A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints
Abstract
:1. Introduction
2. Computational Issues and Penalized Likelihood
2.1. Problem
2.2. Unconstrained Likelihood and Its Properties
2.3. The Integral Reliability Constraint
2.4. Constrained Optimization: Lagrange
2.5. The Penalized Likelihood Approach
3. Likelihood-based Inference for Any Scalar Parameter of Interest
4. Application to Stress-Strength Reliability with Independent EE Distributions
4.1. Stress-Strength Reliability with Unequal Scale Parameters
- , where .
- , where .
- , where .
- , where .
- , where .
- , where .
- , where .
- , where .
- , where .
- , where .
4.2. Numerical Examples
5. Conclusions
Acknowledgments
Appendix
Author Contributions
Conflicts of Interest
References
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Athena Scientific: Belmont, MA, USA, 1996. [Google Scholar]
- Byrne, C.L. Sequential Unconstrained Minimization. A Survey. Available online: http://faculty.uml.edu/cbyrne/SUM.pdf accessed on 11 June 2015.
- Smith, J.B.; Wong, A.; Zhou, X. Higher order inference for stress-strength reliability with independent Burr-type X distributions. J. Stat. Comput. Simul. 2014. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biom. J. 2001, 43, 117–130. [Google Scholar]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar]
- Kundu, D.; Gupta, R.D. Estimation of P [Y < X] for generalized exponential distribution. Metrika 2005, 61, 291–308. [Google Scholar]
- Raqab, M.Z.; Madi, M.T.; Kundu, D. Estimation of P [Y < X] for the three-parameter generalized exponential distribution. Commun. Stat. -Theory Methods 2008, 37, 2854–2864. [Google Scholar]
- Fraser, D.A.S.; Reid, N. Ancillaries and third order significance. Util. Math 1995, 47, 33–35. [Google Scholar]
- Chang, F.; Wong, A. Improved likelihood-based inference for the stationary AR(2) model. J. Stat. Plan. Inference 2010, 140, 2099–2110. [Google Scholar]
- She, Y.; Wong, A.; Zhou, X. Revisit the two sample t-test with a known ratio of variances. Open J. Stat. 2011, 1, 151–156. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar]
- Cox, D.R.; Hinkley, D.V. Thoeretical Statistics; Chapman and Hall: London, UK, 1974. [Google Scholar]
- Doganaksoy, N.; Schmee, J. Comparisons of approximate confidence intervals for distributions used in life-data analysis. Technometrics 1993, 35, 175–184. [Google Scholar]
- Reid, N. Likelihood and higher-order approximations to tail areas: A review and annotated bibliography. Can. J. Stat. 1996, 24, 141–166. [Google Scholar]
- Severeni, T. Likelihood Methods in Statistics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Barndorff-Nielsen, O.E. Inference on full or partial parameters based on the standardized signed log likelihood ratio. Biometrika 1986, 73, 307–322. [Google Scholar]
- Barndorff-Nielsen, O.E. Modified signed log likelihood ratio. Biometrika 1991, 78, 557–563. [Google Scholar]
- Fraser, D.A.S.; Reid, N.; Wu, J. A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 1999, 86, 249–264. [Google Scholar]
- Yee, T.W. Vector Generalized Linear and Additive Models: With an Implementation in R; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
Data Set | Observations | Sample Size | ||||
---|---|---|---|---|---|---|
X | 0.4977 0.6414 | 0.0781 0.2669 | 0.3827 0.1978 | 0.2694 0.1968 | 0.4125 0.2397 | 10 |
Y | 1.7057 1.9481 | 1.0191 2.1290 | 0.5899 0.8109 | 0.9031 1.6463 | 0.9207 1.9842 | 10 |
Method | α1 | α2 | β1 | β2 | R | Loglikelihood |
---|---|---|---|---|---|---|
Unconstrained | 4.4239 | 8.5227 | 6.7793 | 2.0262 | 0.0142 | −3.3191 |
Constrained: Penalty | 3.6028 | 3.2018 | 5.2707 | 1.5700 | 0.0989 | −5.1659 |
90% Confidence Interval | 95% Confidence Interval | |||
---|---|---|---|---|
MLE | (0.4223, | 0.8179) | (0.3843, | 0.8557) |
r | (0.4151, | 0.7966) | (0.3767, | 0.8241) |
Proposed | (0.4080, | 0.7910) | (0.3698, | 0.8188) |
R | Method | Lower Error | Upper Error | Central Coverage | Average Bias |
---|---|---|---|---|---|
MLE | 0.1602 | 0.0033 | 0.8365 | 0.07845 | |
0.1 | r | 0.0401 | 0.0177 | 0.9422 | 0.01120 |
Proposed | 0.0207 | 0.0252 | 0.9541 | 0.00255 | |
MLE | 0.1138 | 0.0125 | 0.8737 | 0.05065 | |
0.2 | r | 0.0388 | 0.0235 | 0.9377 | 0.00765 |
Proposed | 0.0218 | 0.0258 | 0.9524 | 0.00200 | |
MLE | 0.0857 | 0.0225 | 0.8918 | 0.03160 | |
0.3 | r | 0.0372 | 0.0262 | 0.9366 | 0.00670 |
Proposed | 0.0230 | 0.0259 | 0.9527 | 0.00135 | |
MLE | 0.0656 | 0.0362 | 0.8982 | 0.02590 | |
0.4 | r | 0.0352 | 0.0294 | 0.9354 | 0.00730 |
Proposed | 0.0244 | 0.0259 | 0.9497 | 0.00075 | |
MLE | 0.0505 | 0.0506 | 0.8989 | 0.02555 | |
0.5 | r | 0.0317 | 0.0328 | 0.9355 | 0.00725 |
Proposed | 0.0249 | 0.0255 | 0.9496 | 0.00030 | |
MLE | 0.0353 | 0.0670 | 0.8977 | 0.02615 | |
0.6 | r | 0.0290 | 0.0359 | 0.9351 | 0.00745 |
Proposed | 0.0244 | 0.0246 | 0.9510 | 0.00050 | |
MLE | 0.0235 | 0.0900 | 0.8865 | 0.03325 | |
0.7 | r | 0.0257 | 0.0394 | 0.9349 | 0.00755 |
Proposed | 0.0246 | 0.0238 | 0.9516 | 0.00080 | |
MLE | 0.0142 | 0.1234 | 0.8624 | 0.05460 | |
0.8 | r | 0.0239 | 0.0419 | 0.9342 | 0.00900 |
Proposed | 0.0261 | 0.0239 | 0.9500 | 0.00110 | |
MLE | 0.0035 | 0.1763 | 0.8202 | 0.08640 | |
0.9 | r | 0.0198 | 0.0465 | 0.9337 | 0.01335 |
Proposed | 0.0262 | 0.0240 | 0.9498 | 0.00110 |
R | Method | Lower Error | Upper Error | Central Coverage | Average Bias |
---|---|---|---|---|---|
MLE | 0.1341 | 0.0046 | 0.8613 | 0.06475 | |
0.1 | r | 0.0399 | 0.0186 | 0.9415 | 0.01065 |
Proposed | 0.0231 | 0.0246 | 0.9523 | 0.00115 | |
MLE | 0.1007 | 0.0131 | 0.8862 | 0.04380 | |
0.2 | r | 0.0370 | 0.0243 | 0.9387 | 0.00635 |
Proposed | 0.0239 | 0.0251 | 0.9510 | 0.00060 | |
MLE | 0.0774 | 0.0249 | 0.8977 | 0.02625 | |
0.3 | r | 0.0349 | 0.0289 | 0.9362 | 0.00690 |
Proposed | 0.0228 | 0.0270 | 0.9502 | 0.00210 | |
MLE | 0.0615 | 0.0353 | 0.9032 | 0.02340 | |
0.4 | r | 0.0327 | 0.0311 | 0.9362 | 0.00690 |
Proposed | 0.0220 | 0.0260 | 0.9520 | 0.00200 | |
MLE | 0.0475 | 0.0488 | 0.9037 | 0.02315 | |
0.5 | r | 0.0294 | 0.0323 | 0.9383 | 0.00585 |
Proposed | 0.0229 | 0.0240 | 0.9531 | 0.00155 | |
MLE | 0.0351 | 0.0682 | 0.8967 | 0.02665 | |
0.6 | r | 0.0278 | 0.0348 | 0.9374 | 0.00630 |
Proposed | 0.0222 | 0.0222 | 0.9556 | 0.00280 | |
MLE | 0.0225 | 0.0962 | 0.8813 | 0.03685 | |
0.7 | r | 0.0256 | 0.0388 | 0.9356 | 0.00720 |
Proposed | 0.0226 | 0.0227 | 0.9547 | 0.00235 | |
MLE | 0.0126 | 0.1249 | 0.8625 | 0.05615 | |
0.8 | r | 0.0217 | 0.0431 | 0.9352 | 0.01070 |
Proposed | 0.0224 | 0.0242 | 0.9534 | 0.00170 | |
MLE | 0.0063 | 0.1779 | 0.8158 | 0.08580 | |
0.9 | r | 0.0168 | 0.0473 | 0.9359 | 0.01525 |
Proposed | 0.0215 | 0.0238 | 0.9547 | 0.00235 |
R | Method | Lower Error | Upper Error | Central Coverage | Average Bias |
---|---|---|---|---|---|
MLE | 0.1257 | 0.0046 | 0.8697 | 0.06055 | |
0.1 | r | 0.0392 | 0.0167 | 0.944115 | 0.01125 |
Proposed | 0.0207 | 0.0203 | 0.9590 | 0.00450 | |
MLE | 0.0885 | 0.0154 | 0.8961 | 0.03655 | |
0.2 | r | 0.0347 | 0.0223 | 0.9430 | 0.00620 |
Proposed | 0.0226 | 0.0226 | 0.9548 | 0.00240 | |
MLE | 0.0657 | 0.0234 | 0.9109 | 0.02115 | |
0.3 | r | 0.0332 | 0.0252 | 0.9416 | 0.00420 |
Proposed | 0.0221 | 0.0233 | 0.9546 | 0.002130 | |
MLE | 0.0497 | 0.0335 | 0.9168 | 0.01660 | |
0.4 | r | 0.0317 | 0.0286 | 0.9397 | 0.00515 |
Proposed | 0.0228 | 0.0241 | 0.9531 | 0.00155 | |
MLE | 0.0368 | 0.0428 | 0.9204 | 0.01480 | |
0.5 | r | 0.0285 | 0.0309 | 0.9405 | 0.00475 |
Proposed | 0.0222 | 0.0236 | 0.9542 | 0.00210 | |
MLE | 0.0264 | 0.0499 | 0.9237 | 0.01315 | |
0.6 | r | 0.0248 | 0.034830 | 0.9422 | 0.00410 |
Proposed | 0.0215 | 0.0231 | 0.9554 | 0.00270 | |
MLE | 0.0184 | 0.0595 | 0.9221 | 0.02055 | |
0.7 | r | 0.0222 | 0.0332 | 0.9446 | 0.00550 |
Proposed | 0.0206 | 0.0235 | 0.9559 | 0.00295 | |
MLE | 0.0112 | 0.0715 | 0.9173 | 0.03015 | |
0.8 | r | 0.0186 | 0.0324 | 0.9490 | 0.00690 |
Proposed | 0.0196 | 0.0212 | 0.9592 | 0.00460 | |
MLE | 0.0055 | 0.0927 | 0.9018 | 0.04360 | |
0.9 | r | 0.0149 | 0.0291 | 0.9560 | 0.00710 |
Proposed | 0.0183 | 0.0209 | 0.9608 | 0.00540 |
R | Method | Lower Error | Upper Error | Central Coverage | Average Bias |
---|---|---|---|---|---|
MLE | 0.1608 | 0.0024 | 0.8368 | 0.07920 | |
0.1 | r | 0.0526 | 0.0189 | 0.9285 | 0.01685 |
Proposed | 0.0236 | 0.0267 | 0.9497 | 0.00155 | |
MLE | 0.1195 | 0.0121 | 0.8684 | 0.05370 | |
0.2 | r | 0.0502 | 0.0236 | 0.9262 | 0.01330 |
Proposed | 0.0269 | 0.0264 | 0.9467 | 0.00165 | |
MLE | 0.0944 | 0.0224 | 0.8832 | 0.03600 | |
0.3 | r | 0.0428 | 0.0256 | 0.9316 | 0.00920 |
Proposed | 0.0225 | 0.0234 | 0.9541 | 0.00205 | |
MLE | 0.0724 | 0.0347 | 0.8929 | 0.02855 | |
0.4 | r | 0.0387 | 0.0277 | 0.9336 | 0.00820 |
Proposed | 0.0256 | 0.0224 | 0.9520 | 0.00160 | |
MLE | 0.0523 | 0.0517 | 0.8960 | 0.02700 | |
0.5 | r | 0.0335 | 0.0328 | 0.9337 | 0.00815 |
Proposed | 0.0244 | 0.0230 | 0.9526 | 0.00013 | |
MLE | 0.0378 | 0.0753 | 0.8869 | 0.03155 | |
0.6 | r | 0.0295 | 0.0400 | 0.9305 | 0.00975 |
Proposed | 0.0234 | 0.0260 | 0.9506 | 0.00130 | |
MLE | 0.0245 | 0.0944 | 0.8811 | 0.03495 | |
0.7 | r | 0.0282 | 0.0454 | 0.9264 | 0.01180 |
Proposed | 0.0261 | 0.0262 | 0.9477 | 0.00115 | |
MLE | 0.0109 | 0.1187 | 0.8704 | 0.05390 | |
0.8 | r | 0.0226 | 0.0467 | 0.9307 | 0.01205 |
Proposed | 0.0239 | 0.0262 | 0.9499 | 0.00115 | |
MLE | 0.0027 | 0.1464 | 0.8509 | 0.07185 | |
0.9 | r | 0.0211 | 0.0499 | 0.9290 | 0.01440 |
Proposed | 0.0268 | 0.0252 | 0.9480 | 0.00100 |
R | Method | Lower Error | Upper Error | Central Coverage | Average Bias |
---|---|---|---|---|---|
MLE | 0.0722 | 0.0093 | 0.9185 | 0.03145 | |
0.1 | r | 0.0302 | 0.0273 | 0.9425 | 0.00375 |
Proposed | 0.0250 | 0.0261 | 0.9489 | 0.00055 | |
MLE | 0.0577 | 0.0206 | 0.9217 | 0.01855 | |
0.2 | r | 0.0287 | 0.0268 | 0.9445 | 0.00275 |
Proposed | 0.0260 | 0.0244 | 0.9496 | 0.00080 | |
MLE | 0.0431 | 0.0327 | 0.9242 | 0.01290 | |
0.3 | r | 0.0276 | 0.0306 | 0.9418 | 0.00410 |
Proposed | 0.0261 | 0.0257 | 0.9482 | 0.00090 | |
MLE | 0.0299 | 0.0412 | 0.9289 | 0.01055 | |
0.4 | r | 0.0216 | 0.0290 | 0.9494 | 0.00370 |
Proposed | 0.0218 | 0.0227 | 0.9555 | 0.00275 | |
MLE | 0.0475 | 0.0488 | 0.9037 | 0.02315 | |
0.5 | r | 0.0234 | 0.0358 | 0.9408 | 0.00620 |
Proposed | 0.0243 | 0.0269 | 0.9488 | 0.00130 | |
MLE | 0.0166 | 0.0688 | 0.9146 | 0.02610 | |
0.6 | r | 0.0221 | 0.0350 | 0.9429 | 0.00645 |
Proposed | 0.0249 | 0.0254 | 0.9497 | 0.00250 | |
MLE | 0.0105 | 0.0789 | 0.9106 | 0.03420 | |
0.7 | r | 0.0206 | 0.0366 | 0.9428 | 0.00800 |
Proposed | 0.0276 | 0.0229 | 0.9495 | 0.00235 | |
MLE | 0.0059 | 0.1021 | 0.8920 | 0.04810 | |
0.8 | r | 0.0195 | 0.0426 | 0.9379 | 0.01155 |
Proposed | 0.0259 | 0.0269 | 0.9472 | 0.00140 | |
MLE | 0.0016 | 0.1210 | 0.8774 | 0.05970 | |
0.9 | r | 0.0160 | 0.0456 | 0.9384 | 0.01480 |
Proposed | 0.0239 | 0.0249 | 0.9512 | 0.00060 |
R | Method | Lower Error | Upper Error | Central Coverage | Average Bias |
---|---|---|---|---|---|
MLE | 0.1120 | 0.0008 | 0.8872 | 0.05560 | |
0.1 | r | 0.0412 | 0.0161 | 0.9427 | 0.01255 |
Proposed | 0.0230 | 0.0247 | 0.9523 | 0.00115 | |
MLE | 0.1011 | 0.0048 | 0.8941 | 0.04815 | |
0.2 | r | 0.0407 | 0.0202 | 0.9319 | 0.01025 |
Proposed | 0.0261 | 0.0260 | 0.9479 | 0.00105 | |
MLE | 0.0805 | 0.0108 | 0.9087 | 0.03485 | |
0.3 | r | 0.0366 | 0.0232 | 0.9402 | 0.00670 |
Proposed | 0.0248 | 0.0275 | 0.9477 | 0.00135 | |
MLE | 0.0648 | 0.0140 | 0.9212 | 0.02540 | |
0.4 | r | 0.0338 | 0.0215 | 0.9447 | 0.00615 |
Proposed | 0.0238 | 0.0247 | 0.9515 | 0.00075 | |
MLE | 0.0551 | 0.0258 | 0.9191 | 0.01545 | |
0.5 | r | 0.0317 | 0.0256 | 0.9427 | 0.00365 |
Proposed | 0.0242 | 0.0276 | 0.9482 | 0.00170 | |
MLE | 0.0437 | 0.0296 | 0.9267 | 0.01165 | |
0.6 | r | 0.0329 | 0.0228 | 0.9443 | 0.00505 |
Proposed | 0.0247 | 0.0229 | 0.9524 | 0.00120 | |
MLE | 0.0332 | 0.0400 | 0.9268 | 0.01160 | |
0.7 | r | 0.0307 | 0.0247 | 0.9446 | 0.00300 |
Proposed | 0.0257 | 0.0241 | 0.9502 | 0.00080 | |
MLE | 0.0228 | 0.0548 | 0.9224 | 0.01600 | |
0.8 | r | 0.0294 | 0.0266 | 0.9440 | 0.00300 |
Proposed | 0.0256 | 0.0242 | 0.9502 | 0.00070 | |
MLE | 0.0098 | 0.0670 | 0.9232 | 0.02860 | |
0.9 | r | 0.0247 | 0.0299 | 0.9454 | 0.00260 |
Proposed | 0.0234 | 0.0261 | 0.9505 | 0.00135 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, B.; Wang, S.; Wong, A.; Zhou, X. A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints. Entropy 2015, 17, 4040-4063. https://doi.org/10.3390/e17064040
Smith B, Wang S, Wong A, Zhou X. A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints. Entropy. 2015; 17(6):4040-4063. https://doi.org/10.3390/e17064040
Chicago/Turabian StyleSmith, Barry, Steven Wang, Augustine Wong, and Xiaofeng Zhou. 2015. "A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints" Entropy 17, no. 6: 4040-4063. https://doi.org/10.3390/e17064040