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Abstract: Emotion recognition realizing human inner perception has a very important application
prospect in human-computer interaction. In order to improve the accuracy of emotion recognition,
a novel method combining fused nonlinear features and team-collaboration identification strategy
was proposed for emotion recognition using physiological signals. Four nonlinear features,
namely approximate entropy (ApEn), sample entropy (SaEn), fuzzy entropy (FuEn) and wavelet
packet entropy (WpEn) are employed to reflect emotional states deeply with each type of physiological
signal. Then the features of different physiological signals are fused to represent the emotional states
from multiple perspectives. Each classifier has its own advantages and disadvantages. In order
to make full use of the advantages of other classifiers and avoid the limitation of single classifier,
the team-collaboration model is built and the team-collaboration decision-making mechanism is
designed according to the proposed team-collaboration identification strategy which is based on
the fusion of support vector machine (SVM), decision tree (DT) and extreme learning machine
(ELM). Through analysis, SVM is selected as the main classifier with DT and ELM as auxiliary
classifiers. According to the designed decision-making mechanism, the proposed team-collaboration
identification strategy can effectively employ different classification methods to make decision based
on the characteristics of the samples through SVM classification. For samples which are easy to
be identified by SVM, SVM directly determines the identification results, whereas SVM-DT-ELM
collaboratively determines the identification results, which can effectively utilize the characteristics
of each classifier and improve the classification accuracy. The effectiveness and universality of
the proposed method are verified by Augsburg database and database for emotion analysis using
physiological (DEAP) signals. The experimental results uniformly indicated that the proposed method
combining fused nonlinear features and team-collaboration identification strategy presents better
performance than the existing methods.

Keywords: emotion recognition; physiological signals; nonlinear features; identification strategy

1. Introduction

Emotions play an important role in human daily life. Currently, emotion recognition has received
more and more attention in many fields, such as safe driving, distance education, health care and
rehabilitation medical treatment [1]. Reliable and accurate emotion recognition system is one of the
key problems of achieving natural human-machine interaction (HMI) [2].

In the last few decades, a variety of approaches for detecting human emotion have been
performed by using speech, facial expression and behavior (gesture/posture) or physiological signals [3].

Entropy 2020, 22, 511; doi:10.3390/e22050511 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3698-0122
https://orcid.org/0000-0002-1982-6780
http://www.mdpi.com/1099-4300/22/5/511?type=check_update&version=1
http://dx.doi.org/10.3390/e22050511
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 511 2 of 23

Leila et al. [4] proposed a global optimal feature fusion method for speech emotion recognition based on
empirical mode decomposition and Teager-Kaiser Energy Operator (EMD-TKEO), according to the fact
that the EMD combined with the TKEO gives an efficient time-frequency analysis of the non-stationary
signals. In order to increase the accuracy rate of emotion recognition, unsupervised deep belief network
(DBN) was proposed for depth level feature extraction from fused observations of Electro-Dermal
Activity (EDA), Photoplethysmogram (PPG) and Zygomaticus Electromyography (zEMG) sensors
signals and the fine Gaussian support vector machine was employed [5]. Hu et al. [6] proposed an
integrated framework of two networks—a local network and a global network, which were based on
local enhanced motion history image (LEMHI) and CNN-long short term memory (LSTM) cascaded
networks respectively, for facial emotion recognition in video sequences. Picard et al. [7] proved that
physiological signals can be used to classify emotions and successfully identified eight emotional
states of calm, anger, disgust, sadness, peace, excitement, happiness and awe, using four physiological
signals—electromyogram (EMG), pulse wave, skin conductivity (SC) and respiration (RSP). Many
researchers have carried out researches on emotion recognition based on multi-modal physiological
signals and EEG signals, many methods of emotion recognition were proposed, meanwhile, free
emotion recognition databases with electroencephalogram (EEG) and peripheral neurophysiological
signals were set up [8–11]. However, the informations of speech, facial expression and postures
are more subjective [8]. Studies have shown that the signals controlled by the human nervous
system [12–18], are closer to present people’s real emotions. Currently, using physiological signals for
emotion recognition is one of the research hotspots.

In terms of using physiological signals to identify emotions, the core work of emotion
identification mainly includes feature extraction and classification. In the aspect of feature extraction,
numerous different features have been investigated for emotion recognition, from time domain,
frequency domain, time-frequency domain and others. The extracted features based on the above
mentioned analysis methods are considered inadequate when comes to use signals associated with
the central nervous system (CNS) for emotion identification. On the one hand, a large number of
features are needed to be extracted to represent the characteristics of each signal. On the other hand,
the CNS related signals are non-stationary signals with characteristics varying over time and the
traditional extraction methods can only achieve some superficial information [19–21]. However, the use
of nonlinear analysis has the potential to provide discriminant features of CNS related signals that can
enhance the classification accuracy of emotional states. In fact, nonlinear features have been successfully
employed in a variety of ways. He et al. [22] employed wavelet packet entropy (WpEn) of speech
signals as the feature to represent the emotion of angry, neutral and soft and achieved the accuracy of
emotion recognition with 76%. Wanget al. [23] adopted three features, the approximate entropy (ApEn),
hurst exponent and fractal dimension as extracted features from EEG and the performances of each
feature with support vector machine (SVM) presented with 65.12% (ApEn), 71.38% (hurst exponent)
and 70.63% (fractal dimension), respectively. Vayrynen et al [24] studied four type of emotional states
(neutral, sad, angry and happy) with speech signals and employed two nonlinear features and k-nearest
neighbour (KNN) classifier to realize emotion identification. In emotion identification, classifier also
plays a very important role. The classifiers, SVM, DT, KNN and so on, are usually selected to realize
emotion identification. Hosseini et al. [25] applied two entropy features and SVM to perform two types
of emotion recognition with EEG. The sample entropy and SVM were adopted to realize two binary
emotion recognition from EEG, with classification performances for positive and negative emotion by
80.43% and 79.11%, respectively [26]. Li et al. [27] adopted SVM to identify eight kinds of positive
and negative emotions, combining the extracted features wavelet entropy (WaEn), ApEn and husrt
exponent of EEG. Experimental results showed that the method achieved 85% recognition accuracy for
two types of emotion recognition. Mohammadi et al [28] calculated the WaEn of each frequency band
from EEG as the input feature of KNN classifier and achieved the classification accuracy of 86.75% for
arousal level and 84.05% for valence level. According to the current research status, EEG signals are
mainly selected for emotion recognition using signals related to the nervous system and the application
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of nonlinear features is relatively simple and not well integrated. In addition, when performing
emotion recognition, a single classifier is usually used for recognition and determination.

As metioned above, physiological signals controlled by the human nervous system can also
directly reflect emotional states. Because physiological signals are easy to obtain, this paper conducts
research on emotion recognition from the perspective of using physiological signals. Previous researches
of emotion recognition have largely been conducted on single-modality-based methods [12,17,24–26].
Compared with single-modality-based methods, fusing multiple sensors’ data is helpful to reflect
emotional states from multiple perspectives, because the use of more than two modalities can exploit
the complementary nature of different modalities so as to increase the credibility of measurements.
In order to better represent the emotional state, this paper proposes the feature representation method
of multi-nonlinear feature integration and multi-channel information feature fusion. Each classifier
has its own performance characteristics. Samples that are misclassified by one classifier may
easily be correctly classified by another classifier. In order to improve the accuracy of emotion
identification, a team-collaboration dentification strategy is proposed, which can use different
identification strategies to identify samples according to the characteristics of samples and the
designed decision-making mechanism.

2. Materials and Methods

In this investigation, in order to effectively realize emotion identification, feature fusion
of multi-channel signals is suggested to represent the emotional states and team-collaboration
identification strategy is proposed to achieve emotion recognition. Two public databases,
Augsburg dataset and DEAP dataset, are employed to verify the effectiveness and performances of the
proposed methods.

2.1. Database

2.1.1. Augsburg Dataset and Data Pre-Processing

The public emotional dataset [29] from University of Augsburg records the different emotional
states caused by corresponding musics (https://www.informatik.uni-augsburg.de/en/chairs/hcm/

projects/tools/aubt/). To induce the subject to unaffectedly feel four different emotions, joy, anger,
sadness and pleasure, some music songs that the subject himself carefully handpicked were employed.
The chosen songs can bring back some spectial memories to the subject in respect of targeted emotion
classes. When the participant listened to music songs, four kinds of physiological signals were
recorded, including electromyogram (ECG), electrocardiogram (EMG), respiration change (RSP) and
skin conductivity (SC). The sampling frequency of the ECG was 256 Hz and the other three signals
were 32 Hz. Each recording of physiological signal was chosen to be 120s in length. The experiment
was performed for 25 days and 25 samples of each emotional state were obtained, totally 100 samples
(four types of motional states). The content summary of Augsburg Database is shown in Table 1. In this
investigation, each 120s signal was segmented into ten 12s-samples without overlapping. Finally, a total
of 1000 samples were obtained.

Table 1. The content summary of Augsburg Database.

Elicitation Material Music

Emotional states Joy, anger, sadness, pleasure
Number of subjects 1

Collected signals ECG, EMG, RSP, SC
Length 120 seconds

Sampling frequency ECG: 256 Hz; EMG, RSP and SC: 32 Hz;
Collected days 25

https://www.informatik.uni-augsburg.de/en/chairs/hcm/projects/tools/aubt/
https://www.informatik.uni-augsburg.de/en/chairs/hcm/projects/tools/aubt/
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2.1.2. DEAP Dataset and Data Pre-Processing

Another publicly available database—DEAP [30] (http://www.eecs.qmul.ac.uk/mmv/datasets/
deap/download.html)—was also adopted to investigate the universality of proposed methods.
The DEAP dataset consists of 32 EEG channels and 8 peripheral physiological signals (electro-oculogram
(EOG), galvanic skin response (GSR), blood volume pulse (BVP), RSP, EMG, skin temperature (SKT))
of 32 healthy subjects (labeled from s01 to s32) with half females and aged between 19 and 37. The EEG
and physiological signals were recorded while each subject was watching 40 one-minute videos which
were carefully selected to elicit different emotional states. In DEAP, each video clip was rated from 1 to
9 for arousal and valence by each subject after watching 40 trials of videos and the discrete rating value
can be used as a classification label in emotion recognition. The total number of trials within the DEAP
dataset was 1280 trials (40 trials per subject).

In this research, four dimensional emotional states (high valence-high arousal (HVHA),
high valence-low arousal (HVLA), low valence-low arousal (LVLA), low valence-high arousal (LVHA))
were considered as target emotions based on the scales of valence and arousal. Four kinds of peripheral
physiological signals GSR, BVP, RSP, EMG from DEAP dataset were employed for emotion identification.
The content summary of preprocessed DEAP database is shown in Table 2. The preprocessed signals in
DEAP dataset were down-sampled to 128Hz and the length of each trial was 63 seconds, including 3s
baseline signal and 60s watching recodings. In this paper, after removing the 3s baseline signal, each 60s
trial was segmented into ten 6s samples without overlapping. Finally, each subject presented with a
total of 400 (40 trials × 10 samples) samples and the samples of five subjects (s01, s02, s03, s04, s05)
were chosen to verify the effectiveness of the proposed methods. The sample distribution is shown in
Table 3.

Table 2. The preprocessed DEAP database content summary.

Elicitation Material Videos

Emotion labels Arousal, valence
Number of subjects 32

Collected signals EEG, EOG, GSR, BVP, RSP, EMG, SKT
Length 60 seconds

Sampling frequency 128 Hz;
Rating values Arousal: 1–9 Valence: 1–9

Table 3. The number of samples for four dimensional emotional states of each subject.

Subject HVHA HVLA LVLA LVHA Total

s01 130 60 100 110 400
s02 160 60 100 80 400
s03 10 210 110 70 400
s04 120 40 200 40 400
s05 130 110 100 60 400

Total 550 480 610 360 2000

2.2. Emotion Labeling Schemes

In this research, two common types of emotion models were taken into consideration. One is to
divide emotions into discrete categories. Ekman [31] regarded emotions as discrete and physiology
related. He diveded emotions into six basic emotions with happy, sad, anger, fear, surprise and disgust
and the other emotions were viewed as the production of reaction and combination of the six basic
emotions. Izard [32] presented ten basic emotions—joy, sadness, angry, surprise, fear, interest, shyness,
guilt, contempt and disgust. He suggested that each basic emotion corresponded to a simple brain
circuit and there was no complex cognitive component involved. When using Augsburg Dataset,
this discrete emotion model was employed to classify four different emotions, including joy, anger,

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
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sadness and pleasure, because the experimental emotional states were desigend with discrete categories.
The other emotion model is based on the 2D arousal-valence emotion description model. In Russell’s
theroy of emotion model [33], the emotional states are characterized by two dimension, valence and
arousal. The emotion can be mapped to a plane with valence as the horizontal and arousal as the
vertical axes. Arousal map emotions ranging from passtive to active while valence rangesfrom negative
to positive. In this study, the DEAP dataset was divided into four-dimensional emotion groups
according to Reference [30], including HVHA, HVLA, LVLA and LVHA based on the levels of valence
and arousal, as shown in Figure 1. While valence > 5 and arousal > 5, it belongs to HVHA; while
valence > 5 and arousal ≤ 5, it belongs toHVLA; while valence ≤ 5 and arousal > 5, it belongs to LVHA;
while valence ≤ 5 and arousal ≤ 5, it belongs to LVLA.
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2.3. Feature Extraction

Prior to using the classifier for sample identification, features which can represent the emotional
states usually need be extracted. The traditional linear analysis methods can only achieve some
superficial information, therefore numerous features need be extracted from physiological signals to
display the characteristics of signals, which reduces the efficiency of emotion classification. In addition,
compared with periodic signals, emotion-related physiological signals are nonlinear time-varying
signals. Therefore, in this investigation, four nonlinear features are employed to represent the emotional
states from physiological signals. The four selected nonlinear features, approximate entropy (ApEn),
sample entropy (SaEn), fuzzy entropy (FuEn) and wavelet packet entropy (WpEn), can reveal the
internal structure of the time series and provide a prior knowledge about the intrinsic similarity,
deep-seated information and predictability of the signal.

2.3.1. Approximate Entropy

Approximate entropy (ApEn) is a nonlinear analysis method proposed by S.M. Pincus [34–36]
to measure the complexity or irregularity of time series. Its physical meaning is to measure the
probability of mode generation in a new state when the signal sequence changes in its dimensional
space. The method is based on the theory of phase space reconstruction. The core idea of this theory is
that embedding the signal into the phase space, when the embedding dimension of the phase space is
increased from m to m + 1, predicting the probability of generating the new mode. The greater the
probability of generating a new mode, the more complex the signal and the higher the corresponding
value of ApEn. The computed steps of ApEn are as follows:
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(1) For time series xi of finite length N (1 < i < N), xi is re-constructed into m-dimensional vector
Xm(i): {

Xm(i) =
{
x(i), x(i + 1), x(i + 2), . . . , x(i + m− 1)

}
i = 1, 2, . . . , N −m + 1

, (1)

where m is the embedded dimension.
(2) Calculate the distance d

{
Xm(i), Xm( j)

}
between the components of Xm(i) and Xm( j) and define

the maximum distance as D
{
Xm(i), Xm( j)

}
:

D
{
Xm(i), Xm( j)

}
= max

{∣∣∣x(i + k) − x( j + k)
∣∣∣}. (2)

(3) Calculate the probability of Cm
i (r), which measures the regularity of xi, that is, the ratio of

D
{
Xm(i), Xm( j)

}
< r to the total number of N −m + 1:

Cm
i (r) =

Nm(i)
N −m + 1

, (3)

where r is the vector comparison distance and Nm(i) represents the number of D
{
Xm(i), Xm( j)

}
< r.

(4) Define Φm(r) as:

Φm(r) =

N−m+1∑
i=1

ln Cm
i (r)

N −m + 1
. (4)

(5) When the dimension is increased to m + 1, repeats the above steps to get Φm+1(r):

Φm+1(r) =

N−m∑
i=1

ln Cm+1
i (r)

N −m
. (5)

(6) Finally, for fixed m, r and N, ApEn can be expressed as:

ApEn(m, r, N) = Φm(r) −Φm+1(r). (6)

The value of ApEn is related to vector comparison distance r, the embedded dimension m and
the data length N. According to the practice of Pincus et al. [34], it is suggested that a relatively stable
estimate can be obtained by using shorter data; r ranges from 0.1std to 0.25std, where std is the standard
deviation of the data; the value of m is from 2 to 5.

2.3.2. Sample Entropy

Sample entropy (SaEn), proposed by Richman et al [37], is used to measure self-similarity and
complexity of time series signals, being an improved algorithm based on ApEn. In view of the
shortcomings of ApEn, SaEn mainly made two improvements—(a) Eliminating the deviation of ApEn
when matching with itself; (b) In order to avoid the condition of ln0 caused by eliminating self-matching,
SaEn calculates the total number of matching boards before logarithmic operation and when calculates
m + 1 dimensional statistics, the number of templates matching itself is used to calculate. The specific
computing steps of SaEn are as follows:

(1) The first 3 steps are similar to the calculation of ApEn and define Qm
i (r) as the probability that

D
{
Xm(i), Xm( j)

}
< r.

(2) After averaging all obtained Qm
i (r), gets the total number of template matches, Qm(r):

Qm(r) =

N−m∑
i=1

ln Qm
i (r)

N −m
. (7)
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(3) When the dimension is increased to m + 1, the total number of template matches is Qm+1(r):

Qm+1(r) =

N−m∑
i=1

ln Qm+1
i (r)

N −m
. (8)

(4) SaEn can be expressed as:

SaEn(m, r, N) = − ln
Qm+1(r)

Qm(r)
. (9)

2.3.3. Fuzzy Entropy

Chen et al. [38,39] employed fuzzy theory to measure the complexity of signal sequence and
proposed fuzzy entropy (FuEn) algorithm, which was successfully applied to the extraction and
classification of EMG signals. Studies [40,41] show that FuEn algorithm has lower sensitivity and
dependence on phase space dimension (m), similar tolerance limit (r) and the time series length (N)
and contributes to the calculation efficiency. FuEn is computed as follows:

(1) The first 2 steps are similar to the calculation of ApEn. Define the maximum distance as Dm
ij :

Dm
ij = max

{∣∣∣x(i + k) − x( j + k)
∣∣∣}. (10)

(2) Imports fuzzy membership function Am
ij :

Am
ij = exp[− ln(2) · (

Dm
ij

r
)

2

]. (11)

(3) Define Cm
i (r) as:

Cm
i (r) =

N−m+1∑
j=1, j,i

Am
ij

N −m
. (12)

(4) Define Φm(r) as:

Φm(r) =

N−m+1∑
i=1

ln Cm
i (r)

N −m + 1
. (13)

(5) When the dimension is increased to m + 1, repeats the above steps and finally FuEn is:

FuEn(m, r, N) = ln Φm(r) − ln Φm+1(r). (14)

2.3.4. Wavelet Packet Entropy

Wavelet packet entropy (WpEn) is an algorithm that combines wavelet packet transform with
information entropy, which takes the advantages of wavelet packet in accurately describing signals
of different frequency bands and the information measurement of non-stationary signals based on
information entropy. WpEn reflects the spectrum energy distribution of signals in different frequency
band and can quantitatively describe the order or disorder degree of information distribution [42].
The specific algorithm steps of WpEn are as follows:

(1) The raw signal is decomposed into different signal components of different frequency bands
by wavelet packet, the energy Ei,j for each frequency range in each time window can be computed as:

Ei, j(t) =
Li, j∑
k=1

(xi,k)
2, (15)
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where i denotes the number of layers of wavelet packet decomposition; j denotes the j-th frequency
band; k is the summation index; Li, j denotes the coefficient energy.

(2) Total energy Etotal of the signal in each time window is calculated as:

Etotal =
N∑

i=1

Ei, j. (16)

(3) According to Shannon’s information entropy theory and the definition of wavelet packet
energy, WpEn is defined as follows:

WpEn = −
∑

i

pi ln(pi), (17)

where Pi =
Ei

Etotal
is computed as the ratio between the energy of each level.

2.3.5. Multimodal Feature Fusion

In this research, physiological signals are employed for emotion identification. The primary
purpose of feature fusion is to improve the classification results by exploiting the complementary nature
of different features [43–45]. Each of the four nonlinear features mentioned above can reflect the state
characteristics of the signal to some extent from a certain point of view. Therefore, the early fusion of
four nonlinear features combining as a single representation can reflect emotional states more effectively.
Meanwhile, the feature fusion of multimodal physiological signals will be more comprehensive to
represent emotional states from multiple perspectives. In this investigation, in order to represent
emotional states effectively, we propose the feature representation method of multi-nonlinear feature
integration and multi-channel information feature fusion. The four nonlinear features, are employed
and extracted from every physiological signal, then the extracted features of various physiological
signals are fused in order to represent the emotional states more effectively.

2.4. Team-Collaboration Identification Strategy Based on SVM-DT-ELM

Some traditional classifiers, such as support vector machine (SVM), extreme learning machine
(ELM) and decision tree (DT), have been well applied in emotion recognition, while each classifier has
his own shortcomings inevitably. For instance, SVM has better diagnostic performance under small
sample conditions, poor performance for large sample conditions and emerge multiple categories with
the same number of votes when voting. The initial input parameters of ELM are generated randomly,
which requires a large number of training samples and cannot guarantee the optimal parameters. DT
is inconsistent with the data of different samples and the information gain tend to those features with
more values. In view of the requirements for accuracy and reliability of emotion recognition system
and the uncertainty caused by a single classifier, a team-collaboration identification strategy based on
the fusion of SVM, DT and ELM, is proposed, which exerts the function of collaborative diagnosis with
multiple classifiers, thus eliminating the uncertainty brought by a single classifier and improving the
recognition accuracy.

2.4.1. Support Vector Machine

Support vector machine (SVM) is a machine learning method based on the principle of structural
risk minimization in statistical learning theory, which seeks the best performance between model
complexity and learning ability to achieve the best generalization ability based on limited sample
information [46–48]. The core idea is to realize nonlinear classification or regression fitting by mapping
nonlinear classification or regression fitting problems into high-dimensional space by using kernel
function to obtain the better classification or regression result. When making a decision in a classification
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problem, the voting method is usually adopted and the category with the most votes is the class to
which the sample belongs.

For a data set
{
(x1, y1), (x2, y2), . . . , (xk, yk)

}
of two classes with k as the number of samples,

where xi ∈ Rn represents the sample; yi ∈ {+1,−1} is the class label; i = 1, 2, . . . , k is the training sample
number. SVM seeks an optimal hyper-plane in the n dimensional data feature space by constructing
the following function: 

min 1
2 wTw + C

n∑
i=1

ξi

yi(wTφ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, 3, . . . , n

, (18)

where φ is a mapping function from low-dimensional space to high-dimensional space; ξi is a slack
variable to ensure the correctness of the classification in the case of inseparable samples; C is a penalty
factor and a larger C indicates a greater penalty for misclassification; w and b are the weight vector and
classification threshold of the decision function f (x) = (w·x) + b; xi is the input vector and yi is the
output vector.

Introducing the Lagrange function to get the dual optimization problem:
min 1

2α
TQα− eTα

yTα = 0

0 ≤ αi ≤ C, i = 1, 2, 3, . . . , n

, (19)

where e = (1, 1, . . . , 1)T is the column vector; Q is the semi-positive definite matrix of n × n;
Qi j = yiy jK(xi, x j), K(xi, x j) = φ(xi)

Tφ(x j)
T is the kernel function; αi is the Lagrange multiplier; y is

the sample label vector; α is the Lagrange multiplier vector.
Computing Equation (19), the optimal solution is:

w =
n∑

i=1

yiαiφ(xi). (20)

The optimal hyper-plane decision function is:

f (x) = sgn(
n∑

i=1

yiαiK(xi, x) + b). (21)

SVM can be extended to multi-classification problems by constructing multiple SVM two-class
classifiers which include direct method, one-to-one and one-to-rest. Among them, the one-to-one
method is used to classify the k classes of sample data by constructing k(k –1)/2 binary classifiers,
which has a fast solving speed and is widely used in practice. The classification principle is the “voting
mechanism,” that is, each classifier votes for its preference and the final result is based on the category
with the most votes. This method can be expressed as:

min
[

1
2 (x

i j)
Twi j + C

n∑
i=1

ξ
i j
t

]
(wi j)

T
φ(xi) + bi j

≥ 1− ξi j
t (yt = i)

(wi j)
T
φ(xi) + bi j

≤ −1 + ξ
i j
t (yt = j)

ξ
i j
t ≥ 0

, (22)
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where wi j and bi j are the weight vector and threshold obtained when designing the two-class classifier
for the i-th sample and the j-th sample respectively; ξi j

t is the slack variable; xi j is the training sample
vector; yt is the sample label; S is the sum of the i-th class samples and j-th class samples.

2.4.2. Decision Tree

Decision tree (DT) classifier is an instance-based inductive learning algorithm that uses inductive
algorithm to generate readable decision trees and rules and then uses the decision tree to classify
new data [49]. DT is an inverted tree structure similar to the flow chart, which mainly focuses on
the two core problems of growth and pruning. The structure diagram of DT is shown in Figure 2.
The knowledge acquired by DT is a formal representation of the tree, including the regression tree and
the classification tree. The results of classification or prediction are reflected in the leaf nodes of DT.
The average value of the output variables is the prediction result in the samples contained in the leaf
nodes of the regression tree, while the mode of the output variable is the classification result in the
samples contained in the leaf nodes of the classification tree.
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Each none-leaf node in the figure represents the input attribute of the training data set,
attribute value represents the value corresponding to the attribute and the leaf node means the value
of the target category attribute. Yes and No represent positive and negative examples respectively.

DT classifier is computed as follows:
Input—training set D, feature set A and threshold ε;
(1) If all samples in D belong to the same category of Ck, then T is a single node tree and Ck is used

as the class of the node and returns T.
(2) If A is not an empty set, then T is a single node tree and the class Ck with the largest number in

D is taken as the class of the node and returns T.
(3) Otherwise, calculate the information gain ratio (GA) of each feature in A according to Equation

(23) and select feature Ag with the largest:

GR = G
SI

G = Entropy(S) =
∑

v∈V(A)

|Sv |
|S| Entropy(Sv)

SI =
c∑

i=1

|Si |
|S| log 2 Si

S

Entropy(S) =
c∑

i=1
−pi log 2pi

, (23)

where pi is the proportion of the sample of the i-th attribute value in the subset; V(A) is the range of the
attribute A; SV is the subset of D whose value is V on the attribute A; Entropy(S) is the entropy of D
relative to C states.
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(4) If Ag is less than ε, then T is a single node tree and the class Ck with the largest number in D is
taken as the class of the node and T is returned;

(5) Otherwise, for each possible value ai of Ag, divide D into several non-empty subsets Di
according to Ag = ai, mark the class with the largest number in Di as a mark to construct sub nodes and
form a tree T by the node and return T.

(6) For node i, Di is used as training set and A-{Ag} as feature set. Step (1) to (5) are called
recursively to get subtree Ti and return Ti.

2.4.3. Extreme Learning Machine

In order to improve the traditional learning algorithms (such as back propagation neural network),
which easily fall into local minimum, slow model training speed and difficulty in adjusting learning
rate, reference [50] proposed the Extreme Learning Machine (ELM), which consisted of only an input
layer, a hidden layer and an output layer. The brief network structure of the algorithm is shown in
Figure 3. According the inputs, ELM randomly generates the connection weights and the threshold of
hidden layer neurons between input layer and hidden layer, which need not be adjusted during the
training process. Users do not need to know the hidden layer because Gaussian kernel was applied.
The optimal solution can be obtained by setting the number of hidden layer neurons, which is related
to the number of features. Best values for positive regularization coefficient and Gaussian kernel
parameter were found empirically after several experiments.
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Suppose there are N training samples (xi, yi) ∈ RN
× Rm(i = 1, 2, . . . , N), where xi ∈ RN is the

input and yi ∈ Rm the output. The mathematical model of a standard single hidden layer feed forward
neural network with M hidden layer nodes is:

M∑
i=1

βig(ω jxi + b j) = oi, i = 1, 2, 3, . . . , N, (24)

where ω j is the input weight vector connecting the input neuron and the j-th hidden layer neuron; β j
is the output weight vector connecting the j-th hidden layer neuron and the output neuron; oi is the
actual output vector; b j is the bias of the hidden layer neurons; g(x) is the activation function of the
hidden layer neurons.
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If the model can approximate the output y j of the training sample with zero error, which means
N∑

i=1
oi − yi = 0, then β j, ω j and b j make the following formula hold:

M∑
i=1

βig(ω jxi + b j) = yi, i = 1, 2, 3, . . . , N. (25)

Simplifies (25):
Hβ = Y, (26)

where H is called the output matrix of the hidden layer of the neural network.
When the activation function of the neuron is arbitrarily differentiable, the training error of the

single hidden layer feed forward neural network can approach infinitely small positive number ε.
At this time, the input weight vector ω j and the hidden layer offset b j can remain unchanged during
training process and can also be randomly assigned. Therefore, the training process is equivalent to
finding the least squares solution β̂ of the linear system:

Hβ̂− T = min
β

Hβ− T. (27)

The solution is β̂ = H+Y and H+ is the Moore-Penrose generalized inverse of the hidden layer
output matrix H.

2.4.4. Team-Collaboration Identification Strategy

As mentioned above, each classifier is based on a different method principle, so each classifier has
its own advantages and disadvantages. For a sample, it may be easily misclassified by one classifier but
easily identified by other classifiers. In order to reduce the limitation of a single classifier and improve
the accuracy of recognition, a team-collaboration identification strategy model, which combines SVM,
DT and ELM, is proposed. For this proposed team-collaboration identification strategy, the SVM
model is regarded as a major decision expert and the DT and ELM are emloyed to provide the decision
suggestions for the samples which are easily misclassified by SVM. The core idea of SVM-DT-ELM is
that selecting the possibly misclassified samples for the SVM and then employing DT and ELM to
conduct referral for these samples and finally confirming the emotion class of the sample according to
the designed decision-making mchanism. Main procedures of the suggested SVM-DT-ELM algorithm
are as follows:

(1) Firstly, the training sets are used to train SVM, DT, ELM classification model respectively.
In this research, during training SVM model, the radial basis function (RBF kernel) is selected and the
grid search method is used to optimize the SVM model parameters to achieve better performances.

(2) Selecting samples that may be misclassified by SVM. According to the training model of SVM
and the self-classification accuracy, selection conditions where the possibly misclassified samples
belong to are determined. Analysis shows that samples distributed near the support vector or with
the same number of votes during voting process are easily misclassified when SVM is used for
classification. The SVM supports one-versus-one multiclassification. If k is the number of classes,
k(k-1)/2 models will be generated, each model involves only two class. Focusing on above problems,
set the following conditions:

a) When using SVM for classification, if the highest number of votes are equal during the voting
process, the sample will be regarded as a possibly misclassified sample and the sample will be picked
out for referral.
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b) If the test sample satisfies the following condition after input to SVM, this sample is selected
for re-diagnosis. 

umin > vmin

hmax
umin

> smax
vmin

t1 <
hmax·vmin
umin·smax

< t2

, (28)

where umin represents the smallest absolute value in the case of three votes; hmax is the largest absolute
value in the case of three votes; vmin represents the smallest absolute value in the case of two votes; smax

represents the largest absolute value in the case of two votes. The t1 and t2 are conditional parameters,
which are determined by the performances of the trained SVM model, in this research, t1 = 1.5 and
t2 = 3.0.

(3) Decision principles. When applying SVM-DT-ELM team-collaboration strategy for emotion
identification, this paper follows the following principles:

i) If the test sample is classified by SVM with full votes and the sample is outside the set conditions,
then DT and ELM are not employed for further consultation. The output emotional categories are
based on the results of SVM.

ii) Samples except those satisfying condition i) should be classified by DT and ELM. If any one of
the results between DT and ELM are the same to SVM, the output emotional classes are based on the
principle of minority obeying majority.

iii) If the results of DT, ELM are different from the category of highest ranked vote of SVM and any
one of the referral results between DT and ELM is consistent with the SVM’s second highest ranked
vote, the final diagnosis category is based on the referral result.

(4) According to the principle of step (3), the emotional categories of the test samples are confirmed.
The flow chart of emotion recognition algorithm based on SVM-DT-ELM is shown in Figure 4.Entropy 2020, 21, x FOR PEER REVIEW 14 of 24 
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3. Results and Discussions

The Augsburg Dataset and DEAP dataset were employed in order to fully verify the effectiveness
of the proposed method. The performances of the proposed method were analyzed and compared
with the exisiting studies from multiple perspectives, which highlights the significant ability of the
proposed methods to recognize emotions through peripheral physiological signals.

3.1. Experiment Environment

All implementations are performed using MATLAB (R2015b) running on Windows 10 Laptop
PC with Intel(R)Core (TM) i7-8750H CPU @ 2.21GHz processor with 16 GB RAM. Table 4 shows the
hardware and software for the experiments.

Table 4. The hardware and framework specifications.

CPU Intel Core i7-8750H

GPU NVIDIA GeForce GTX1050Ti 4GB
OS Windows 10

RAM DDR4 16GB
Frameworks MATLAB (R2015b)

3.2. Procedure of Emotion Recognition

Figure 5 illustrates the architecture of emotion recognition from physiological signals.
Firstly, the raw emotional physiological signals need to be preprocessed. Then, the nonlinear
features are extracted from four types of signals. Next, the extracted multimodal features are
fused, the training samples are used to train the classifiers and test samples are classified with the
proposed team-collaboration identification strategy.
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3.3. Model Performance Evaluation Method

In order to quantify the performance of the proposed approach, the Hold-Out method is adopted to
train and test the constructed classifier model, where the dataset is divided into two mutually exclusive
sets, one is the training set and the other is the testing set. The 60%–80% of the dataset are usually
randomly selected for training and the remaining are used for testing. Generally, the experiments
need be repeated several times with random division and the average value is as the final result.
Besides, the standard evaluation metric, accuracy (Acc), was used as a measurement to evaluate the
performance of the above classification models and the values under different conditions are reported
as mean ± standard. The calculation formula of average recognition rate and standard deviation is
shown in (29) and (30):

Acc∗ =

N∑
i

Acci

N
(29)
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σ =

√√√√√ N∑
i
(Acc∗ −Acci)

2

N − 1
, (30)

where Acci represents the recognition accuracy of the i-th experiment, that is, the number of correctly
classified samples divided by the total number of samples; N represents the number of experiments.

According to the size of the Augsburg dataset, 80% of the samples are used for training, while the
remaining samples are used for testing. This procedure is repeated 10 times to ensure the results
more reasonable. The accuracy values of 10 times was averaged as the final classification performance.
When the experiments are conducted on the DEAP dataset, for each subject, 75% of the samples are
used for training, while the remaining 25% are used for testing. Then, for each subject, the average
classification performance is computed over the ten train-test repetition.

3.4. Emotion Classification in Augsburg Dataset

In order to fully verify the effectiveness of the proposed method, the experimental results of
emotion recognition are presented from three dimensions—(1) To show that the proposed feature level
fusion is effective, the recognition results obtained by using features of a single signal are compared
with that based on feature fusion; (2) To present the effectiveness of team-collaboration identification
strategy, the recognition results obtained by using a single classifier to classify the samples with feature
fusion are compared with the results based on the proposed team-collaboration identification strategy;
(3) To further demonstrate the advantage of the proposed method, compare the results of this paper
with that of related researches.

3.4.1. Feature Level Fusion

Prior to classification of samples, four nonlinear features, ApEn, SaEn, FuEn and WpEn,
were extracted from each physiological signal, including ECG, EMG, RSP and SC. Then the extracted
features were fused and fed into classifiers for classification.

In order to show that the feature level fusion mechanism in this paper is effective, the recognition
results of single physiological signal were compared with the recognition results of multimodal
signals (the classifier uses the SVM, DT and ELM respectively). Table 5 shows the comparison of the
10-times average recognition rate of four types of emotional states between single signal features and
feature fusion with multitype signals (Randomly selecting 500 samples each time). As can be seen the
recognition accuracy can be effectively improved by the fusion at the feature level with each classifier.
The high accuracy identification with fused features combining different classifiers clearly indicate that
the features obtained from different signals containing complementary or supplementary information.

Table 5. Comparison of the performances between single signal features and feature fusion of
multitype signals.

Physiological
Sensor

Acc*(%)

SVM DT ELM

Single sensor

ECG 65.7 ± 1.55 62.1 ± 1.92 58.4 ± 2.72
EMG 72.1 ± 0.97 60.1 ± 1.84 62.3 ± 2.47
RSP 66.4 ± 1.22 66.2 ± 1.75 59.7 ± 2.62
SC 70.9 ± 1.43 64.5 ± 1.54 60.6 ± 2.33

Multi sensors ECG + EMG +
RSP + SC 95.5 ± 0.85 90.5 ± 1.27 89.4 ± 1.78

3.4.2. Team-Collaboration Identification Strategy

In order to further improve the emotion recognition accuracy, the proposed SVM-DT-ELM
team-collaboration identification strategy, is employed for classification. Firstly, 80 percent samples
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were randomly selected as training samples to establish the SVM, DT and ELM classification model
respectively. According to the training model of SVM, selection conditions where the samples possibly
misclassified were determined. The rest samples were used to test the performance of the proposed
classification model and the experiments were repeated 10 times (Randomly selecting 500 samples
each time). In addition, we also compared the classification accuracy of using SVM, DT and ELM with
the recognition results of proposed method, as shown in Table 6.

Table 6. An overview of the comparison of the classification accuracy using different classifiers.

Number of
Experiments

Classification Methods (Acc*/%)

SVM DT ELM SVM-DT-ELM

1 96 91 86 98
2 96 91 89 98
3 95 92 89 98
4 95 89 91 99
5 94 90 88 98
6 95 90 90 98
7 95 93 92 99
8 96 89 90 100
9 96 90 88 99
10 97 90 91 99

Acc* (%)
95.5 ±
0.85

90.5 ±
1.27

89.4 ±
1.78 98.6 ± 0.70

Table 6 presents the accuracies of 10 experiments of using SVM, DT, ELM classifier and proposed
team-collaboration identification strategy for four emotions when the features obtained from various
physiological signals are taken in a fused manner. Compared with the accuracy of SVM classifier,
the accuracy rate of the proposed SVM-DT-ELM reaches 98.6%, 3.1% higher than the result of SVM
(95.5%). The proposed team-collaboration identification strategy presents better performances with 8.1%
and 9.2% improved accuracy than DT and ELM, respectively. The experimental results demonstrate
that the team-collaboration identification strategy is able to further improve the recognition accuracy
and make the recognition results more reliable.

3.4.3. Comparison with Existing Methods

Table 7 provides an overview of the accuracy rate comparisons of existing studies and the proposed
method with Augsburg Dataset. Some studies for emotion recognition reported their performances
based on valence and arousal measures only, which are not included here for comparison. As we can
see, the recognition accuracy of this paper is increased to 98.6% with 16 features based on the proposed
nonlinear features fusion and team-collaboration identification strategy. From the perspective of
feature dimension and recognition accuracy, the extracted features have better performance than other
features [29,51–54] and effectively reduce the feature dimension and improve emotion recognition
accuracy. In addition, the proposed team-collaboration identification strategy can integrate the
advantages of other classifications to effectively improve the classification accuracy.

Table 7. Accuracy comparison of various studies.

Classification Method Feature Dimension Acc* (%)

LDF [29] 32 92.05
SVM [51] 64 95

PSO-SNC [52] 32 86
SVM [53] 28 76

C4.5 DT [54] 155 93
This paper 16 98.6
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3.5. Emotion Classification in DEAP Dataset

In this section, we present the results obtained from DEAP dataset to demonstrate the effectiveness
of proposed methods.

3.5.1. Feature Level Fusion

In order to perform a more reliable classification process, we constructed a training set and a test
set for each subject (s01, s02, s03, s04, s05). The number of training set is 300 and the test set is 100 for
each subject. The experiments were carried out ten times and the accuracy rates of four dimensional
emotions identification using single signals and multimodal signals with SVM, DT and ELM are shown
in Tables 8–10, respectively.

Table 8. The classification accuracy for each subject using single signal and multimodal signals
with SVM.

Subject

Physiological Sensors

Single Sensor ( Acc*/% )
Multi Sensors

(Acc*/%)

GSR RSP BVP EMG GSR + RSP +
EMG + BVP

s01 38.0 ± 1.46 43.3 ± 2.73 53.5 ± 3.06 50.6 ± 1.56 73.5 ± 2.07
s02 34.0 ± 2.25 53.1 ± 1.73 43.2 ± 1.67 52.1 ± 3.03 65.1 ± 2.69
s03 54.3 ± 1.51 60.8 ± 2.72 65.6 ± 1.83 63.2 ± 2.33 81.5 ± 1.35
s04 48.6 ± 4.13 52.3 ± 3.67 56.5 ± 3.99 56.1 ± 2.17 62.7 ± 2.21
s05 32.8 ± 2.56 43.1 ± 3.88 47.6 ± 3.69 42.5 ± 3.04 69.2 ± 2.70

Table 9. The classification accuracy for each subject using single signal and multimodal signals with DT.

Subject

Physiological Sensors

Single Sensor ( Acc*/% )
Multi Sensors

(Acc*/%)

GSR RSP BVP EMG GSR + RSP +
EMG + BVP

s01 32.8 ± 2.95 39.8 ± 3.11 41.6 ± 4.34 46.4 ± 2.41 60.3 ± 1.95
s02 35.6 ± 1.82 33.0 ± 2.23 50.0 ± 2.35 44.2 ± 3.70 53.3 ± 2.36
s03 40.8 ± 1.30 49.4 ± 2.70 55.2 ± 0.84 57.4 ± 1.82 60.3 ± 2.00
s04 40.8 ± 2.17 40.2 ± 3.03 40.4 ± 4.16 45.4 ± 1.95 59.4 ± 2.01
s05 28.6 ± 1.52 41.4 ± 2.40 37.2 ± 1.48 41.6 ± 2.30 52.7 ± 2.83

Table 10. The classification accuracy for each subject using single signal and multimodal signals
with ELM.

Subject

Physiological Sensors

Single Sensor ( Acc*/% )
Multi Sensors

(Acc*/%)

GSR RSP BVP EMG GSR + RSP +
EMG + BVP

s01 29.2 ± 1.64 47.0 ± 2.55 46.8 ± 1.92 43.4 ± 3.65 61.5 ± 2.37
s02 30.4 ± 1.67 34.4 ± 2.70 49.6 ± 3.50 42.6 ± 1.82 55.4 ± 2.37
s03 40.0 ± 3.08 54.6 ± 3.36 54.4 ± 2.97 54.6 ± 2.30 62.9 ± 1.29
s04 39.6 ± 2.70 47.8 ± 2.56 42.6 ± 3.21 45.8 ± 3.56 50.1 ± 2.28
s05 34.8 ± 3.35 44.4 ± 2.97 39.8 ± 3.83 43.2 ± 3.11 53.9 ± 2.73
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It can be seen in Tables 8–10 that the classification performances of RSP and EMG are good on the
whole, presenting their certain advantages on detecting different emotions. These two physiological
signals also perform well in Augsburg dataset, which is where the two databases are consistent.
Compared with the other three signals, the classification accuracy of GSR is not good all in all.
The results of BVP is more satisfying. In addition, it can be seen that the results of multi sensors fusion
present much improvement comparing with the results of single signal for each subject. Performance
analysis shows that multi-type information fusion can effectively improve the accuracy of emotion
identification, which is consistent with the experimental results with the Augsburg dataset.

3.5.2. Team-Collaboration Identification Strategy

In this research, the team-collaboration identification strategy is proposed to avoid the limitations
of a single classification method. The results of ten times experiments are shown in Table 11,
comparing between SVM, DT, ELM and the proposed method for the five subjects individually.
Due to individual differences, the accuracy of emotion recognition varies among different subjects.
However, as can be seen, the results illustrate the improvement in the classification accuracy for
each subject after using the proposed classification model. Taking the subject s01 as an example,
when employing the proposed strategy, the average accuracy improved by 6% than the SVM classfication
method, from 73.5% to 79.5%. And there were 19.2% and 18% improved accuracy than the rusults of
DT and ELM, respectively. Overall, the average identification accuracies are 70.4% and 76.46% for
SVM and proposed strategy, respectively, improving with 6.06%. Meanwhile, when the proposed
method was employed, there were smaller mean square deviation, which present the better stability of
the team-collaboration identification strategy than the other methds. The compared results for each
subject with SVM, DT, ELM and proposed method are demonstrated in Figure 6.

Table 11. Comparison of the results using SVM, DT, ELM and proposed classification strategy for
each subject.

Subject Method
The Identification Accuracy of Each Experiment (%) Average (%)

1 2 3 4 5 6 7 8 9 10

s01

DT 64 61 58 60 58 59 59 60 62 62 60.3 ± 1.95
ELM 62 60 64 58 62 58 64 60 64 63 61.5 ± 2.37
SVM 75 72 72 76 75 77 72 73 71 72 73.5 ± 2.07

Proposed 80 80 80 81 80 82 79 79 76 78 79.5 ± 1.65

s02

DT 55 51 53 53 50 56 51 57 52 55 53.3 ± 2.36
ELM 58 54 59 52 53 56 53 57 57 55 55.4 ± 2.37
SVM 68 66 71 63 63 64 64 66 63 63 65.1 ± 2.69

Proposed 72 70 76 70 69 70 68 70 68 70 70.3 ± 2.31

s03

DT 62 58 59 63 62 61 57 59 60 62 60.3 ± 2.00
ELM 65 63 61 63 62 62 63 63 65 62 62.9 ± 1.29
SVM 84 82 80 82 83 81 80 81 80 82 81.5 ± 1.35

Proposed 88 88 87 89 86 86 87 86 87 86 87 ± 1.05

s04

DT 58 62 60 57 61 58 59 58 63 58 59.4 ± 2.01
ELM 48 51 49 47 53 50 47 52 53 51 50.1 ± 2.28
SVM 63 66 65 64 65 60 61 60 62 61 62.7 ± 2.21

Proposed 70 70 72 72 73 68 70 70 68 67 70 ± 1.94

s05

DT 50 52 52 55 50 51 59 51 52 55 52.7 ± 2.83
ELM 57 58 52 50 56 53 54 51 52 56 53.9 ± 2.73
SVM 69 67 68 66 76 69 70 70 69 68 69.2 ± 2.70

Proposed 75 73 78 73 82 75 75 74 75 75 75.5 ± 2.68

Overall
average

DT
ELM
SVM

57.2 ± 2.23
56.8 ± 2.21
70.4 ± 2.20

Proposed 76.46 ± 1.93
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3.5.3. Comparison with Existing Methods

In recent years, various studies of emotion recognition have been conducted on DEAP dataset.
Generally, The research work mainly focuses on two dimensional classification (HA/LA, HV/LV) or
four dimensional classification (HVHA, HVLA, LVLA, LVHA).

The previous studies [55–59] based on two dimensional emotion classes using DEAP dataset are
shown in Table 12. As can be seen from Table 12, the methods adopted [47–51] are able to identify the
two types of emotions to a certain extent. However, binary emotion model is difficult to fully express
emotional states. Therefore, this paper takes four dimensional emotion classes (HVHA, HVLA, LVLA,
LVHA) into consideration.

Table 12. Accuracy comparison of various studies in two-dimensional classification.

Method Acc* (%)

Arousal Valence

Chen et al. [55] 69.09 67.89
Zhuang et al. [56] 71.9 69.1

Yin et al. [57] 77.1 76.1
Alazrai et al. [58] 86.6 85.8
Kwon et al [59] 76.56 80.46

In this investigation, the emotional states were identified from subject-dependent perspective.
The training and testing were performed on the same subject, which was same as the Ref [58,60,61].
An overview comparison of accuracy rate based on four dimensional emotion classes with different
methods is shown in Table 13. In this paper, the identification accuracy of the four types of
emotions was 76.46%. It can been seen that the proposed method with fused nonlinear features
and team-collaboration identification strategy presents better identification performance than the
existing methods in References [58,60,61]. Although only five experimental subjecs (s01~s05) were
employed for analysis in this paper, the analysis results are not affected, because the subjects were
selected sequentially, not deliberately. In addition, the studies of References [58,60,61] have been
carried out based on EEG signals, while this paper is based on physiological signals. The experimental
results show that as long as the method is proper, the use of physiological signals can also achieve
good emotion recognition. In this investigation, the effectiveness of proposed methods of feature
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representation and classification were verified by comprehensive analysis with Augsburg dataset and
DEAP dataset. The experimental analysis results of two datasets are consistant that the proposed
methods present good performances of emotion identification, which indicates the universality of the
proposed methods.

Table 13. Accuracy comparison of various studies.

Menthod Emotions Acc*(%)

M Zubair and C Yoon [60] HVHA, HVLA,
LVLA, LVHA 49.7

Alazrai et al [58] HVHA, HVLA,
LVLA, LVHA 75.1

Zheng et al [61] HVHA, HVLA,
LVLA, LVHA 69.67

This paper HVHA, HVLA,
LVLA, LVHA 76.46

3.6. Discussions

In this investigation, the method of nonlinear features extraction and multi-signal feature fusion
was proposed to effectively characterize emotional responses and team-collaboration identification
strategy was suggested to improve the accuracy of emotion recognition. The effectiveness of
the proposed feature extraction fusion method and classification method were verified by single
factor analysis comparision on Augsburg and DEAP datasets respectively. The results before and
after feature fusion were compared to verify the effectiveness of the proposed feature fusion
method. The effectiveness of the proposed classification method was verified by comparing the
results of the single classification method with that of the team-collaboration identification strategy.
Meanwhile, the validity of the proposed methods were fully verified by comparing with the results of
existing research methods based on the same database. Whether it was the comparison of the effect
before and after the fusion or the comparison with the methods of other researchers, the methods
proposed in this article have shown superior performances.

Various methods of feature extraction and classification [51–61] were proposed and employed by
researchers, in terms of using physiological signals to identify emotions. No matter which method was
adopted, the purpose was to improve the accuracy of emotion identification. Recently, deep learning
methodologies have become popular to analyse physiological signals and employ to realize emotion
classification [5]. Kwon et al [59] employed deep learning method to conduct two dimensional emotion
identification on DEAP dataset. At present, there is no application of deep learning methods for the
same research goal as this article on the Augsburg and DEAP datasets. Hence, the results of this
paper were not compared with that of deep learning method. In this research, at present, we have
studied the emotion recognition of a single person using physiological signals. In the future work,
further investigation is needed on how to extract more discriminative features to make cross-subject
emotion classification and how to construct and optimize classification models with higher accuracy
for emotion recognition and how to effectively adopt deep learning method to identify emotions with
peripheral neurophysiological signals and EEG signals.

4. Conclusions

In this paper, the methods of emotional state identification based on physiological signals were
investigated. In order to represent emotional states effectively, the method of nonlinear features
extraction and multi-signal feature fusion was suggested. Meanwhile, team-collaboration identification
strategy was proposed for avoiding the limitations of a single classifier. The four nonlinear features,
namely ApEn, SaEn, FuEn and WpEn were employed and extracted from each physiological signal,
then the extracted features of different physiological signals were fused, for example fusion of ECG,
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EMG, RSP, SC with Augsburg dataset and EMG, RSP, BVP, GSR with DEAP dataset. Nonlinear
features can represent emotion characteristics in depth and multi-signal feature fusion can represent
emotion from multiple perspectives. Hence, the proposed feature represent method is more effective.
In order to improve the accuracy of emotion identification, team-collaboration identification strategy
was proposed. According to the performances and characteristics of SVM, DT and ELM classifiers,
the team-collaboration decision-making mechanism was developed, which according to the difficulty
of sample classification, single classification decision and team-collaboration identification can be
adopted respectively. The proposed strategy can choose the appropriate decision method according to
the characteristics of the samples and can effectively integrate the advantages of other classifiers to
avoid the limitations of single classifier. The Augsburg dataset and DEAP dataset were employed to
verify the validity and universality of the proposed method. The experimental results from the two
public databases uniformly indicated that the proposed method combining fused nonlinear features
and team-collaboration identification strategy has better performances than the existing methods.
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