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Abstract:

 The Minimum Mutual Information (MinMI) Principle provides the least committed, maximum-joint-entropy (ME) inferential law that is compatible with prescribed marginal distributions and empirical cross constraints. Here, we estimate MI bounds (the MinMI values) generated by constraining sets Tcr comprehended by mcr linear and/or nonlinear joint expectations, computed from samples of N iid outcomes. Marginals (and their entropy) are imposed by single morphisms of the original random variables. N-asymptotic formulas are given both for the distribution of cross expectation’s estimation errors, the MinMI estimation bias, its variance and distribution. A growing Tcr leads to an increasing MinMI, converging eventually to the total MI. Under N-sized samples, the MinMI increment relative to two encapsulated sets Tcr1 ⊂ Tcr2 (with numbers of constraints mcr1 < mcr2) is the test-difference [image: there is no content] between the two respective estimated MEs. Asymptotically, δH follows a Chi-Squared distribution [image: there is no content] whose upper quantiles determine if constraints in Tcr2/Tcr1 explain significant extra MI. As an example, we have set marginals to being normally distributed (Gaussian) and have built a sequence of MI bounds, associated to successive non-linear correlations due to joint non-Gaussianity. Noting that in real-world situations available sample sizes can be rather low, the relationship between MinMI bias, probability density over-fitting and outliers is put in evidence for under-sampled data.
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1. Introduction


1.1. The State of the Art

The seminal work of Shannon on Information Theory [1] gave rise to the concept of Mutual Information (MI) [2] as a measure of probabilistic dependence among random variables (RVs), with a broad range of applications, including neuroscience [3], communications and engineering [4], physics, statistics, economics [5], genetics [6], linguistics [7] and geosciences [8]. MI is the positive difference between two Shannon entropies of the RVs: the one assuming statistical independence [image: there is no content] and the other [image: there is no content] considering their true dependence.

This paper addresses the problem of estimating the MI conveyed by the least committed, inferential law (say the conditional probability density function pdf [image: there is no content] between random variables RVs [image: there is no content]), which is compatible with prescribed marginal distributions and a set Tcr of mcr empirical non-redundant cross constraints (e.g., a set of cross expectations between a stimulus X and a response Y, for example in a neural cell, the Earth’s climate, an ecosystem). The constrained MI or the Minimum Mutual Information (MinMI) among RVs [image: there is no content] is: [image: there is no content], obtained after subtraction to the sum of fixed marginal entropies of the maximum joint entropy (ME) [image: there is no content], compatible with imposed cross constraints. The solution comes from application of the MinMI principle [9,10]. The MinMI is a MI lower bound depending on the marginal pdfs (e.g., Gaussians, Uniforms, Gammas), as well as the particular form of the cross expectations in Tcr (e.g., linear and non-linear correlations). There are only a few cases of known closed formulas for the MinMI and mcr=1:a) Gaussian marginals and Pearson linear correlation [8,11,12] and (b) Uniform marginals and rank linear correlation [11]. The authors have presented in [12] (PP12 hereafter), a general formalism for computing, though not in an explicit form, the MinMI in terms of multiple (mcr > 1) linear and nonlinear cross expectations included in Tcr This set can consist of a natural population constraint (e.g., a specific neural behavior) or it can grow without limit through additional expectations computed within a sample with the MinMI increasing and converging eventually to the total MI. This paper is the natural follow-up of PP12 [12], studying now the statistics (mean or bias, variance and distribution) of the MinMI estimation errors: [image: there is no content] where [image: there is no content] is the ME estimation issued from N-sized samples of iid outcomes. Those errors are roughly similar to those of MI and entropy generic estimator’s errors (see [13,14] for a thorough review and performance comparisons between MI estimators). Their mean (bias), variance and higher-order moments are written in terms of [image: there is no content] powers, thus covering intermediate and asymptotic N ranges [15], with specific applications in neurophysiology [16,17,18]. Entropy estimators range from: (a) the histogram-based plug-in one [19] with a negative bias or the Miller-Madow correction [20] equal to [image: there is no content], where m is the number of univariate histogram bins to much more improved estimators (e.g., kernel density estimators, adaptive or non-adaptive grids, next nearest neighbors) and others specially designed for small samples [21,22]



1.2. The Rationale of the Paper

The well-posedness of a MinMI [image: there is no content] compatible with available cross information needs the knowledge of marginal X and Y PDFs, [image: there is no content] and [image: there is no content], either imposed or inferred from sufficiently long samples. For that purpose, we can change X and Y into the cumulated probabilities [image: there is no content], which are uniform RVs on the interval [0,1] (i.e., copulas [23]), through appropriate smoothly growing (injective) morphisms (or anamorphoses), while leaving the MI invariant [2]. Then, the MI [image: there is no content] becomes the negative copula entropy [24,25] given by [image: there is no content], where the copula density is [image: there is no content].

The MinMI, subjected to [image: there is no content] constraints of type [image: there is no content] in the copula-space, is readily obtained by variational analysis (as in the ME method [2]) for [image: there is no content], where the Lagrange multipliers [image: there is no content] correspond respectively to the preset (not subjected to sampling) continuum of constraints: [image: there is no content] and to the [image: there is no content] expectations (subjected to sampling error). The general solution is rather tricky since all the values [image: there is no content] are implicitly related. The constrained joint PDF and the inferential law are recovered from the constrained copula through the product: [image: there is no content].

In PP12 [12], we have generalized this problem to a less constrained MinMI version by changing marginal RVs into ME prescribed ones—the ME-morphisms (e.g., standard Gaussians)—and imposing a finite set of marginal constraints instead of the full marginal PDFs. Under these conditions, the number of control Lagrange multipliers is finite, leaving the possibility of using nonlinear minimization algorithms for the MinMI estimation, as already tested in [8]. The MinMI subjected to a set [image: there is no content] of [image: there is no content] cross constraints is thus given by [image: there is no content], where [image: there is no content] is the joint ME and [image: there is no content] is the sum of single fixed (preset) entropies. The MinMI estimator is written as [image: there is no content], where [image: there is no content] is the ME constrained by the [image: there is no content] sampling expectations obtained from N-sized samples. The MinMI estimation error is [image: there is no content]. Therefore, as a generalization of the ME estimator bias [26], one verifies a MinMI positive bias equal to (larger/smaller than) [image: there is no content] when the true population PDF including the tested sample, follows (is more leptokurtic/platykurtic than) the ME-PDF. This result is supported through Monte-Carlo experiments.

Moreover, we introduce here the positive incremental MinMI given by the difference [image: there is no content] between two MEs, forced by cross constraint sets [image: there is no content], which is interpreted as the MinMI coming from the difference set [image: there is no content]. The corresponding estimator is [image: there is no content]. Both the MinMI and incremental MinMI estimators depend basically on errors of the expectations estimated from finite N-sized samples.

In particular, under the null hypothesis Ho that [image: there is no content] or [image: there is no content] ME-congruent (see definition in PP12, [12]), the difference [image: there is no content] works as a significance test of Ho. Those tests can be used: (1) for testing statistical significant MI above zero or significant RV dependence or (2) for testing MI due to nonlinear correlations beyond MI due to linear correlations. Another important case (verified here) is the test of MI explained by joint non-Gaussianity beyond the MI explained by joint Gaussianity, in which Gaussian morphism (i.e., bijective, reversible variable transformation into another with a Gaussian pdf without loss of generality) is used for single variables. According to the above result, the bias of [image: there is no content], subjected to Ho is [image: there is no content], i.e., the number of cross constraints in the difference set [image: there is no content] divided by [image: there is no content].

We further provide asymptotic analytical N-scaled formulas for the variance and distribution of MinMI estimation errors as functions of statistics of the ME cross constraints estimation errors. This is possible for N high enough where expectation errors are closely governed by a multivariate Gaussian distribution, uniquely determined by their bias and covariance matrix, thanks to the multivariate Central Limit Theorem. Since marginal morphisms are performed, the single variables are set to values from a look-up table of fixed quantiles (not subjected to sampling) and therefore the estimator’s squared-bias decreases faster than the estimator’s variance as [image: there is no content].

The correct modeling of covariances between sampling expectation’s errors under morphism is crucial for the correct computation of MinMI error statistics. We have verified an overall reduction of the cross expectation errors when compared to case where they are issued from iid realizations (no morphism performed). For instance the variance, noted as [image: there is no content] of the N-sized sampling mean [image: there is no content], of a cross function [image: there is no content] is given by [image: there is no content], where [image: there is no content] is the residual of the best linear fit of [image: there is no content], using the conditional means [image: there is no content] as predictors. Asymptotically, [image: there is no content] which is the variance of T, conditioned to the knowledge of marginal PDFs, computed at the joint PDF of the population. These conditional variances are exactly those coming from the MinMI solution, allowing for relating MinMI statistics with asymptotic no-replacement finite statistics under fixed marginals. The results are synthesized in the form of two theorems.

Regarding the conversion of expectation errors to ME and MinMI errors, we have used a perturbative approach—a 2nd order Taylor expansion of the ME. This allows for closed analytical formulas to be obtained for MinMI variance and its distribution in a few cases (e.g., Chi-Squared distributions), in what we hereafter call the analytical approach. In order to confirm that, expectation errors are generated by surrogates of the governing multivariate Gaussian PDF; then, they are plugged into the Taylor expansion of MinMI and finally statistics (bias, variances, quantiles) are estimated from a large ensemble (semi-analytical approach). These statistics are compared with those obtained from a Monte-Carlo experiment where MinMI is computed ab initio from the sampling expectations – the Monte-Carlo approach. The closeness of results between the Monte-Carlo, the semi-analytical and the analytical approaches is tested using several statistical tests of bivariate non-Gaussianity and RV independency. This exhaustive validation has already been performed for testing analytical formulas of bias, variance, skewness and kurtosis of MI estimation errors [27].

In accordance to the above synthesis, the paper structure starts with this introduction, followed by the formulation of MinMI and their estimators in Section 2. In Section 3 we present the modeling of sample mean errors that will constrain entropy and the effect of morphisms on statistics. Section 4 is devoted to the modeling of errors of MinMI, incremental MinMI and significance tests, followed by a practical case of MI estimation with under-sampled data (Section 5) and the discussion with conclusions in section 6. An appendix with some proofs is also provided.




2. Minimum Mutual Information and Its Estimators


2.1. Imposing Marginal PDFs

Let us formulate the problem of finding the minimum Mutual Information (MinMI) in the simplest framework of bivariate RVs [image: there is no content], over the Cartesian product of support sets [image: there is no content]. The MinMI is constrained by the imposition of marginal PDFs [image: there is no content] and a set of cross expectations [image: there is no content], where [image: there is no content] is a vector comprising [image: there is no content] cross [image: there is no content] functions and [image: there is no content] is the vector of their expectations. In the space of imposed PDF marginals, the MinMI comes uniquely as a function of [image: there is no content] as [image: there is no content], where [image: there is no content] are preset Shannon entropies of [image: there is no content] respectively and [image: there is no content] is the ME subjected to joint constraints and marginal PDFs where the ME-PDF is [image: there is no content]. That leads to the equivalence between computations of MinMI and ME [9]. In particular if [image: there is no content] are copula marginals (uniform PDFs in [0,1]), then [image: there is no content] and the MinMI is the copula entropy [24,25]. For instance, for standard Gaussians [image: there is no content] and a given correlation [image: there is no content], the MinMI is [image: there is no content]. Obviously, the more cross constraints are imposed, the larger the MinMI will be.

The general solution is obtained through variational analysis, rather similar to that for the ME [28] but with a continuity of constraints (the marginal PDFs) and a finite set of expectations:



[image: there is no content]



(1)




The MinMI-PDF [image: there is no content] and the partition functions [image: there is no content] are



[image: there is no content]



(2)




The superscript T stands for transpose such that [image: there is no content] is the canonical inner product between vectors [image: there is no content] and [image: there is no content]. The proof is given in Appendix 1. Any PDF [image: there is no content] is a MinMI PDF corresponding to the single constraint [image: there is no content], leading to [image: there is no content], [image: there is no content] and [image: there is no content].

The minimization of [image: there is no content] in (1) calls for the implementation of an iterative strategy as in [11] with successive adjustments of the implicitly linked partition functions.

The present paper deals with small changes of [image: there is no content] coming from estimation errors [image: there is no content] of the cross expectations evaluated from finite samples. For the purpose of inferring the consequent MinMI error statistics (bias, variance, distribution), we will use the second-order Taylor expansion of [image: there is no content] in terms of the variation [image: there is no content]:



[image: there is no content]



(3)




where [image: there is no content] is the inverse of the covariance matrix of the vector of constraining functions [image: there is no content], conditioned to knowledge of marginal PDFs and evaluated at the MinMI-PDF [image: there is no content]i.e.,


[image: there is no content]



(4)




where [image: there is no content] is the expectation at [image: there is no content].The perturbation [image: there is no content] is the residual with respect to the conditional mean, obtained by methods of variational and functional analysis as the best linear fit


[image: there is no content]



(5)




where [image: there is no content] are vectors of coefficients minimizing the mean square deviations to each component of [image: there is no content] using the X and Y conditional means of [image: there is no content] as predictors. The proof is given in Appendix 1 as part of the proof of Theorem 1 presented in Section 2.2.


2.2. Imposing Marginals through ME Constraints


2.2.1. The Formalism

In PP12 [12], we address the MinMI problem (1,2) by considering that [image: there is no content] are themselves ME-PDFs forced by a finite set of marginal, independent constraints, [image: there is no content]. For that purpose we solve the ME problem [29] by imposing the constraints set [image: there is no content], thus leading to a weaker (i.e., smaller) MinMI solution than that obtained with the full imposition of the marginal PDFs. That is given by [image: there is no content], where [image: there is no content] is the ME issued from the finite set of constraints (marginal and cross) and [image: there is no content] is the ME corresponding uniquely to the marginal constraints [30]. In particular, if the support sets are [image: there is no content] and [image: there is no content] (no constraints on marginals), then the joint PDF of [image: there is no content] is a copula [24] since their marginal PDFs are uniform in [0,1].The cross part [image: there is no content] includes only cross functions, not redundantly expressed as sums of marginal functions in [image: there is no content].

In practice one can impose the marginal PDFs from a priori RVs [image: there is no content] (data variables) through ME-morphisms [image: there is no content] (Equation 6 of PP12), (e.g., standard Gaussians), which are monotonically growing smooth homeomorphisms linking data to transformed [image: there is no content] variables. Then, thanks to the MI invariance [image: there is no content] [2], one can consistently define the MinMI between [image: there is no content] as that obtained with [image: there is no content].

The joint ME-PDF is written in terms of a vector [image: there is no content] of Lagrange multipliers [28] as: [image: there is no content], where [image: there is no content] is the partition function. The ME functional is [image: there is no content], whose input is the vector [image: there is no content]. The marginal PDFs are supposed to be the ME-PDFs [image: there is no content], verifying the marginal X and Y constraints respectively, since variables were built accordingly by ME-morphisms.

As far as more cross constraints are added to [image: there is no content], the MinMI [image: there is no content] increases converging to the full MI [image: there is no content]. Let us formalize that by supposing that the true joint PDF belongs to the ME-family characterized by an information moment superset [image: there is no content].

The true joint PDF is given by [image: there is no content] with Shannon entropy given by the ME [image: there is no content]. The encapsulated moment sets obey to [image: there is no content]. Therefore, thanks to Lemma 1 of PP12, the monotonic property of MEs is obtained: [image: there is no content]. This, according to Theorem 1 of PP12, allows for the decomposition of the MI [image: there is no content] into two positive terms, such that:



[image: there is no content]



(6)




The term [image: there is no content] is the MinMI associated to the finite set of cross moments [image: there is no content] and the second one is the remaining MI. The decomposition (6) allows us for defining a monotonic sequence of lower MI bounds converging to the total MI. That follows from the sequence of encapsulated moment sets [image: there is no content] (e.g. set of monomial bivariate moments of a certain total order j), whose ME-PDF approximates the true ME-PDF in the sense of the Kullback-Leibler divergence (KBD) i.e., [image: there is no content] with the MI given by the limit [image: there is no content]. The sets [image: there is no content] and [image: there is no content] are ME-congruent, i.e., their ME-PDF are the same. The j-th set must include enough constraints so as to keep a finite joint ME issued from [image: there is no content] and guarantee the convergence of the above KBD towards zero. Moreover that also guarantees that marginals of the joint ME-PDF converge to the preset marginal PDFs [image: there is no content] in the KBD sense. Therefore, the MinMI [image: there is no content].

The addition of constraints leads to the decrease of ME, raising the useful concept of incremental MinMI next presented. The MI part that is explained by cross terms in the set difference [image: there is no content] is the incremental MinMI:



[image: there is no content]



(7)




Estimation errors of [image: there is no content] are affected by the vector of moment errors [image: there is no content] (from which [image: there is no content] is simply a projection). Since we preset marginal PDFs, [image: there is no content] is restricted to the cross part i.e., [image: there is no content] where [image: there is no content] is the diagonal projector operator over cross expectations (cr and ind terms are set to 1 and 0 respectively). Looking for error statistics of [image: there is no content], we use the second-order Taylor expression of ME:



[image: there is no content]



(8)




where, as usually, [image: there is no content] (with dropped subscrits) is the whole vector of Lagrange multipliers of dimension [image: there is no content] and [image: there is no content] is the covariance matrix of the function vector [image: there is no content], both valid for the ME-PDF verifying the constraints [image: there is no content]. We note that [image: there is no content], where the star stands for evaluation over the ME-PDF and prime denotes deviation from the mean [image: there is no content], i.e., [image: there is no content]. Therefore, by using (8), we express the variation of [image: there is no content] due to variations [image: there is no content] as:


[image: there is no content]



(9)




where [image: there is no content] and [image: there is no content] are the whole vectors of Lagrange multipliers and the whole covariance matrices, valid for the ME-PDFs of orders j and p respectively. The matrix [image: there is no content] is built from the covariance matrices [image: there is no content] and [image: there is no content] valid at the ME-PDFs of order j and p respectively.
When the ME-PDFs of order j and p are the same (which is useful for testing if the estimated [image: there is no content] from data is significantly different from zero), or p = 0 (in which [image: there is no content]), then [image: there is no content] is a sub-matrix of [image: there is no content]. In that case, [image: there is no content] is positive semi-definite (PSD). This comes from the algebraic generic result stating that [image: there is no content] is PSD, where [image: there is no content] is PSD, [image: there is no content] is a diagonal projection matrix, [image: there is no content] is the projected [image: there is no content] with generalized inverse [image: there is no content] such that [image: there is no content]. [image: there is no content] is singular with [image: there is no content]. However, one can prove that for small deviations among the ME-PDFs of orders j and p, the matrix [image: there is no content] is still PSD. For that one can use the same perturbation approach of [26].



2.2.2. A Theorem about the MinMI Covariance Matrix

The matrix [image: there is no content] in (8) has inverse in the cross-expectation subspace, i.e. [image: there is no content]. Taking the identity as the sum of complementary projector operators [image: there is no content], both diagonal and self-adjoint, we have



[image: there is no content]



(10)




which is the covariance matrix between the residuals [image: there is no content] of the best linear fit (in the sense of mean squares error) of [image: there is no content] using the X and Y functions in [image: there is no content] as predictors, i.e., [image: there is no content] where the matrix of coefficients is [image: there is no content]. The identity (10) is simply an application to the ME covariance matrix of a generic algebraic result on PSD matrices [image: there is no content] and projection operators [image: there is no content].
Therefore, the variances in [image: there is no content] are smaller than those in [image: there is no content]. Moreover, the more marginal constraints are imposed (with increasing j), the smaller the variances from [image: there is no content] will be, due to the increasing number of predictors and closer will be the full knowledge of the marginal PDFs. Then, asymptotically the residuals [image: there is no content] at step j must converge to the residuals [image: there is no content] with respect to the mean (5) entering in the covariance (4) regarding MinMI. Therefore, that leads us to the Theorem:

Theorem 1: Let [image: there is no content] be the MinMI-PDF issued from [image: there is no content], being the same as the ME-PDF issued from [image: there is no content] for some set [image: there is no content]. Then we have:



[image: there is no content]



(11)




which states that the Lagrange multipliers of the MinMI-PDF are those of the ME-PDF for the cross constraints and the MinMI covariance matrix (4), say that of the residuals of the best fit of the cross constraints using their condtional means as predictors. The proof, as well of (3–5) is added in Appendix 1.
An illustrative example of the Theorem 1 is given for the bivariate Gaussian [image: there is no content] of correlation [image: there is no content] with [image: there is no content]. The marginals [image: there is no content] are standard Gaussians. [image: there is no content] is the MinMI-PDF constrained by correlation as well as the ME-PDF constrained by moments of order one and two: [image: there is no content] and [image: there is no content]. The vector of Lagrange multipliers is [image: there is no content] while the diagonal covariance matrix and its inverse (lower triangle parts) are:



[image: there is no content]



(12)




The redundant upper triangle part is given by stars. The MinMI is [image: there is no content] with its derivatives entering in the Taylor development (3) given by [image: there is no content] which is the fifth component of [image: there is no content] and [image: there is no content], i.e., the entry at 5th line, 5th column of [image: there is no content] as guessed from the Theorem 1. By expressing [image: there is no content] and [image: there is no content] with standard Gaussian noises [image: there is no content], and [image: there is no content], one easily gets the conditional means [image: there is no content] as [image: there is no content], leading to the best linear fit with mean square error [image: there is no content], confirming the second part of (11).




2.3. Gaussian and Non-Gaussian MI

There is a particular MI decomposition of the type (6,7), already studied in PP12 [12], in which both RVs X and Y are set to standard Gaussians [image: there is no content] over the real support set [image: there is no content] by Gaussian morphism [31]. The isotropic bivariate standard Gaussian is constrained by the moment set [image: there is no content] with the expectations vector [image: there is no content]. The sequence of MinMIs is obtained by considering the indexed moment set (Equation 14 of PP12 [12], changing the index p there into j here):



[image: there is no content]



(13)




Comprising bivariate polynomials of total order j. Only natural j even numbers provide integrable ME-PDFs over [image: there is no content], thus excluding odd j values from the sequence [image: there is no content] of set pairs {moments, expectations}. The independent parts of all sets are ME-congruent with [image: there is no content], i.e., they include high-order univariate moment expectations of the standard Gaussian. The number of independent and cross moments of [image: there is no content] (13) is 2j and [image: there is no content] respectively (e.g. (4,1), (8,6), (12,15) and (16,28), for j=2,4,6,8). Other more efficient basis cross functions could be used as for example orthogonal polynomials. Using the notation of Section 2.2, the maximum entropy limit [image: there is no content] of the sequence limit coincides to the true (X,Y) Shannon entropy. As presented in PP12, we define the positive Gaussian MI [image: there is no content], the non-Gaussian MI [image: there is no content] and the non-Gaussian MI [image: there is no content] of even order j, respectively as:



[image: there is no content]



(14)




with the MI decomposed as [image: there is no content]. The Gaussian MI depends on the Gaussian correlation [image: there is no content], i.e., the Pearson correlation between the Gaussianized variables [image: there is no content]. The non-Gaussian MI vanishes iff the joint PDF is Gaussian.


2.4. Estimators of the Minimum MI from Data and Their Errors

This section is devoted to the study of estimators (and their errors) of the incremental MI [image: there is no content], (7) between a priori RVs [image: there is no content] or, equivalently, between their transformed RVs X,Y.

In practice, the incremental MI [image: there is no content] is estimated by a two-step algorithm: first, the computation of expectations; then, the MEs and the partial MIs. The vector of expectations, [image: there is no content], is estimated from the N-sized bivariate series [image: there is no content], obtained by morphism from the original N iid realizations of the a-priori RVs [image: there is no content] (e.g. time-series, spatially distributed data), as the arithmetic average:



[image: there is no content]



(15)




where [image: there is no content] stands for expectation over the N realizations and the vector of moment estimation errors is [image: there is no content]. The first-step error comes from the difference [image: there is no content], due to marginal morphisms and finite bivariate sampling, i.e., the cross combinations of variable realizations. We will see that MI errors depend crucially from moment estimation errors and their statistics.
Secondly, the true ME [image: there is no content] is estimated as the minimum [image: there is no content] of a functional that is reached by nonlinear minimization techniques (e.g., gradient-descent), taking as inputs [image: there is no content] and a set of calibrated parameters. The second-step error comes from the difference [image: there is no content].

The estimator of [image: there is no content] along with its error, decomposed into the first-step ([image: there is no content]) and second-step ([image: there is no content]) contributions, is written as



[image: there is no content]



(16)




where [image: there is no content] is the difference between entropy anomalies [image: there is no content] due to input errors. The second-step error comes from the numerical implementation and round-off errors of the entropy functional due to: (a) a coarse graining representation of the continuous PDF; (b) the numerical approximation of the ME functional and its gradient; (c) the stopping criteria of the iterative gradient-descent technique. In this article we will neglect the effect of the second-step error, thus approximating the MinMI error by [image: there is no content] depending uniquely on the sampling error of the cross expectations [image: there is no content].



3. Errors of the Expectation’s Estimators


3.1. Generic Properties

The distribution of the MinMI error and its statistics (bias, variance, quantiles) depends on the distribution of the vector of error moments [image: there is no content] entering in (9). Here, we present a generic statistical modeling of those errors giving the emphasis in the influence of variable morphisms and bivariate sampling.

Let us assume the reasonable hypothesis that the discrete estimator [image: there is no content] (15) is a consistent estimator of the mean [image: there is no content], i.e., the error [image: there is no content] in probability, with both the bias and covariance matrix converging to zero as data size grows:



[image: there is no content]



(17)




where the prime stands for perturbation with respect to the mean. The exact form of the components of [image: there is no content] and [image: there is no content] is rather difficult to establish as a consequence of imposing marginal distributions thus reducing the randomness to the covariate sampling. Estimator variances are scaled as [image: there is no content], though smaller than in the case of N iid outcomes. Moreover, we assume that the convergence rate is higher (faster convergence) for the squared bias than for variances, which is supported in a few examples in next section.


3.2. The Effects of Morphisms and Bivariate Sampling

Let us start with the effect of morphisms transforming original variables [image: there is no content] into their transformed [image: there is no content]. That depends on the rank of variables within the available sample. Without loss of generality, let us sort [image: there is no content] by ascending order in the sample, i.e., the l-th value equaling the ordered l-th value [image: there is no content], l=1,…,N. The bivariate l-th realization is [image: there is no content], where [image: there is no content] is the random bivariate rank permutation depending upon the particular sample (e.g. the first of [image: there is no content] coming with the third of [image: there is no content], then l’(l=1)=3 and so on). In particular [image: there is no content] when correlation equals one. The inverse of the function [image: there is no content] is written [image: there is no content]. The probability p-values of [image: there is no content]i.e., their marginal cumulated probability functions (CDFs) are respectively [image: there is no content], growing as function of [image: there is no content]. Those p-values can only be inferred from the sample or prescribed from a-priori hypotheses. The sorted transformed RVs given by ME-morphisms are:



[image: there is no content]



(18)




where [image: there is no content] are the ME prescribed CDFs (e.g. CDFs of Gaussians) of X and Y respectively. Then the morphisms relies upon invertible transformations [image: there is no content]. The bivariate transformed realizations [image: there is no content] are then used to compute expectations (Equation 15). Since the exact marginal distributions are not known, their cumulated probabilities must be prescribed, for example with regular steps [image: there is no content] in which [image: there is no content].
In order to obtain moments of [image: there is no content] we need rewriting it in a convenient form:



[image: there is no content]



(19)




where [image: there is no content] is the Kronecker delta, [image: there is no content] are the marginal cumulated probabilities, corresponding respectively to probabilities [image: there is no content] and [image: there is no content] in the sum (19) and [image: there is no content] is the copula function [23] (ratio between the joint PDF and the product of marginal PDFs). By looking at (19), one sees that [image: there is no content] is an estimator of the copula [image: there is no content]. In particular, if X,Y are independent, then l and l’(l) are independent, [image: there is no content] and [image: there is no content]i.e. there is an average equipartition of the bivariate ranks.
Equation (19) shows that moments of [image: there is no content] depend on statistics of the error of the copula estimator, which can be very tricky due to the imposition of marginal PDFs by morphisms, presenting unusual effects with respect to classical results from samples of iid realizations [32].

For that, let us denote the random perturbation [image: there is no content], then [image: there is no content] , also satisfying to the constraints [image: there is no content] or [image: there is no content] as a consequence of the fact that [image: there is no content] and [image: there is no content] are index permutations of N values. Therefore, taking into account those constraints, [image: there is no content] can be written in different forms in terms of perturbations:



[image: there is no content]



(20)




where [image: there is no content] and its perturbation with respect to the global mean is [image: there is no content]. The perturbation with respect to X-conditional mean is [image: there is no content] where [image: there is no content]. A similar definition is written for the Y- perturbation [image: there is no content].
The estimator (15) of independent constraints (components of [image: there is no content] uniquely dependent on X or Y) have a bias but vanishing variances (null components of [image: there is no content]), since perturbations [image: there is no content] or [image: there is no content] vanish because the local values of [image: there is no content] coincide to one of the (X or Y)-conditional means. That bias reduces to a numerical integration error. For example for X-depending functions expectations, the error reduces to bias [image: there is no content], of order [image: there is no content] as given by the trapezoidal integration rule for bounded [image: there is no content] functions. The estimators of cross expectations have bias and non-vanishing variances.

Now, our goal is to get the estimation of the covariance matrix [image: there is no content] (17). As a consequence of the non-replacement of quantiles or rankins, the deviations [image: there is no content] and [image: there is no content] in (20) are not necessarily independent for [image: there is no content], which will not occur if different realizations would be independent, leading to [image: there is no content]. The statistics without replacement generally lead to a deflation of estimator variances as compared to those satisfying the hypothesis of independence of realizations [33] or, in other words, [image: there is no content]. Therefore, in order to get a N−1-scaled expression for [image: there is no content], we will consider another type of deviations of [image: there is no content] consistent with (20).

We propose new deviations, denoted by [image: there is no content], that are given by the linear combination both of the global deviation [image: there is no content] and of the marginal deviations [image: there is no content] with the respective coefficients summing 1 and having the least mean square (lms). Those deviations are consistently given by:



[image: there is no content]



(21)




which are the residuals of the best linear fit of [image: there is no content] using the conditional means [image: there is no content] and [image: there is no content] as predictors and where the coefficients are those of the linear regression:


[image: there is no content]



(22)




Those deviations take into account the maximum implicit knowledge of marginal PDFs through their conditional means. Now we will use them for expressing the error moments.

The expression of the error covariances in [image: there is no content] relies upon the expansion (20) with perturbations written as function of mean values of products of deltas [image: there is no content]. These means depend on the true copula and are written as:



[image: there is no content]



(23)




where we have considered the fact that l’(l) and its inverse l(l’) are permutations of ranks (no duplication allowed). The values indicated with asterisk in (23) correspond to X,Y independent (l’(l) independent of l). Those moments are difficult to obtain in practice unless variables are independent or the bivariate PDF is known a priori. From these moments, a large ensemble of N-sized surrogate samples is generated from which empirical estimator covariances are computed.
Then, by plugging (23) into the generic (α-th row, β-th column) of [image: there is no content], and denoting the α-th and β-th components of [image: there is no content] by [image: there is no content] and [image: there is no content] with estimation errors [image: there is no content], we get



[image: there is no content]



(24)




The first term of the rhs of (24) is given by [image: there is no content]i.e. 1/N times the expectation of the covariance among N realizations. That term converges asymptotically to [image: there is no content], i.e., the estimator’s covariance in the hypothesis of N iid realizations. However, when marginals are imposed or the morphism of variables is performed, that hypothesis no longer holds because the covariance estimator is a statistic without replacement [33], since quantiles of X and Y are not repeated in the sample. Therefore, the additional term of (24) reduces the estimator’s variances with respect to the case of iid trials.

Looking for a correct representation of the cross estimator’s variances when marginals are imposed, we represent the [image: there is no content] perturbations by [image: there is no content] (21) (residuals of the best linear regression). There, we will benefit from a generic property of lse (least squares error) regression residuals which is the fact that they are uncorrelated with the predictors (here the conditional means of [image: there is no content]). This means that [image: there is no content] is represented in terms of noises which are uncorrelated, both with X and Y. Consequently, different realizations of [image: there is no content] are uncorrelated, which will simplify the expression of the covariance matrix. Therefore, using those lms perturbations, the generic matrix entry [image: there is no content] (24) is rewritten as



[image: there is no content]



(25)




The [image: there is no content]-scaled term of (25) converges asymptotically (as [image: there is no content]) to [image: there is no content], i.e., 1/N times the covariances between residuals of the linear regression relying upon conditional variances. This let us to formulate the Theorem:

Theorem 2: Let us suppose imposed X and Y marginal PDFs by variable morphisms. Then, the covariance between the N-sized based estimators [image: there is no content] and [image: there is no content] of the means of cross functions of [image: there is no content] and [image: there is no content] is given by



[image: there is no content]



(26)




where [image: there is no content] is the residual of the best linear fit taking conditional means as predictors, and [image: there is no content] are the corresponding coefficients (idem for [image: there is no content]). The expectation is computed with the true PDF of the population. The proof was given before in the text.
An immediate corollary of this Theorem applies in the case data are governed by a certain MinMI-PDF issued from [image: there is no content]. In that conditions [image: there is no content] and [image: there is no content] are themselves cross functions from the constraining set [image: there is no content] and [image: there is no content] are entries of [image: there is no content] (17). Then, if the true joint PDF is the MinMI-PDF issued from [image: there is no content], we get:



[image: there is no content]



(27)




where we use the covariance matrix introduced in (4). Under those conditions one has the identity for the matricial product [image: there is no content], which will be crucial for the evaluation of asymptotic MinMI estimation bias.


3.3. Errors of the Estimators of Polynomial Moments under Gaussian Distributions

In this section we assess the bias, the covariance of estimators and its expression (25) when constraints are bivariate monomials (13) and Gaussian morphisms are performed as described in Section 2.3. For the purpose of discussing statistical tests of non-Gaussianity presented in a next section, we will restrict our study by considering the case of N-sized samples of iid realizations of independent variables [image: there is no content] (taken without loss of generality standard Gaussians). There, an empiric Monte-Carlo strategy is used by taking the standard Gaussian morphisms [image: there is no content] of the N outcomes, from which one estimates the expectation of a vector of generic functions [image: there is no content] (13). The bias is [image: there is no content], which is determined by the fixed Gaussian centered moments [image: there is no content] and [image: there is no content], [image: there is no content]. The sample is centered and standardized such that [image: there is no content]. The variance [image: there is no content] of [image: there is no content] can be rigorously computed from the quadruple sum (25) using the N quantiles from the standard Gaussian and the delta expectations (23) for the case of X, Y independent from each other. However, the computation of that sum is very time-consuming for high N values. For that reason, we approximate it by a Monte-Carlo mean obtained with [image: there is no content] independent realizations of the N-sized samples. The finite and asymptotic values of [image: there is no content], valid for the case of N iid trials, are given by:



[image: there is no content]



(28)




whereas those (smaller than those of (28)) obtained from least mean squares (25) are:


[image: there is no content]



(29)




Figure 1 compares the variance [image: there is no content] with the squared bias [image: there is no content] of the estimator, both relevant in the bias of the MinMI estimation. In the same figure, one compares the empirical variance [image: there is no content], with its approximation [image: there is no content] and with the variance for the case of iid trials: [image: there is no content]. We use [image: there is no content],respectively in panels a), b), c), sorted by growing total variance [image: there is no content], specially concentrated at the distribution queues. In all figures, N=25*2k,k=0,..,11. We have verified that the empirical variance [image: there is no content] agrees very well to the theoretical value [image: there is no content] for all Ns. (not shown).

Figure 1. Squared empirical bias: [image: there is no content] (black lines) of N-based [image: there is no content]- expectations as function of N, empirical variances: [image: there is no content] (red lines), approximated variances: [image: there is no content] (blue lines) and variance for the case of N iid trials: [image: there is no content] (green lines). [image: there is no content] stands for different bivariate monomials: [image: there is no content] (a), [image: there is no content] (b) and [image: there is no content] (c).
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At this point, some generic conclusions can be drawn. The estimator’s variance [image: there is no content] grows with [image: there is no content] dominating over the squared bias, except for small N values and higher values of [image: there is no content]. This will lead us to neglect the bias of covariance estimator’s in the MinMI asymptotic statistics.



From Figure 1, we also note that the variance reduction coming from morphisms of variables, tends to decrease for higher N values, where the effect of sampling prevails with a [image: there is no content] scaling on the estimator variance where it is closely approximated by the asymptotic lms variance [image: there is no content]. That can lead to a slight increase of [image: there is no content] for small Ns, followed by a decrease (e.g., [image: there is no content]), due to the effect that [image: there is no content] is small for lower values of N.

Moreover, thanks to the Central Limit Theorem (CLT), the distribution of estimator errors tends towards Gaussianity with increasing N, with a slower convergence rate for higher [image: there is no content] variances. However, the Gaussian PDF limit has an infinite support which must be truncated since the estimated moments [image: there is no content] must be within a kind of polytope with edges determined by Schwartz-like inequalities as shown by PP12 [12] (e.g., [image: there is no content] and [image: there is no content], working as bounds for nonlinear correlations. Since estimators have bounds, the estimation errors do so as well. This can be solved by using the Fisher Z-transform arctanh(c) of a generic linear or nonlinear correlation c and projecting it over the real support (not done here).

Now we illustrate in Figure 2, the Theorem 2 under different values of correlation [image: there is no content]. We consider the variables [image: there is no content] with a joint Gaussian PDF of correlation [image: there is no content] with marginal standard Gaussians. In Figure 2 we compare the empirical Monte-Carlo value of [image: there is no content] (MC in the Figure), within an ensemble of 5000 N-sized samples with the theoretical one [image: there is no content] (case where morphism is performed, AN in the Figure) and [image: there is no content] (case of iid realizations, ANiid in the Figure). We have used a sample of N=200, which is supposed to be near the beginning of the asymptotic regime and two cross functions: [image: there is no content] and [image: there is no content]. The aforementioned variances are [image: there is no content] while [image: there is no content] and [image: there is no content] is the mean squared residual of the best linear fit using the predictors [image: there is no content] and [image: there is no content]. For both functions, a very good agreement is verified between Monte-Carlo values and the theoretical ones within 1–5% relative error. A generic result of Figure 2 is the fact that, under the fixation (presetting) of marginals, the sampling variability of cross estimators falls to zero as far the absolute value of correlation tends to one.

Figure 2. N times Monte-Carlo variances: [image: there is no content] thick solid lines) and its theoretical analytical value [image: there is no content] (thick dashed lines), both under imposed marginals (morphisms) and analytical value of [image: there is no content] for iid data (thin solid lines). [image: there is no content] means different bivariate monomials: [image: there is no content] (black curves), [image: there is no content] (red curves). N = 200.
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3.4. Statistical Modeling of Moment Estimation Errors

The above qualitative results gave empirical support to Theorem 2 about the covariance of estimation errors and the neglecting of estimation biases. Therefore, the part of matrix [image: there is no content] (17) regarding cross components is modeled as:



[image: there is no content]



(30)




with the approximation being valid within terms [image: there is no content]. In practice, the matrix [image: there is no content] requires the estimation of conditional means for each value of X and Y.
Now, we will formulate the distribution of moment’s estimation errors in the asymptotic regime of high enough N. Then, thanks to the multivariate Central Limit Theorem [34] one can suppose that the unbiased estimation error vector follows a multivariate Gaussian distribution, which is written as



[image: there is no content]



(31)




where [image: there is no content] is the square root matrix of [image: there is no content] and [image: there is no content] is a multivariate standard normal RV of dimension equal to [image: there is no content] with zero mean [image: there is no content] and covariance matrix [image: there is no content].



4. Modeling of MinMI Estimation Errors, Their Bias, Variance and Distribution

Taking into account the Gaussian approximations (31) for estimation errors, their neglected bias, the [image: there is no content] scaled covariance (30), and the second-order Taylor development of MinMI (9), one can determine approximated bias, variance and distribution of MinMI estimators (15).

Two problems are then addressed:


	The estimation of bias, variance, quantiles and distribution of estimators of the incremental MinMI [image: there is no content] issued from finite samples of N (iid) realizations of bivariate original variables [image: there is no content] and then transformed into RVs [image: there is no content]


	The distribution of estimators of [image: there is no content] under the null hypothesis H0 that [image: there is no content] follows the ME distribution constrained by a weaker constraint set [image: there is no content] (j>p). These estimators work as a significance test for determining whether there is statistically significant MI beyond that explained by cross moments in [image: there is no content].





4.1. Bias, Variance, Quantiles and Distribution of MI Estimation Error

Considering the moment error distribution (31) and plugging it into the development (9), the error of the MI estimator [image: there is no content] is then distributed as:



[image: there is no content]



(32)




where neglected terms are of order [image: there is no content]. That is a second-order polynomial form of a multivariate standard Gaussian RV [image: there is no content]. There is no general analytical expression for the PDF inferred from (32), except in certain cases where [image: there is no content] is a governed by a non-central Chi-squared distribution [36]. The quantiles determining the confidence intervals of [image: there is no content] can easily be obtained by sorting of Monte-Carlo surrogates (proxies) of (32) from a pseudo-random generator of a standard Gaussian. Analytical expressions of the distribution of MI estimates are given from a MI Taylor expansion in terms of the anomalies of the estimated probabilities [27,37]. Here, we adopt a different approach by considering anomalies of the estimated expectations.
The bias of [image: there is no content] or the expectation of [image: there is no content] is derived from the mean of the quadratic form term in (32). Therefore, taking the invariance of the trace for the circular permutation of a matrix product, that bias is approximated by the asymptotic value:



[image: there is no content]



(33)




This is the difference between maximum entropy [image: there is no content]-scaled biases of orders j and p, subjected to the imposition of marginal PDFs. We must remember that if p = 0, [image: there is no content] is zero. For this case the MinMI bias is simply minus the negative bias of the ME [image: there is no content], which is treated without the effect of variable morphism by [26]. When data is governed by the MinMI-PDF of order j, the matrices [image: there is no content] and [image: there is no content] are the inverse of each-other, according to Theorems 1 and 2 (11,27), leading to [image: there is no content], i.e., [image: there is no content] times the number of cross constraints. However, as argued by [26], when the true data distribution is more leptokurtic than the MinMI-PDF, then the bias can be larger than [image: there is no content].

By assuming the limit case of Gaussianity, the variance of [image: there is no content] comes as:



[image: there is no content]



(34)




The leading variance term is N−1-scaled as generally deduced in [15]. Keeping the leading term of (34), and dealing with the trace, we get a given relative error [image: there is no content] of the MinMI [image: there is no content] (p=0) when [image: there is no content]. The term [image: there is no content] increases with a larger rate than [image: there is no content] as far as the bound of the polytope of allowed expectations is closer.



4.2. Significance Tests of MinMI Thresholds

The estimators [image: there is no content] allow for the elaboration of statistical significance tests in order to verify whether the empirical PDF differs considerably from a threshold ME-PDF or in the contrary if the difference can be justified by sampling errors.

Let us suppose the null hypothesis H0 considering that the true PDF coincides to the ME-PDF constrained by [image: there is no content]. In particular for [image: there is no content], the null hypothesis states that [image: there is no content] are statistically independent. Therefore under H0, the moment sets [image: there is no content] are ME-congruent and the moments of order [image: there is no content] remain well determined by expectations over the less restricted p-th ME-PDF i.e., [image: there is no content] where the subscript arrow [image: there is no content] means that j-order statistics are obtained by the p-order ME-PDF. The same holds for the ME covariance matrices, i.e., [image: there is no content] and [image: there is no content]. In these conditions, the matrix [image: there is no content] is simply a sub-matrix of [image: there is no content].The Lagrange multipliers are restricted to the p-order i.e. [image: there is no content], where entries of higher order than p are set to zero leading to [image: there is no content] in (9). Therefore, the incremental MinMI vanishes, i.e. [image: there is no content], but the estimator of [image: there is no content] is positive due to artificial MI generation stemming from the presence of sampling errors. Then, under H0, and using (9), the MI estimation is provided by the following approximation:



[image: there is no content]



(35)




where [image: there is no content] is a positive semi-definite matrix. That works as a significance test for the non-verification of H0; in other words, if [image: there is no content] is larger than an upper 1-α quantile (e.g., 1−α=95%) of [image: there is no content], then H0 is rejected with a significance level α. Those quantiles determine the significant MI thresholds and can be computed empirically as for the MinMI error (32) by a Monte-Carlo strategy. Another possibility is the fitting of the [image: there is no content] distribution to a Gamma PDF with prescribed mean and variance (not done here). The bias and variance of [image: there is no content] are straightforward, coming as:


[image: there is no content]



(36)




The N−2-scale for variance is also present in other MI estimate errors under the hypothesis of variable independency [27]. Under the Theorems 1 [11] and 2 [27], along with the null hypothesis, one gets [image: there is no content], thus leading to a Chi-Squared distribution for [image: there is no content]:



[image: there is no content]



(37)




with [image: there is no content] degrees of freedom, i.e., the difference between the number of cross moments of order j and p. From that, the upper quantiles necessary for statistical significance are easily obtained from χ2 probability lookup tables. The bias and variance are, respectively:


[image: there is no content]



(38)




By analyzing (38), and in order to get a test with a relative error [image: there is no content], one must choose [image: there is no content].



4.3. Significance Tests of the Gaussian and Non-Gaussian MI

In this section we particularize the theory presented in Section 4.1 and Section 4.2 (Equations 35–38) for the case of Gaussian and non-Gaussian MIs as defined in Section 2.3. For this purpose, let us consider the moment sets (13) and the MI components [image: there is no content] and [image: there is no content] (11). Their finite estimators are:



[image: there is no content]



(39)




where [image: there is no content] are MinMI errors, [image: there is no content] is the Gaussian correlation estimation error, [image: there is no content] with [image: there is no content] being the entropy of the univariate standard Gaussian; [image: there is no content] are the expectations obtained from the N-sized Gaussianized standardized sample.
The numerical implementation of the maximum entropy estimator [image: there is no content] (16), approximating H is computed over a number Nb bins of an extended enough finite interval [-Li,Li]. In the corresponding experiments (and as in PP12), we have used the calibrated values Li=6 and Nb=80. The used algorithm is explained in detail in the appendix 2 of PP12 [12], following an adapted bivariate version of that of [35]. The error [image: there is no content] is of the order of round-off errors, only becoming comparable to the sampling ME errors at very high values of N.


4.3.1. Error and Significance Tests of the Gaussian MI

The Gaussian MI error [image: there is no content] depends on the Gaussian correlation estimation’s error [image: there is no content] where [image: there is no content] is inferred from the sample. Let us write (9) for [image: there is no content]. The Gaussian bivariate ME-PDF, constrained by [image: there is no content] is [image: there is no content], leading to the vector of Lagrange multipliers [image: there is no content]. The projector operator [image: there is no content] onto cross moments is the 5x5 matrix that extracts the 5th entry (row and column) of [image: there is no content], corresponding to the unique cross moment XY. The necessary 5x5 covariance matrix is [image: there is no content], where the E operator is the expectation over the bivariate Gaussian [image: there is no content]. Then, we apply (9) for j=2, p=0 where [image: there is no content]. The Gaussian MI error is written in different forms as:



[image: there is no content]



(40)




There, the term [image: there is no content] is the fifth component of [image: there is no content], corresponding to the first derivative of [image: there is no content] with respect to [image: there is no content] whereas the term [image: there is no content] is the entry of [image: there is no content] at row 5, column 5, corresponding to the second derivative of [image: there is no content]. The bias and variance of [image: there is no content] depend on the distribution of the Gaussian correlation error [image: there is no content]. According to the proposed modeling of moment estimation errors (Theorem 2 of section 3.4), [image: there is no content] is asymptotically Gaussian with a negligible bias [image: there is no content] and a variance (under imposed marginals) given by:



[image: there is no content]



(41)




However, in order to keep the simulated [image: there is no content] within the interval [-1,1], one can use the more precise Fisher Z-transform [38] such that [image: there is no content], where [image: there is no content] has a mean and variance of order [image: there is no content].

In order to test the null hypothesis that the variable pair [image: there is no content] has a joint bivariate isotropic Gaussian distribution, we must compare the estimated [image: there is no content] with upper quantiles of the significance test [image: there is no content], given by [image: there is no content] (40) with [image: there is no content] and [image: there is no content]. This is a Gaussian correlation significance test that is Chi-squared distributed, with:



[image: there is no content]



(42)






4.3.2. Error and Significance Tests of the Non-Gaussian MI

The estimation error [image: there is no content] of the non-Gaussian MI as defined in (39) can be written as a particular form of (9) for an even order [image: there is no content] and p=2 as function of the vector [image: there is no content] of moment errors of the moment vector [image: there is no content] (13) with a certain chosen component indexation. Therefore, the matrix [image: there is no content] of (9) comprises the inverses of covariance matrices [image: there is no content] and [image: there is no content], respectively of the j-th and 2nd order ME solutions.

Algebraic consistency sets the matrix [image: there is no content] to the embedding of [image: there is no content] onto the j-th moment subspace. Then we will perform a range of experiments for the validation of approximations in Section 4.2. The vector [image: there is no content] comprises Lagrange multiplier vectors of the ME solutions of orders j and 2.

In order to compute the bias, variance, quantiles and confidence intervals of [image: there is no content], from N-sized samples, there are two possible strategies: either pure Monte-Carlo simulations or the analytical and the semi-analytical (analytical with moment’s error surrogates) approaches as explained in section 1. In the pure Monte-Carlo approach, either a known bivariate PDF is assumed or surrogates of the joint PDF are generated through multivariate bootstrapping techniques [39] preserving the copula structure. For each generated sample from an extended ensemble of Nrea (e.g., 5000) realizations, we compute moments and solve the ME problem gathering statistics afterwards. Alternatively, ME errors can be computed from the Taylor expansion (9) from moment deviations over the ensemble.

In the analytical and semi-analytical approaches, moment errors [image: there is no content] are assumed to follow a certain parametric distribution that can be multivariate Gaussian as in (31), based on a given bias-covariance matrix modeling or a more sophisticated approach taking into account the natural bounds of the simulated moments [image: there is no content]. Then, MinMI statistics are computed from statistics (bias, variance, quantiles) on ensembles of error surrogates.

The non-Gaussian MIs [image: there is no content] work as tests measuring significant statistical deviations from the null hypotheses of joint Gaussianity. These statistical tests are given by Kullback-Leibler distances (7) and constitute an alternative to the use of algebraic deviations of moments from those given by the bivariate Gaussian (e.g., bivariate cumulants) [40].

The non-Gaussianity test of order j is given by [image: there is no content] under the null hypothesis H0 that the true PDF is bivariate Gaussian and is written as a particular case of (35). However, a simplification of the statistical test formula can be achieved by considering a null Gaussian correlation. This holds thanks the non-Gaussian MI invariance under variable rotations (see PP12), in particular for uncorrelated standardized variables [image: there is no content], where A is the rotation matrix (e.g. [image: there is no content], i.e., the residual of the linear prediction). Under H0, the rotated variables are still bivariate Gaussian and therefore the non-Gaussianity significance test [image: there is no content] has the same distribution as that for [image: there is no content]. The matrices [image: there is no content] and [image: there is no content] entering in Equation (35) are now evaluated for Gaussian isotropic conditions. For the sake of clarity, we represent them respectively by [image: there is no content], [image: there is no content], where the subscript g stands for evaluation at [image: there is no content]. For high N, [image: there is no content], i.e., the covariance matrix of cross j-th order moments for the isotropic Gaussian. Then we write:



[image: there is no content]



(43)




Let us specify generic entries at row α, column β of those matrices, corresponding to monomials [image: there is no content] and [image: there is no content] of [image: there is no content], i.e. with [image: there is no content]. Then, using the notation introduced in Section 3.3 for Gaussian standard moments [image: there is no content], the components of [image: there is no content] become:



[image: there is no content]



(44)




whereas the components of the lms covariances are:


[image: there is no content]



(45)




The bias of the non-Gaussian MinMI and its asymptotic approximation (36) are given by:



[image: there is no content]



(46)




Similarly and following (36), the variance becomes:



[image: there is no content]



(47)




and the reasonable distribution approximation following (37):


[image: there is no content]



(48)




from which bounds of significance levels of non-Gaussianity can be computed through quantiles of the Chi-squared distribution.



4.4. Validation of Significance Tests by Monte-Carlo Experiments

We have presented the theoretical expressions for the bias, variance and distribution, both for the Gaussian correlation test (42) and for the ME non-Gaussianity test of order j (46–48). Now we validate those expressions by comparing their results with statistics from large Monte-Carlo ensembles of ME computations. For that purpose, we have generated [image: there is no content] independent synthetic datasets of N iid uncorrelated [image: there is no content] from a Gaussian random generator. We have set N from a duplication sequence: N=25, 21*25,…,211*25 = 51200. Then, we have computed the 5,000 realizations for the independency test [image: there is no content] as well as for the non-Gaussianity tests [image: there is no content] for j = 4, 6, 8. In order to minimize errors of type [image: there is no content] (8), from the ME functional, we have retained only those Monte-Carlo realizations whose ME-PDF moments are within a relative square error of 10−5.

In the sequel, we have collected and compared the estimates of bias, standard deviation and the 95%-quantile, all provided by the three approaches: the Monte-Carlo (extended ensemble of ME computations), the semi-analytical (generation of Gaussian surrogates in the Taylor expansion of ME) and the analytical (analytical formulas based on the Theorems 1 and 2). The Figure 3a, b, c and d depict the above statistics of significance tests, respectively for [image: there is no content] and [image: there is no content] (j = 4, 6, 8). The truth is assumed to be provided by the Monte-Carlo estimate.

Figure 3. Test statistics: bias (black lines), standard deviation (red lines) and 95%-quantiles (green lines), provided by the Monte-Carlo approach (tick full lines), the semi-analytical approach (thin dashed lines) and the analytical approach (tick full lines). The tests are [image: there is no content] (a); [image: there is no content] (b); [image: there is no content] (c) and [image: there is no content] (d).
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As previously expected, significance tests are all scaled by [image: there is no content], and consequently their bias, standard deviation and quantiles are [image: there is no content] as shown in Figure 3a-d by estimates coming from the different approaches. MinMI biases and significance thresholds (the 95% quantiles) grow for higher number of constraints as in the sequence [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].

These results mean that those estimators are progressively better (stronger) evaluations of MI (or the MI beyond that explained by Gaussianity), though they call for progressively higher significance thresholds. Therefore, especially in cases of under-sampled data (small N) or very low MI (or Non-Gaussian MI) values (weakly dependent variables or weak joint non-Gaussianity), there must be a tradeoff between N and the number of parameters of the MinMI estimator (here the number of cross constraints).

At this point, we discuss how the analytical and semi-analytical estimates of MinMI error statistics fit the Monte-Carlo (true) statistics. There are three crucial factors in our approximations: (1) The accuracy of the ME Taylor expansion, valid for small enough sampling errors (N large); (2) The convergence rate towards Gaussian statistics (from the CLT) for high N.



The analytical bias depends on factors 1 and 3, while formulas for variance, distribution and quantiles depend on all above factors, being only valid for N high enough. From Figure 3a–d, we see that the agreement between analytical and Monte-Carlo statistics is quite good for all tests (with a slight analytical underestimation), though only for large enough [image: there is no content] values where [image: there is no content] depends on how later (in N) the factors 1-3 hold together. We have [image: there is no content], respectively for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], growing with the number of constraints. The exception is when N is so large that errors [image: there is no content] of the operational ME (typically, round-off errors) are of the same order of the small value tests [image: there is no content], starting to influence the Monte-Carlo statistics.

In order to validate the analytical Chi-Squared distributions for the tests, we present in Figure 4, the empirical cumulative histograms, respectively of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] for [image: there is no content] and the corresponding theoretical cumulative Chi-Squared PDF fits, respectively [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The agreement is shown to be quite good, with a slight deficit in the theoretical number of degrees of freedom, possibly due to uncontrolled aspects (e.g., the numerical implementation of the ME algorithm and bound effects) leading to extra randomness. In fact, the theoretical prediction of MinMI bias results from two matrices, theoretically equal, which are issued from extraordinary complicated outputs (the MinMI covariance matrix and the covariance matrix of estimators under fixed marginals). The theoretical result depends on the matching of a huge number of algorithmic details. The results provide good support to the presented Theorems, the hypotheses on the basis of the analytical and semi-analytical approaches. The slightly higher MinMI bias than the theoretical one is due to a small difference between the data PDF and the ME-PDF.

Figure 4. Monte-Carlo empirical cumulative histogram (solid lines) and theoretical cumulative Chi-Squared fit (dashed lines) normalized by N: [image: there is no content] ([image: there is no content]) for [image: there is no content] (black curves); [image: there is no content] ([image: there is no content]) for [image: there is no content] (red curves); [image: there is no content] ([image: there is no content]) for [image: there is no content] (green curves) and [image: there is no content] ([image: there is no content]) for [image: there is no content] (blue curves).
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5. MI Estimation from Under-Sampled Data

In this section, we present a case of MinMI estimation from under-sampled data (N small), emphasizing the effect of MI bias and its relation to PDF over-fitting. For this purpose, we consider an example from meteorology, already introduced by authors [8] in which X,Y are the standard Gaussian morphism [image: there is no content] of monthly means in winter (December to February), respectively of the North Atlantic Index (X) (a quite useful planetary-scale atmospheric index [41]), and the amount of rainfall in Greenland (Y) The paper [8] has shown the existence of statistically significant nonlinear correlations between X and Y, i.e., non-Gaussian MI. The data used in the study comes from the NCEP/NCAR meteorological reanalysis for the period 1951–2003, leading to temporal series with length equal to 159, from which we have estimated the number N~100 of iid data (temporal degrees of freedom), after discarding the effect of temporal auto-correlation [42].

Figure 5a–d present the scatter-plot of the [image: there is no content] pairs along with the contours of the ME-PDF fitting constrained by bivariate monomial expectations [image: there is no content] (13) of total order j = 2,4,6 and 8 respectively. There is pictorial evidence of PDF over-fitting for cases of a high number of cross constraints (14 and 27 for j = 6, 8 respectively) in Figure 5c and d. In those cases, the dataset bivariate outliers, which lie at very poorly probable regions of the PDF, tend to give a polygonal character to the PDF extreme contours.

Figure 5. Scatter-plot of the Gaussianized variables X (in abscissas) Y (in ordinates) (see text for details) along with ME-PDF fitting constrained by monomial bivariate moments up to order j = 2 (a), j = 4 (b), j = 6 (c) and j = 8 (d). Contour levels are set to 0.0005, 0.005, 0.05, 0.5, and 5.
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The MinMI values in nats are [image: there is no content] = 0.053 (0.048), [image: there is no content] = 0.071 (0.041), [image: there is no content] = 0.086(~0) and [image: there is no content] = 0.196 (~0) with unbiased values in parenthesis and figures marked bold where the null hypothesis H0 is rejected at the 5% significance level (values above the 95% error quantile). That means that variables are significantly correlated with the unbiased Gaussian correlation [image: there is no content] = −0.30 and a statistically significant, though small, non-Gaussian unbiased MI of order j = 4 of 0.041 nats, which has been shown to be of the same order of the Gaussian MI. None of the remaining incremental MinMIs are significant, which corroborates the fact that the values of [image: there is no content] and [image: there is no content] are purely artificial.





6. Discussion and Conclusions

This paper presents theoretical formulas for statistics (bias, variance, distribution) of estimation errors of information theoretical measures. This is quite relevant because finite samples can apparently exhibit artificial statistical structures leading to negatively biased estimations of Entropy or positively biased estimations of Mutual Information. By using Monte-Carlo experiments, we empirically validate certain results about the asymptotic distribution of estimation errors of the minimum Mutual Information (MinMI) between two random variables X,Y.

That MinMI is the least committed MI compatible with prescribed marginal X and Y distributions and a set [image: there is no content] of a number mcr of expectations of cross X,Y joint functions [image: there is no content], filling up a vector [image: there is no content] where MinMI is written in terms of Shannon entropies (H) as: [image: there is no content]. There, Hmax is the maximum entropy (ME) constrained by marginals and cross mean constraints. The MinMI is a lower MI bound, converging to the total MI when the set [image: there is no content] converges to the sufficient joint statistics. Sampling [image: there is no content] errors from N-sized samples, say [image: there is no content] lead to MinMI errors. In order to compute MinMI, the marginal PDFs of finite samples must be preset by morphisms, setting the X and Y single values to fixed quantiles. This reduces the sampling randomness to the covariate sampling in the form of random permutations in the bivariate trials (X,Y). Then, the estimator variance [image: there is no content] is scaled by N−1, being lower than the value [image: there is no content], valid in the case of random iid marginal trials. In order to get a given MinMI relative error [image: there is no content], one must choose [image: there is no content] where one uses the Lagrange multipliers associated to cross moments and also the perturbations [image: there is no content].

The detailed analysis of [image: there is no content] has shown that [image: there is no content] under variable morphisms is given by [image: there is no content], which is the mean squared residual of the best linear fit of [image: there is no content] using the conditional means [image: there is no content] and [image: there is no content] as predictors. This is supported by a few examples using a Monte-Carlo methodology. We have shown that [image: there is no content] is closely related to the Maximum Entropy solution constrained by T and marginal distributions, i.e., the MinMI solution constrained by the cross constraints [image: there is no content].

The MinMI errors are readily obtained from MinMI second-order Taylor development in terms of [image: there is no content]. Asymptotically, [image: there is no content] is multivariate Gaussian thanks to the Central Limit Theorem. The MinMI bias is positive, given by the mean of a positive quadratic form of Gaussians. When data samples come from the same distribution as the one generated from MinMI, the MinMI bias is simply 1/(2N) mcr . However, the bias can increase/decrease when data comes from a more leptokurtic/platykurtic distribution. That expression of bias comes from the fact that the Hessian matrix of MinMI in terms of the vector of cross constraints θ is the inverse of the covariance matrix of the cross functions T, conditioned to the knowledge of marginal PDFs. That matrix is the matrix of mean squared residuals of best linear fit of T using predictors [image: there is no content], [image: there is no content] evaluated at the MinMI-PDF.

We have further introduced the incremental MinMI given by the difference [image: there is no content] between two MEs, forced by cross constraint sets [image: there is no content]. Under the null hypothesis [image: there is no content], the incremental MinMI stands for a statistical test evaluating the existence of statistically significant MI explained by cross expectations in the set difference [image: there is no content]. This test is distributed as [image: there is no content] where [image: there is no content] are the numbers of cross constraints respectively in [image: there is no content]. In order to get a test with a relative error [image: there is no content], one must choose [image: there is no content].

By setting X,Y to single standard Gaussians by Gaussian morphisms and the single constraint product [image: there is no content], we have evaluated the MI parcel that is explained by joint Gaussianity – the Gaussian MI. By adding further monomial bivariate as constraints, we can define the non-Gaussian MI, attributed to joint non-Gaussianity. Under the null hypothesis of null non-Gaussian MI tests the existence of statistically significant MI explained by nonlinear correlations, beyond the scope of Pearson correlation. This is an Information-Theoretic-based significance test of non-Gaussianity, beyond others based on multivariate cumulants.

Finally, we have evaluated the Gaussian and non-Gaussian MIs for real under-sampled data allowing illustrating the relationship between MI bias, probability density over-fitting and data outliers. Some questions do remain for future work, namely the implementation of fast algorithms for computing non-Gaussian MI and its generalization to more than two random variables.
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Appendix 1

Proof of Equations 1 and 2

We are looking for a PDF [image: there is no content] satisfying: (1) the discrete constraints [image: there is no content], corresponding to the vector [image: there is no content] of Lagrange multipliers and (2) the continuum of constraints [image: there is no content] and [image: there is no content], corresponding to the continuum of Lagrange multipliers [image: there is no content], where the integrals of [image: there is no content], [image: there is no content] are both equal to one. The Lagrangian functional of Entropy is therefore



[image: there is no content]



(A1)




The maximum Entropy is obtained by taking the differential [image: there is no content] of [image: there is no content] in terms of [image: there is no content] and setting vanishing gradient components, leading to the PDF [image: there is no content]. Now, considering the partition functions [image: there is no content] and [image: there is no content] and imposing the marginal PDF constraints leads directly to the expressions (2) where the continnum of Lagrange multipliers depend implicitly from the discrete ones [image: there is no content]. Plugging that into [image: there is no content] leads to the definition of the concave function [image: there is no content] in (1) with its global minimum at [image: there is no content]. The MinMI-PDF (2) is [image: there is no content] at that minimum.

Proof of Equations 3, 4, 5 and Theorem 1

At the ME-PDF solution, the [image: there is no content] functional of the MinMI solution is an implicit function of the constraining means [image: there is no content] and the differential satisfies [image: there is no content]. By expanding it in terms of [image: there is no content] and using [image: there is no content], and [image: there is no content], one gets [image: there is no content], thus showing that the gradient of [image: there is no content] with respect to [image: there is no content] is [image: there is no content].

Regarding the Hessian of [image: there is no content], we must differentiate [image: there is no content] using the same technique for the ME problems with a finite number of constraints.

Therefore, as postulated in Section 2.2, let us consider a finite sequence of constraint sets [image: there is no content] whose ME-PDF converge to MinMI solution as [image: there is no content] The the differentials of expectations [image: there is no content] and the differential [image: there is no content] of Lagrange multipliers are related through [image: there is no content],where [image: there is no content] is the covariance matrix of the constraining functions [image: there is no content] at the ME-PDF solution (denoted with *), i.e., [image: there is no content] where the perturbations are [image: there is no content]. Inverting that relationship we have [image: there is no content]. In the case of MinMI, the constraining functions have a discrete part ([image: there is no content]) and a continuous part (the Dirac deltas), being merged together into a whole vector [image: there is no content] corresponding to the whole vector of expectations [image: there is no content] and to the whole vector of Lagrange multipliers [image: there is no content]. Therefore, as for the discrete case, the differentials are related by [image: there is no content], where the covariance matrix is now replaced by an operator (continuous matrix) along the u, v, and the discrete index of [image: there is no content]. The multiplication of the continuous matrix by the continuous vector [image: there is no content] is the sum of an integral in u, an integral in v and a discrete sum. The inverse relationship comes as [image: there is no content] where [image: there is no content] is the inverse operator of [image: there is no content], i.e., the product [image: there is no content] equals the identity operator. Therefore, the fixation of marginal PDFs in the MinMI problem leads to variations on cross expectations alone [image: there is no content], where [image: there is no content] is the projection operator over the discrete part. Therefore, since [image: there is no content], the second MI variation is [image: there is no content] and the matrix identity [image: there is no content] appearing in (3). The discrete matrix [image: there is no content] is positively defined, being different from [image: there is no content], which is the single covariance matrix of functions [image: there is no content] at the MinMI-PDF. Its computation is quite difficult in practice, involving the convolution (continuous product) of operators [image: there is no content] and [image: there is no content].

Since the ME-PDF for [image: there is no content] converges to the MinMI PDF, the same holds for the covariance matrix conditioned to the marginal PDFs. Therefore, one has the Equation 10 at step j



[image: there is no content]



(A2)




The matrix [image: there is no content] can be obtained from the limit of ME covariance matrices where one adds progressively independent moments of the marginal variables X and Y as constraints. In the limit, the perturbations [image: there is no content] must converge to the perturbations [image: there is no content] appearing in (4). They are residuals of the best fit on marginal functions on X and Y as [image: there is no content] where [image: there is no content] is a sum of marginal functions. The minimum of the total mean squares of residuals [image: there is no content] is obtained through variational analysis by taking small variations [image: there is no content] and vanishing the gradients. We get the solution



[image: there is no content]



(A3)




where fitting is done on conditional means and [image: there is no content] are the best linear fit coefficients for each function in [image: there is no content]. This completes the proof of (5) and Theorem 1. The Taylor expansion (3) comes by taking [image: there is no content].
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