Computation of the Spatial Distribution of Charge-Carrier Density in Disordered Media
Abstract
:1. Introduction
2. Calculation of in a Degenerate System Controlled by Fermi Statistics
2.1. Method 1: Matrix Inversion
2.2. Method 2: Solving a System of Linear Equation
- each entry of matrix is equal to either 0 or 1;
- in each row of matrix , exactly one entry is equal to 1;
- in each column of matrix , the nodes with nonzero entries are placed spatially as far from each other as possible. For example, in the one-dimensional case, the unities in each column are separated by zeros, as illustrated in Figure 1.
2.3. A Numerical Example: One-Dimensional Disordered System with a Single Occupied Band
3. Calculation of in a Non-Degenerate System Controlled by Boltzmann Statistics
3.1. Low-Pass Filter (LF) Approach
3.1.1. Motivation
3.1.2. Definition of a Low-Pass Filter (LF)
3.1.3. Universal Filter Function to Determine
3.2. Random Wave Functions (RWF) Approach to Calculate
3.2.1. Background
3.2.2. The RWF Algorithm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A. Why Do Methods 1 and 2 Work
Appendix B. Choice of Parameters ε0, N and NC
References
- Baranovski, S.D. (Ed.) Charge Transport in Disordered Solids with Applications in Electronics; John Wiley and Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Weisbuch, C.; Nakamura, S.; Wu, Y.R.; Speck, J.S. Disorder effects in nitride semiconductors: Impact on fundamental and device properties. Nanophotonics 2021, 10, 3–21. [Google Scholar] [CrossRef]
- Schwarze, M.; Tress, W.; Beyer, B.; Gao, F.; Scholz, R.; Poelking, C.; Ortstein, K.; Günther, A.A.; Kasemann, D.; Andrienko, D.; et al. Band structure engineering in organic semiconductors. Science 2016, 352, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Ortstein, K.; Hutsch, S.; Hambsch, M.; Tvingstedt, K.; Wegner, B.; Benduhn, J.; Kublitski, J.; Schwarze, M.; Schellhammer, S.; ATalnack, F.; et al. Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nat. Mater. 2021, 20, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.W.; Jung, H.S.; Shin, H.; Park, N.G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef] [PubMed]
- Masenda, H.; Schneider, L.M.; Adel Aly, M.; Machchhar, S.J.; Usman, A.; Meerholz, K.; Gebhard, F.; Baranovskii, S.D.; Koch, M. Energy Scaling of Compositional Disorder in Ternary Transition-Metal Dichalcogenide Monolayers. Adv. Electron. Mater. 2021, 7, 2100196. [Google Scholar] [CrossRef]
- Frohna, K.; Anaya, M.; Macpherson, S.; Sung, J.; Doherty, T.A.S.; Chiang, Y.H.; Winchester, A.J.; Orr, K.W.P.; Parker, J.E.; Quinn, P.D.; et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 2022, 17, 1748–3395. [Google Scholar] [CrossRef] [PubMed]
- Baranovskii, S.D.; Nenashev, A.V.; Hertel, D.; Gebhard, F.; Meerholz, K. Energy Scales of Compositional Disorder in Alloy Semiconductors. ACS Omega 2022, 7, 45741. [Google Scholar] [CrossRef]
- Arnold, D.N.; David, G.; Jerison, D.; Mayboroda, S.; Filoche, M. Effective Confining Potential of Quantum States in Disordered Media. Phys. Rev. Lett. 2016, 116, 056602. [Google Scholar] [CrossRef] [PubMed]
- Filoche, M.; Piccardo, M.; Wu, Y.R.; Li, C.K.; Weisbuch, C.; Mayboroda, S. Localization Landscape Theory of disorder in semiconductors. I. Theory and modeling. Phys. Rev. B 2017, 95, 144204. [Google Scholar] [CrossRef]
- Piccardo, M.; Li, C.K.; Wu, Y.R.; Speck, J.S.; Bonef, B.; Farrell, R.M.; Filoche, M.; Martinelli, L.; Peretti, J.; Weisbuch, C. Localization Landscape Theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers. Phys. Rev. B 2017, 95, 144205. [Google Scholar] [CrossRef]
- Li, C.K.; Piccardo, M.; Lu, L.S.; Mayboroda, S.; Martinelli, L.; Peretti, J.; Speck, J.S.; Weisbuch, C.; Filoche, M.; Wu, Y.R. Localization Landscape Theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Phys. Rev. B 2017, 95, 144206. [Google Scholar] [CrossRef]
- Gebhard, F.; Nenashev, A.V.; Meerholz, K.; Baranovskii, S.D. Quantum states in disordered media. I. Low-pass filter approach. Phys. Rev. B 2023, 107, 064206. [Google Scholar] [CrossRef]
- Nenashev, A.V.; Baranovskii, S.D.; Meerholz, K.; Gebhard, F. Quantum states in disordered media. II. Spatial charge carrier distribution. Phys. Rev. B 2023, 107, 064207. [Google Scholar] [CrossRef]
- Halperin, B.I.; Lax, M. Impurity-Band Tails in the High-Density Limit. I. Minimum Counting Methods. Phys. Rev. 1966, 148, 722–740. [Google Scholar] [CrossRef]
- Thouless, D.J.; Kirkpatrick, S. Conductivity of the disordered linear chain. J. Phys. C Solid State Phys. 1981, 14, 235. [Google Scholar] [CrossRef]
- Dossetti-Romero, V.; Izrailev, F.; Krokhin, A. Transport properties of 1D tight-binding disordered models: The Hamiltonian map approach. Phys. E Low-Dimens. Syst. Nanostruct. 2004, 25, 13–22. [Google Scholar] [CrossRef]
- Žnidarič, M.; Horvat, M. Transport in a disordered tight-binding chain with dephasing. Eur. Phys. J. B 2013, 86, 67. [Google Scholar] [CrossRef]
- Agarwala, A.; Shenoy, V.B. Topological Insulators in Amorphous Systems. Phys. Rev. Lett. 2017, 118, 236402. [Google Scholar] [CrossRef]
- Ashhab, S.; Voznyy, O.; Hoogland, S.; Sargent, E.H.; Madjet, M.E. Effect of disorder on transport properties in a tight-binding model for lead halide perovskites. Sci. Rep. 2017, 7, 8902. [Google Scholar] [CrossRef] [PubMed]
- Lambropoulos, K.; Simserides, C. Tight-Binding Modeling of Nucleic Acid Sequences: Interplay between Various Types of Order or Disorder and Charge Transport. Symmetry 2019, 11, 968. [Google Scholar] [CrossRef]
- Goedecker, S. Linear scaling electronic structure methods. Rev. Mod. Phys. 1999, 71, 1085–1123. [Google Scholar] [CrossRef]
- Ceriotti, M.; Kühne, T.D.; Parrinello, M. An efficient and accurate decomposition of the Fermi operator. J. Chem. Phys. 2008, 129, 024707. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lu, J.; Car, R.; E, W. Multipole representation of the Fermi operator with application to the electronic structure analysis of metallic systems. Phys. Rev. B 2009, 79, 115133. [Google Scholar] [CrossRef]
- Bowler, D.R.; Miyazaki, T. O(N) methods in electronic structure calculations. Rep. Progress Phys. 2012, 75, 036503. [Google Scholar] [CrossRef]
- Lin, L.; Lu, J.; Ying, L.; Car, R.; E, W. Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 2009, 7, 755–777. [Google Scholar] [CrossRef]
- Tang, J.M.; Saad, Y. A probing method for computing the diagonal of a matrix inverse. Numer. Linear Algebra Appl. 2012, 19, 485–501. [Google Scholar] [CrossRef]
- Li, S.; Wu, W.; Darve, E. A fast algorithm for sparse matrix computations related to inversion. J. Comput. Phys. 2013, 242, 915–945. [Google Scholar] [CrossRef]
- Baranovskii, S.D.; Efros, A.L. Band edge smearing in solid solutions. Sov. Phys. Semicond. 1978, 12, 1328–1330. [Google Scholar]
- Lu, J.; Steinerberger, S. Detecting localized eigenstates of linear operators. Res. Math. Sci. 2018, 5, 33. [Google Scholar] [CrossRef]
- Krajewski, F.R.; Parrinello, M. Stochastic linear scaling for metals and nonmetals. Phys. Rev. B 2005, 71, 233105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nenashev, A.V.; Gebhard, F.; Meerholz, K.; Baranovskii, S.D. Computation of the Spatial Distribution of Charge-Carrier Density in Disordered Media. Entropy 2024, 26, 356. https://doi.org/10.3390/e26050356
Nenashev AV, Gebhard F, Meerholz K, Baranovskii SD. Computation of the Spatial Distribution of Charge-Carrier Density in Disordered Media. Entropy. 2024; 26(5):356. https://doi.org/10.3390/e26050356
Chicago/Turabian StyleNenashev, Alexey V., Florian Gebhard, Klaus Meerholz, and Sergei D. Baranovskii. 2024. "Computation of the Spatial Distribution of Charge-Carrier Density in Disordered Media" Entropy 26, no. 5: 356. https://doi.org/10.3390/e26050356