Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor
Abstract
:1. Introduction
2. Information Theoretic View of Quantum Error
2.1. Phenomenal Classification of Quantum Noise
- 1.
- Stochastic Pauli Noise: This corresponds to bit or phase flip errors of a single qubit.
- 2.
- Coherent Noise: No decoherence to a quantum state occurs, but it becomes an unintended quantum state.
- 3.
- Amplitude Damping: A specific example of decoherence, especially derived from energy loss.
- 4.
- Local correlated noise (Markov, non-Markov): This is an extension of Pauli noise, in which several qubits around the errored qubits are correlated to produce the error.
- 5.
- Non-local correlated noise (Markov, non-Markov):This has a potential to give an error for every qubit in the system with correlation.
- 6.
- The disentanglement noise: When the entanglement is released, it can be regarded as an error. These can be observed in an interaction with the environment, an interaction with other qubits, an imperfect gate, and also leakage, respectively. The details of these physical phenomena have been analyzed in physics. A list of references and a brief description of them are given in Appendix A.
2.2. Information Theoretic Classification of Quantum Errors
2.2.1. Linear Individual Independent Error
2.2.2. Nonlinear Individual Independent Error
2.2.3. Simple Burst Error Due to Correlation Phenomena
2.2.3.1. Linear Local Correlated and Non-Local Correlated Error
2.2.3.2. Nonlinear Local or Non-Local Correlated Error
2.2.4. Avalanche Burst Error and Accumulation Error
3. Basis of Quantum Noise Analysis
4. Review of Physical Examples of a New Type of Quantum Noise
4.1. Hutter-Loss Recurrence Effect
4.2. Collective Decoherence Effect
4.3. Leak from Decoherence Free Subspace Due to Collective Decoherence
5. Communication Channel Modeling of Quantum Errors Due to Quantum Correlation
5.1. Semi-Classical Modeling of Quantum Bit Array Structure
5.2. Semi-Classical Description of Nonlinear Local Correlated Errors
5.3. Semi-Classical Description of Nonlinear Non-Local Correlated Errors
6. Communication Channel Modeling of Quantum Error Due to External Forces
6.1. Physical Reality of External Force Such as Cosmic Rays
6.2. Communication Channel Error Model Due to Environment Correlation
7. Communication Channel Modeling of Quantum Error in Operations
7.1. Collapse of Quantum Zeno Effect for Single Qubit
7.2. Collaps of Quantum Zeno Effect for Qubits with Correlation
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Physical Research of Decoherence and Disentanglement Phenomena
Appendix B. From Lindblad Equation to Semi-Classical Stochastic Differential Equation
References
- National Academies of Sciences, Engineering, and Medicine. Quantum Computing: Progress and Prospects; Grumbling, E., Horowitz, M., Eds.; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- National Institute of Standards and Technology. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Processes; National Institute of Standards and Technology Interagency or Internal Report 8309; NIST: Gaitherburg, MD, USA, 2020. [Google Scholar]
- Preskill, J. Sufficient condition on noise correlations for scalable quantum computing. Quant. Inf. Comput. 2013, 13, 181. [Google Scholar] [CrossRef]
- Kempe, J. Approaches to quantum error correcction. Poincare Semin. 2005, 1, 65–93. [Google Scholar]
- Djordjevic, I. Quantum Information Processing and Quantum Error Correction: An Engineering Approach; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Bomb, H. An Introduction to Topological Quantum Codes. In Topological Codes in Quantum Error Correction; Lidar, D.A., Brun, T.A., Eds.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Fowler, A.G.; Mariantoni, M.; Martinis, J.M.; Cleland, A.N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 2012, 86, 032324. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.G.; Martinis, J.M. Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code. Phys. Rev. A 2014, 89, 101103. [Google Scholar] [CrossRef] [Green Version]
- Hirota, O. Quantum Noise Analysis for Quantum Computer; IT-2020-17; The IEICE Technical Report on Information Theory at The IEICE of Japan: Tokyo, Japan, 2020; pp. 1–6. [Google Scholar]
- Hirota, O. Basis of Quantum Noise Analysis for Quantum Computers; Bulletin of Quantum ICT Research Institute at Tamagawa University: Tokyo, Japan, 2020; Volume 10, pp. 1–7. [Google Scholar]
- Lemberger, B.; Yavus, D.D. Effect of correlated decay on fault tolerant quantum computation. Phys. Rev. A 2017, 96, 062337. [Google Scholar] [CrossRef]
- Yavus, D.D. Superradiance as a source of collective decoherence in quantum computer. J. Opt. Soc. Am. 2014, B31, 2665. [Google Scholar] [CrossRef] [Green Version]
- Hutter, A.; Loss, D. Breackdown of surface code error correction due to coupling to a bosonic bath. Phys Rev. A 2014, 89, 042334. [Google Scholar] [CrossRef] [Green Version]
- Staudt, D. The Role of Correlated Noise in Quantum Computing. 2011. Available online: http://arxiv.org/abs/1111.1417 (accessed on 22 November 2021).
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons: New York, NY, USA, 2006. [Google Scholar]
- Blahut, R.E. Principles and Practice of Information Theory; Addison-Wesley: Reading, MA, USA, 1987. [Google Scholar]
- Gallager, R.G. Information Theory and Reliable Communication; Wiley: New York, NY, USA, 1968. [Google Scholar]
- Resch, S.; Karpuzcu, U.R. Benchmarking Quantum Computers and the Impact of Quantum Noise. 2020. Available online: http://arxiv.org/abs/1912.00546v4 (accessed on 22 November 2021).
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 17, 821. [Google Scholar] [CrossRef]
- Belavkin, V.P.; Hirota, O.; Hudson, R.L. The World of Quantum Noise and the Fundamental Outout Processes. In Qauntum Communications and Measurement; Plenum Press (Springer): New York, NY, USA, 1995. [Google Scholar]
- Merzbacher, E. Quantum Mechanics; John Wiley: New York, NY, USA, 1970. [Google Scholar]
- Karasik, R.; Marzlin, K.; Sanders, B.; Whaley, K. Multiparticle decoherence free subspaces in extended systems. Phys. Rev. A 2007, 76, 012331. [Google Scholar] [CrossRef] [Green Version]
- Vepsalainen, A.P.; Karamlou, A.H.; Orrell, J.L.; Dogra1, A.S.; Loer, B.; Vasconcelos1, F.; Kim, D.K.; Melville, A.J.; Niedzielski, B.M.; Yoder, J.L.; et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 2020, 584, 551–556. [Google Scholar] [CrossRef]
- Wilen, C.D.; Abdullah, S.; Kurinsky, N.A.; Stanford, C.; Cardani, L.; D`Imperio, G.; Tomei, C.; Faoro, L.; Ioffe, L.B.; Liu, C.H.; et al. Correlated charge noise and relaxation errors in superconducting qubits. Nature 2021, 594, 369–373. [Google Scholar] [CrossRef]
- Harper, R.; Flammia, S.T.; Wallman, J.J. Efficient learning of quantum noise. Nat. Phys. 2020, 16, 1184–1188. [Google Scholar] [CrossRef]
- Misra, B.; Sudarshan, E.G. The Zeno’s Paradox in Quantum Theory. J. Math. Phys. 1977, 18, 756. [Google Scholar] [CrossRef] [Green Version]
- Itano, W.M.; Heinzen, D.J.; Bollinger, J.J.; Wineland, D. Quantum Zeno effect. Phys. Rev. A 1990, 41, 2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franson, J.D.; Jacobs, B.C.; Pittman, T.B. Quantum computing using single photons and the Zeno effect. Phys. Rev. 2004, A70, 062302. [Google Scholar] [CrossRef] [Green Version]
- Adler, S.L. Weisskopf-Wigner decay theory for the energy-driven stochastic Schrodinger equation. Phys. Rev. D 2002, 67, 025007. [Google Scholar] [CrossRef] [Green Version]
- Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus; Springer: New York, NY, USA, 1998. [Google Scholar]
- Gardiner, C.W.; Zoller, P. Quantum Noise; Springer: New York, NY, USA, 2000. [Google Scholar]
- McEwen, M.; Kafri, D.; Chen, Z.; Atalaya, J.; Satzinger, K.J.; Quintana, C.V.; Klimov, P.; Sank, D.; Gidney, C.; Fowler, A.G.; et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 2021, 12, 1761. [Google Scholar] [CrossRef] [PubMed]
- Google, A.I. Exponential suppression of bit or phase flip errors with repetitive error correction. Nature 2021, 595, 383. [Google Scholar] [CrossRef]
- McEwen, M.; Faoro, L.; Arya, K.I.; Dunsworth, A.; Huang, T.; Kim, S.; Burkett, B.; Fowler, A.; Arute, F.; .Bardin, J.C.; et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. arXiv 2021, arXiv:2104.05219. [Google Scholar]
- Dinc, F.; Bran, A.M. Non-Markovian super-superradiance in a linear chain of up to 100 qubits. Phys. Rev. Res. 2019, 1, 032042(R). [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Liu, Z. No-Go Theorems for Quantum Resource Purification. Phys. Rev. Lett. 2020, 125, 060405. [Google Scholar] [CrossRef]
- Bousba, Y.; Russell, T. No quantum Ramsey theorem for stabilizer codes. IEEE Trans. Inform. Theory 2021, 67, 408–415. [Google Scholar] [CrossRef]
- Asiani, M.; Chai, J.; Whitney, R.; Auffeves, A.; Ng, H. Limitations in quantum computing from resource constraints. arXiv 2020, arXiv:arXiv:2007.01966. [Google Scholar]
- Kan, K.; Une, M.; Recent Trends on Research and Development of Quantum Computers and Standardization of Post-Quantum Cryptography. IMES Discussion Paper Series at Bank of Japan 2021, No-2021-E-5. Available online: https://www.imes.boj.or.jp/research/abstracts/english/21-E-05.html (accessed on 22 November 2021).
- Miyaji, A. Theoretical and practical possibilities of Elliptic curve: From Elliptic curve cryptosystem to post quantum cryptosystems. IEICE Jpn. Fundam. Rev. 2021, 14, 329–336. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys 2003, 75, 715. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Eberly, J.H. Sudden death of entanglement. Science 2009, 323, 598–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, T.; Eberly, J.H. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 2004, 93, 140404. [Google Scholar] [CrossRef] [Green Version]
- Lo Franco, R.; Bellomo, B.; Maniscalco, S.; Compagno, G. Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. 2013, B 27, 1345053. [Google Scholar] [CrossRef] [Green Version]
- De Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 2017, 89, 015001. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, B.; Lo Franco, R.; Compagno, G. Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 2007, 99, 160502. [Google Scholar] [CrossRef] [Green Version]
- Aaronson, B.; Lo Franco, R.; Adesso, G. Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 2013, 88, 012120. [Google Scholar] [CrossRef] [Green Version]
- Rotter, I.; Bird, J.P. A review of progress in the physics of open quantum systems: Theory and experiment. Rep. Prog. Phys. 2015, 78, 114001. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirota, O. Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor. Entropy 2021, 23, 1577. https://doi.org/10.3390/e23121577
Hirota O. Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor. Entropy. 2021; 23(12):1577. https://doi.org/10.3390/e23121577
Chicago/Turabian StyleHirota, Osamu. 2021. "Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor" Entropy 23, no. 12: 1577. https://doi.org/10.3390/e23121577