Hyperbolically Symmetric Versions of Lemaitre–Tolman–Bondi Spacetimes
Abstract
:1. Introduction
2. Fluid Distribution, Kinematical Variables, and Basic Equations
2.1. Einstein Equations
2.2. Kinematical Variables and the Mass Function
2.3. The Exterior Spacetime and Junction Conditions
2.4. Weyl Tensor
3. Structure Scalars and Complexity Factor
4. Hyperbolically Symmetric Lemaitre–Tolman–Bondi Metric: The Nondissipative Dust Case
5. Dissipative Case
5.1. Models Obtained upon Conditions on the Complexity Factor
,
5.2. Models with
5.2.1. Nondissipative Case
5.2.2. Dissipative Case
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of hyperbolic symmetric fluids. Symmetry 2021, 13, 1568. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Herrera, L.; Witten, L. An alternative approach to the static spherically symmetric vacuum global solutions to the Einstein’s equations. Adv. High Energy Phys. 2018, 2018, 3839103. [Google Scholar]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Witten, L. Geodesics of the hyperbolic symmetric black hole. Phys. Rev. D 2020, 101, 064071. [Google Scholar] [CrossRef] [Green Version]
- Rosen, N. The nature of the Schwarzschild singularity. In Relativity; Carmeli, M., Fickler, S.I., Witten, L., Eds.; Plenum Press: New York, NY, USA, 1970; pp. 229–258. [Google Scholar]
- Rindler, W. Relativity. Special, General and Cosmological; Oxford University Press: New York, NY, USA, 2001; pp. 260–261. [Google Scholar]
- Caroll, S. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004; p. 246. [Google Scholar]
- Harrison, B.K. Exact Three–Variable Solutions of the Field Equations of General Relativity. Phys. Rev. 1959, 116, 1285. [Google Scholar] [CrossRef]
- Ellis, G. Dynamics of Pressure–Free Matter in General Relativity. J. Math. Phys. 1967, 8, 1171. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Honselaers, C.; Herlt, E. Exact Solutions to Einsteins Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. D 2006, 15, 1387–1399. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010, 82, 027301. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Mimoso, J.P. Possibility of hyperbolic tunneling. Phys. Rev. D 2010, 82, 044034. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Verno, S.Y. Duality between static spherically or hyperbolic symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef] [Green Version]
- Madler, T. On the affine-null metric formulation of General Relativity. Phys. Rev. D 2019, 99, 104048. [Google Scholar] [CrossRef] [Green Version]
- Maciel, A.; Delliou, M.L.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum Gravity 2020, 37, 125005. [Google Scholar] [CrossRef]
- Lemaître, G. L’Univers en expansion. Ann. Soc. Sci. Bruxelles 1933, A 53, 51. [Google Scholar]
- Tolman, R.C. Effect of Inhomogeneity on Cosmological Models. Proc. Natl. Acad. Sci. USA 1934, 20, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Bondi, H. Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 1947, 107, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Krasinski, A. Inhomogeneous Cosmological Models; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Plebanski, J.; Krasinski, A. An Introduction to General Relativity and Gravitation; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sussman, R. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources. Phys. Rev. D 2009, 79, 025009. [Google Scholar] [CrossRef] [Green Version]
- Sussman, R. Radial asymptotics of Lemaître-Tolman-Bondi dust models. Gen. Relativ. Gravit. 2010, 42, 2813–2864. [Google Scholar] [CrossRef] [Green Version]
- Matravers, D.R.; Humphreys, N.P. Matching Spherical Dust Solutions to Construct Cosmological Models. Gen. Rel. Grav. 2001, 33, 531–552. [Google Scholar] [CrossRef]
- Hellaby, C.; Krasinski, A. Alternative methods of describing structure formation in the Lemaitre-Tolman model. Phys. Rev. D 2006, 73, 023518. [Google Scholar] [CrossRef] [Green Version]
- Eardley, D.M.; Smarr, L. Time functions in numerical relativity: Marginally bound dust collapse. Phys. Rev. D 1979, 19, 2239. [Google Scholar] [CrossRef]
- Waugh, B.; Lake, K. Shell-focusing singularities in spherically symmetric self-similar spacetimes. Phys. Rev. D 1989, 40, 2137. [Google Scholar] [CrossRef]
- Joshi, P.S.; Dwivedi, I.H. Naked singularities in spherically symmetric inhomogeneous Tolman-Bondi dust cloud collapse. Phys. Rev. D 1993, 47, 5357. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.S.; Singh, T.P. Role of initial data in the gravitational collapse of inhomogeneous dust. Phys. Rev. D 1995, 51, 6778. [Google Scholar] [CrossRef] [Green Version]
- Mimoso, J.; Le Delliou, M.; Mena, F. Separating expansion from contraction in spherically symmetric models with a perfect fluid: Generalization of the Tolman-Oppenheimer-Volkoff condition and application to models with a cosmological constant. Phys. Rev. D 2010, 81, 123514. [Google Scholar] [CrossRef] [Green Version]
- Le Delliou, M.; Mena, F.; Mimoso, J. Separating expansion from contraction: Generalized TOV condition, LTB models with pressure and ΛCDM. AIP Conf. Proc. 2010, 1241, 1011–1015. [Google Scholar]
- Vaz, C.; Witten, L.; Singh, T.P. Toward a midisuperspace quantization of Lemaître-Tolman-Bondi collapse models. Phys. Rev. D 2001, 63, 104020. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Harada, T.; Tibrewala, R. Lemaitre-Tolman-Bondi collapse from the perspective of loop quantum gravity. Phys. Rev. D 2008, 78, 064057. [Google Scholar] [CrossRef] [Green Version]
- Coley, A.A.; Pelavas, N. Averaging spherically symmetric spacetimes in general relativity. Phys. Rev. D 2006, 74, 087301. [Google Scholar] [CrossRef] [Green Version]
- Coley, A.A.; Pelavas, N. Averaging in spherically symmetric cosmology. Phys. Rev. D 2007, 75, 043506. [Google Scholar] [CrossRef] [Green Version]
- Viaggiu, S. A Lemaitre-Tolman-Friedmann Universe without Dark Energy. arXiv 2009, arXiv:0907.0600v1. Available online: https://arxiv.org/abs/0907.0600v1 (accessed on 3 July 2009).
- Sussman, R. Back-reaction and effective acceleration in generic LTB dust models. Class. Quantum Gravity 2011, 28, 235002. [Google Scholar] [CrossRef]
- Krasinski, A.; Hellaby, C.; Bolejko, K.; Celerier, M.N. Imitating accelerated expansion of the Universe by matter inhomogeneities: Corrections of some misunderstandings. Gen. Rel. Gravit. 2010, 42, 2453–2475. [Google Scholar] [CrossRef] [Green Version]
- Celerier, M.N. Some clarifications about Lemaître–Tolman models of the Universe used to deal with the dark energy problem. Astr. Astrophys. 2012, 543, A71. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.; Sharp, D. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Cahill, M.; McVittie, G. Spherical Symmetry and Mass–Energy in General Relativity. I. General Theory. J. Math. Phys. 1970, 11, 1382. [Google Scholar] [CrossRef]
- Chan, R. Radiating gravitational collapse with shear viscosity. Mon. Not. R. Astron. Soc. 2000, 316, 588–604. [Google Scholar] [CrossRef]
- Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [Google Scholar] [CrossRef] [Green Version]
- Bel, L. Sur la radiation gravitationelle. C. R. Acad. Sci. 1958, 247, 1094–1096. [Google Scholar]
- Bel, L. Radiation states and the problem of energy in general relativity. Gen. Relativ. Gravit. 2000, 32, 2047–2078. [Google Scholar] [CrossRef]
- Bel, L. Introduction d’un tenseur du quatrieme order. C. R. Acad. Sci. Paris 1959, 248, 1297–1300. [Google Scholar]
- García-Parrado Gómez Lobo, A. Dynamical laws of superenergy in general relativity. Class. Quantum Gravity 2008, 25, 015006. [Google Scholar] [CrossRef]
- Herrera, L. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Quasi–homologous evolution of self–gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J. Lemaitre–Tolman–Bondi dust spacetimes: Symmetry properties and some extensions to the dissipative case. Phys. Rev. D 2010, 82, 024021. [Google Scholar] [CrossRef] [Green Version]
- Triginer, J.; Pavón, D. Heat transport in an inhomogeneous spherically symmetric universe. Class. Quantum Gravity 1995, 12, 689–698. [Google Scholar] [CrossRef]
- Herrera, L.; Le Denmat, G.; Santos, N.O. Cavity evolution in relativistic self–gravitating fluids. Class. Quantum Gravity 2010, 27, 135017. [Google Scholar] [CrossRef] [Green Version]
- Kopteva, E.; Bormotova, I.; Churilova, M.; Stuchlik, Z. Accelerated Expansion of the Universe in the Model with Nonuniform Pressure. Astrophys. J. 2019, 887, 98. [Google Scholar] [CrossRef]
- Cadoni, M.; Sanna, A.P. Emergence of a cosmological constant in anisotropic fluid cosmology. Int. J. Mod. Phys. A 2021, 36, 2150156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically Symmetric Versions of Lemaitre–Tolman–Bondi Spacetimes. Entropy 2021, 23, 1219. https://doi.org/10.3390/e23091219
Herrera L, Di Prisco A, Ospino J. Hyperbolically Symmetric Versions of Lemaitre–Tolman–Bondi Spacetimes. Entropy. 2021; 23(9):1219. https://doi.org/10.3390/e23091219
Chicago/Turabian StyleHerrera, Luis, Alicia Di Prisco, and Justo Ospino. 2021. "Hyperbolically Symmetric Versions of Lemaitre–Tolman–Bondi Spacetimes" Entropy 23, no. 9: 1219. https://doi.org/10.3390/e23091219