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 Inference and missing data

 BY DONALD B. RUBIN

 Educational Testing Service, Princeton, New Jersey

 SUMMARY

 When making sampling distribution inferences about the parameter of the data, 0, it is
 appropriate to ignore the process that causes missing data if the missing data are 'missing

 at random' and the observed data are 'observed at random', but these inferences are

 generally conditional on the observed pattern of missing data. When making direct-

 likelihood or Bayesian inferences about 0, it is appropriate to ignore the process that causes

 missing data if the missing data are missing at random and the parameter of the missing data
 process is 'distinct' from 0. These conditions are the weakest general conditions under which

 ignoring the process that causes missing data always leads to correct inferences.

 Some key words: Bayesian inference; Incomplete data; Likelihood inference; Missing at random;
 Missing data; Missing values; Observed at random; Sampling distribution inference.

 1. INTRODUCTION: THE GENERALITY OF

 THE PROBLEM OF MISSING DATA

 The problem of missing data arises frequently in practice. For example, consider a large
 survey of families conducted in 1967 with many socioeconomic variables recorded, and a
 follow-up survey of the same families in 1970. Not only is it likely that there will be a few
 missing values scattered throughout the data set, but also it is likely that there will be a large
 block of missing values in the 1970 data because many families studied in 1967 could not be

 located in 1970. Often, the analysis of data like these proceeds with an assumption, either
 implicit or explicit, that the process that caused the missing data can be ignored. The
 question to be answered here is: when is this the proper procedure?

 The statistical literature on missing data does not answer this question in general. In most

 articles on unintended missing data, the process that causes missing data is ignored after

 being assumed accidental in one sense or another. In some articles such as those concerned

 with the multivariate normal (Afifi & Elashoff, 1966; Anderson, 1957; Hartley & Hocking,
 1971; Hocking & Smith, 1968; Wilks, 1932), the assumption about the process that causes

 missing data seems to be that each value in the data set is equally likely to be missing. In
 other articles such as those dealing with the analysis of variance (Hartley, 1956; Healy &

 Westmacott, 1956; Rubin, 1972, 1976; Wilkinson, 1958), the assumption seems to be that
 values of the dependent variables are missing without regard to values that would have
 been observed.

 The statistical literature also discusses missing data that arise intentionally. In these
 cases, the process that causes missing data is generally considered explicitly. Some examples

 of methods that intentionally create missing data are: a preplanned multivariate experi-
 mental design (Hocking & Smith, 1972; Trawinski & Bargmann, 1964); random sampling
 from a finite population, i.e. the values of variables for unsampled units being missing

 (CWochran, 1963, p. 18); randomization in an experiment, where, for each unit, the values
 that would have been observed had the unit received a different treatment are missing
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 582 DONALD B. RUBIN

 (Kempthorne, 1952, p. 137; Rubin, 1975); sequential stopping rules, where the values after

 the last one observed are missing (Lehmann, 1959, p. 97), and even some 'robust analyses',

 where observed values are considered outliers and so discarded or made missing.

 2. OBJECTIVES AND BROAD REVIEW

 Our objective is to find the weakest simple conditions on the process that causes missing

 data such that it is always appropriate to ignore this process when making inferences about

 the distribution of the data. The conditions turn out to be rather intuitive as well as non-

 parametric in the sense that they are not tied to any particular distributional form. Thus

 they should prove helpful for deciding in practical problems if the process that causes

 missing data can be ignored.

 Section 3 gives the notation for the random variables: 0 is the parameter of the data, and
 q is the parameter of the missing-data process, i.e. the parameter of the conditional distribu-

 tion of the missing-data indicator given the data. Section 4 presents examples of processes

 that cause missing data.

 Section 5 shows that when the process that causes missing data is ignored, the missing-
 data indicator random variable is simply fixed at its observed value. Whether this corre-

 sponds to proper conditioning depends on the method of inference and three conditions on

 the process that causes missing data. These conditions place no restrictions on the missing-

 data process for patterns of missing data other than the observed pattern. Their formal

 definitions correspond to the following statements.

 The missing data are mxissing at random if for each possible value of the parameter ?i, the conditional
 probability of the observed pattern of missing data, given the missing data and the value of the
 observed data, is the samne for all possible values of the missing data.

 The observed data are observed at random if for each possible value of the missing data and the
 parameter qS, the conditional probability of the observed pattern of missing data, given the massing
 data and the observed data, is the same for all possible values of the observed data.

 The parameter ?i is distinct from 0 if there are no a priori ties, via parameter space restrictions or
 prior distributions, between ?i and 0.

 Sections 6, 7 and 8 use these definitions to prove that ignoring the process that causes
 missing data when making sampling distribution inferences about 0 is appropriate if the
 missing data are missing at random and the observed data are observed at random, but the
 resulting inferences are generally conditional on the observed pattern of missing data.

 Further, ignoring the process that causes missing data when making direct-likelihood or
 Bayesian inferences about 6 is appropriate if the missing data are missing at random and
 q is distinct from 0.

 Other results show that these conditions are the weakest simple and general conditions
 under which it is always appropriate to ignore the process that causes missing data. The
 reader not interested in the formal details should be able to skim ?? 3-8 and proceed to ? 9.

 Section 9 uses these results to highlight the distinctions between the sampling distribution
 and the likelihood-Bayesian approaches to the problem of missing data. Section 10 con-

 cludes the paper with the suggestion that in many practical problems, Bayesian and
 likelihood inferences are less sensitive than sampling distribution inferences to the process

 that causes missing data.

 Throughout, measure-theoretic considerations about sets of probability zero are ignored.
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 Inference and missing data 583

 3. NOTATION FOR THE RANDOM VARIABLES

 Let U = (U1, ..., UQ) be a vector random variable with probability density function fo.
 The objective is to make inferences about 0, the vector parameter of this density. Often in

 practice, the random variable U will be arranged in a 'units' by 'variables' matrix. Let

 M = (M1, ..., M.) be the associated 'missing-data indicator' vector random variable, where
 each Mi takes the value 0 or 1. The probability that M takes the value m = (ml, ..., m.) given

 that U takes the value u = (U1, Un, u,n) is go (m Iu), where 0 is the nuisance vector parameter
 of the distribution.

 The conditional distribution go corresponds to 'the process that causes missing data':
 if mi = 1, the value of the random variable Ui will be observed while if mi = 0, the value
 of Ui will not be observed. More precisely, define the extended vector random variable
 V = (V1, ..., VJ') with range extended to include the special value * for missing data:

 vi = ui (mi = 1), and vi = * (mi = 0). The values of the random variable V are observed,
 not the random variable U, although it is desired to make inferences about the

 distribution of U.

 4. EXAMPLES OF PROCESSES THAT CAUSE MISSING DATA

 In order to clarify the notation in ? 3 we give four examples.

 Example 1. Suppose there are n samples of an alloy and on each we attempt to record some

 characteristic by an instrument that has a constant probability, 0, of failing to record the
 result for all possible samples. Then

 n

 gs(MIU) =11 mi(l-0)1-Mi.

 Example 2. Let ui be the value of blood pressure for the ith subject (i = 1, ..., n) in a
 hospital survey. Suppose vi = e if ui is less than 0, which equals the mean blood pressure in
 the population; i.e. we only record blood pressure for subjects whose blood pressures are

 greater than average. Then
 n

 g,(mlu) = II 6{y(,ui-qS)-mm},
 i=1

 where y(a) = 1 if a > 0 and 0 otherwise; d(a) = I if a = 0 and 0 otherwise.

 Example 3. Observations are taken in sequence until a particular function of the observa-

 tions is in a specified critical region C. Here n is essentially infinite and, for some n, which
 is a function of the observations, vi = * (i < nl), and vi = * (i > nl). Thus

 ni n

 ,,s(MlU) II a(' -mi) 1I 8(mi),
 i=l ~~i==ni ?l

 where n1 is the minimum k such that the function Qk(Ul, Uk) E C.

 Example 4. Let n = 2. If u1 > 0: with probability 0, v1 * * and v2 = *; and with proba-
 bility 1-/', v, + * and v2 * *. If ul < 0: with probability qS, v, * * and v2 = *; and with
 probability 1- 0, v1 = * and v2 * *. Thus

 (55 if M= (1,0),
 ( (1 -q0)(u1) if m= (1,1 ),

 g5(mIu) - (1-qS){I-y(u1)} if m= (0,1),
 0% if m =(0,0).
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 584 DONALD B. RUBIN

 5. IGNORING THE PROCESS TEAT CAUSES MISSING DATA

 Let v = (i1, ..., i,n) be a particular sample realization of V, i.e. each vi is either a known
 number or a missing value, *. These observed values imply an observed value for the random

 variable M, qn = (M), ..., Mn), and imply observed values for some of the scalar random
 variables in U. That is, if vi is a number, then the observed value of Mi, r is one, and the
 observed value of Us, u-i, equals vi; if Vi = *, then m- = 0 and the value of Ui is not known;
 in special cases, knowing values in v may imply observed values for some Ui with vi =
 for example f6 specifies U1 = u2+ u3 and we observe vi = * 2= 3-1 and -i = 5-2.

 Table 1. Clas8ifying the example8 in ? 4

 Missing data, Observed data,
 Example missing at random observed at random qS distinct from 0

 1 Always mAm Always oAR Always distinct

 2 iAu only if all rni = 1 OAPR only if all rni = 0 Distinct only if mean blood
 pressure in the population is
 known a priori

 3 Always mAR Never oAP. Always distinct

 4 mAR unless m = (0, 1) oAR unless A = (1, 1) Distinct if a priori 0 is not
 restricted by 0

 Hence, the observed value of M, namely in, effects a partition of each of the vectors of
 random variables and the vectors of observed values into two vectors corresponding to

 = 0 for missing data and -i = 1 for observed data. For convenience write

 U = (U(O), U() V = (V{O)) V1i))) U = (u(0), U(,)),) v= (V(0),V(l)),

 where by definition v(O) = (*, ..., *) and u(s = V(V. It is important to remember that these
 partitions are those corresponding to m = m, the observed pattern of missing data. For
 further notational convenience, we let u = (u(o), U(); u consists of a vector of arguments, u(0),
 corresponding to unobserved random variables, and a vector of known numbers, (1) =

 corresponding to values of observed random variables.

 The objective is to use v, or equivalently n and - , to make inferences about 0. It is com-

 mon practice to ignore the process that causes missing data when making these inferences.
 Ignoring the process that causes missing data means proceeding by: (a) fixing the random

 variable M at the observed pattern of missing data, m, and (b) assuming that the values of

 the observed data, 2U0, arose from the marginal density of the random variable U(1):

 f fo(u) du(o). (5.1)

 The central question here concerns the weakest simple conditions on go such that ignoring
 the process that causes missing data will always yield proper inferences about 0.

 Three conditions are relevant to answering this question. These conditions place no

 restrictions on go(m Iu) for values of M other than mi.

 Definition 1. The missing data are missing at random if for each value of q, g4 Aiiji) takes

 the same value for all U(o).

 Definition 2. The observed data are observed at random if for each value of . and U(0)-

 gq5(nu) takes the same value for all U(D.
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 Inference and missing data 585

 Definition 3. The parameter 0 is distinct from 0 if their joint parameter space factorizes
 into a 0-space and a 0-space, and when prior distributions are specified for 0 and 0, if these
 are independent.

 Table 1 classifies the four examples of ? 4 in terms of these definitions.

 6. MISSING DATA AND SAMPLING DISTRIBUTION INFERENCE

 A sampling distribution inference is an inference that results solely from comparing the
 observed value of a statistic, e.g. an estimator, test criterion or confidence interval, with the

 sampling distribution of that statistic under various hypothesized underlying distributions.

 Within the context of sampling distribution inference, the parameters 0 and 0 have fixed
 hypothesized values.

 Ignoring the process that causes missing data when making a sampling distribution infer-

 ence about the true value of 0 means comparing the observed value of some vector statistic

 S(v), equivalently S(Mn, ?2(i)), to the distribution of S(v) found from f0. More precisely, the

 sampling distribution of S(v) ignoring the process that causes missing data is found by

 fixing 1 at the observed A and assuming that the sampling distribution of the observed data
 follows from density (5.1). The problem with this approach is that for the fixed m, the
 sampling distribution of the observed data, il(1), does not follow from (5.1) which is the
 marginal density of U(1) but from the conditional density of U(1) given that the random

 variable H took the value m:

 f {fO(u) gOs(AJu)/kO,O(m)}du(o), (6.1)
 where ko = J ffo(u) g,(AnIu) du, which is the marginal probability that M takes the
 value A?. Hence, the correct sampling distribution of S(v) depends in general not only on the

 fixed hypothesized fo but also on the fixed hypothesized g,o.

 THEOREM 6 1. Suppose that (a) the missing data are missing at random and (b) the observed
 data are observed at random. Then the sampling distribution of S(v) underf0 ignoring the process

 that causes missing data, i.e. calculatedfrom density (5. 1), equals the correct conditional sampling
 distribution of S(v) given A under f0,g, that is calculated from density (6.1) assuming
 ko, 0 (A) > 0.

 Proof. Under conditions (a) and (b), for each value of 5b, g (AI u) takes the same value for
 all u; notice that this does not imply U and H are independently distributed unless it holds

 for all possible A?. Hence ko 0 ,(m) = g,(4 I u), and thus the distribution of every statistic under
 density (5.1) is the same as under density (6.1).

 THEOREM 6 2. The sampling distribution of S(v) under fo calculated by ignoring the process
 that causes missing data equals the correct conditional sampling distribution of S(v) given A

 under fo0go for every S(v), if and only if

 EU(O0{go(n |Iu) In, u(l),0,} = ko. () > 0. (6.2)
 Proof. The sampling distribution of every S(v) found from density (5.1) will be identical

 to that found from density (6 1) if and only if these two densities are equal. This equality

 may be written as equation (6.2) by dividing by (5.1), and multiplying by k1c, O(m).
 The phrase 'ignoring the process that causes missing data when making sampling distri-

 bution inferences' may suggest not only calculating sampling distributions with respect to
 density (6.1) but also interpreting the resulting sampling distributions as unconditional
 rather than conditional on is.
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 586 DONALD B. RUBIN

 THEOREM 6*3. The sampling distribution of S(i) under fo calculated ijnoring the process
 that causes missing data equals the correct unconditional sampling distribution of S(i) under

 f, gofor all S(i) if and only if go (mIu) = 1.

 Proof. The sufficiency is immediate. To establish the necessity consider the statistic

 S(v) = 1 if m = m- and 0 otherwise.

 7. MISSING DATA AND DIRECT-LIKELIHOOD INFERENCE

 A direct-likelihood inference is an inference that results solely from ratios of the likelihood

 function for various values of the parameter (Edwards, 1972). Within the context of direct-

 likelihood inference, a and 0 take values in a joint parameter space Q, 5.
 Ignoring the process that causes missing data when making a direct-likelihood inference

 for O means defining a parameter space for 0, 0,9, and taking ratios, for various 6 c ,9, of the
 'marginal' likelihood function based on density (5.1):

 Y(010) = &(0, Q) ffg(if) du(0), (7.1)
 where 3(a, Q) is the indicator function of Q. Likelihood (7 1) is regarded as a function of 6
 given the observed m' and i).

 The problem with this approach is that M is a random variable whose value is also

 observed, so that the actual likelihood is the joint likelihood of the observed data - and A:

 (0, 0 IV) = S{(O, 0), AD, } ffq) go(MIU) du(o) (7.2)

 regarded as a function of 0, 0 given the observed uq) and m.

 TXEOREM 7*1. Suppose (a) that the missing data are missing at random, and (b) that 0 is
 distinct from 0. Then the likelihood ratio ignoring the process that causes missing data, that is

 ,?(O1ji)/.'(02jI), equals the correct likelihood ratio, that is Y(O1, 0b1 V)IY(02,1 SV), for all 0 e Q
 such tha t0g(4 I l) > 0.

 Proof. Conditions (a) and (b) imply from equations (7.1) and (7.2) that

 .w'(6,q5 gV) = O Q(Ov

 THEOREM 7*2. Suppose Y(OIjv) > 0 for all Ge ?9. All likelihood ratios for Ge (O ignoring
 the process that caUses missing data are correct for all 0 E ,0,, if and only if (a) Qa,, = C0 x Qj,

 and (b) for each 0 E Q0, Eu(O,){g4(M- Iui) IM, %i) 6, ,0} takes the same positive value for all Ga E Q.

 Proof. First we show that

 Y(, Si5) = Eu({90{g(w[I) {I, uJ, 6, 95} &{(6, 0), Q 0} (O, vi). (7-3)

 This is immediate if Y(jV-) > 0 for all 0e Q-4, and is true otherwise because

 Y(?IV) > Y(6,1 qIV) > 0

 for all 6, 5 and v. If conditions (a) and (b) hold, (7.2) factorizes into a 6-factor and a 0-factor;

 thus these conditions are sufficient even if T(O6IV) = 0 for some Ge Q9.
 Now consider the necessity of conditions (a) and (b). Since _'(OIM) > 0 for all G E 2O, if the

 likelihood ratios for 6 ignoring the process that causes missing data are correct for all jS E Q4,
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 Inference and missing data 587

 for each (6, 0) e Q x Qo, we have Y(6, 0qIV) > 0. Hence condition (a) in the theorem is
 necessary. Now using condition (a) and (7.3) write for all 0_ 62 E Q and 0 E Q

 g(61, 0 j) - EU(0){g0 (fnff) I, n 6(1), 61 0 (01IV) > 0 (74
 Y(02 0 |V) Eu(O){go(A Ifi) In, A (1)) 2 02} 0 6Ir ((0217.)

 If (7.4) equals y(6ljV)VY(021l) for all 61, 02 E Q? and all 0 qE Qo, we have condition (b) in the
 theorem.

 8. MISSING DATA AND BAYESIAN INFERENCE

 A Bayesian inference is an inference that results solely from posterior distributions corre-

 sponding to specified prior distributions, e.g. the posterior mean and variance of a parameter

 having a specified prior distribution. Within the context of Bayesian inference, 0 and 5S are

 random variables whose marginal distribution is specified by the product of the prior

 densities, p(0) p(qI 0).
 Bayesian inference for 0 ignoring the process that causes missing data means choosing

 p(O) and assuming that the observed data, ?2(l), arose from density (5. 1). Hence the posterior
 distribution of 0 ignoring the process that causes missing data is proportional to

 p(0) ff0(4i) du(o). (8.1)
 The problem with this approach is that the random variable M is being fixed at A and thus

 is being implicitly conditioned upon without being explicitly conditioned upon. That is,

 correct conditioning on both the observed data, ?(1), and on the observed pattern of missing
 data, in, leads to the joint posterior distribution of 0 and 5b which is proportional to

 p(0)p(qSI6) ff f(fl) g, (mi|ui) du(o). (8.2)
 THEOREM 8 1. Suppose (a) that the missing data are missing at random, and (b) that q6 is

 distinct from 0. Then the posterior distribution of 0 ignoring the process that causes missing
 data, i.e. calculated from equation (8.1), equals the correct posterior distribution of 0, that is cal-
 culatedfrom (8 2), and the posterior distributions for 0 and qS are independent.

 Proof. By conditions (a) and (b), equation (8 2) equals {p(0) ffof() du(o)}{p(0) go (ftIjii)}.

 THEOREM 8-2. The posterior distribution of 0 ignoring the process that causes missing data

 equals the correct posterior distribution of 0 if and only if

 EO, UsO){gf(AI 41) I &m ff(l) ~ 0} (8.3)
 takes a constant positive value.

 Proof. The posterior distribution of 0 is proportional to (8 2) integrated over 0. This can
 be written as

 {p(0) f ff0() du(0)} f Eu(0){gi(A I u) I, u() 0, q0}p(qS 1 0) doS. (8 4)

 Expressions (8.4) and (8 1) yield the same distribution for 0 if and only if they are equal.
 Hence, the second factor in (8.4), which is expression (8.3), must take a constant positive
 value.

 9. COMPARING INFERENCES IN A SIMPLE EXAMPLE

 Suppose that we want to estimate the weight of an object, say 0, using a scale that has a
 digital display, including a sign bit! The weighing mechanism has a known normal error
 distribution with mean zero and variance one. We propose to weigh the object ten times and

 so obtain ten independent, identically distributed observations from N\(0, 1). A colleague
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 588 DONALD B. RUBIN

 tells us that in his experience sometimes no value will be displayed. Nevertheless in our ten

 weighings we obtain ten values whose average is 5 0.

 Let us first ignore the process that causes missing data. This might seem especially reason-

 able since there are in fact no missing data. Underf0, the sampling distribution of the sample
 average, 5-0, is N(0, 0*1), and with a flat prior on 6 > 0 the posterior distribution of 6 is

 approximately N(5.0, 0-1). Also, 5-0 is the maximum likelihood estimate of 0, and for
 example the likelihood ratio of 0 = 5-0 to O = 4-0 is e5.

 Now let us consider the process that causes missing data. Since there are no missing

 observations, the missing data are missing at random. We discuss two processes that cause

 missing data. First suppose that the manufacturer informs us that the display mechanism

 has the flaw that for each weighing the value is displayed with probability. 0 = 0/(1 + 6).
 This fact means that the observed data are observed at random, and that 0 is not distinct
 from 0. With a flat prior on 0 > 0 the posterior distribution for 0 is proportional to the

 posterior distribution ignoring the process that causes missing data times {0/( 1+ 0)}10. Thus,

 because 0 and 0 are not distinct, the posterior distribution for 0 may be affected by the
 process that causes missing data; i.e. all ten weighings yielding values suggests that 0/(1 + 0)
 is close to unity and hence suggests that 0 is large compared to unity. The maximum likeli-

 hood. estimate of 0 is now about 5 04 and the likelihood ratio of 0 = 5 0 to 0 = 4 0 is about

 P 5Ve.
 However, since in this case the missing data are missing at random and the observed data

 are observed at random, the sampling distribution of the sample average ignoring the

 process that causes missing data equals the conditional sampling distribution of the sample

 average given that all values are observed. The unconditional sampling distribution of the
 sample average is the mixture of eleven distributions, the ith being N(0, 1/i) with mixing

 weight 0ito!/( 1+ 0)10{i!(10 -i)!}, and the eleventh being the distribution of the 'sample
 average' if no data are observed, e.g. zero with probability 1, with mixing weight (1 + 0)-10.

 Now suppose that the manufacturer instead informs us that the display mechanism has

 the flaw that it fails to display a value if the value that is going to be displayed is less than q.
 Then the missing data are still missing at random, but the observed data are not observed

 at random since the values are observed because they are greater than 0. Also 0 and 0 are
 now distinct since 0 is a property of the machine and 0 is a property of the object. It follows
 that sampling distribution inferences may be affected by the process that causes missing

 data. Thus, the sampling distribution of the sample average given that all ten values are

 observed is now the convolution of ten values from the distribution N(0, 0.01) truncated
 below qS, and the unconditional sampling distribution of the sample average is the mixture

 of eleven distributions, thejth (j = 1) ..., 10) beingthe convolution ofj N(O, 1/j)'s with mixing
 weight equal to [10!/{j! (10-j)!}] g(o, 0)1 {1- _o 0)}1o-i, where 6(0, 0) equals the area from
 qA to oo under the N(0, 1) density, and the eleventh being the distribution of the 'sample

 average' if no data are observed with mixing weight {1 - 6(0, 0)}10.
 However, since the missing data are missing at random and 0 is distinct from 0, the

 posterior distribution for 6 with each fixed prior is unaffected by the process that causes
 missing data. Hence, with a flat prior on 0 > 0, the posterior distribution for 0 remains
 approximately N(5.0, 0-1). Also, 5 0 remains the maximum likelihood estimate of 0, and

 4e remains the likelihood ratio of 0 = 5*0 to 0 = 4 0.
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 Inference and missing data 589

 10. PRACTICAL IMPLICATIONS

 In order to have a practical problem in mind, consider the example in ? 1 of the survey

 of families in 1967 and the follow-up survey in 1970, where a number of families in the 1967

 survey could not be located in 1970. Notice that it may be plausible that the missing data

 are missing at random; that is, families were not located in 1970 basically because of their

 values on background variables that were recorded in 1967, e.g. low scores on socioeconomic

 status measures. Also it may be plausible that the parameter of the distribution of the data

 and the parameter relating 1967 family characteristics to locatability in 1970 are not tied

 to each other. However, it is more difficult to believe that the missing data are missing at

 random and that the observed data are observed at random, because these would imply that

 families were not located in 1970 independently of both the values that were recorded in

 1967 and those that would have been recorded in 1970.

 This example seems to suggest that if the process that causes missing data is ignored,

 Bayesian and direct-likelihood inferences will be proper Bayesian, or likelihood, inferences

 more often than sampling distribution inferences will be proper sampling distribution

 inferences. Since explicitly considering the process that causes missing data requires a model

 for the process, it seems simpler to make proper Bayesian and likelihood inferences in

 many cases.

 One might argue, however, that this apparent simplicity of likelihood and Bayesian

 inference really buries the important issues. Many Bayesians feel that data analysis should

 proceed with the use of 'objective' or 'noninformative' priors (Box & Tiao, 1973; Jeffreys,

 1961), and these objective priors are determined from sampling distributions of statistics,

 e.g. Fisher information. In addition, likelihood inferences are at times surrounded with

 references to the sampling distributions of likelihood statistics. Thus practically, when

 there is the possibility of missing data, some interpretations of Bayesian and likelihood

 inference face the same restrictions as sampling distribution inference.

 The inescapable conclusion seems to be that when dealing with real data, the practising

 statistician should explicitly consider the process that causes missing data far more often

 than he does. However, to do so, he needs models for this process and these have not received

 much attention in the statistical literature.

 I would like 'to thank A. P. Dempster, P. W. Holland, T. W. F. Stroud and a referee for

 helpful comments on earlier versions of this paper.
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 Comments on paper by D. B. Rubin

 BY R. J. A. LITTLE

 Department of Statiims, Univer8ity of Chicago

 In the following comments, a notation close to that of Dr Rubin's paper is used. Thus U = (ul, ..., u,)
 denotes the full data, with densityf(u;,O) ( e Qt1) and M = ( m?, ..., i") indicates the observed pattern,
 with conditional density g(m|u; 0) (q e Ql) given U = u. The distribution of obs (U, M), the observed
 data, can be described as follows. It has M = m with probability

 g(m; 0, 0) = fg(mju; O)f(u; 0) du = Eu{g(mIU; 0); 0). (1)
 Given M = m, the conditional density of obs (U, M) is

 f(u(l)Im; 0, 0) = f(uel); 0) f g(mlu; 0)f(u(l)Iu(O); 0) du(o) (2)

 = f(u(1); 0) Eu(O){g(m U(o), U(1); ) Iu); 0) (3)
 E u{g(m IU;rS); 0}

 where U(1) is the observed part of U and U(O) is the missing part of U.
 For sampling based inferences, a first crucial question concerns when it is justified to condition on the

 observed pattern, that is on the event M = m, and to use the distribution (2) and (3). A natural condition

 is that M should be ancillary, that is that g(m; 0, 0) should be independent of 0 for all m, 0. Otherwise
 the pattern on its own carries at least some information about 0, which should in principle be used.

 Suppose now that this ancillarity condition is satisfied. As Dr Rubin stresses, ignoring the deletion
 mechanism involves not only conditioning on M = m, but also assuming that U(1) has a distribution with
 marginal densityf(u(1); 0), that is that for the observed pattern M =m,

 f(u(1)11h; 09, 0) =A(Ua); 0), (4)

 or that g(tm lu,l); 0, 0) = EI0{g(ml U(o), u(l); 0) is independent of u(1), which is Dr Rubin's condition (6.2).
 A sufficient condition for (4) is a combination of Dr Rubin's conditions, missing at random and

 observed at random, namely that

 f(miju; 0) is independent of u, (5)

 This implies ancillarity if and only if it holds for all observable patterns m, and not just for the observed

 pattern t, and also the parameter space for (0, 0) is Qq x QC ; then the deletion pattern can be ignored.
 For example, consider Dr Rubin's weighing problem in ? 9, when a weighing value is displayed with

 probability 0/(1 - 0), and all values are displayed. Then (5) is satisfied for all patterns in, but 0 = 0, so
 that 0 and 0 are dependent, and ancillarity fails to hold. Thus in principle the rather complicated distri-
 bution of obs (U, M) described by Dr Rubin should be used. However this deletion mechanism seems
 highly unlikely in practice.
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 Necessary conditions for ignoring the deletion mechanism are unfortunately not obvious, and it is

 worth considering some further examples.

 Example 1. Suppose that for the observed value m, U(O, and U(1) are independently distributed, and that
 the probabilitythat M = A depends on U(O)but not U(1), that is g(A Iu; 0) = g(A Iu(o); 0). Then clearly (4) is
 satisfied but not (5), so (5) is not necessary for (4).

 Example 2. Let Ui be independent N(O, 1) (i = 1, ..., n) and suppose mi = 1 if and only if IU U, <V,
 for some constant 0. A simple computation of (1) establishes that m is ancillary for 0. However we cannot
 ignore the deletion mechanism, since the correct distribution for sampling inference has density

 X1 f(u(o) Iu(j) i a du(o)
 f(u(1)Im; 0, =) R(m) (3)

 f (u;0) du

 where R(A) = {u: I ui- < k ast = 0 or 1} is a region of Rn; this is clearly not the normal density
 f(u(1); 0).

 The case of pure likelihood inferences is much simpler, since we can fix U(1) and M at their observed

 values i2j, A, and the rather complex sample space of obs (U, M) is not relevant. Dr Rubin's sufficient
 conditions in Theorem 7 1 are perhaps more remarkable than his examples would suggest. His Example 3
 for instance, is already well known: see Examples 2*34 and 2-40 of Cox & Hinkley (1974). We give a
 multivariate example of some practical importance.

 Example 3. Consider an incomplete bivariate normal sample size n of random variables X and Y,

 which have respective means aul, 2, variances2, o2 2, and correlation p. Suppose X is always observed.
 Two possible deletion mechanisms for Y are: (a) observe Y if and only if Y > c; (b) observe Y if and
 only if X > c. It is easily seen that Dr Rubin's' missing at random' condition is satisfied in (b) but not
 in (a), and so for maximum likelihood estimation we can ignore the deletion mechanism in (b) but not

 in (a). To illustrate this, the estimates of Table 1 were found from generated data with 50 observations,

 c = 0 and 4ul = #2= 0, so that about half the Y values were deleted in (a) and (b). Note that estimates
 of JU2, 2-2 and p in situation (iia) are biased, confirming previous theory. However the estimates in
 situation (ii b) are maximum likelihood, and are close to their true values. Thus here we can ignore the

 deletion pattern, although the observed values of Y do not follow the marginal N(0, 2) distribution, and
 in particular their sample mean will overestimate zero.

 In a real set of data for which (ii b) is appropriate, X might be blood pressure, and Y a medical test
 which for safety reasons is not carried out when X is below a certain level c.

 Table 1. Maximum likelihood estimates, ignoring the deletion mechanism, for

 1 = ?^ 2-?= 1- o22 2, p = 0ff71
 JU1 = 01 JU2 = 01 2 1 O222

 (i) Complete data 0-013 0*085 0-917 1*827 0-780
 (iia) Data censored by (a) 0-013 0-930 0-917 0-456 0.510
 (iib) Data censored by (b) 0-013 -0-140 0-917 1.991 0-645

 In summary, Dr Rubin's paper should stimulate thought about the many mechanisms which produce

 data with missing values.

 REFERE NCE

 Cox, D. R. & HiNxLEY, D. V. (1974). Theoretical Statistics. London: Chaprman and Hall.

 Reply to comments

 BY D. B. RUBIN

 First, I want to thank Dr Little for his Example 3, which numerically illustrates the point being made
 in the beginning of ? 10. Secondly, I must reject his restriction that M should be ancillary when making
 sampling distribution inferences for 0 which are conditional on M. As Theorem 6 1 states, if (a) the
 missing data are missing at random and (b) the observed data are observed at random, then a sampling
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 distribution probability statement that ignores the process that causes missing data is correct if
 interpreted as being conditional on M. Given (a) and (b), Theorem 7 1 on likelihood infetence implies that
 such a probability statement cannot generally be fully efficient for inference about 0 unless (c) O is distinct
 from gS. Nevertheless, sampling distribution inferences that are less than fully efficient are often quite
 useful. Furthermore, given (a), (b) and (c), sampling distribution inference for 0 should be conditional
 on M whether or not M is ancillary. For a simple case, consider my Example 4 with tn = (1, 0), q = 0 1,

 and (ul, u2) - N{(6, 6), I}. The conditional probability of the event J = (ii- 196 < 0 < i+ 1.96), where
 i = 2miu4/I2m, is 0*95 for all 0, while the unconditional probability of dis nearly 0 99 for O quite positive.
 This example suggests that the usual definition of ancillary (Cox & Hinkley, 1974, p. 35) is incorrect for
 inference about 0 and should be modified to be conditional on the observed value of the ancillary statistic.
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