟩ = trace(E′). Since ⟨δ, t⟩ is neat we have:

W̄ |= ⟨δ ↾ i, t↾ i⟩ is an ê− trace , where ê = EN̂i .

Hence there is δ ∈ W̄ large enough that Col(δ, ω) forces the existence of an
ê-enlargement with trace ⟨δ ↾ i, t ↾ i⟩. Since Wi is countable in V [G] there is
Ḡ ∈ V [G] which is Col(δ, ω)-generic over Wi (hence over W̄ ). Let Ē′ ∈ W̄ [Ḡ]
be an ê-enlargement of I ↾ i with trace ⟨δ ↾ i, t ↾ i⟩. However, Ē′ is an e-
enlargement, since we know: λ̃j = lub δi”λj and J ê

λ̃j
= Je

λ̃j
for j < i. (This

is because E is an e-enlargement with trace ⟨δ, t⟩. ) Since Ē ∈ V [G] we can
apply the interpolation lemma to form: Ē = Ē′∪E′ ↾ [0, i+1). Then Ē ∈ V [G]
is an e-enlargement of I ↾ i+1 with trace ⟨δ, t⟩. But Ē ∈Wi[Ḡ] is α-bounded,
where α = ht(W̄ ) + 1. Hence by Lemma 5.5.10 we have: Wi |= ⟨δ, t⟩ is an
α-bounded e-trace.

QED(Lemma 5.5.11)

Note Lemma 5.5.11 relativizes to any world W ′ in place of V .

Lemma 5.5.12. Let W = JAα be a good world. Let W ′ be a proper segment
of W (i.e. W ′ =W |αj for a j < rank(W )). Then W ′ is proud.

Proof. By reflectivity there is an α∗ < α such that

W ∗ = JAα∗ ≺ N and W ′ ∈W ∗.

Working in W , we define a sequence ⟨Xi | i ≤ ω1⟩ as follows:

• X0 = γ ∪ {W ′}

• X2i+1 =the smallest X ≺W ∗ such that X2i ⊂ X.

• X2i+2 = X2i+1 ∪ [On∩W ′ ∩X2i+1]
ω

• Xλ =
⋃
i<λXi for limit λ.

Then Xω1 ≺W ∗. Let γ < δ < β such that δ is a cardinal in W . By induction
on i ≤ ω1 we get:

card(Xi) ≤ 2δ < β for i ≤ ω1.

Let σ : W̄ ∗ ∼←→ Xω1 , where W̄ ∗ = JA
∗

α∗ . Then α∗ < (2δ)+ < β and W̄ ∗ ∈ JAβ .
Let σ(W̄ ) =W ′. Then W̄ = J Āᾱ where Ā = A∗ ∩ W̄ . But then:

(1) [ᾱ]ω = ([On]ω)W̄ , hence W̄ is a world.
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Proof. We know that Xω1 ∈ W , since it was defined in W as a subset of
W ′.

(⊂) Let a ∈ [ᾱ]ω. Then W |= a ∈ [ᾱ]ω since W is a world and ᾱ ≤ ht(W ).
Hence W |= σ(a) ∈ [α′]ω, where α′ = σ(ᾱ) = ht(W ′), since σ(a) = σ”a and
σ ∈ W is bijective. Hence σ(a) ∈ [α′]ω, since W is a world. Hence W ′ |=
σ(a) ∈ [On]ω, since W ′ is a world and α′ = ht(W ′). Hence W̄ |= a ∈ [On]ω,
since σ(W̄ ) =W ′.

(⊃) Let W̄ |= a ∈ [On]ω. Then W ′ |= σ(a) ∈ [On]ω, since σ(W̄ ) = W ′.
Hence σ(a) ∈ [α′]ω, since W ′ is a world. Hence W |= σ(a) ∈ [α′]ω, since
W is a world and α′ < ht(W ). Hence W |= a ∈ [ᾱ]ω, since σ(ᾱ) = α′ and
σ(a) = σ”a and σ ∈W is bijective. Hence a ∈ [ᾱ]ω, since W is a world.

QED(1)

Hence W̄ is a world. Since σ(W̄ ) = W ′, it follows easily that W ′ is a good
world. Moreover, σ(rank(W̄ )) = rank(W ′) and σ ↾γ = id. Hence:

rank(W̄ ) ≤ min(γ, rank(W ′)).

But σ ↾W̄ : W̄ ≺W ′. Hence:

W̄ |= φ[ξ⃗]←→W ′ |= φ[ξ⃗]

for ξ1, · · · , ξn < γ and φ any first-order formula. QED(5.5.12)

Definition 5.5.16. An enlargement E of I|i+1n is proud if and only if Wi

is proud.

Definition 5.5.17. ⟨δ, t⟩ is a pride inducing e-trace if and only if there is a
set of conditions P which forces the existence of an enlargement E of I|l+1,
where:

• E is a neat proud enlargement (hence l < lh(I)).

• ⟨δ, t⟩ = trace(E↾ l)

• JE
Ñj

λ̃j
= Je

λ̃j
for j < l.

This definition can be relativized to any world. as can the following defini-
tion:

Definition 5.5.18. ⟨δ, t⟩ is an α-bounded pride inducing e-trace if and only
if there is a set of conditions P forcing the existence of an α-bounded en-
largement E with the above properties.
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Lemma 5.5.13. There is an Σ1 formula ψ such that, whenever W is a world
with ⟨δ, t⟩, e ∈W ., then in W we have:

⟨δ, t⟩ is a pride inducing e-trace ←→ Ce
λ̃,∞ |= ψ[δ, t, I, n∗],

where λ̃ = lub
⋃
i<l δi”λi.

Lemma 5.5.14. Let W be a world such that e, ⟨δ, t⟩ ∈ W where ⟨δ, t⟩ is
a potential trace of length l < lh(I). Let α < ν in W such that Ceλ,ν is
admissible and λ = lub

⋃
i<l δiλi. There is a language Lα,δ,t on Ceλ,ν such

that

L is consistent ⇐⇒ W |= ⟨δ, t⟩ is an α−bounded pride inducing e− trace.

Proof. We change the language L of Lemma 5.5.5 as follows:

(a) We add the axiom l < lh(I).

(b) In (2) we change i < l to i ≤ l.

(c) In (3)–(11) we change the quantifier domain from i < l to i ≤ l.

(d) We change (12) to

• δi = σ̃i ↾λi for i < l

• ti =the complete theory of: ⟨Ẇi, Ṅi, σ̇i, I, δ ↾ i, t↾ i⟩ for i < l.

(e) We add:

(13) Wi |= ⟨δ ↾ i, t↾ i⟩ is an EN̂i-trace for i ≤ l.
(14) Wl is proud.

(15) Je
λ̃i

= JE
ÑI

λ̃i
for i < l.

If L is consistent, then forcing over W with a sufficient Col(γ, ω) (γ ∈ W )
gives us a model A. Set E = ĖA. Then E ↾ l is an enlargement with trace
⟨δ, t⟩. Moreover, E satisfies (A)–(H) in the definition of enlargement. Hence
E is an enlargement by Lemma 5.5.1. E is neat by (15) and proud by (14).
E↾ l is an e-enlargement by (15).

Conversely, if
W |= ⟨δ, t⟩ is a pride inducing trace,

then forcing over W with a sufficient Col(γ, ω) gives an enlargement E of
length l + 1 which is neat, proud and such that E ↾ l has trace ⟨δ, t⟩. Hence
⟨W [G],E, . . . ⟩models: L where G is Col(γ, ω)-generic. Hence L is consistent.
QED(5.5.14)
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Definition 5.5.19. Let G be set generic over V . An enlargement E is
bounded in V [G] if and only if E ∈ V [G] and E is bounded by an α which is
collapsed to ω in V [G].

Lemma 5.5.15. Let E = ⟨⟨Wi,Ni, σi⟩ | i ≤ η⟩ be a neat, proud enlargement
of I|η + 1 which is bounded in V [G]. Let η + 1 < lh(I) (hence νη exists in
I). Let γ = T (η + 1). Then there is a neat enlargement E′ of I|η + 1 such
that E′ ∈ V [G] and

E′ = ⟨⟨W ′
j ,N′

j , σ
′
j⟩ | j ≥ η + 1⟩ where:

(a) E′ ↾γ = E↾γ

(b) ht(W ′
j) < ht(Wγ) for γ ≤ j ≤ η

(c) W ′
η+1 =Wγ, N′

η+1 = Nγ, σ′η+1 ↾γ + 1 = σγ.

Proof. In Wη we have: F is robust in Ñη = ⟨JEν , F ⟩. Hence there is a
g : λi −→ κ̃ = σ̃η(κη) such that:

(A) Let α1, · · · , αn < λη, X ∈ P(κη) ∩ Pη. Then:

≺ g(α⃗) ≻∈ σ̃η(X)←→≺ α⃗ ≻∈ EPη
νη (X).

(B) Let a1, · · · , an ⊂ λη. Let ψ be Σ1. Then in Wη we have:

CE
Ñη

λ̄,κ̃η
|= ψ[g”a⃗, u⃗]←→ CE

Ñη

λ̃,∞ |= ψ[σ̃η”a⃗, u⃗]

where u1, . . . , um are hereditarily countable and λ̄ = lub g”λη, λ̃ =
lub σ̃η”λη.

Let W =Wγ , N = Nγ . Then:

(1) g ∈Wγ

Proof. g”λη is a countable set of ordinals in Wη, hence in V , hence in W .
But g is the monotone enumeration of g”λη. QED(1)

Define N∗
η , σ∗η in W as follows: If P ∗

η = Pγ , set: N∗
η = N̂γ , σ∗η = σ̂γ .

Otherwise P ∗
η = Pγ ||β where β ∈ Pγ is maximal such that τη is a cardinal in

Pγ ||β. Then νγ ≤ β ∈ Pγ , since τη is a cardinal in Pγ ||λγ , hence in Pγ ||νγ .
Let ⟨⟨ηi, νi⟩ | i ≤ p⟩ be the resurrection sequence for ⟨N̂γ , σ̂γ(νγ)⟩ with the
associated sequence ⟨⟨ki, β̄i⟩ | i ≤ p⟩. Let β̄ = σ̂γ(β). As we have seen, it
follows that β̄ = β̄j for a j > 0. We set: N∗

η = Nγ
ηj , σ∗η = kj σ̂η. Then:

σ∗η : P
∗
η −→Σ

(n)
0

N∗
η , where n ≤ ω is maximal such that κη < ρnP ∗

η
.
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(2) Let κ̃ = σ̃η(κη), κ∗ = σ∗η(κη). Then κ̃ = κ∗.

Proof. Let k ∈ W be the resurrection map for ⟨N∗
η , σ

∗
η(νγ)⟩. (If νγ =

ht(Pγ), we let σ∗η(νγ) denote ht(N∗
η ) and we have: k = id. ) Then κ̃ =

σ̃η(κη) = σ̃γ(κη) since σ̃η ↾λγ = σ̃γ ↾λγ . Hence:

κ̃ = σ̃γ(κη) = kσ∗η(κη) = σ∗η(κη) = κ∗.

QED(2)

(3) Let e = EN̂η in Wη, e∗ = EN
∗
η in W . Then: J ẽκ̃η = Je

∗
κ∗η
∈W .

Proof. Let k : N∗
η ||σ∗η(νγ) −→ Ñγ be the resurrection map. Then k ↾κ∗η =

id, since κ∗η is a cardinal in N∗
η . But kσ∗η = σ̃γ . Hence:

Je
∗
κ∗η

= N∗
η ||κ∗η = Ñγ ||κ∗η = N̂η||κ̃η = Jeκ̃η .

QED(3)

(4) Let n ≤ ω be maximal such that κη < ρnP ∗
η
. There is σ : Pη+1 −→Σ

(n)
0

N∗
η

such that
σπγ,η+1 = σ∗η, σ ↾λη = g.

Let π = πγ,η+1. σ is defined by

σ(π(f)(α)) = σ∗η(f)(g(α))

for f ∈ Γ∗(κη, P
∗
η ), α < λη.

Proof. Let φ be a Σ
(n)
0 formula. Let f1, . . . , fm ∈ Γ∗(κη, P

∗
η ) and α1, . . . , αm <

λη. Set: X = {≺ ξ⃗ ≻< κη | P ∗ |= φ[f1(ξ1), . . . , fm(ξm)]}. Let π = πγ,η+1>
Then:

Pη+1 |= φ[π(f⃗)(α⃗)] ⇐⇒ ≺ α⃗ ≻∈ EPη
νη (X)

⇐⇒ ≺ g(α⃗) ≻∈ X

⇐⇒ N∗
η |= φ[σ∗η(f⃗)(g(α⃗))].

QED(4)

But σ is definable in W , since g, σ∗η ∈W . Hence

(5) σ ∈W .

Define, in W , a realization σ′ of Pη+1 by:

σ′ ↾γ + 1 = σγ , σ
′
η+1 = ⟨σ, µ⟩ where Nγ

µ = N∗
η .
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Let ⟨δ, t⟩ = trace(E). Since Wη is proud, we know by Lemma 5.5.11 that:

(6) Wη |= ⟨δ, t⟩ is an e-trace.

This means that in Wη we have:

Ce
λ̃,∞ |= ψ[δ, t, I, n∗]

where λ̃ = lub δ̃η”λη and ψ is a certain Σ1 formula. But this can be rewritten
as:

Ce
λ̃,∞ |= ψ′[δη”λη, t, I, n

∗]

where t, I, n∗ are hereditarily countable. Hence:

Ceλ̄,κ̃ |= ψ′[g”λη, t, I, n
∗]

which transforms back into:

Ceλ̄,κ̃ |= ψ[δ, t, I, n∗].

But since Ce
λ̄,κ̃

= Ce
∗

λ̄,κ∗
∈W we have:

(7) W |= ⟨δ′, t⟩ is an e∗-trace.

This means that if P̄ = Col(δ, ω) for a sufficiently large δ ∈ W , then P̄
forces that, if Ḡ is P̄-generic over W , there is an E′′′ ∈W [Ḡ] which is an e∗-
enlargement of I ↾η + 1 with trace ⟨δ′, t⟩. We now extend E′′′ to a structure
of length η + 2 by setting:

E′′ = E′′′ ∪ {⟨⟨W,N, σ′⟩, η⟩}.

We claim:

(8) E′′ is an enlargement of I ↾η + 1.

Proof. We verify (A)–(I) is the definition of “enlargement”. (A)–(C) hold
trivially for i ≤ η + 1. (D) holds trivially for i ≤ η. We prove (D) for
i = η + 1. It is enough to see that σ̂η+1(λη) is a cardinal in N̂η+1, since the
rest follows by acceptability. We have:

σ̂η+1 = ση+1
η+1 = σ′η+1 and N̂η+1 = N∗

η where σπγ,η+1 = σ∗η.

Thus:
σ(λ) = σπγ,η+1(κη) = σ∗η(κη) = κ∗

is a cardinal in N∗
η = N̂η+1. QED(D)
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(E) is trivial for i ≤ η. Now let i = η + 1, h ≤ η. Then

σ̂η+1 ↾λh = σ ↾λh = g ↾λ = δ′h = σ̃′′h ↾λh.

QED(E)

(F) is trivial for i ≤ η. We prove it for i = η + 1, h ≤ η. E′′ ↾ η + 1 is an
e∗-enlargement of I ↾ η + 1, where e∗ = EN

∗
η . But N∗

η = N̂η+1. Hence for
h ≤ η we have:

JE
Ñh

λ̃h
= Je

∗

λ̃h
= JE

Nη+1

λ̃h
in E′′.

QED(F)

(G) is immediate since R = Rη+1 = Rγ is well founded in W . But this gives
us the level function:

level = levelγ = levelη+1

defined by:
level(σ) = lub{level(σ′) | σ′Rσ}.

(H) is trivial for i ≤ η. Now let i = η + 1. If γ does not survive at η + 1,
then σ′Rσ. Hence:

level(σ′) = level(σγ ≤ rank(W ).

If however, γ does survive at η+1, it follows easily that j <T η+1 does not
survive at η + 1 if and only if j < γ and j does not survive at γ. Hence:

level(σ′) = level(σγ) ≤ rank(W ).

QED(H)

But it then follows by Lemma 5.5.1 that E′′ is an enlargement. QED(8)

Now let: ⟨δ′′, t′⟩ = trace(E′′).

(9) ⟨δ′′, t′⟩ is a neat trace in W .

Proof. ⟨δ′′ ↾η+1, t′ ↾η+1⟩ is neat, since χi ∈ ti for i ≤ η. But χη+1 ∈ t′η+1

by (7), since:

W |= ⟨δ ↾η + 1, t↾η + 1⟩ is an e∗ − trace,

where e∗ = EN
∗
η = EÊη+1 . QED(9)

We now note that:

(10) g(α) = σ̃η(α) for α < κη.
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Proof.
g((α) ∈ σ̃η(α) ⇐⇒ α ∈ EPη

νη ({α}).

Hence g(α) ∈ σ̃η({α}) = {σ̃η(α)}. QED(10)

But then for j < γ, we have:

δ′j = g ↾λj = σ̃η ↾λj = δj ,

since λj ≤ κj . Hence ⟨δ ↾ γ, t ↾ γ⟩ = ⟨δ′ ↾ γ, t ↾ γ⟩. Hence E ↾ γ is an
e∗-enlargement of I ↾γ with trace(E↾γ) = trace(E′′ ↾γ). Hence we can form:

E′ = E↾γ ∪ E′′ ↾ [γ, η + 2),

which has the desired properties. QED(Lemma 5.5.15)

The proof of Lemma 5.5.15 is actually more revealing than the statement,
and we shall return to it later. One apparent weakness of Lemma 5.5.15 is
that we need that proudness of E to prove it, but it does not follow that E′

is proud. In fact, E′ will be proud if and only if E ↾ γ + 1 was proud, since
W ′
η+1 =Wγ . Later we shall apply Lemma 5.5.15 only if γ survives at η + 1.

If not, we shall apply the following lemma:

Lemma 5.5.16. Let E be as in Lemma 5.5.15. Assume that γ does not
survive at η + 1. Then E extends to a neat, proud enlargement E′ of I|η + 2
such that E′ is bounded in V [G] and:

(a) E′ ↾η + 1 = E

(b) ht(W ′
η+1) < ht(Wη).

Proof. Let E′′′ be as in the proof of Lemma 5.5.15. E′′′ was obtained by
forcing over W = Wγ with a P̄ = Col(δ, ω) where δ ∈ W was sufficiently
large. But since W is collapsed in V [G], there is a Ḡ ∈ V [G] which is P̄-
generic over W . Hence E′′′ is bounded in V [G], since E′′′ ∈ W [Ḡ]. We can
form:

E′′ = E′′′ ∪ {⟨⟨W,N, σ′⟩η + 1⟩}.

E′′ is then a neat enlargement of I ↾η + 2 which is bounded in V [G]. But γ
does not survive at η + 1, where:

σ′ ↾γ + 1 = σγ , γ = T (γ + 1).

Hence σ′Rσγ in W . Hence:

level(σ′) < level(σγ) ≤ rank(W ) in W.
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Let j < rank(W ) with level(σ) ≤ j. Then W̄ =: W |αj is a proper segment
of W . Hence W̄ ∈W . Set:

Ē′′ = E′′′ ∪ {⟨⟨W̄ ,N, σ′⟩, η + 1⟩}.

Since E′′ was a neat enlargement of I ↾ η + 2, it follows easily that Ē′′ is a
neat, proud enlargement of I ↾η + 2. Moreover,

trace(Ē′′ ↾η + 1) = trace(E′′′) = ⟨δ′, t⟩.

Since Ē′′ ∈W [Ḡ], we have shown:

W |= (⟨δ′, t⟩ is a pride inducing trace ).

This is expressed in W by:

Ce
∗

λ̄,∞ |= ψ[δ′, t, I, n∗],

where ψ is a certain Σ1 formula. Since δ′j = g ↾ λj for j ≤ η, this can be
rewritten as:

Ce
∗

λ̄,∞ |= ψ′[g”λη, t, I, n
∗],

where t, I, n∗ are hereditarily countable. We now recall the Iteration Fact,
which says that there is ν such that P ∗

η ||ν ̸= ∅ and,

crit(EP
∗

ν ) = crit(E
Pη
νη = κη.

Hence crit(E
N∗

η

σ∗
η(ν)

= κ∗. Since κ∗ is a cardinal in N∗
η = N̂ ′′

η+1 and N∗
η is a

robust premouse, we conclude:

Ce
∗

λ̄,κ∗ ≺Σ1 C
e∗

λ̄,∞ in W.

Hence Ce∗
λ̄,κ∗

|= ψ′[g”λη, t, I, n
∗]. But we know that Ce∗

λ̄,κ∗
= Ce

λ̄,κ̃
, where

e = E − Ñη. Hence in Wη we have by (B):

Ce
λ̃,∞ |= ψ′[σ̃η”λη, t, I, n

∗],

which transforms into:
Ce
λ̃,∞ |= ψ[δ, t, I, n∗],

since δj = σ̃η ↾λj for j ≤ η. But this means that:

Wη |= ⟨δ, t⟩ is a pride inducing trace.

Hence, if we force over Wη with a sufficient P∗ = Col(β, ω), there is E∗ ∈
W [G∗] such that E∗ is a neat, proud enlargement of I ↾η + 2 and E∗ ↾η + 1
is an e-enlargement of I ↾η + 1. Since Wη is collapsed to ω in V [G], there is
a G∗ ∈ V [G] which is P∗-generic over Wη. Hence E∗ ∈ V [G]. But E ∈ V [G],
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trace(E∗ ↾ η + 1) = trace(E) and E is an e-enlargement of I ↾ η + 1. Hence
we can set: E′ = E ∪ E∗ ↾ [η + 1, η + 2), which has the desired properties.
QED(Lemma 5.5.16)

We now return to the proof of Lemma 5.5.15 in order to glean more infor-
mation from it. In the following, let V [G] be a set generic extension of V .
We say that an enlargement E is bounded in V [G] if and only if E ⊂ V [G] is
α-bounded for an α which is collapsed to ω in V [G]. Similarly, we say that
a world W is bounded in V [G] if W ∈ V [G] and ht(W ) is collapsed to ω in
V [G].

Definition 5.5.20. ⟨W,N⟩ is a good pair if and only if the following hold:

• W is a good world bounded in V [G]

• N = ⟨Ni | i ≤ h⟩ ∈W such that

W |= N is a putative Steel array.

Define R ∈W from N, I, n∗ in the usual way:

σ′Rσ if and only if for some j, σ′realizes Pj in N and
σ realizes an iT j in , where σ′ ↾ i+ 1 = σ

and i does not survive at j.

Then:

• R is well founded.

But then the level function level ∈W is defined in W by:

level(σ) = lub{level(σ′) | σ′Rσ}.

Definition 5.5.21. Let ⟨W,N⟩ be a good pair. ⟨σ, δ, t⟩ ∈W is a good triple
for ⟨W,N⟩ at γ, lh(I) if and only if

(a) σ realizes Pγ in N and level(σ) ≤ rank(W )

(b) Let σγ = ⟨σ̂, µ⟩. Set N̂ = Nµ. (Hence σ̂ : Pγ −→ N̂ . )

Let e = EN̂ . Then:

W |= ⟨δ, t⟩ is a neat e− trace for I ↾γ.

Lemma 5.5.17. Let ⟨σ, δ, t⟩ be a good triple for ⟨W,N⟩ at γ. Let E be an
e-enlargement of I ↾γ which is bounded in V [G] and ⟨δ, t⟩ = trace(E). Set:

E′ = E ∪ {⟨⟨W,N, σ⟩, γ⟩}.

Then E′ is a neat enlargement of I ↾γ+1 (and in obviously bounded in V [G]).
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Proof. This is just like the proof of (8) in Lemma 5.5.15. The verification
of (A)–(F) is straightforward. (G) is immediate, since R is well founded. (H)
holds by (a). Since E is an enlargement with trace ⟨δ, t⟩ and E′ satisfies (A)–
(H), it follows by Lemma 5.5.1 that E′ is an enlargement of I ↾γ+1. E = E′ ↾γ
is neat, since ⟨δ, t⟩ is neat. But then E′ is neat by (b). QED(Lemma 5.5.17)

Lemma 5.5.18. There is such an E.

Proof. By (b), if P̄ = Col(β, ω) for a sufficiently large β ∈ W and Ḡ is
P̄-generic over W , then in W [Ḡ] there is an E with the above properties.
But there is a P̄-generic Ḡ in V [G], since ht(W ) is collapsed to ω in V [G].
Hence E ∈ V [G] is bounded in V [G]. QED(Lemma 5.5.18)

Conversely, we have:

Lemma 5.5.19. Let E′ be a neat enlargement of I ↾γ + 1 which is bounded
in V [G]. Let E′ = ⟨W,N, σ⟩. Let ⟨δ, t⟩ = trace(E′ ↾γ). Then ⟨W,N⟩ is good
and ⟨σ, δ, t⟩ is a good triple at γ.

Now let ⟨W,N⟩ be good and let ⟨σ, δ, t⟩ ∈ W be a good triple for ⟨W,N⟩ at
γ. Let γ = T (η + 1). To make things simple, we also suppose that η + 1 is
not a deop point of I (i.e. P ∗

η = Pγ). ⟨, σ′, δ′, t⟩ ∈ W is a good continuation
of ⟨σ, δ, t⟩ at η + 1 if and only if the following hold:

(a) ⟨σ′, δ′, t′⟩ ∈W is a good triple for ⟨W,N⟩ at η + 1.

(b) δ′ ↾γ = δ, t′ ↾γ = t.

(c) σ′ ↾γ + 1 = σ.

It follows that if σ = ⟨σ̂, µ⟩, N̂ = Nµ, σ′ = ⟨σ̂′, µ′⟩, N̂ ′ = Nµ′ , then
σ̂′πγ,η+1 = σ̂, µ = µ′, N̂ = N̂ ′. Moreover:

σ̂′(λη)0σ̂πγ,η+1(κη) = σ̂(κη).

Hence δ′η”λη = σ̂′”λη ⊂ σ̂(κη).

Lemma 5.5.20. Let ⟨W,N⟩ be good. Let ⟨σ, δ, t⟩ be good at γ. Let γ =
T (η+1) where η+1 is not a drop point in I. Let ⟨σ′, δ′, t⟩ be a continuation
of ⟨σ, δ, t⟩ at η + 1. Let e = EN̂ = EN̂

′ . There is α < β = βW such that

W |= ⟨δ′, t′⟩ is a α-bounded e-trace for I ↾η + 1.

Proof. We know:

W |= ⟨δ′, t′⟩ is a neat e-trace for I ↾η + 1.
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But this is expressed in W by:

Ceλ̄,∞ |= ψ[δ′, t′, I, n∗]

where ψ is a Σ1 formula and:

λ̄ = lub δ′η”λη < σ̂(κη).

Since δ′i = δ′η ↾λi for i < η we can rewrite this as:

Ceλ̄,∞ |= ψ′[δ′η”λη, t
′, I, n∗],

where t′, I, n∗ are hereditarily countable. But N̂ is a robust premouse in N
and σ̂(κη) = σ̂′(κη) is an inaccessible cardinal in N̂ . Hence cf(σ̂(κη)) ≥ ω1

in W . Hence λ̄ < σ̂(κη). By the robustness of N̂ , we conclude that in W :

Ceλ̄,σ̂(κη) ≺Σ1 C
e
λ̄,∞.

Hence:
Ceλ,σ̃(κη) |= ψ[σ′η”λη, t

′, I, n∗]

which translates easily into:

Ceλ̄,σ̂(κη) |= ψ[δ′, t′, I, n∗].

But this says there are α, ν such that λ̄ < α < ν < σ̂(κη) such that Ce
λ̄,ν

is
admissible and the language L = Lα,δ,t on Ce

λ̄,ν
is consistent. Hence:

W |= ⟨δ′, t′⟩ is an α-bounded e-trace,

where α < β = βW . QED(Lemma 5.5.20)

But the proof of Lemma 5.5.15 then gives us:

Lemma 5.5.21. Let E be a neat, proud enlargement of I ↾ η + 1. Let γ =
T (η + 1), where η + 1 is not a drop point. Let:

⟨W,N⟩ = ⟨Wγ ,Nγ⟩, σ = σγ and ⟨δ, t⟩ = trace(E↾γ).

Hence ⟨W,N⟩ is good and ⟨σ, δ, t⟩ ∈W is a good triple for ⟨W,N⟩ at γ. Then
there exists a ⟨σ′, δ′, t′⟩ ∈W which is a good continuation of ⟨σ, δ, t⟩.

In the proof of Lemma 5.5.21 we constructed a very specific good contin-
uation which had strong properties (as witnessed by the proof of Lemma
5.5.16). However, there can be other continuations of ⟨σ, δ, t⟩ in W , and we
are free to choose which one we shall employ.
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Without further ado, we turn to the proof of Lemma 5.3.7. In V we are
given a putative Steel array N = ⟨Ni | i ≤ µ⟩. We are also given a map
σ : P −→Σ∗ Nµ, where P is a countable and restrained premouse. We want
to show that P is countably iterable. To this end, we consider a countable
normal iteration I = ⟨⟨Mi⟩, ⟨νi⟩, ⟨πi,j⟩, T ⟩ of I. We must prove (*), (**). We
define the relation R and assume that R is well founded. We shall construct
a sequence ⟨E(i) | i < lh(I)⟩ such that

E(i) = ⟨⟨W (i)
j ,N(i)

j , σ
(i)
j ⟩ | j ≤ i⟩

is a neat proud enlargement of I ↾ i+ 1. Our first enlargement E(0) is found
in V : Let β be such that

β = card(Vβ),N ∈ Vβ, cf(β) > ω1.

In V we can then find an A ⊂ β+ such that

• Lβ[A] = Vβ

• Lβ+ [A] |= β is the largest cardinal.

Set W = LAβ+ . Then W is a world of rank β+, where β = βW . Moreover,
N ∈W |β.

We set:
E(0) = {⟨⟨W,N, σ′⟩, 0⟩} where σ′ = {⟨σ, µ⟩}.

Now let G be set generic over V such that β+ is collapsed to ω in V [G]. The
rest of the construction takes place in V [G] and each E(i) will be bounded
in V [G].

We verify inductively that E(i) is bounded in V [G] and:

(a) E(i) is neat and proud, where E(i)
j = ⟨W (i)

j ,N(i)
j , σ

(i)
j ⟩ for j ≤ i.

(b) If h < i and nh < nj for all j ∈ (h, i], then:

E(i) ↾h+ 1 = E(h) ↾h+ 1 and ht(W
(i)
i ) < ht(W

(h)
h ).

(c) If h survives at i, then E(h) ↾h = E(i) ↾h and

W
(h)
h =W

(i)
h ,N(h)

h = N(i)
h , σ

(i) ↾h+ 1 = σ(h).
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We define E(i) by cases as follows:

Case 1 i = 0. E(0) = {⟨⟨W,N, σ(0)⟩, 0⟩} as above. (a)–(c) then hold trivially.
Case 2 i = η + 1. Let γ = T (η + 1). We split into two subcases:

Case 2.1 γ does not survive at η + 1.

By Lemma 5.5.16, there is a proud, neat enlargement E′ of I ↾ η + 2 such
that E′ ↾η + 1 = Eη, and:

ht(W ′
η+1) < ht(W (η)

η ),Eη ∈ V [G].

Hence E′ is bounded in V [G]. We set: Eη+1 = E′ and verify (a)–(c). (a) is
immediate.

(b) If h < i and nh < nj for all j ∈ (h, i), then E(i) ↾ h + 1 = E(h) and
ht(N(h)h) > ht(W

(i)
j ) for j ∈ (h, i). But E(i) ↾h + 1 = E(i−1) ↾h + 1 = E(h)

and ht(W
(h)
h ) > ht(W

(i−1)
i−1 ) > ht(W

(i)
i ).

(c) is vacuously true.

Case 2.2 γ survives at η + 1.

By Lemma 5.5.15, there is an E′ ∈ V [G] such that E′ is a neat enlargement
of I ↾η + 2 and:

E′ ↾γ = Eη ↾γ,ht(W ′
j+1) < ht(W (γ)

γ ) for γ ≤ j ≤ η

and:
W ′
η+1 =W (γ)

γ ,N′
η+1 = N(γ)

γ , σ′η+1 ↾γ + 1 = σ(γ)γ

We shall let Eη+1 be such an E′. Then it is clear that Eη+1 is bounded in
V [G]. We verify (a)–(c)

(a) Eη+1 is neat. But W (η+1)
η+1 =W

(γ
γ . Hence Eη+1 is proud.

(b) Let h < η + 1 such that nh < nj for j ∈ (h, η]. Then E(j) ↾ h + 1 =
E(h) ↾h+ 1 for j ∈ (h, η]. But then we have h < γ and:

• E(η+1) ↾h+ 1 = E(h) ↾h+ 1

• ht(W
(η+1)
η+1 ) = ht(W

(γ)
γ ) < ht(W

(h)
h ).

(c) holds trivially at η + 1, since it holds at γ and no h ∈ (γ, η) survives
at η + 1.
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However, we must specify E(η+1) more carefully than we just did, if we are
not to run into trouble at limit points of the induction. We therefore consider
the subcase:

Case 2.1.1 γ = T (η + 1), γ survives at η + 1, and η + 1 is not a drop point
(i.e. P ∗

η = Pγ). We apply Lemma 5.5.20 and Lemma 5.5.21. W = W
(γ)
γ

has a definable well ordering. Let ⟨σ′, δ′, t′⟩ be the W -least triple which is a
good continuation of ⟨σ(γ), δ, t⟩ at η+1, where ⟨δ, t⟩ = trace(E(γ) ↾γ). Such a
⟨σ′, δ′, t′⟩ exists by Lemma 5.5.21. By Lemma 5.5.20, if we force over W with
P̄ = Col(β, ω) (β = βW ), getting a P̄-generic Ḡ, then in W [Ḡ] there is an E′

which is an e-enlargement of ⟨δ′, t′⟩. But there is such a Ḡ ∈ V [G], since W is
bounded in V [G]. Hence E′ ∈ V [G]. Set E(η+1) = E′ ∪ {⟨⟨W,N, σ′⟩, η + 1⟩}.
By Lemma 5.5.17, E(η+1) is then a neat, proud enlargement of I(η + 2).
QED(Case 2)

Case 3 i = η is a limit ordinal.

Let n = n(η). For each m < n there is im < η such that n(j) ̸= m for
all im ≤ j < η, since otherwise there would be unboundedly many j < η
such that n(j) = m. But n(j) = m means that j ≤T h, where n∗(h) = m.
Hence, by closure, η lies on the branch {j | j ≤T n}. Hence n(η) ≤ m < n.
Contradiction! Hence there is γ < η such that n(i) ≥ n for all i ∈ [γ, η]. We
can assume without loss of generality that γ <T η and that [γ, η)T does not
contain a drop point. Set b = [γ, η)T . Set W = W (γ), N = N(γ). If j, k ∈ b
and j ≤ k, then:

E(j) ↾j = E(h) ↾j and E(j)
j = ⟨W,N, σ(j)⟩

where: σ(k) ↾j + 1 = σ(j). By definition, we have:

σ̂(j) = (σ(j))jj : Pj −→ N̂ (j)

where N̂ (j) is an element of N. Since there are no drops in b, we have:

σ̂(k)πj,k = σ̂(j) and N̂ (k) = N̂ (j) = N̂ .

Set: Ẽj = E(j) ↾ j for j ∈ b. Set: Ẽ =
⋃
j∈b Ẽj . It follows easily that

Ẽ satisfies (A)–(H) in the definition of “enlargement”. We must prove (I).
Clearly, trace(Ẽ) = ⟨δ, t⟩ where:

⟨δ ↾ i, t↾ i⟩ = trace(Ẽi) for i ∈ b.

If we set: si = ⟨σ(i), δ ↾ i, t ↾ i⟩ for i ∈ b, then ⟨si | i ∈ b⟩ can be recursively
defined in W as follows:

• si is given



5.5. ENLARGEMENTS 549

• If i + 1 immediately succeeds h in b (hence i + 1 = T (h)). Then si+1

is the W -least good continuation of sh at i+ 1.

• If µ ∈ b is a limit point, then:

δ ↾µ =
⋃
i∈b∩µ

δ ↾ i, t↾µ =
⋃
i∈b∩µ

t↾ i,

and:
σ(µ) ↾µ =

⋃
i∈h∩µ

σ(i).

σ̂(µ) = (σ(µ))µµ is then defined by:

σ̂(µ)πi,µ(x) = σ̂(i)(x) for i ∈ b ∩ µ.

Then ⟨si | i < η⟩ ∈W . Hence ⟨δ, t⟩ ∈W . Hence Ẽ satisfies (I) in W . Hence
Ẽ is an enlargement of I ↾η. But

JE
Ñi

λ̃i
= Je

λ̃
for i ∈ b,

where e = EN̂ , since N̂ = N̂ i for all i ∈ b. Then Ẽ is an e-enlargement
of I ↾ η. Clearly Ẽ is neat, since every Ẽi is neat. We now define in W a
realization σ(η) of Pη by:

σ(η)↾η =
⋃
i∈b
σ(i) and σ̂(η)πi,η(x) = σ(i)(x)

for i ∈ b. Set:
E(η) = Ẽ ∪{ ⟨⟨W,N, σ(η)⟩, η⟩}.

We claim that E(η) is an enlargement of I ↾η+1. (A)–(F) is the definition of
“enlargement” follows easily from the fact that each E(i) is an enlargement
of I ↾ i + 1 and E(i)

i = ⟨Wi,Ni, σ(i)⟩. (G) is clear, since we know that R is
well founded. The level function for W is then defined by:

level(σ) = lub{level(σ′) | σ′Rσ}.

It is easily seen that if h <T η and it does not survive at η, then h <T γ and
h does not survive at γ. Hence:

level(σ(η)) = level(si(γ) ≤ rank(W ),

and (H) holds. By Lemma 5.5.1 it follows that E(η) is an enlargement of
I ↾ η + 1. E(η) is proud, since W = W

(η)
η is proud. However, we must still

show that E(η) is neat. The trace ⟨δ, t⟩ of Ẽ is neat, since the syntactical
condition χi ∈ ti is satisfied. We must show that χη ∈ tη or in other words:

W |= ⟨δ, t⟩ is an e-trace.
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This says that if we force over W with a sufficient P̄ = Col(δ, ω) and Ḡ is
P̄-generic over W , then there is an Ẽ ∈ W [Ḡ] which is an e-enlargement if
I ↾ η + 1, where e = EN̂ . Let P̄ = Col(β, ω) where β = βW . Let Ḡ be
P̄-generic over W . Then W [Ḡ] is a ZFC− model, although all sets in W [Ḡ]
are countable. Since W = JAα has a definable well ordering, W [Ḡ] has a well
ordering definable in the parameter Ḡ. For i ∈ b set:

Definition 5.5.22. α(i) =:the least α such that

W |= ⟨δ ↾ i, t↾ i⟩ is an α-bounded e-trace.

Then α(i) ≤ α(j) for i < j in b, since if Ẽ is an e-enlargement of I ↾ j with
trace ⟨δ ↾ j, t ↾ j⟩, then Ẽ ↾ i is an e-enlargement of I ↾ i with trace ⟨δ ↾ i, t ↾ i⟩.
But Ẽ ↾ i is bounded by α(j). hence α(i) ≤ α(j). But then α(i) < β for all
i ∈ b, since α(i+1) < β for i+1 ∈ β by Lemma 5.5.20. We now successively
define Ẽi (i ∈ b) such that

• Ẽi ∈W [Ḡ] is an α(i)-bounded e-enlargement of I ↾ i with trace ⟨δ ↾ i, t↾
i⟩ for i ∈ b,

• Ẽj ↾ i = Ei for i < j in b.

We let Ẽγ = the W [Ḡ]-least e-enlargement of I ↾ γ which is α(γ)-bounded
and has trace ⟨δ ↾γ, t↾γ⟩. If Ẽh is given and i+1 is the immediate successor
of h in b (hence h = T (i+1)), we first let E′ be the W [Ḡ]-least e-enlargement
of I ↾ i+ 1 which is α(i+ 1)-bounded with trace ⟨δ ↾ i+ 1, t↾ i+ 1⟩. We then
set:

Ẽi+1 Ẽh ∪ E′ ↾ [h, i+ 1).

It follows as before that Ẽi+1 is an e-trace of I ↾ i + 1-bounded. Now let µ
be a limit point of b (hence µ ≤ η = lub b). Set: Ẽµ =

⋃
i∈µ∩b Ẽi. It follows

as before that Ẽµ satisfies (A)–(H) in the definition of enlargement. But
⟨δ ↾µ, t↾µ⟩ = trace(Ẽµ) where ⟨δ ↾µ, t↾µ⟩ ∈W . Hence Ẽµ is an enlargement
of I ↾µ. But since Ẽi is an e-enlargement for i < µ, it follows that Ẽµ ids an
e-enlargement. Clearly:

Ẽµ is α = sup{α(i) | i < µ}-bounded.

Hence α(µ) = sup{α(i) | i < µ}. This gives m, in particular, Ẽ = Ẽη ∈
W [Ḡ]. This proves that ⟨δ, t⟩ is an e-trace in W . Hence E(η) is neat and
proud.

This completes the constrcution of E(i) (i ≤ η) in V [G]. We now turn to the
proof of (*) and (**). We first prove (*). In this case, lh(I) = η + 1. Hence
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it is certainly right that R is well founded. Let νη ∈ Pη be arbitrarily chosen
such that Eνη ̸= ∅ in Pη and νη > νi for i < η. This determines γ = T (η+1)
and with it P ∗

η . We claim that the transitive ultrapower:

π : P ∗
η −→n

F P
′(F = E

Pη
νη )

exists where n ≤ ω is maximal such that κη < ρnP ∗
η
. But by §3.2 this is

equivalent to saying that there is no sequence ⟨⟨αi, fi⟩ | i < ω⟩ such that

≺ αi+1, αi ≻∈ EPi
νi (Xi) where Xi = {≺ ξ, ζ ≻| fi+1(ξ) ∈ fi(ζ)}}

for i < ω. Suppose not. Let k be the resurrection map for ⟨N̂ (η), σ̂(η)(νη)⟩.
Hence:

k : (N̂ (η)||σ̂(η)(νη) −→ Ñ (η)

where Ñ (η) = ⟨J Ẽν̃ , F ⟩ and F is robust on Ñ (η). But then there is g : λη −→
σ̂(η)(κη) such that whenever α1, . . . , αm < λη and X ∈ P(κη) ∩ Pη, then:

≺ g(α⃗) ≻∈ σ̂(η)(X) ⇐⇒ ≺ α⃗ ≻∈ EPη
νη (X).

Hence:
≺ g(αi+1), g(αi) ≻∈ σ̂(η)(Xi) for i < ω.

Hence:
fi+1(g(αi+1)) ∈ fi(g(αi)) for i < ω.

Contradiction! QED(*)

We now prove (**). We have: lh(I) is a limit cardinal. We assume that R
is well founded. Recall that n∗ injects lh(I) into ω. Define a sequence jn
(n ∈ ω) by:

n∗(j0) is minimal in n∗” lh(I)

n∗(jn+1) is minimal in {n∗(h) | h > jn}.

Then n(h) > n(jn) for all h > jn. Hence:

ht(W
(h)
h ) < ht(W jn

jn
) for h > jn.

Hence:
ht(W

(jm+1)
jm+1

) < ht(W
(jm)
jm

for m ∈ ω.

This is a contradiction. Hence we were mistaken in assuming that R is well
founded. Hence R is ill founded and I has a cofinal well founded branch.

QED(Lemma 5.3.7)

Note: In this proof we have strongly used the assumption that there is no
inner model with a Woodin cardinal. It may be of interest to see what is left
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of the proof if we relax this assumption. We still require of a putative Steel
array N = ⟨Ni | i ≤ µ⟩ that Ni be mouselike for i < µ. Hence Nµ is pre-
mouselike. Assume that σ : P −→Σ∗ Nµ where P is a countable premouse
which has the unique branch property for countable normal iterations (I.e.
a countable iteration of limit length has at most one cofinal well founded
branch. ) This is a much weaker assumption than our previous one. Since
P is pre-mouselike, we still know that the Iteration Fact holds. Thus our
proof still shows that P is countably normally iterable. However, we have
not shown that P is ω1 + 1 normally iterable, which is what we would need
to conclude that P is fully iterable and that Nµ is mouselike.

5.6 The Bicephalus

By lemma 5.3.6 the construction of a robust Steel array can be continued up
to ∞, using:

(∗∗) If possible, we apply Option 2 at i+ 1, if not we apply Option 1.

At limit points η we fomr Nη as usual. This includes the point ∞. It
is easily seen that if κ < ∞ is regular in V , then Nκ is of height κ, is
a ZFC− model, and κ = κκ,η for all η ≥ κ. (cf. lemma 5.2.5.) Hence:
N∞ = ⟨

⋃
κ is regular

Nκ, ∅⟩. Note that we had a choice for Ni only at successor

i, and we restricted this choice by (∗∗). The structure N∞ is then a weasel,
having the form ⟨JE∞, ∅⟩ and is an inner model of ZFC−. It is denoted by
Kcand is a preliminary to the construction of the core model K. However,
we have not yet shown that Kc is uniquely defined. What if, in applying
Option 2 at i+1, we have an embarrassment of riches and have two different
robust mice ⟨JEν , F ⟩, ⟨JEν , F ′⟩ such that JEν = Mi, which could be applied.
In this section, we show that that eventuality cannot occur.

⟨JEν , F, F ′⟩ is an example of what we call a bicephalus. This is defined by:

Definition 5.6.1. A bicephalus is a structure ⟨JEν , F 0, F 1⟩ such that ⟨JEν , Fn⟩
is an active premouse for n = 0, 1.

Definition 5.6.2. A precephalus is a structure which is either a bicephalus
or a premouse.

In §3.8.4 we noted that if M = ⟨JEν , F 0, F 1⟩ is a bicephalus and π :M −→G

M ′, then M ′ = ⟨JE′
ν , F ′0, F ′1⟩ is a bicephalus. (Note that here we are taking

the Σ0 ultrapower.) We also saw that, if M0 is a bicephalus and πi,j :Mi −→
Mj (i ≤ j ≤ η) such that
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• πi,i+1 :Mi −→Gi Mi+1

• Mi is transitive and the πi,j commute

• If λ ≤ η is a limit ordinal then:

Mλ, ⟨πiλ | i < λ⟩

is the transitivized direct limit of:

⟨Mi | i < λ⟩, ⟨πij | i ≤ j < λ⟩

then each Mi is a bicephalus.

We then defined the notion of a normal iteration of a bicephalus P . This
has the form:

I = ⟨⟨Pi⟩, ⟨νi⟩, ⟨Fi⟩, ⟨πij⟩, T ⟩.

Where |⟨JEν , F ⟩| = |⟨JEν , F, F ′⟩| =: JEν . I is like a normal iteration except
that:

• If Pi = ⟨|Pi|, F 0
i , F

1
i ⟩ is a bicephalus and νi = ht(Pi), then Fi ∈

{F 0
i , F

1
i }.

• If Pi is a premouse or νi ∈ Pi, then Fi = EPi
νi .

The choice of Fi determines κi = crit(Fi) and with it:

• T (i+ 1) = the least n such that κi < λn ∨ n = i.

Let τi, λi be defined as usual, P ∗
i is defined by:

• If τi is a cardinal in Pn where n = T (i+ 1), then P ∗
i = Pn.

• If τi is not a cardinal in Pn, then P ∗
i = Pn||β, where β ∈ Pn is maximal

such that τi is a cardinal in Pn||β.

Fi is then applied to P ∗
i . However:

• If P ∗
i = Pn and Pn is a bicephalus, then

πn,i+1 : Pn −→Fi Pi+1.

(This is the Σ0-ultrapower.)
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• If P ∗
i is a premouse, then:

πn,i+1 : P
∗
i −→n

Fi
Pi+1

where n ≤ ω is maximal such that κi < ρnP ∗
i
.

By a precephalus we mean a premouse or bicephalus. It follows by induction
on i that:

Lemma 5.6.1. If I is a normal iteration of a bicephalus, then:

Pi is a bicephalus ←→ [0, i)T has no drop point.

If I is an iteration of length i + 1, we can extend it to a potential iteration
of length i + 2 by appointing appropriate νi, Fi with νi > νl for l < i. This
determines T (i+1), P ∗

i . (However, we do not know whether P ∗
i is extendable

by Fi.) Then:

Lemma 5.6.2. Extend I of length i + 1 to a potential iteration of length
i+ 2 by appointing appropriate νi, Fi. Then Fi is close to P ∗

i .

The proof is virtually the same as that of Theorem 3.4.4, and we take it
here as given. Applying this to i + 1 < lh(I), it follows that if P ∗

i is a
premouse, then πn,i+1 : P ∗

i −→∗
Fi

Pi+1, where n = T (i + 1). If, on the
other hand, P ∗

i = Pn is a bicephalus, we ignore Lemma 5.6.2 and take the
Σ0-ultrapower.

Definition 5.6.3. Let P be a precephalus. I is a padded iteration of P of
length µ if and only if

I = ⟨⟨Pi | i < µ⟩, ⟨νi | i ∈ A⟩, ⟨Fi | i ∈ A⟩, ⟨πij | i ≤T j⟩, T ⟩

where the above holds with:

T (i+ 1) = the least n ∈ A such that κi < λn or i = n, for i ∈ A

and:

If n < j and [n, j) ∩A = ∅, then nTj, Pn = Pj ∧ πn,j = id .

Lemma 5.6.2 continues to hold for padded iterations. Using padded iterations
we can do a comparison iteration of a bicephalus with a premouse, another
bicephalus, or even itself. We call the latter an autoiteration.
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Definition 5.6.4. Let P = ⟨|P |, F 0, F 1⟩ be a bicephalus. Let F 0 ̸= F 1. Let
card(P ) < θ, where θ is regular. Suppose that P is θ + 1-normally iterable.
The autoiteration of P is a pair I0, I1 of padded iterations of P of length
µ ≤ θ + 1 and coiteration indices ⟨νi | i < µ⟩ such that

• Pn0 = P , ν0 = ht(P0), Fn0 = Fn for n = 0, 1.

• Let P 0
i , P

1
i be given. For ν ≤ ht(P 0

i ) ∩ ht(P 1
i ) we define:

Fni (ν) =

{
{EP

n
i

ν }, if ν ∈ Pni or ν = ht(Pni ) and Pni is a premouse
{F 0, F 1} if ν = ht(Pni ) and Pni = ⟨|Pni |, F 0, F 1⟩ is a bicephalus.

Call ν critical at i if and only if P 0
i |ν = P 1

i |ν and there exist xn ∈
Fni (ν)(n = 0, 1) such that x0 ̸= x1. If so we set νi = ν. If xn = ∅, then
x1−n ̸= ∅ and we let F 1−n

i = x1−n(hence νi ∈ A1−n), and νi ̸∈ An. If
x0, x1 ̸= ∅ we set, Fni = xn for n = 0, 1. This gives us P 0

i+1, P
1
i+1.

• If there is no critical ν, then µ = i+1 and the autoiteration terminates
at i.

Imitating the proof of Lemma 3.5.1 we get:

Lemma 5.6.3. Let P = ⟨|P |, F 0, F 1⟩ be a bicephalus. Let card(P ) < θ
where θ is regular. If P is θ + 1 normally iterable, then the autoiteration of
P terminates below θ.

However, if the autoiteration ⟨I0, I1⟩ terminates at i, it could happen that
both I0 and I1 have a truncation on the main branch. In this case, the result
would tell us little about the original bicephalus P . If we assume, however,
that P is presolid we get a better result. By the proof of lemma 4.1.14 we
get:

Lemma 5.6.4. Let P, θ be as above, where P is presolid. Let ⟨I0, I1⟩ be
the autoiteration of P , terminating at i + 1 < θ. Then one of I0, I1 has no
truncation on its main branch.

But then:

Corollary 5.6.5. If P, θ are as above and P = ⟨|P |, F 0, F 1⟩, then F 0 = F 1.

Proof. Suppose not. Then the autoiteration terminates at i+ 1 < θ, where
0 < i. By lemma 5.6.4, we know that Pni is bicephalus for an n = 0, 1 and
ht(Pni ) ≤ ht(P 1−n

i ). Take e.g. n = 0. Then P 0
i |ν = P 1

i |ν, since otherwise we



556 CHAPTER 5. THE MODEL Kc

could continue the coiteration. Let P 0
i = ⟨|P ′|, F ′0, F ′1⟩. Then F ′0 = F ′1,

since otherwise there is x ∈ F0
i = {F ′0, F ′1} such that x ̸= y for a y ∈ F1

i .
Hence:

F 0 = π−1
0,i ”F

′0 = π−1
0,i ”F

′1 = F 1.

Contradiction!

QED(Corollary 5.6.5)

An even stronger property than presolidity is pre-mouselikeness. As in the
case of solidity, if P = ⟨JEν , F ⟩ is a premouse or P = ⟨JEν , F 0, F 1⟩ is a
bicephalus, then pre-mouselikeness is a Π1 property of JEν . Hence, if I is a
normal iteration of P , then every Pi in I will be pre-mouselike. By a virtual
repetition of the proof of Lemma 5.3.10 we get:

Lemma 5.6.6 (Iteration Fact). Let I be a normal iteration of P , where P is

pre-mouselike. Let n = T (i + 1). Let κi = crit(Fi) and τi = κ
+JEPi

νi
i . There

is ν such that P ∗
i ||ν = ⟨JEν , F ⟩, F ̸= ∅ and κi = crit(F ), τi = κ

+JEPi
ν

i .

We call a bicephalus ⟨|P |, F 0, F 1⟩ one-small if and only if ⟨|P |, Fn⟩ is one-
small for n = 0, 1. Note that in this case ⟨|P |, Fn⟩ is restrained for n = 0, 1.
The proof of Lemma 5.1.2 can be adapted to show:

Lemma 5.6.7. Let P be a one-small bicephalus. If P is countably normally
iterable, then it is ∞-normally iterable.

We now return to our original question. Let N = ⟨Ni | i ≤ µ⟩ be a Steel
array(hence every Ni is mouselike). Can there be two different extenders
F 0, F 1 such that Fn is robust in ⟨Mµ, F

n⟩ for n = 0, 1.(Hence Mµ = Nµ is
a ZFC− model.) We want to show that this cannot occur, so we argue by
contradiction. Set Nµ+1 = ⟨Mµ, F

0, F 1⟩. Then Nµ+1 is a bicephalus. We
then call N′ = ⟨Ni | i ≤ µ + 1⟩ a putative two headed Steel array. Let us
define:

Definition 5.6.5. Let P = ⟨|P |, F 0, F 1⟩, P ′ = ⟨|P ′|, F ′0, F ′1⟩ be bicephali.
We set:

σ : P −→∗ P
′ if and only if σ : ⟨|P |, Fn⟩ −→Σ0 ⟨|P ′|, F ′n⟩ for n = 0, 1.

The nonexistence of a two headed Steel array follows from:

Lemma 5.6.8. Let N = ⟨Ni | i ≤ µ + 1⟩ be a putative two headed Steel
array. Let P be a countable bicephalus such that σ : P −→∗ Nµ+1. Then P
is countably normally iterable.
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We first show that this implies the nonexistence of a two headed Steel array
N. Nµ+1 is pre-mouselike, since Mµ is mouselike. Hence P is pre-mouselike,
since pre-mouselikeness is a Π1 property. Hence P is solid. By lemma 5.6.7,
P is ω1 + 1 iterable. Hence, if P = ⟨|P |, F̄ 0, F̄ 1⟩, then F̄ 0 = F̄ 1. But
Nµ+1 = ⟨|Nµ|, F 0, F 1⟩ and F 0 ̸= F 1. Hence we could easily choose P, σ such
that F̄ 0 ̸= F̄ 1. Contradiction!

We shall closely imitate the proof of Lemma 5.3.7 in order to prove lemma
5.6.8. Fix N and let σ : P −→∗ Nµ+1, where P is countable. We again prove:

(∗) If I has length η + 1, and we appoint νη, Fη such that Fη ∈ Fνη and
νη > νi for all i < η, then letting γ = T (η + 1), we have:

• If P ∗
η is a premouse then the n-ultrapower

π : P ∗
η −→n

Fη
Pη+1 exists,

where n ≤ ω is maximal such that κi < ρnP ∗
η
.

• If P ∗
η = Pγ is a bicephalus, then the Σ0 ultrapower π : Pγ −→F Pη+1

exists.

(∗∗) If I has limit length, then I has a cofinal, well founded branch.

In a normal iteration of a bicephalus extenders are sometimes applied in a
different way than in a normal iteration of a premouse. For this reason we
must revise the definition of realization:

Definition 5.6.6. Let N = ⟨Ni | i ≤ µ+ 1⟩ be a two headed putative Steel
array. Let P be a countable bicephalus and let I be a countable normal
iteration of P . By induction on i < lh(I) we define the set Di of realizations
of Pi in N. Each element of Di is a sequence:

σ = ⟨⟨σj , µj⟩ | j ≤T i⟩

such that σj : Pj → Nµj for j ≤T i. We inductively verify:

• µi ≤ µj for j ≤ i

• If Pi is a bicephalus, then σi : Pi −→∗ Nµ+1.

• If Pi is not a bicephalus, then µi ≤ µ and

σi : Pi −→Σ
(n)
0

Nµi whenever λj < ρnPi
for all j < i

• If (j, i]T is drop free, then µj = µi and σj = σiπj,i.
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We again define Di by cases:

Case 1. i = 0. D0 is the set of σ = {⟨σ0, µ0⟩} such that µ0 = µ + 1 and
σ0 : P −→∗ Nµ+1.

Case 2. i = j + 1.

We again split into two cases:

Case 2.1. j + 1 is not a drop point. Thne σ = ⟨⟨σn, µn⟩ | n ≤T i⟩ ∈ Di if
and only if the following hold:

• σ|n+ 1 ∈ Dn if n <T i.

• µi = µn and σn = σiπn,i for n <T i.

• If Pi is a bicephalus, then σi : Pi −→∗ Nµ+1.

• If Pi is a premouse, then σi : Pi −→Σ
(k)
0

Nµi whenever λj < ρkPi
.

Case 2.2 is then exactly as before, as is Case 3.

As before we pick an injection n∗ of lh(I) into ω. We then define n(i)
(i < lh(I)) as before. We define “i survives at j” as before. We then define
the relation R on D(where D =

⋃
i<lh(I)Di) as before.

Definition 5.6.7. σ′Rσ if and only if there are i, j such that i <T j, σ′ ∈ Dj ,
σ ∈ Di, σ = σ′|i+ 1, and i does not survive at j.

As before, it turns out that, if R is ill founded then I has limit length and
there us a cofinal well founded branch in I. As before, we assume that R is
well founded. We can then literally take over the definition of ‘enlargement’,
using the revised notion of realization. In fact, we can literally take over all
the ensuing definitions and proofs in the proof of lemma 5.3.7, thus proving
lemma 5.6.8.

This shows that at any point in the construction of a Steel array there is at
most one possible application of Option 2, assuming that there is no inner
model with a Woodin cardinal.

5.7 The model Kc

We continue to assume that there is no inner model with a Woodin cardinal.
In the previous section we showed that there is a unique sequence N = ⟨Ni |
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i <∞⟩ with the properties

• N is a robust Steel array.

• Ni+1 is formed by Option 2 if possible; otherwise by Option 1.

Thus, the function ⟨Ni | i <∞ is defined recursively. In order to distinguish
it from other Steel arrays, we may sometimes write:

Nc = ⟨N c
i | i <∞⟩.

As we noted in §5.1 (following Lemma 5.2.5), the structure

N∞ =
⋃
i<∞

Mi||µ̃i,∞

is a weasel and an inner model of ZFC−. Since it is a weasel, we also denote
by LE or LEc . We set:

Kc
α = Kc||α =: ⟨JEc

α , Ecα⟩

for limit ordinals α. Whenever α is a limit ordinal and µ̃i,∞ < α for i < α,
then LEα = Nα. Hence:

Lemma 5.7.1. {α | Kc
α = N c

α} is club in ∞.

Using this we get:

Lemma 5.7.2. Kc
α is fully β-iterable for all β.

Proof. Let β > α such that Kc
β = N c. Let Nβ,η denote the constructible

extension ofNβ of length β+ωη. (ThusNβ,0 = Nβ . For η > 0, Nβ,i = LE
′

β+ωi,
where E′ = E ∪ {⟨x, β⟩ | x ∈ Eβ} and Nβ = ⟨LEβ , Eβ⟩. ) There is a least η
such that either ρωNβ,η

< β or else ρωNβ,η
= β and β is not Woodin in Nβ,η.

(Otherwise β would be Woodin in Nβ,∞. ) But Nβ,η is then a restrained one
small mouse. Moreover, by induction on i ≤ η we can prove: Nβ,i = Nβ+i

and Mβ,i = Mβ+i for i < η. (In successor points in the induction we use
that Option 2 is not available. ) By §5.4 it follows that Nβ+η is uniquely
normally iterable up to ∞. Hence Nβ+η is fully γ-iterable for all γ < ∞.
Hence Kc

α is fully γ-iterable for γ <∞, since Kc
α = Nβ+η||α. QED(Lemma

5.7.2)

We now turn to the main result of this section, which says that Kc is uni-
versal in the sense that Kc “out iterates” any normally iterable mouse. We
shall prove this using methods that we employed in the proof of the basic
comparison lemma Lemma 3.5.1. However, we must apply them to a less
wieldy situation. The precise statement we wish to prove is:
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Theorem 5.7.3. Let θ > 22
ω be a regular cardinal such that αω < θ for all

α < θ. Let Q = Kc
θ. Let P be a premouse of height < θ. Let S be a successful

θ+1 normal iteration strategy for P and S′ a successful θ+1 normal iteration
strategy for Q. Coiterate P , Q using S, S′. Then the coiteration terminates
below θ.

Note that there are arbitrarily large θ with these properties. If α ≥ 22
ω is any

cardinal, then θ = (αω)+ satisfies the condition. Before proving Theorem
5.7.3, we develop some methodology. By the condensation lemma for the
Chang hierarchy (Lemma 5.3.1), it follows that:

Fact 0. Ceγ,θ ≺Σ1 C
e
γ,∞ for all e and all γ < θ.

(We leave this to the reader. )

Our proof will make use of the condensation lemma for mouselike premice.
However, we shall restrict ourselves to the application of the following weaker
consequence:

Lemma 5.7.4. Let N be a mouselike sound premouse. Let σ : M −→Σω N
with ρωM = crit(σ) and σ(ρωM ) = ρωN . Then M ◁N .

Proof. It follows easily that σ witnesses the phalanx ⟨N,M, λ⟩, where λ =
ρωM . M is sound above λ, since N is sound above σ(λ). There are three
possibilities. The first is that M = core(N). This is impossible, since ρωM <
ρωN . Thus M is a proper segment of N unless the third possibility (c) arises.
If λ is a cardinal in N , then (c) is excluded, since it would require that
ρωN ||γ < λ for a γ ∈ N with γ > λ. If λ is not a cardinal in N , let κ be the
largest κ < λ which is a cardinal in N . (c) then requires:

π : N ||γ −→∗
F M where F = ENµ

for some µ ≤ γ such that κ = crit(F ) and λ = γ+N ||γ . Since ρωN ||γ = κ, we
have ρωM = κ < λ. Contradiction! Thus (c) fails. QED(Lemma 5.7.4)

We now introduce a concept which will be needed in the proof of Theorem
5.7.3 and will also play a large role in the next chapter, where we introduce
the core model K.

Definition 5.7.1. Let θ > ω be a regular cardinal. Let Q be a mouselike
premouse of height θ. By the stack over Q (S = S(Q)) we mean the set of
all mouselike premice N such that Q ◁ N , Q ∈ N , N is sound and ρωN = Θ.

Lemma 5.7.5. Let S = S(Q). Let N,N ′ ∈ S. Then either N ◁N ′ or N ′ ◁N .
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Proof. Let Ω > θ be regular. Let X ≺ HΩ such that N,N ′ ∈ X and
θ̄ = X ∩ θ is an ordinal < θ. (Such X clearly exists, since θ is regular. )
Let σ : H̄ ∼←→ X. Thus σ : H̄ ≺ Hω. Let σ(N̄) = N, σ(N̄ ′) = N ′. Then
N̄ ◁ N , where ht(N̄) < θ. Hence N̄ ◁ Q = N ||θ. Similarly N̄ ′ ◁ Q. Hence
N̄ ◁ N̄ ′ ∨ N̄ ′ ◁ N̄ . Hence N ◁ N ′ ∨N ′ ◁ N . QED(Lemma 5.7.5)

It follows that the union:

S = S(Q) =:
⋃

S(Q)

is a premouse extending Q.

We now again assume that θ > ω is regular. Let Q be a premouse satisfying
ZFC− such that either ht(Q) = θ or θ ∈ Q. In either case Q||θ is a ZFC−

model, since θ, being a cardinal, cannot index and extender. We ask what
happens when we apply a weakly amenable extender F pf length less than
θ to Q. Since Q is a ZFC− model, the Σ0-ultrapower is the same as the
∗-ultrapower. We assume that F is a weakly amenable extender at κ < θ on
Q and that π : Q −→F Q′ exists. Let Q = JEΩ , Q′ = JE

′
Ω′ . Then F has base

|JEτ |, where τ = κ+Q < θ and extension ⟨|JE′
ν |, π ↾ |JEτ |⟩, where π(τ) = ν.

Every element of JE′
ν has the form π(f)(α), where f ∈ JEτ is a map defined

on κ and α < lh(F ). The collection of such pair ⟨f, α⟩ is a set in Q. In V ,
however, the function ⟨f, α⟩ 7→ π(f)(α) maps this set onto ν. Hence ν < θ,
since θ is regular in V .

We ask whether π takes θ to itself. If π”θ ⊂ θ and ht(Q) = θ, it follows
that ht(Q′) = θ, since each ordinal element of Q′ has the form π(f)(α),
where α < lh(F ) and f : κ −→ ON in Q. Thus π(f)(α) < π(γ), where
γ = lub f” lh(F ) < θ. If θ ∈ Q, it follows for the same reason that π(θ) = θ.
Since θ is regular in V we know that Q||θ is a ZFC− model. If arbitrarily
large α < θ are cardinals in the sense of Q, then Q||θ is a full ZFC model. If
not, there is a largest µ < θ which is a cardinal in Q||θ. Then:

Fact 1. If Q||θ models ZFC, then π”θ ⊂ θ.

Proof. Let η ∈ Q′. Each ξ < η has the form: π(f)(α), where α < lh(F )
and f ∈ Q such that f : κ −→ η. The set of such pairs is a set in Q||θ, hence
in V . Thus there is in V a map of this set onto η. Hence card(η) < θ. Hence
η < θ, since θ is regular. QED(Fact 1)

Fact 2. Let µ be the largest cardinal in Q||θ. Set µ̃ = lubπ”µ. Then µ̃ < θ.

Proof. By a virtual repetition of the proof of Fact 1 we have: η < µ −→
π(η) < θ. But then µ̃ < θ, since θ is regular. QED(Fact 2)

Fact 3. If µ is as in Fact 2 and κ ̸= cf(µ) in Q, then π(µ) = µ̃.
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Proof. If κ < cf(µ) in Q, then each ξ < π(µ) has the form π(f)(α) where
α < lh(F ) and f ∈ Q such that f : κ −→ µ. But then π(f)(α) < π(β),
where

β = lub{f(ξ) | ξ < κ}.

Hence π(µ) =
⋃
π”µ = µ̃. Now let κ > cf(µ) in Q. Let γ = cf(µ) in

Q. There is g ∈ Q such that g : γ −→ µ and µ = lub g”γ. But then
π(g) : γ −→ π(µ) and π(µ) = lubπ(g)”γ = µ̃. QED(Fact 3)

Fact 4. If µ is as above and κ ̸= cf(µ), then π”θ ⊂ θ.

Proof. Let µ ≤ ξ < θ. Then there is g ∈ Q such that g : µ onto−→ ξ. Hence
π(g) : π(µ)

onto−→ π(ξ), where π(ξ) ≥ ξ. Hence π(ξ) < θ, since θ > π(µ) is
regular. QED(Fact 4)

If, however, κ = cf(µ) in Q, then things are very different:

Fact 5. If µ is as above and κ = cf(µ) in Q, then π(µ) > θ. Moreover, µ̃ is
the largest cardinal in Q′||θ.

Proof. Let u ∈ Q||θ such that u ⊂ {f | f : κ −→ µ} in Q. Then there is a
g ∈ Q such that g : κ −→ µ and

π(f)(κ) ̸= π(g)(κ) for all f ∈ u.

To see this, let ⟨fi | i < µ⟩ enumerate u in Q. Let ⟨µi | i < κ⟩ be monotone
such that lub{µi | i < κ} = µ. Choose g(i) /∈ {fj(i) | j < µi} for i < κ.
Then: fj(i) ̸= g(i) for j > µi. Hence f(i) ̸= g(i) for sufficiently large i, if
f ∈ u. Hence:

π(g)(κ) ̸= π(f)(κ) for f ∈ u.

Using this, we see that there is a sequence gξ(ξ < β) such that

π(gξ)(κ) ̸= π(gζ)(κ) for ξ ̸= ζ.

Hence π(µ) ≥ θ, since π(gξ)(κ) < π(µ) for ξ < θ. θ is regular V , hence in
Q′, whereas

cf(π(µ)) = π(κ) < θ in Q′.

Hence π(µ) > θ. It remains to show that µ̃ is the largest cardinal in Q′||θ.
Let τ > µ̃ be a cardinal inQ′||θ. We derive a contradiction. Then P(µ̃)∩Q′ ⊂
JE

Q′

τ by acceptability. Now suppose that X,Y ∈ P(µ)∩Q such that X ̸= Y .
Then X, Y have a point of difference ξ < µ, i.e.:

ξ ∈ X ↮ ξ ∈ Y.
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But then π(ξ) < µ̃ is apoint of difference of π(X), π(Y ). Hence the map
X 7→ π(X)∩ µ̃ injects P(µ)∩Q into P(µ̃)∩Q′. This is a contradiction, since
card(P(µ) ∩Q) = θ and card(P(µ̃) ∩Q′) ≤ τ < θ. QED(Fact 5)

We now turn to the proof of Theorem 5.7.3. Suppose not. Then P,Q have
the coiteration ⟨IP , IQ⟩ of length θ + 1, where:

IP = ⟨⟨Pi⟩, ⟨νi | i ∈ AP ⟩, ⟨πPi,j⟩, TP ⟩,

IQ = ⟨⟨Qi⟩, ⟨νi | i ∈ AQ⟩, ⟨πQi,j⟩, T
Q⟩,

where ⟨νi | i < θ⟩ is the sequence of coiteration indices. (Hence AP∪AQ = θ.)

Let Ω > card(Hθ) be regular such that

S, S′, IP , IQ,S ∈ HΩ,

where S, S′ are the iteration strategies for P , Q respectively and S = S(Q)
is the stack over Q. Pick X ≺ HΩ such that

• card(X) < θ

• θ̄ = X ∩ θ is transitive and 22
ω
< θ̄

• S, S′, IP , IQ,S ∈ X.

This is possible by the regularity of θ. Let σ : Ĥ ∼←→ X be the transitiviza-
tion of X. Then σ : Ĥ ≺ HΩ, θ̄ = crit(σ) and σ(θ̄) = θ. Let:

σ(ĪP ) = IP , σ(ĪQ) = IQ,

where:
ĪP = ⟨⟨P̄i⟩, ⟨ν̄i⟩, ⟨π̄Pi,j⟩, T̄P ⟩

ĪQ = ⟨⟨Q̄i⟩, ⟨ν̄i⟩, ⟨π̄Qi,j⟩, T̄
Q⟩

Set: H = σ−1(Hθ). Then σ ↾H = id. Hence on both sides of the coiteration
we have:

(1)(a) i <T̄ θ̄ ←→ i <T θ for i < θ̄

(b) i <T̄ j ←→ i <T j for i, j < θ̄

But then

(1)(c) θ̄ <T θ,
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since θ̄ < θ is a limit point of the branch {i | iTθ}. (Note This does not
presuppose that there are cofinally many active points below θ. As we shall
see, it is possible that there are no active points on the Q-side. Recall that
if no j > i is active, then i <T j and πi,j = id for j > i.) We now specifically
consider the P -side of the coiteration. Since ht(P ) < θ, a straightforward
induction on i shows:

(2) ht(Pi) < θ for i < θ.

(Hence νi ≤ ht(Pi) < θ.) Since σ ↾H = id we have:

(3) P̄i = Pi and π̄Pi,j = πPi,j for i ≤T j < θ.

The branch {i | i <TP θ} has at most finitely many drop points. Hence
the last drop point, if it exists, must lie below θ̄. Exactly as in the proof of
Lemma 3.5.1 we then get:

(4) P̄θ̄, ⟨π̄Pi,θ̄ | i <TP θ̄⟩ is the transitivised direct limit of:

⟨Pi | i < θ̄⟩, ⟨πPi,j | i ≤TP j <TP θ̄⟩.

But then:

(5) P̄θ̄ = Pθ̄, π̄Pi,θ̄ = πP
i,θ̄

for i <TP θ̄.

Hence:

(6) σ ↾Pθ̄ = πP
θ̄,θ

.

Proof. Let x ∈ Pθ̄. Then x = πi,θ̄(z) for some i <TP θ̄. Thus,

σ(x) = σ(π̄i,θ̄(z)) = πi,θ(z) = πθ̄,θ(πi,θ̄(z)) = πθ̄,θ(x).

QED(6)

Exactly as in Lemma 3.5.1 we then get:

(7) Let i be least such that θ̄ <TP i <TP θ and Pi ̸= Pθ̄. Then i = j + 1
where j is active in IP . Moreover:

E
Pj
νj (X) = {α < λj | α ∈ σ(X)} for X ∈ P(θ̄) ∩ Pθ̄.

We now turn to the Q-side. Here things are more complicated, since Q is
not smaller than θ. It is therefore not clear that any i < θ is active on the
IQ-side. If, however, a truncation occurs on the main branch {δ | δ <TQ θ},
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then the Qi’s on this branch would be small from this point on. We could
then repeat the proof of Lemma 3.5.1, obtaining a contradiction. Hence:

(8) The Q-side has no truncation on the main branch.

Proof(sketch). Suppose not. Then the last truncation point i0 + 1 on the
branch lies below θ̄. By induction on i it then follows that:

ht(Qi) < θ for i0 < i <TQ θ̄.

Hence:
ht(Q̄i) < θ̄ for i0 < i <T̄Q θ̄.

Since σ ↾H = id, we can repeat the proof of (2)-(7) on the Q-side, getting

• ht(Qi) < θ for i0 < i <TQ θ

• Q̄i = Qi and π̄Qi,j = πQi,j for i0 < i ≤TQ j <TQ θ̄

• Q̄θ̄ = Qθ̄, π̄
Q

i,θ̄
= πQ

i,θ̄
for i0 < i <TQ θ̄

• σ ↾Qθ̄ = πQ
θ̄,θ

• Let i′ be least such that θ̄ <TQ i <TQ θ and Qi ̸= Qθ̄. Then i′ = j′+1
where j′ is active in IQ. Moreover:

E
Pj′
νi′ (X) = {α < λj | α ∈ σ(X)} for X ∈ P(θ̄) ∩Qθ̄.

Hence, letting i, j be as in (7) we cannot have j = j′, since otherwise EQj
νi =

E
Pj
νi and νi is not a point of difference. Repeating the rest of the proof of

Lemma 3.5.1, we can then use the initial segment condition to show that
j ̸= j′ is also impossible. Contradiction! QED(8)

From this it follows by induction on j that:

(9) πQi,j : Qi −→Σω Qj cofinally for i ≤TQ j <TQ θ.

However, it is not clear that πQi,j”θ ⊂ θ for i < Tj <t θ. We leave it to the
reader to verify:

(10) Let i ≤T j <T θ such that πi,j”θ ⊂ θ in IQ. Then:

• If h ≤T i and πi,j”θ ⊂ θ, then πh,j”θ ⊂ θ.

• If j ≤T h <T θ and πj,h”θ ⊂ θ, then πi,h”θ ⊂ θ.
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• if i ≤T h ≤T j, then πi,h”θ ⊂ θ and πh,j”θ ⊂ θ.

Call j <TQ θ is tipping point of IQ if and only if there is i <TQ j such that
πQi,j”θ ⊈ θ and πQi,h”θ ⊂ θ for i ≤TQ h <TQ θ.

(11) There are at most finitely many tipping points.

Proof. Suppose not. Let jn be the n-th tipping point (n < ω). Then
θ ∈ Qjn and πjn,jn+1(θ) > θ. Hence:

πjn,θ(θ) = πjn+1,θ(πjn,jn+1(θ)) > πjn+1,θ(θ).

Contradiction! QED(11)

(12) Every tipping point is a successor ordinal.

Proof. Suppose not. Let η be an exception. Then η is a limit ordinal and
there is i <T η such that πi,j”θ ⊂ θ for i <T j <T η. Pick ξ < θ such that
πi,η(ξ) ≥ θ. Then:

πi,η(ξ) =
⋃
{πj,η”πi,j(ξ) | i ≤T j <T η}.

Since η < θ and πi,j(ξ) < θ for i ≤T j <T η, it follows that card(πi,η(ξ)) < θ.
But θ is a cardinal in V . Hence πi,η(ξ) < θ. Contradiction! QED(12)

(13) Let i′ + 1 be a tipping point. Let h = T (i + 1) in IQ. Then there is
µ < θ such that

• µ is the largest cardinal in Qh||θ

• κi = cf(µ) in Qh||θ

• πh,i+1(µ) > θ

• µ̃ = lubπh,i+1”µ is the largest cardinal in Qi+1||θ.

This follows by the application of Fact 1–Fact 5. We leave this to the reader.

(14) Let γ = sup{i | i is a tipping point }. Then

• πQγ,i”θ ⊂ θ (Hence πγ,i : Qγ ||θ −→Σ0 Qi||θ cofinally for γ ≤T i <T θ.

• If Q is a ZFC model, then γ = 0 and each Qi is a ZFC model for i < θ.

• If Q is not a ZFC model, then Qγ ||θ is not a ZFC model. (Hence Qγ ||θ
has the largest cardinal in Qi||θ for γ ≤ i ≤TQ θ. )
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This follows from (12), again applying Fact 1–Fact 5. If γ is as in (14) it is
clear that γ < θ̄. But then

(15) πQγ,θ”θ ⊂ θ.

Proof. Suppose not. Then there are arbitrarily large j such that γ ≤T
j <T θ in IQ and j is active in IQ. (otherwise there would be j such that
γ <T j <T θ and Qj = Qθ. Hence πj,θ = id. Hence:

πγ,θ”θ = πγ,j”θ ⊂ θ.

Contradiction! ) Now let δ be least such that δ ≥ γ, δ <TQ θ, and πδ,θ”θ ⊈ θ.
Then there is a least µ < θ such that πδ,θ(µ) ≥ θ. But then µ is a cardinal in
Qδ, since otherwise θ would not be a cardinal in Qθ, hence not in V . Clearly
δ, µ < θ̄., Set:

µi = πQδ,i(µ), Q
′
i = Qi|µi = JE

Qi

µi for δ ≤T i ≤T θ in IQ.

and:
π′h,i = πQh,i ↾Q

′
h for γ ≤T h ≤T i in IQ.

Set:
⟨Q̄′

i | γ ≤T̄ i ≤T̄ θ̄⟩ = σ−1(⟨Q′
i | γ ≤T i ≤ θ⟩)

⟨π̄′h,i | γ ≤T̄ i ≤T̄ θ̄⟩ = σ−1(⟨π′h,i | γ ≤T h ≤T i ≤T θ⟩).

Since σ ↾H = id, we get:

Q̄′
i = Q′

i, π̄
′
i,j = π′i,j for γ ≤T i ≤T j < θ̄.

But then exactly as before we get:

Q̄′
θ̄ = Q′

θ̄, π̄
′
θ̄,θ = σ ↾Q′

θ, π̄
′
i,θ̄ = π′i,θ̄

for i <T θ̄. If i is least such that i is active in IQ and θ̄ <T i + 1 <T Q in
IQ, then it follows as before that:

πδi+1(X) = σ(X) ∩ λi for X ∈ P(κi) ∩Qθ̄.

(Note that X ∈ Q′
θ̄
, since µθ̄ is a cardinal in Qθ̄. )

Hence:
EQνi(X) = {α < λi | α ∈ σ(X)} for X ∈ P(δ) ∩Qδ.

We can the repeat the proof of Lemma 3.5.1, getting a contradiction. QED(15)

(16) Q is a ZFC model.

Proof. Suppose not. Let γ be as before. Then there is µ < θ such that

Qγ ||θ |= µ is the largest cardinal.
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Hence:
Qθ||θ |= µ′ is the largest cardinal,

where µ′ = πγ,θ(µ). But Qθ||θ = Pθ||θ and:

κi is a cardinal in Pθ for active i <TQ θ.

Hence Qθ||θ is a ZFC model. Contradiction! QED(16)

Thus πQi,j”θ ⊂ θ and:

πQi,j : Qi −→Σω Qj cofinally

for i ≤TQ j ≤TQ θ. Now let:

Def. Q̃ =: (JE
θ̄+
)Pθ̄

(17) Q̃ = (JE
θ̄+
)Pθ .

Proof. Let i be least such that θ̄ <T i+ 1 <T θ in IP and i is active in IP .
Let h = T (i + 1). Then h is active IP and Ph = Pθ̄. Moreover, τi = θ̄+Pθ̄ .
Hence: (JE

θ̄+
)Pθ = (JE

θ̄+
)Pi+1 = Q̃. QED(17)

But then:

(18) Q̃ = (JE
θ̄+
)Qθ = (JE

θ̄+
)Qθ̄ .

Proof. Q̃ = (JE
θ̄+
)Qθ , since Qθ||θ = Pθ||θ. We must show: (JE

θ̄+
)Qθ̄ =

(JE
θ̄+
)Qθ . If Qθ̄ = Qθ, this is trivial. If not, there is a least i such that

θ̄ <T i+ 1 <T θ and i is active in IQ. We can then repeat the proof of (17)
on the Q side. QED(18)

We now set: Def. Q′ =: (JE
θ̄+
)Q, π̃ =: π0,θ̄ ↾Q

′.

Clearly π̃ : Q′ −→Σω Q̃. Moreover:

(19) π̃ ↾Q̄0 = π̄0,θ.

Proof. Let x ∈ Q̄0 ⊂ H. Since σ ↾Hid, we have:

π̃0,θ̄(x) = y ⇐⇒ π0,θ(x) = σ(y) = πθ̄,θ(y)

⇐⇒ πθ̄,θ(x) = y.

QED(19)

But then:

(20) Q′ ⊂ Ĥ
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Proof. If X ∈ P(θ̄)∩Q′, then, letting X̃ = π̃(X) we have: X = π̄0,θ̄”X̃ ∈ Ĥ,
since X̃, π̄0,barθ ∈ Ĥ. Hence X ∈ Ĥ. But each x ∈ Q′ os canonically coded
by an X ∈ P(θ̄ ∩Q′. Since Ĥ is a ZFC− model, x can be recovered from X
in Ĥ. Hence x ∈ Ĥ. QED(20)

Hence:

(21) Q′ ∈ Ĥ.

Proof. Each x ∈ Q′ lies in a Q′|ν = ⟨JE′
ν , F ⟩ where Q′||ν has size < θ̄ in Q′

and ρωQ′||ν = θ̄ and Q′||ν is mouselike. It follows easily that Q′||ν ∈ S̄, where
S̄ = σ−1(S). Hence Q′||ν ◁ S̄, where σ(S̄) = S =

⋃
S. Hence Q′ ◁ S̄, where

S̄ ∈ Ĥ. Hence Q′ ∈ Ĥ. QED(21)

Now let: Q′′ = JEν = σ(Q′). Then Q′′ is a premouse extending Q = σ(Q̄).
Set:

F = σ ↾(P(θ̄) ∩Q′)

Then F is an extender with base Q′ and extension ⟨Q′′, σ ↾Q′⟩. The length
of F is θ = σ(θ̄). Then F is a full extender. F is weakly amenable since
P(θ̄) ∩ Q′ = P‘(θ̄) ∩ Q′′. Then the structure ⟨JEν , F ⟩ satisfies all conditions
for being an active premouse except the initial segment condition. We can
remedy this by shortening F . Since θ is regular, there is a least λ such that
ht(Q′) < λ < θ and:

σ(f)(α) < λ whenever α < λ, f ∈ Q′, and f : θ̄ −→ θ.

Set F ∗ = F |λ. Then F ∗ is a full extender with base Q′ and extenstion
⟨Q∗, σ∗⟩, where σ∗ : Q′ −→F Q∗. Let Q∗ = JE

∗
ν∗ . Each x ∈ JE

∗
ν∗ has the

form: σ∗(f)(α), where α < λ and f ∈ Q′ such that f : θ̄ −→ Q′. Hence we
can define σ̃ : Q∗ −→Σ0 Q

′′ by:

σ̃(σ∗(f)(α) = σ(f)(α)

for all such α, f . Then λ = crit(σ̃) and σ̃(λ) = θ. Moreover σ̃σ∗ = σ ↾Q′.
Hence:

(22) Q∗||λ = Q′′||λ = JEλ where Q′′ = JEτ .

However, we can improve this to:

(23) Q∗ = Q′′||ν∗.

Proof. Let α < ν∗, Then α ∈ σ∗(Q′||η) for an η ∈ Q′ such that ρωQ′||η = θ̄.
Hence σ∗(Q′||η) = Q∗||σ∗(η) where ρωQ∗||σ∗(η) = λ. Moreover:

σ̃(Q∗||σ(η)) = σ(Q′||η) = Q′′||σ(η),
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where ρωQ′||σ(η) = θ. By the condensation Lemma 5.7.4 it follows that:
Q∗||σ∗(η) = Q′′||σ∗(η). QED(23)

However, we can then conclude:

(24) EQ
′′

ν∗ = ∅.

Proof. Suppose not. Then Q′′|ν∗ is a sound premouse and ρωQ′′||ν∗ ≤ λ,

since λ is the largest cardinal in JE
Q′′

ν∗ . But λ is, in fact, a cardinal in Q′′.
Hence ρωQ′′||ν∗ = λ. But then Q||ν∗ is not 1-small by Lemma 3.8.9. Hence
Q = Q′′||θ is not 1-small. Contradiction! QED(24)

By this and Lemma 5.2.8, we then conclude:

(25) F ∗ is not robust in ⟨JEν∗ , F ∗⟩.

Proof. Suppose not. Q = Nθ =Mθ in the Steel array which constructs Kc,
since θ > ω is regular in V . But λ is a cardinal in Q and:

JE
Q

ν∗ |= λ is the largest cardinal.

Hence ν∗ is cardinally absolute in Q. Since EQν∗ = ∅. We conclude by
Lemma 5.2.8 that JEν∗ =Mi for an i < θ such that Ni+1 is formed by Option
1. But if F ∗ were robust in ⟨JEν∗ , F ∗⟩, we would be obligated to use option
2. Contradiction! QED(25)

We now produce the ultimate contradiction by proving:

(26) F ∗ is robust in ⟨JEν∗ , F ∗⟩.

Proof. The condition ’F ∗ is robust in ⟨JEν∗ , F ∗⟩’ can be reformulated as
follows: let g : ω −→ λ and let X = ⟨Xi | i ∈ ω⟩ map ω into P(θ̄) ∩Q′′. Set:

D = {⟨i1, · · · , in, j⟩ | i1, · · · , in, j < ω∧ ≺ g(i1), · · · , g(in) ≻∈ F ∗(Xj)}

A = {⟨a1, · · · , an, φ⟩ | φ is a Σ1 formula ∧a1, · · · , an ⊂ ω∧CEc,∞ |= φ[g”a1, · · · , g”an]}

where c = lub g”ω. Then there is ḡ : ω −→ θ̄ such that

(a) For all i1, · · · , in < ω and j < ω:

≺ ḡ(i1), · · · , ḡ(in) ≻∈ Xj ←→ ⟨i1, · · · , in, j⟩ ∈ D.

(b) For all a1, · · · , an ⊂ ω and all Σ1 formula φ:

CEc̄,θ̄ |= φ[ḡ”a1, · · · , ḡ”an]←→ ⟨a1, · · · , an, φ⟩ ∈ A

where c̄ = lub ḡ”ω.



5.7. THE MODEL Kc 571

(We leave it to the reader to verify this formulation. ) We first note that A,
D are subsets of P(Hω1)

n+1. But then H contain an enumeration of all such
subsets by 22

ω , since Hθ does. Hence σ(A) = A, σ(D) = D, since σ ↾H = id.

The existence statement that there is ḡ : ω −→ θ̄ satisfying (a), (b) is a
statement about X, θ,Q′ = JE

′
τ , A,D holding Ĥ. Hence it suffices to show

that the same statement holds of σ(X) = ⟨F (Xi) | i ∈ ω⟩, σ(θ̄) = θ, σ(Q∗) =
Q′′, A = σ(A), D = σ(D) in HΩ. This is, in fact trivial if we take ḡ as being
our original g. Then g : ω −→ θ and:

(a’) For all i1, · · · , in < ω and j < ω:

≺ g(i1), · · · , g(in) ≻∈ Xj ←→ ⟨i1, · · · , in,mj⟩ ∈ D.

(b’) For all a1, · · · , an ⊂ ω and all Σ1 formula φ:

CE
′′

c,θ |= φ[g”a1, · · · , g”an]←→ ⟨a1, · · · , an, φ⟩ ∈ A

(a’) holds since F ∗(Xj) = λ ∩ F (Xj). (b’) holds because CE′′
c,θ ≺Σ1 C

E′′
c,∞.

QED(26)

This completes the proof of Theorem 5.7.3.
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