Complexity of Cardiotocographic Signals as A Predictor of Labor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nonlinear Methods
2.1.1. Compression
2.1.2. Entropy
2.2. Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Group A (n = 27) Median (min-max), Mean ± SD or N (%) | Group B (n = 1045) Median (min-max), Mean ± SD or N (%) | p-Value | |
---|---|---|---|
Baseline | 134 (123–160) | 137 (105–169) | 0.507 |
Basal line | 130 (122–146) | 134 (105–168) | 0.234 |
nAccel | 5 (0–11) | 5 (0–31) | 0.714 |
nContr | 1 (0–11) | 1 (0–15) | 0.246 |
mDec | 0 (0–2) | 0 (0–13) | 0.175 |
iDec (% of no iDec) | 22 (81.48) | 1029 (98.47) | <0.001 |
pDec (% of no pDec) | 27 (100) | 1042 (99.71) | 1.000 |
abSTV | 52.89 ± 8.95 | 50.22 ± 8.44 | 0.105 |
avSTV | 13.78 ± 3.65 | 14.57 ± 3.44 | 0.240 |
abLTV | 3 (0–31) | 0 (0–38) | 0.012 |
avLTV | 14.7 (8–33) | 16.8 (0–40) | 0.126 |
mean_UC | 161.167 ± 138.37 | 167.342 ± 100.739 | 0.756 |
sd_UC | 55.844 ± 44.593 | 46.480 ± 35.659 | 0.181 |
cv_UC | 0.463 ± 0.329 | 0.372 ± 0.329 | 0.155 |
Gzip_UC | 6.132 ± 1.981 | 5.691 ± 1.579 | 0.261 |
SampEn_UC | 0.537 ± 0.269 | 0.592 ± 0.290 | 0.325 |
Gzip_FHR | 11.356 ± 1.089 | 11.750 ± 0.883 | 0.023 |
SampEn_FHR | 0.655 ± 0.149 | 0.692 ± 0.193 | 0.320 |
References
- Lawn, J.E.; Blencowe, H.; Oza, S.; You, D.; Lee, A.C.; Waiswa, P.; Lalli, M.; Bhutta, P.Z.; Barros, A.J.; Christian, P. Every newborn: Progress, priorities, and potential beyond survival. Lancet 2014, 384, 189–205. [Google Scholar] [CrossRef]
- Liu, L.; Oza, S.; Hogan, D.; Perin, J.; Rudan, P.; Lawn, P.J.E.L.; Cousens, P.S.; Mathers, C.; Robert, P. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: An updated systematic analysis. Lancet 2015, 385, 430–440. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-N.; Kinney, M.; Lawn, J. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10, S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawn, J.E.; Gravett, M.G.; Nunes, T.M.; Rubens, C.E.; Stanton, C. Global report on preterm birth and stillbirth (1 of 7): Definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth 2010, 10, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwaniki, M.K.; Atieno, M.; Lawn, J.E.; Newton, C.R.J.C. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet 2012, 379, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Ayres-De-Campos, D.; Bernardes, J.; Costa-Pereira, A.; Pereira-Leite, L. Inconsistencies in classification by experts of cardiotocograms and subsequent clinical decision. Br. J. Obstet. Gynaecol. 1999, 106, 1307–1310. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, J.; Ayres-de-Campos, D. The persistent challenge of foetal heart rate monitoring. Curr. Opin. Obstet. Gynecol. 2010, 22, 104–109. [Google Scholar] [CrossRef]
- Spencer, J.A. Role of cardiotocography. Br. J. Hosp. Med. 1992, 48, 115–118. [Google Scholar]
- Goncalves, H.; Pinto, P.; Ayres-de-Campos, D.; Bernardes, J. External uterine contractions signal analysis in relation to labor progression and dystocia. IFMBE Proc. 2014, 41, 555–558. [Google Scholar]
- Goncalves, H.; Morais, M.; Pinto, P.; Ayres-de-Campos, D.; Bernardes, J. Linear and non-linear analysis of uterine contraction signals obtained with tocodynamometry in prediction of operative vaginal delivery. J. Perinat. Med. 2017, 45, 327–332. [Google Scholar] [CrossRef]
- Bernardes, J.; Costa-Pereira, A.; Ayres-de-Campos, D.; van Geijn, H.P.; Pereira-Leite, L. Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynecol. Obstet. 1997, 57, 33–37. [Google Scholar] [CrossRef]
- Donker, D.K.; Vangeijn, H.P.; Hasman, A. Interobserver variation in the assessment of fetal heart-rate recordings. Eur. J. Obstet. Gynecol. Reprod. Biol. 1993, 52, 21–28. [Google Scholar] [CrossRef]
- Schiermeier, S.; von Steinburg, S.P.; Thieme, A.; Reinhard, J.; Daumer, M.; Scholz, M.; Hatzmann, W.; Schneider, K. Sensitivity and specificity of intrapartum computerised FIGO criteria for cardiotocography and fetal scalp pH during labour: Multicentre, observational study. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Plsek, P.E.; Greenhalgh, T. Complexity science—The challenge of complexity in health care. Br. Med. J. 2001, 323, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Parer, J.T. Handbook of Fetal Heart Rate Monitoring; W.B. Saunders Company: Philadelphia, PA, USA, 1997. [Google Scholar]
- Reinl, E.L.; England, S.K. Fetal-to-maternal signaling to initiate parturition. J. Clin. Investig. 2015, 125, 2569–2571. [Google Scholar] [CrossRef] [Green Version]
- Rotmensch, S.; Liberati, M.; Vishe, T.; Celentano, C.; Ben-Rafael, Z.; Bellati, U. The effect of betamethasone and dexamethasone on fetal heart rate patterns and biophysical activities—A prospective randomized trial. Acta Obstet. Gynecol. Scand. 1999, 78, 493–500. [Google Scholar] [CrossRef]
- Signorini, M.G.; Fanelli, A.; Magenes, G. Monitoring fetal heart rate during pregnancy: Contributions from advanced signal processing and wearable technology. Comput. Math. Methods Med. 2014, 2014, 707581. [Google Scholar] [CrossRef] [Green Version]
- Nunes, I.; Ayres-de-Campos, D.; Figueiredo, C.; Bernardes, J. An overview of central fetal monitoring systems in labour. J. Perinat. Med. 2013, 41, 93–99. [Google Scholar] [CrossRef]
- Wilson, T.; Holt, T. Complexity science—Complexity and clinical care. Br. Med. J. 2001, 323, 685–688. [Google Scholar] [CrossRef]
- Chudacek, V.; Jiri, S.; Huptych, M.; Georgoulas, G.; Janku, P.; Koucky, M.; Stylios, C.; Lhotska, L. Automatic Classification of Intrapartal Fetal Heart-Rate Recordings—Can It Compete with Experts? In Proceedings of theInternational Conference on Information Technology in Bio-and Medical Informatics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 57–66. [Google Scholar]
- Ayres-de Campos, D.; Berbardes, J.; Garrido, A.; Marques-de-sa, J.; Pereira-Leite, L. SisPorto 2.0: A program for automated analysis of cardiotocograms. J. Matern. Fetal Med. 2000, 9, 311–318. [Google Scholar]
- Ayres-de-Campos, D.; Sousa, P.; Costa, A.; Bernardes, J. Omniview-SisPorto 3.5—A central fetal monitoring station with online alerts based on computerized cardiotocogram+ST event analysis. J. Perinat. Med. 2008, 36, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Ayres-de-Campos, D.; Rei, M.; Nunes, I.; Sousa, P.; Bernardes, J. SisPorto 4.0-computer analysis following the 2015 FIGO Guidelines for intrapartum fetal monitoring. J. Matern. Fetal Neonatal Med. 2017, 30, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Guijarro-Berdinas, B.; Alonso-Betanzos, A.; Fontenla-Romero, O. Intelligent analysis and pattern recognition in cardiotocographic signals using a tightly coupled hybrid system. Artif. Intell. 2002, 136, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Nunes, I.; Ayres-de Campos, D.; Austin, U.; Pina, A.; Philip, B.; Antony, N.; Simon, C.; Paulo, S.; Cristina, C.-S.; Joao, B. Central fetal monitoring with and without computer analysis a randomized controlled trial. Obstet. Gynecol. 2017, 129, 83–90. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Three approaches to the definition of the concept “quantity of information”. Probl. Peredachi Inf. 1965, 1, 1–11. [Google Scholar]
- Cilibrasi, R.; Vitanyi, P.; de Wolf, R. Algorithmic clustering of music based on string compression. Comput. Music J. 2004, 28, 49–67. [Google Scholar] [CrossRef]
- Cilibrasi, R.; Vitanyi, P.M.B. Clustering by compression. IEEE Trans. Inf. Theory 2005, 51, 1523–1545. [Google Scholar] [CrossRef] [Green Version]
- Wehner, S. Analyzing worms and network traffic using compression. J. Comput. Secur. 2005, 15, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, P. DEFLATE Compressed Data Format Specification Version 1.3. R.F.C. 1951. 1996. Available online: https://www.rfc-editor.org/info/rfc1951 (accessed on 16 January 2020). [CrossRef]
- Ziv, J.; Lempel, A. Universal Algorithm for Sequential Data Compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng. 1952, 40, 1098–1101. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, J.; Moorman, R. Time series analysis using approximate entropy and sample entropy. Biophys. J. 2000, 78, 218A. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, H.; Rocha, A.P.; Ayres-de-Campos, D.; Bernardes, J. Frequency domain and entropy analysis of fetal heart rate: Appealing tools for fetal surveillance and pharmacodynamic assessment of drugs. Cardiovasc Hematol. Disord Drug Targets 2008, 8, 91–98. [Google Scholar] [CrossRef]
- Amorim-Costa, C.; de Campos, D.A.; Bernardes, J. Cardiotocographic parameters in small-for-gestational-age fetuses: How do they vary from normal at different gestational ages? A study of 11687 fetuses from 25 to 40 weeks of pregnancy. J. Obstet. Gynaecol. Res. 2017, 43, 476–485. [Google Scholar] [CrossRef]
- Hewlett-Packard. Hewlett-Packard Series 50 Service Manual. M1351A and 1353A. 1993. Available online: http://www.frankshospitalworkshop.com/equipment/documents/ecg/service_manuals/Philips_Series_50_-_Service_manual.pdf (accessed on 16 January 2020).
- Goncalves, H.; Rocha, A.P.; Ayres-de Campos, D.; Bernardes, J. Internal versus external intrapartum foetal heart rate monitoring: The effect on linear and nonlinear parameters. Physiol. Meas. 2006, 27, 307–319. [Google Scholar] [CrossRef]
- Monteiro-Santos, J.; Goncalves, H.; Bernardes, J.; Antunes, L.; Nozari, M.; Costa-Santos, C. Entropy and Compression Capture Different Complexity Features: The Case of Fetal Heart Rate. Entropy 2017, 19, 688. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, H.; Costa, A.; Ayres-de-Campos, D.; Costa-Santos, C.; Rocha, A.P.; Bernaedes, J. Comparison of real beat-to-beat signals with commercially available 4 Hz sampling on the evaluation of foetal heart rate variability. Med. Biol. Eng. Comput. 2013, 51, 665–676. [Google Scholar] [CrossRef]
- Lu, S.; Chen, X.; Kanters, J.K.; Solomon, I.C.; Chon, K.H. Automatic selection of the threshold value r for approximate entropy. IEEE Trans. Biomed. Eng. 2008, 55, 1966–1972. [Google Scholar]
- Govindan, R.B.; Wilson, J.D.; Eswaran, H.; Lowery, C.L.; Peribl, H. Revisiting sample entropy analysis. Phys. Stat. Mech. Appl. 2007, 376, 158–164. [Google Scholar] [CrossRef]
- Marzbanrad, F.; Kimura, Y.; Endo, M.; Palaniswami, M.; Khandoker, A.H. Transfer entropy analysis of maternal and fetal heart rate coupling. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 7865–7868. [Google Scholar]
- Moraes, E.R.; Murta, L.O.; Baffa, O.; Wakai, R.T.; Comani, S. Linear and nonlinear measures of fetal heart rate patterns evaluated on very short fetal magnetocardiograms. Physiol. Meas. 2012, 33, 1563–1583. [Google Scholar] [CrossRef]
- Padhye, N.S.; Brazdeikis, A.; Verklan, M.T. Change in complexity of fetal heart rate variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 1, 1796–1798. [Google Scholar]
- Van Leeuwen, P.; Cysarz, D.; Edelhauser, F.; Gronemeyer, D. Heart rate variability in the individual fetus. Auton Neurosci. 2013, 178, 24–28. [Google Scholar] [CrossRef]
- Bernardes, J.; Goncalves, H.; Ayres-de-Campos, D.; Rocha, A.P. Sex differences in linear and complex fetal heart rate dynamics of normal and acidemic fetuses in the minutes preceding delivery. J. Perinat. Med. 2009, 37, 168–176. [Google Scholar] [CrossRef]
- Kim, K.N.; Park, Y.S.; Hoh, J.K. Sex-related differences in the development of fetal heart rate dynamics. Early Hum. Dev. 2016, 93, 47–55. [Google Scholar] [CrossRef]
- Ferrario, M.; Signorini, M.G.; Magenes, G. New indexes from the fetal heart rate analysis for the identification of severe intra uterine growth restricted fetuses. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 1, 1458–1461. [Google Scholar]
- Chourasia, V.S.T.; Anil, K. Fetal heart rate variability analysis from phonocardiographic recordings. J. Mech. Med. Biol. 2011, 11, 1315–1331. [Google Scholar] [CrossRef]
- Pincus, S.M.; Viscarello, R.R. Approximate entropy: A regularity measure for fetal heart rate analysis. Obstet. Gynecol. 1992, 79, 249–255. [Google Scholar]
- Hellgren, C.; Akerud, H.; Jonsson, M.; Poromaa, I.S. Sympathetic reactivity in late pregnancy is related to labour onset in women. Stress Int. J. Biol. Stress 2011, 14, 627–633. [Google Scholar] [CrossRef]
SisPorto Variable | Description |
---|---|
Basal line FHR | mean level of the most horizontal and less oscillatory FHR segments, in the absence of fetal movements and uterine contraction (UC), associated with periods of fetal rest, estimated via a complex algorithm |
baseline | approximation of basal FHR to long-term FHR fluctuations using running averaging |
number of accelerations (nAccel) | number of increases in FHR over the baseline lasting 15–120 s and reaching a peak of at least 15 bpm in 60 min |
number of contractions (nContr) | number of periods in 60 min, lasting a maximum of 254 s, where an upward slope exceeding 17 s was detected reaching a peak lasting more than 90 s, followed by a downward slope exceeding 17 s |
number of mild decelerations (mDec) | number of decreases in FHR under the baseline lasting 15–120 s, with a minimum amplitude of 15 bpm in 60 min |
number of intermediate decelerations (iDec) | number of decreases in FHR under the baseline lasting 120–300 s, with a minimum amplitude of 15 bpm in 60 min |
number of prolonged decelerations (pDec) | number of decelerations lasting more than 300 s in 60 min |
average short-term variability (avSTV) | mean difference between adjacent FHR signals at 4 Hz on the fetal monitor, after removal of adjacent signals that differ >15 bpm |
abnormal short-term variability (abSTV) | percentage of subsequent FHR signals differing <1 bpm |
average long-term variability (avLTV) | mean difference between max and min FHR in a 1 min sliding window, in segments free of accelerations or deceleration |
abnormal long-term variability (abLTV) | percentage of FHR signals with a difference between minimum and maximum values in a surrounding 1 min window <5 bpm |
Group A (n = 96) Median (min-max), Mean ± SD or N (%) | Group B (n = 976) Median (min-max), Mean ± SD or N (%) | p-Value | |
---|---|---|---|
Trace duration (min) | 25.56 (14.82–67.07) | 25.18 (11.28–96.31) | 0.905 |
Gestational age at delivery (weeks) | 36.58 ± 1.12 | 38.92 ± 1.20 | |
Maternal age (years) | 31 (16–43) | 31 (15–52) | 0.291 |
Cesarean section | 31 (32.3) | 321 (32.9) | 0.067 |
Baby presentation (cephalic) | 90 (93.8) | 918 (94.1) | 0.524 |
Gender (male) | 49 (51) | 506 (51.8) | 0.881 |
Signal quality (%) | 97 (80–100) | 96 (80–100) | 0.105 |
Signal loss (%) | 3 (0–20) | 4 (0–21) | 0.106 |
Group A (n = 96) Median (min-max), Mean ± SD or N (%) | Group B (n = 976) Median (min-max), Mean ± SD or N (%) | p-Value | |
---|---|---|---|
Basal line | 133 (108–154) | 134 (105–168) | 0.137 |
Baseline | 135.5 (114–160) | 137 (105–169) | 0.237 |
nAccel | 5 (0–13) | 5 (0–31) | 0.188 |
nContr | 1 (0–15) | 1 (0–15) | 0.200 |
mDec | 0 (0–5) | 0 (0–13) | 0.787 |
iDec (% of no iDec) | 89 (92.71) | 962 (98.57) | <0.001 |
pDec (% of no pDec) | 96 (100) | 973 (99.69) | 1.000 |
abSTV | 50.49 ± 8.83 | 50.27 ± 8.42 | 0.805 |
avSTV | 14.48 ± 3.48 | 14.55 ± 3.45 | 0.839 |
abLTV | 1 (0–35) | 0 (0–38) | 0.038 |
avLTV | 15.85 (8–33) | 16.8 (0–40) | 0.229 |
mean_UC | 172.504 ± 103.426 | 166.663 ± 101.650 | 0.592 |
sd_UC | 56.350 ± 42.403 | 45.768 ± 35.096 | 0.020 |
cv_UC | 0.424 ± 0.347 | 0.369 ± 0.328 | 0.121 |
Gzip_UC | 6.089 ± 1.769 | 5.664 ± 1.568 | 0.013 |
SampEn_UC | 0.547 ± 0.306 | 0.595 ± 0.287 | 0.117 |
Gzip_FHR | 11.559 ± 0.995 | 11.758 ± 0.878 | 0.024 |
SampEn_FHR | 0.670 ± 0.159 | 0.693 ± 0.195 | 0.265 |
B | p-Value | Exp(B) | 95% CI | |
---|---|---|---|---|
Constant | −20.639 | <0.001 | ||
wCTG | 0.674 | <0.001 | 1.962 | 1.489–2.584 |
Gzip_FHR | −0.341 | 0.005 | 0.711 | 0.560–0.902 |
iDec a | 1.782 | <0.001 | 5.950 | 2.217–15.918 |
B | p-Value | Exp(B) | 95% CI | |
---|---|---|---|---|
Constant | −6.679 | 0.330 | ||
wCTG | 0.317 | 0.097 | 1.373 | 0.944–1.997 |
Gzip_FHR | −0.573 | 0.010 | 0.564 | 0.364–0.873 |
iDec | 2.780 | <0.001 | 16.112 | 5.205–49.874 |
Two Weeks Prediction | One Week Prediction | ||||
---|---|---|---|---|---|
Total | Group A | Group B | Group A | Group B | |
abSTV | −0.524 (−0.564; −0.481) | −0.636 (−0.733; −0.501) | −0.512 (−0.565; −0.463) | −0.694 (−0.867; −0.370) | −0.515 (−0.560; −0.468) |
avSTV | 0.500 (0.452; 0.541) | 0.596 (0.442; 0.720) | 0.489 (0.437; 0.539) | 0.698 (0.410; 0.864) | 0.492 (0.444; 0.539) |
abLTV | −0.562 (−0.602; −0.520) | −0.722 (−0.807; −0.601) | −0.541 (−0.589; −0.495) | −0.760 (−0.893; −0.489) | −0.551 (−0.596; −0.509) |
avLTV | 0.765 (0.737; 0.792) | 0.885 (0.818; 0.924) | 0.751 (0.718; 0.780) | 0.874 (0.663; 0.970) | 0.760 (0.730; 0.789) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro-Santos, J.; Henriques, T.; Nunes, I.; Amorim-Costa, C.; Bernardes, J.; Costa-Santos, C. Complexity of Cardiotocographic Signals as A Predictor of Labor. Entropy 2020, 22, 104. https://doi.org/10.3390/e22010104
Monteiro-Santos J, Henriques T, Nunes I, Amorim-Costa C, Bernardes J, Costa-Santos C. Complexity of Cardiotocographic Signals as A Predictor of Labor. Entropy. 2020; 22(1):104. https://doi.org/10.3390/e22010104
Chicago/Turabian StyleMonteiro-Santos, João, Teresa Henriques, Inês Nunes, Célia Amorim-Costa, João Bernardes, and Cristina Costa-Santos. 2020. "Complexity of Cardiotocographic Signals as A Predictor of Labor" Entropy 22, no. 1: 104. https://doi.org/10.3390/e22010104