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1. Euclidean space Rn ought to have a unique piecewise-linear structure and a unique
differentiable structure.

It is known that, for n ^ 3, 'ought to have' can truthfully be replaced by 'has'
(see (4), and (5), Cor. 6-6). In this paper, this conjecture will be proved for n ^ 5. The
only unsolved case then will be in dimension four.

Another corollary of the main theorem of this paper is this. If Mn is the Cartesian
product of two non-trivial, contractible, open, piecewise-linear- (or differentiable)
manifolds, and if n > 5, then Mn is piecewise-linearly (or differentiably) equivalent
to Rn. This extends results of McMillan and Zeeman(3).

Here is a plan of the proof. It will be shown that each compact subset of M is
contained in a piecewise-linear n-cell; it will then follow from a theorem of Newman
and Gugenheim that M is piecewise-linearly Rn; if M is also a differentiable manifold,
the piecewise-linear result will imply that M is differentiably Rn. In order to enclose
each compact subset of If in a piecewise-linear cell, it is necessary to invoke a result
of Zeeman(ll) and the author to the effect that in a contractible Mn every (re —3)-
dimensional compact polyhedron is contained in a cell; and then it will be necessary
to show that (when n ^ 5) an infinite 2-dimensional polyhedron can be deformed to
miss any given compact set; the construction of this deformation involves an assump-
tion that neighbourhoods of infinity are simply connected.

A proof of the Engulfing Theorem (3-1 in this paper) is included because of the
fact that Zeeman's corresponding theorem is not quite general enough to prove a fact
which is needed here (Corollary 3-3). This Engulfing Theorem has many important
corollaries which I hope to discuss in subsequent papers.

2. The word 'space' in this paper is reserved for metrizable, locally compact,
locally connected spaces. A space X, or a pair (X, Y), is said to be k-connected if
TT^X) = 0, or n^X, Y) = 0, for all i ^ k.

The space X is said to have one end, if X is not compact, and if for every compact
C c l , there is a compact D, where C c D c I , such that X—D is 0-connected.

The space X is said to be 1-connected at infinity, if for every compact C c X, there is
a compact D, where G c D <= X, such that X — D is 1-connected.

For example, the plane R2 has one end but is not 1-connected at infinity.

2-1. PROPOSITION. If A and B are 1-connected spaces, each of which has one end,
then AxB is 1-connected at infinity.
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Proof. Let C be a compact subset of A x B. Since A and B have one end, there are
compacts D and E, where D c= A and E a B and (7 c DxE, such that 4̂ — D and
B — E are O-connected. The claim is that Ay.B-Dy.Eis 1-connected. For,

A y B-D x E = A x (B-E) VJ (A -D) y B

and Ax(B-E)n(A-D)xB= (A-D)x(B-E).

The spaces appearing in these formulae are all open, O-connected subsets of

AxB-DxE.

Hence van Kampen's Theorem ((2), (7)) may be applied; it says that

is obtained from the free product of n^A x{B—E)) and nx((A —D)xB) by identifying
the images in each of the elements of n^A -D)x(B — E)). This is evidently the trivial
group since A and B are 1-connected. Hence Ax B — DxE is 1-connected, and so
A x B is 1-connected at infinity.

2-2. PROPOSITION. If A is a 1-connected space with one end and R is the real line,
then AxRis 1-connected at infinity.

Proof. Let G be a compact subset of A x R. Then there is D <= A such that A — D
is O-connected, and there is / = [ — r,r] c= R, such that C a Dxl. The claim is that

is 1-connected. Let

U = Ax(-oo,r)-DxI and V = A x (-r,oo)-Dx I;
then Un V = (A— D)x ( — r,r). Since UnV is an open, O-connected subset of
U\>V = Ax R —Dxl, van Kampen's Theorem may be applied. Therefore

AxR-DxI
will be 1-connected if both U and V are 1-connected. Now,

U = Ax(-co,-r)u(A-D)x(-oo,r);

applying van Kampen's Theorem to this expression of U and noting that A is 1-
connected, it follows that U is 1-connected. Similarly V is 1-connected. Hence
AxR — Dxl is 1-connected, and so A x R is 1-connected at infinity.

By a manifold M of dimension n, will be meant a triangulable space such that each
point x e M has a neighbourhood homeomorphic to ^-dimensional Euclidean space.
Thus, M has no 'boundary'. The assumption of triangulability is for the sake of con-
venience at this point. Later, attention will be restricted to manifolds with especially
nice triangulations.

Hk(M) will denote the ^-dimensional homology group of M with coefficient group
the integers. Hf(M) will denote the ^-dimensional cohomology group of M based on
finite cochains with integer coefficient group.

2-3. PROPOSITION. A contractible manifold Mn of dimension n ^ 2 has one end.
Proof. In fact, the only fact needed about M is that Hn_x{M) = 0. Then by the

Poincare Duality Theorem, H){M) x Hn_x{M) = 0. A result of Specker ((8), Satz IV)
now implies that M has one end.
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2-4. PROPOSITION. If Mn = 1 x 7 , where X and Y are manifolds, neither of which
is a point, and if M is contractible and n > 3, then M is 1-connected at infinity.

Proof. If X and Y are both of dimension ^ 2, then 2-3 shows X and Y each have
one end, and 2-1 shows X x Y is 1-connected at infinity. If either X or Y has dimen-
sion 1, then it is homeomorphic to R, the real line; the other has dimension ^ 2;
then 2-3 and 2-2 show X x Y to be 1-connected at infinity.

2-5. PROPOSITION. Let Mn be a contractible manifold which is 1-connected at infinity.
Then for every com/pact C c M, there is a compact D, where C c D c M, such thai
(M, M — D) is 1-connected.

Proof. Take D to be such that M — D is 1-connected. Then the exact homotopy
sequence of (M,M — D) plus the fact M is 2-connected imply that (M,M—D) is
2-connected.

3. Now it is time for the most difficult part of the argument, the Engulfing Theorem.
This says that an open subset of a piecewise-linear manifold can expand to engulf,
like a piecewise-linear amoeba, any given subpolyhedron, provided certain dimension,
connectivity, and finiteness conditions are met.

The proof is a long argument by a multiple induction. The steps of this induction
are elementary arguments which should be included in any basic text on piecewise-
linear topology. Unfortunately, such a text does not exist. Therefore the proof given
here will contain gaps where these basic facts will be assumed but not themselves
proved. Such facts are general position lemmas (see (11)), and the fact that a piecewise-
linear cell can be linearly triangulated to be a collapsible simplicial complex (see the
first few pages of (9)). Also, the tedious construction of certain maps which almost
obviously exist will be omitted in favour of what I hope is a heuristic description.
I t is hoped that this abbreviation of the proof will make it easier to grasp. It is believed
that the reader will be able to supply the omitted details, if he so wishes.

First, after some definitions, the Engulfing Theorem is stated. Then the two
corollaries which will be used in this paper will be derived from it. Then a proof of the
Engulfing Theorem is described.

Simplicial complexes K and L are combinatorially equivalent if there are rectilinear
subdivisions of K and L which are isomorphic as simplicial complexes. K is a com-
binatorial cell if K is combinatorially equivalent to a closed simplex. A triangulation
T of a manifold M is piecewise-linear if the closed star of each point is a combinatorial
cell (there is no known triangulation of a manifold which is not piecewise-linear);
a manifold M and a piecewise-linear triangulation of it define a piecewise-linear mani-
fold. A polyhedron P in a simplicial complex K is a subset corresponding to a sub-
complex of some rectilinear subdivision of K. A piecewise-linear cell is a polyhedron
whose rectilinear triangulation is a combinatorial cell. A piecewise-linear map f: K^-L
is a continuous function whose graph is a polyhedron in K x L.

By a homeomorphism h: X -*• Y will be meant a homeomorphism of X onto Y.
\\X will denote the restriction to X of the function defined by \{x) = x for all x.

3-1. ENGULFING THEOREM (cf. Zeeman(ii)). Let Mn be a piecewise-linear manifold;
U an open subset of M ; P a polyhedron of M of dimension p. Let (M, U) be p-connected;
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let P n (M — V) be compact; let p ^ n — 3. Then there is a compact E <= M, and there is
a piecewise-linear homeomorphism h: M -> M, such that P c h(U) and

h\(M-E)= l\(M~E).

Before proving this, two corollaries are obtained.

3-2. COROLLARY. Let Mn be a contractible piecewise-linear manifold; let P be a com-
pact polyhedron in M; let dimension P < n — 3. Then P is contained in the interior of
a piecewise-linear n-cell A c M.

Proof. Apply 3-1 where U is the interior of a piecewise-linear «-cell V in M. Then
A = h(V).

3-3. COROLLARY. Let Mn be a piecewise-linear manifold which is contractible and
1 -connected at infinity; let C be a compact subset of M; let Tbea piecewise-linear triangula-
tion of M; let T2 denote its 2-skeleton. Let n ^ 5. Then there is a compact Ex, and there is
a piecewise-linear homeomorphism hx:M->M such that

GcE1czM and T2 ah^M-G) and hx\{M-Ex) = l| (M-Ex).

Proof. By 2-5, there is a compact D with C c D a M and {M,M — D) 2-connected.
Apply 3-1, substituting M — D for U and T2 for P. The conclusion of 3-3 is immediate,
taking hx to be h and Ex to be E \J G. (The condition n ^ 5 is used to obtain the hypo-
thesis 2 = p < n-3 of 3-1.)

3-4. Proof of the Engulfing Theorem. The proof is by a multiple induction. Thus it
is convenient to restate the theorem as follows:

ET(<7, r). Let Mn be a piecewise-linear manifold; U an open subset of M; P a poly-
hedron of M of dimension p 4. n — 3;let (M, U) be p-connected. Let Qbea subpolyhedron
of P such that Q c U and dimension (P — Q)^ q. Let P have a triangulation into piece-
wise-linear cells of M, such that Q is a subcomplex and the number of cells of P — Q is
r < 00. Then there is a compact E cz M, and there is a piecewise-linear homeomorphism
h: M -*M, such that h\(M-E) = l| (M -E) and P c h(U).

The truth of ET(<7, r) for all q and r implies 3-1, since in the hypothesis of 3-1 is the
condition that P n (M — U) is compact, and therefore a polyhedron Q satisfying the
hypothesis of ET(^, r), for some q and r, can be found. The proof of ET(g, r) is by in-
duction first on q and then on r.

~ET(q, *) means 'for all r, ET(q,r)'. Similarly, ET(*,r) means 'for all q, ET(g,r)'.
(A) E T ( - 1, *) and ET(*, 0) are true. For in this case P = QcU; take E = 0

and h = 1.
(B) ET(g, 1) and ET(g , r - l ) imply ET(?,r). Suppose the hypothesis of ET(^,r)

holds. Then in P — Q there is a maximal-dimensional cell A. Let P' = P — (interior A).
Then Q cz UnP'. ET(g,r- 1) is now applicable to P'. There is a compact E' c M
and a|piecewise-linear homeomorphism h': M -*• M such that

h' \{M-E') = 1| (M-E') and P' c= h'(U).
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Define Qt = P', Px = P,U1 = h'(U). ET(g, 1) is now applicable to P1} Qv Uv There is
a compact Excz M and a piecewise-linear homeomorphism hx. M -> M such that
h1\(M-E1)=l\ {M-Ex) and Px <= h^UJ.

The conclusion of ET(g, r) follows by taking h=h1h' and E = E' u (A')-1 (.E )̂.
(C) Therefore the problem of proving ET(g, r) /or aW <? and r Aas oeew reduced to showing

that ET(g, I) follows from ET(g', *)/or some g' < g.
From henceforth, the hypothesis of ET(g, 1) will be assumed. A will denote the cell

of P — Q. If X is a cell or a simplex, X will denote its boundary; juxtaposition will
denote join; for example, vX denotes the join of the point v to the boundary of X.
I denotes [0,1].

(D) There is a map f: Ax / -> M such thatf\& xO is the embedding of A into M and
such that /(A x / w A x 1) <= U. This follows from A c Q c [/, dimension A < p, and
the fact that (M, U) is jj-connected.

Let K be a space with triangulation T. Then a map f:K^> Mn is said to be in
general position with respect to T, provided:

(1) For every simplex A of T,f\ A is a piecewise-linear embedding.
(2) If A and B are simplexes of T, then A r\f~xf(B) = (AnB)uS(A,B) where

S(A, B) is a polyhedron of dimension < dimension A + dimension B — n.
(E) Let K be the union of P and A x / , identifying A with A x 0. Then there is a map

/ : K-^-M such thatf\P is the embedding ofP into M, andf(k x / u i x l ) c U; and there
is a rectilinear triangulation T of K such that f is in general position with respect to T~
This follows from (D) and an approximation lemma which is omitted.

Let T be a triangulation of X in which Y occurs as a subcomplex. It is said that
T collapses onto Y if there are closed simplexes Alt..., As of T such that

(1) X= YuA1yj...vAs,
(2) Each At has a vertex vi and face Bi such that At = vtBt and

(Y v Ax v ... u A^i) nAt = v ^ .

(F) The statement (E) is true with the additional conclusion that T collapses onto
QuAx/uAx 1. This follows from the fact that any rectilinear triangulation of
A x / has a subdivision which collapses onto A x / u A x 1 (Whitehead (9), Theorem 6),
and from (E) and from an omitted approximation lemma.

Henceforth, Ax, ...,AS will denote closed simplexes of the triangulation T of (F)
such that ( Q u A x / u A x l u i 1 u . . . u 4 j - i ) n 4 = 1 ' A where Ai = viBi, and
K = Q u i x / u A x l u i j u ... \JAs.

Di will denote the part of the ̂ -skeleton of T which is contained in

Dt is then that whole set except in the extreme case when dimension A = p when it
will omit the interiors of some of the simplexes Ay Nevertheless, Di_1 r\At = v^^

(G) There is a compact set Et <z M and a piecewise-linear homeomorphism ht: M->• M
such thatf(Dt) a ht(U) and \ \ (M - Et) = 11 (M- Et), provided ET(g -l,*)is true.

The proof is by induction on i. For i = 0, take Eo = 0 and h0 = 1, since

and f(D0)cU.
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Let S i = w{S(AitB)\B is a simplex of T such that B c Dt_^. For the definition
of S(A,B) see (D). Then 2t is a polyhedron in Ai of dimension^ dimension
A{ + (n — 3) —n; now, At a A x / and dimension A < g. Therefore,

dimension Sf ^ (<?+ l) + (« — 3) — » = q — 2.

Let Af be the union of all the line segments in Ai which (1) are parallel to the line
from vt to the barycentre of Bi7 and (2) intersect T,{. Then Ai is a polyhedron of dimen-
sion < q — 1; and At has a rectilinear triangulation which collapses onto vtBi <-» A4.

Then the statement ET(g — 1, *) applies to P^ Qo Ut defined as follows:

Therefore, there is a compact E c= M and a piecewise-Unear homeomorphism
:M^M, such that h\(M-E) = l| (M-E) and Pt <= h(Ut).
Since Ai has a triangulation which collapses on to viBi u Ait and since

it follows that some triangulation ofDi_l u J4i collapses onto Di-i u Af. Since Sf cz Af

there is no difficulty mirroring this collapsing in the image f{Di_1 u At).
Hence f(Di_1 u At) has a rectilinear triangulation which collapses onto /(£>j_i u A^).

Since f{Di_1 u Af) <= h{U^), utilizing this collapsing, one may piecewise-linearly expand
^(C^) until it covers/(i>i_1 u .4^). That is to say:

There is a compact E* c M and a piecewise-linear homeomorphism h+: M-> M,
such tha t h*\{M -E*) = \\{M -E*) a n d / p ^ u At) <= h*h{Ut).

One now defines ht = A* M ^ j , and ^ = E^ u Afii(^) u h[\hrx{E*). This clearly
satisfies (G); and hence (G) has been proved.

(H) ET(g- 1, *) implies ET(g, 1). This follows from (G), by taking i = s, noting
that P cz D8 and / |P is the embedding into M; define the h required in the conclusion
of ET(g, 1) to be hs; and define E to be Ea.

Finally, (C) and (H) together prove ET(g, r) for all q and r. The proof of the En-
gulfing Theorem is over.

4. THEOREM. Let Mn be a contractible piecewise-linear manifold which is 1-connected
at infinity. If n ^ 5, then M is piecewise-linearly homeomorphic to Euclidean space Rn.

Proof. (A) If G is a compact subset of M, then C <= F c: M where F is a piecewise-
linear n-cell.

Let T be a piecewise-linear triangulation of M, and apply 3-3. Let

K = T2\J {all closed simplexes of T which are contained in M—E^.

ThenK ah^M-C).
Now, if Y is a subcomplex of the simplicial complex X, the complementary complex

X -r- Y is defined to be the subcomplex of the barycentric subdivision of X which is
maximal with respect to the property of not intersecting Y.
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Let L = T-r-K. Then I is a compact polyhedron of dimension < n — 3. Apply
Lemma 3'2, with L in place of P . Then L is contained in the interior of a piecewise-
linear n.-cell A c M.

The barycentric subdivision of Tisasubcomplex of the join-KX. Since IT c hx(M — G)
and L c interior of A, there exists a piecewise-linear homeomorphism h2: M -> M
such that M = h^M -C)vh2 (interior of A). Then h^^h^A) = F is a piecewise-linear
n-cell containing C.

(B) It follows from (A) that M is the union of a sequence {Ft} of piecewise-linear
%-cells such that Ft <= interior of Fi+1.

Now, Newman (6) and Gugenheimd) (Theorem 3 of Gugenheim is the exact
statement needed here) say that the piecewise-linear equivalence classes of embed-
dings of a piecewise-linear n-cell in the interior of a connected n-manifold are com-
pletely determined by the orientations involved.

So, let Qt c interior of Gi+1, where Qt and Qi+1 are piecewise-linear ?i-cells; let
h^. Fi ->• (?f be a piecewise-linear homeomorphism. There is a piecewise-linear homeo-
morphism / : Fi+1 -»• Gi+1 which is compatible with the map of orientations given by
ht. Hence by Gugenheim's Theorem, the embeddings ht and/|Ft in Gi+1 are piecewise-
Unearly equivalent. That is, there is a piecewise-linear homeomorphism g: Gi+1 ->• Gi+1

such that ht = g{f\Ft). Then gf: Fi+1 -> Gi+1 is a piecewise-linear homeomorphism
hi+1 which extends h^

This shows that M is piecewise-linearly homeomorphic to any manifold which is the
union of a sequence {G^ of piecewise-linear ?i-cells, where Gt c interior of Gi+l.
Bn is such a manifold. The proof is complete.

4-1. COROLLARY. Euclidean space Rn, for n ^ 5, has a unique piecewise-linear
structure.

Proof. If M is homeomorphic to Rn, then it is contractible and 1-connected at
infinity. By 4, M is piecewise-linearly homeomorphic to Rn.

4-2. COROLLARY. / / X and Y are contractible piecewise-linear manifolds of dimen-
sions x and y, where x ^ 1 and y ^ 1 and x + y > 5, then Xx Y is piecewise-linearly
homeomorphic to Rx+y.

Proof. Apply 2-4 and 4.

5. The differentiate case. Quoted here is Corollary 6-6 of Munkres (5):
' Two differentiate manifolds homeomorphic to Rn are diffeomorphic if they are com-

binatorially equivalent.'
Any differentiate manifold has a smooth piecewise-linear triangulation(lO). These

facts plus Theorem 4 and its corollaries immediately produce the following.

5-1. THEOREM. Let Mn be a contractible differentiate manifold which is l-connected
at infinity. Ifn^ 5, then M is diffeomorphic to Euclidean space Rn.

5-2. COROLLARY. Euclidean space Rn,for n ^ 5, has a unique differentiate structure.

5-3. COROLLARY. / / X and Y are contractible differentiate manifolds of dimensions
x and y, where x > 1 and y ^ 1 and x+y ^ 5, then Xx Y is diffeomorphic to Rx+V.
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