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Abstract: Block compressed sensing (BCS) is a promising method for resource-constrained im-
age/video coding applications. However, the quantization of BCS measurements has posed a
challenge, leading to significant quantization errors and encoding redundancy. In this paper, we
propose a quantization method for BCS measurements using convolutional neural networks (CNN).
The quantization process maps measurements to quantized data that follow a uniform distribution
based on the measurements’ distribution, which aims to maximize the amount of information carried
by the quantized data. The dequantization process restores the quantized data to data that conform
to the measurements’ distribution. The restored data are then modified by the correlation information
of the measurements drawn from the quantized data, with the goal of minimizing the quantization
errors. The proposed method uses CNNs to construct quantization and dequantization processes,
and the networks are trained jointly. The distribution parameters of each block are used as side
information, which is quantized with 1 bit by the same method. Extensive experiments on four
public datasets showed that, compared with uniform quantization and entropy coding, the proposed
method can improve the PSNR by an average of 0.48 dB without using entropy coding when the
compression bit rate is 0.1 bpp.

Keywords: compressed sensing; quantization; convolutional neural network; image compression

1. Introduction

Compressed sensing (CS) [1–4] is very suitable for resource-constrained applications
due to its low complexity [5–8]. In CS, it is necessary to quantize real-valued CS measure-
ments. The CS framework with the quantization process is called quantized compressed
sensing (QCS) [8].

The QCS primarily focuses on optimizing the encoder or decoder to enhance the qual-
ity of signal reconstruction for the commonly used quantization methods. The exploration
of advanced compression techniques in the realm of block-based compressed sensing (BCS)
has been a focal point in contemporary research. One such advancement is the application
of Differential Pulse Code Modulation (DPCM) for quantized block-based compressed
sensing of images. This strategy leverages DPCM’s efficiency in exploiting spatial cor-
relations within image blocks to minimize quantization errors, demonstrating improved
bit-rate efficiency without sacrificing reconstruction quality [9]. However, the quantized
measurements must undergo entropy coding to attain ideal performance. Ref. [10] pro-
poses a progressive quantization method, which essentially improves the encoding and
decoding strategies while still utilizing uniform scalar quantization. The reconstruction
algorithm [11–14] has been a primary focal point in CS for optimizing the decoder.

In order to improve the quantization performance, vector quantization has been used
to quantify the CS measurements [15,16]. Subsequently, to further amplify the efficiency
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of the vector quantization technique, ref. [17] has leveraged deep neural networks. Due
to the high computational complexity of vector quantization, scalar quantization is more
suitable for CS measurements. In data compression theory, the scalar quantizer that
performs entropy coding on quantized output data is usually called an entropy-constrained
quantizer or entropy-coded quantizer [18]. When quantization error is used as a distortion
measurement, the uniform scalar quantizer is the optimal entropy coding quantizer in
rate-distortion performance [19,20]. In other words, for the BCS measurements, the rate-
distortion performance of the uniform or non-uniform scalar quantization methods will be
inferior to the joint performance of uniform quantization and entropy coding. Therefore, in
current research on CS for images, the CS measurements are usually quantified using the
uniform scalar quantization method [21], and the quantized measurements are encoded
by entropy coding to improve the compression performance [22,23]. However, since the
computational cost involved in entropy coding is usually high [23,24], using entropy coding
will reduce the low-complexity advantage of the CS encoder.

There are two main ways to improve rate-distortion performance. The first way is to
reduce the bitrate while keeping the distortion constant, while the second way is to reduce
the distortion while keeping the bitrate constant. Using entropy coding on quantized data
is the first way. Without considering entropy coding, the second way is the only method to
improve rate-distortion performance. Moreover, there are strategies aimed at enhancing
the compression efficiency of CS. For example, ref. [25] introduces a novel application
of Zadoff–Chu sequences, renowned for their excellent autocorrelation properties. By
utilizing this sequence in the measurement matrix, sparsity in the compressive domain is
enhanced, leading to improved recovery accuracy for quantized CS data. Ref. [26] explores
the use of Discrete Fourier Transform (DFT) for measurement, enabling parallel processing
capabilities and enhancing the efficiency of block compressive sensing. This strategy
capitalizes on the computational advantages of FFT to accelerate the CS process while
maintaining reconstruction fidelity. While many approaches can improve compression
efficiency at the encoding stage [25–28], they are not necessarily applicable or effective
for QCS.

While the field of block compressed sensing (BCS) has witnessed significant advance-
ments in recent years, traditional quantization techniques employed in image/video coding
applications continue to face pivotal challenges. Specifically, uniform quantization, a com-
mon choice due to its simplicity and compatibility with entropy coding, often incurs
substantial quantization errors, compromising the fidelity of the reconstructed images.
Moreover, it tends to overlook the inherent structure and correlations within the data,
leading to encoding redundancy and inefficiency. On the other hand, Lloyd–Max quan-
tization, although theoretically optimal for minimizing mean squared error, necessitates
computationally intensive offline training and struggles to adapt dynamically to varying
image characteristics. Furthermore, the reliance on entropy coding as a supplementary step
to mitigate the loss from quantization adds to the computational burden and complexity of
the encoding process.

In light of these challenges, our work introduces a novel convolutional neural network
(CNN)-based quantization method specifically designed to overcome the drawbacks of
traditional approaches. By leveraging the power of deep learning, our method transcends
the uniformity imposed by classic quantizers, achieving a more nuanced mapping of mea-
surements that closely follows their underlying distribution. This adaptive quantization,
coupled with a sophisticated dequantization mechanism that harnesses correlation from
quantized data, significantly reduces quantization errors without resorting to additional
entropy coding.

In this paper, we propose a quantization method of BCS measurements that can reduce
distortion while maintaining the bitrate. At the end of encoding, the proposed method
models the measurements’ distribution of each image block. Subsequently, it quantizes the
measurements of data that conform to a uniform distribution based on the distribution
model. The proposed method uses the distribution parameters of each image block as side
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information of the encoder and adopts the same strategy to quantize the side information
with 1 bit. At the end of decoding, the proposed method first restores the quantized data
to data that conform to the distribution of the original measurements, then extracts the
correlation information of the measurements from the quantized data of adjacent blocks
to correct the measurements. Before the dequantization of the measurements, the same
strategy is used to dequantize the side information. All quantization and dequantization
processes are implemented as convolutional neural networks (CNN), and all networks are
jointly learned offline. The CS coding structure based on the proposed method is shown in
Figure 1.
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The main contributions of this article are as follows:

• A quantization method of BCS measurement based on CNN is proposed. The proposed
method constructs and jointly trains the CNN of the quantization and dequantization
processes, which aims to maximize the coding output entropy and minimize the
quantization error.

• A quantization process based on measurements’ distribution is proposed. Based on
the properties of the cumulative distribution function (CDF), a neural network model
was constructed to map measurements to the quantized data following a uniform
distribution, which maximizes the amount of information carried in the quantized
data. An activation function with a constrained output range was designed to reduce
the computational complexity of the network’s activation function.

• A dequantization process based on the neighborhood information of measurements
is proposed. The inverse process of quantization is used as a module to restore the
quantized data to data that conform to the distribution of the original measurements.
Furthermore, an information correction module is introduced to extract correlation
information from multiple quantized values for correcting the measurements. The two
modules are used to improve the quality of the dequantized measurements through
residual connection.

• The distribution parameters of the block measurements are used as side information,
which is quantized with 1 bit by the same quantization process.

While conventional approaches such as uniform quantization and Lloyd–Max quanti-
zation with entropy coding have been widely employed, they often introduce significant
quantization errors and encoding inefficiencies. Our work diverges from these methodolo-
gies by introducing a CNN-based quantization strategy that not only maps measurements
to a uniformly distributed quantized space to maximize the information content but also
incorporates a novel dequantization process that leverages correlations from the quantized
data to minimize reconstruction errors. This innovative method bypasses the need for
entropy coding, offering a more efficient and adaptive solution for BCS applications.
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In comparison to uniform quantization, which assigns equal intervals to the entire
dynamic range, and Lloyd–Max quantization, known for minimizing the mean squared
error but requiring complex optimization, our CNN-based approach dynamically adapts
to the underlying data distribution. Unlike entropy coding methods, which reduce re-
dundancy at the expense of computational complexity, our method directly optimizes the
quantization process through learning, achieving superior performance without additional
encoding steps.

The core of our method lies in the design of the CNN architecture, which jointly learns
the quantization and dequantization processes. This contrasts with traditional quantization
techniques that rely on predetermined, static decision boundaries. Our network specifically
tailors the quantization levels based on the input data’s statistical properties, ensuring a
closer match to the original signal characteristics. Additionally, the utilization of correlation
information from the quantized data for post-processing further distinguishes our method,
leading to reduced quantization artifacts.

The rest of this paper is organized as follows. Section 2 introduces the proposed
method, which mainly includes the BCS quantization process, parameter estimation, pa-
rameter quantization and dequantization, and the BCS dequantization process. Section 3
presents the experimental results. The conclusion is given in Section 4.

2. Proposed Method

In this paper, we aim to improve the amount of information of quantized data and the
information extraction ability of the dequantization process. The proposed method mainly
includes the following aspects: (1) BCS quantization process, (2) parameter estimation,
(3) parameter quantization and dequantization, and (4) BCS dequantization process.

2.1. BCS Quantization Process

Ref. [29] demonstrates that a random variable’s CDF can transform its data distribution
into a uniform distribution. The random variables are usually modeled by probability
density functions (PDF) to describe their distributions. It is difficult to obtain a closed-form
expression for the CDF due to the need for integral calculations involving the PDF. Due
to the strong function approximation ability of feedforward neural networks, we propose
utilizing a feedforward neural network to model the CDF of the CS measurements.

Assuming that P(y) and F(y) are the PDF and CDF of the measurement variable y,
respectively, P(y) and F(y) need to satisfy the following conditions:

F(y) ≥ 0
F(y) ≤ 1
P(y) = ∂F(y)

∂x ≥ 0
(1)

Compared with a three-layer feedforward neural network, a four-layer feedforward
neural network can accurately establish the relationship between input and target variables
with fewer hidden neurons [30]. When employing a four-layer feedforward neural network
to build the CDF of the measurements, it can be represented as:

u1 = y
u2 = g1(W1u1 + d1)
u3 = g2(W2u2 + d2)
F(y) = g3(W3u3 + d3)

(2)

where g1, g2, g3 represent the activation functions, and W1 ∈ RL1×1, W2 ∈ RL2×L1 ,
W3 ∈ R1×L2 , d1 ∈ RL1×1, d2 ∈ RL2×1, d3 ∈ R1×1 denote the model parameters.

Based on Equation (1), it is necessary to ensure that the output values of F(y) fall
within [0, 1]. In model (2), the activation function g3 determines the output range of F(y).
Among the commonly used activation functions, the sigmoid function can ensure that
the output values fall within [0, 1]. However, the sigmoid is a highly complex nonlinear
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activation function. We propose a rectified linear activation function with a limited output
range, which can be expressed as:

G(x) =


1 x ≥ α
x

2α + 1
2 −α ≤ x ≤ α

0 x ≤ −α

(3)

where α is a finite constant greater than 0. The curve graph and gradient curve of G(x) are
shown in Figure 2.
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To improve the adaptiveness of the activation function, we take α as a learnable
parameter of the CDF model. Because activation functions usually do not come with
trainable parameters, we transform Equation (3) as:

g3(z) =


1 z ≥ 1
z
2 + 1

2 −1 ≤ z ≤ 1
0 z ≤ −1

(4)

By comparing Equations (3) and (4), we obtain G(x) = g3
( x

α

)
. Let β = 1

a , and then the
neural network model of CDF can be expressed as:

F(y) = g3((β(W3g2((W2g1(W1y + d1) + d2) + d3)))) (5)

where β ∈ R, and g1, g2 are the LeakyReLU activation function [31].
In BCS, all measurements are usually stored in the form of a matrix, which can be

expressed as:
Y =

[
y1, . . . , yNB

]
= Φ

[
x1, . . . , xNB

]
(6)

where Y ∈ RM×NB represents the measurements’ matrix, Φ represents the measurement
matrix, M represents the number of measurements for each image block, NB represents
the number of image blocks, xi represents the pixel value vector of the i-th block, and yi
represents the measurements’ vector of the i-th block.

When the input becomes a matrix, we can convert the feedforward neural network to
a CNN. The number of convolutional layers in the CNN equals the number of parameter
layers in the feedforward neural network. The number of channels in the convolutional
network is equal to the number of neurons in the hidden layer. Since the feedforward
neural network model has a single input and output, the kernel size of the convolutional
network is 1 × 1. Considering both quality and complexity, we set the output feature of the
intermediate convolutional layer to six channels. The network structure diagram of CNN
based on model (5) is shown in Figure 3.
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In Figure 3, “Conv” denotes convolutions, the numbers above “Conv” indicate the
kernel size, “LeakyReLU” and “g3” represent the activation functions used in the current
convolutional layer, and the rectangular boxes represent the output feature maps of the
convolutional layer. The numbers below the rectangular boxes indicate the number of
channels. To balance the computational cost and fitting performance of the model (5), we
adopt L1 = L2 = 6 in this paper.

Due to variations between image blocks, the distribution parameters and CDF of
different block measurements also differ. However, the model (5) does not account for the
influence of distribution parameters, which limits its adaptability.

When using a Gaussian measurement matrix, the measurements of the same image
block approximately follow a Gaussian distribution. Assuming that the measurement
variable yj of the j-th image block follows a Gaussian distribution N (yj; µj, σj), it can be
transformed into a standard normal distribution N (z; 0, 1) through Equation (7), which
can be expressed as:

z =
yj − µj

σj
(7)

where µj and σj represent the location parameter (mean) and scale parameter (standard
deviation), respectively. For the measurements’ matrix Y, Equation (7) can be expressed as:

Z = (Y − U)./Λ (8)

where U =
[{

µj
}]

represents the matrix of position parameters, Λ =
[{

σj
}]

represents the
matrix of scale parameters, and ./ represents the element-wise division of matrices.

After removing the impact of distribution parameters through Equation (8), the same
CNN can transform the measurements of all blocks into a uniform distribution.

In order to reduce the computational burden of parameter extraction, the matrix
Y0 ∈ RM0×NB of a small number of measurements is used for extracting the distribution
parameters. The proposed BCS quantization process is shown in Figure 4. In Figure 4,
“Repmat” represents repeat copies of an array, which is used to copy the parameters into
the same size as the measurements’ matrix. Because the measurements of an image block
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have the same position and scale parameters, the size of the position and scale parameters
are 1 × NB.
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2.2. Parameter Estimation

In general, the expressions of the mean (position parameter) µ and variance (scale
parameter) σ2 are as follows:

µj =

∑
i

yj,i

N

σ2
j =

1
N ∑

i

(
yj,i − µ

)2
(9)

Since using partial measurements to estimate distribution parameters may introduce
some errors, we use a neural network to estimate the distribution parameters. According
to the definition of convolution, Equation (9) can be expressed as:

µj =

∑
i

yj,i

N
= [yj,1, yj,2, . . .] ∗ Wu

σ2
j =

1
N ∑

i

(
yj,i − µ

)2

= [
(
[yj,1, yj,2, . . .]− [yj,1, yj,2, . . .] ∗ Wµ

)
⊙
(
[yj,1, yj,2, . . .]− [yj,1, yj,2, . . .] ∗ Wµ

)
] ∗ Wµ

(10)

where ∗ denotes the convolution operation, ./ represents the element-wise multiplication
of matrices, and Wµ =

[
1
N , . . . , 1

N

]
denotes the convolution kernel used for computing

the mean.
Equation (10) shows that the mean and variance can be estimated using convolutions.

Based on Equation (10), we construct CNNs to estimate the position and scale parameters,
as shown in Figures 5 and 6, respectively. Since the mean and standard deviation functions
are relatively simple in form, three channels are used for the middle convolution layer.
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Ŷ

Λ

. /

Y


De-normalization. 2b
β×

3g

 
Figure 7. Structure diagram of the proposed dequantization process. 

The quantization process is built based on the CDF and its inverse process can be 
constructed with the inverse function of the CDF. We adopt the same network architecture 
for the inverse process module. Since the similarity between adjacent image blocks is 

Figure 5. Network structure diagram for estimating the location parameters.



Entropy 2024, 26, 468 8 of 23

Entropy 2024, 26, x FOR PEER REVIEW 8 of 24 
 

 

Equation (10) shows that the mean and variance can be estimated using convolutions. 
Based on Equation (10), we construct CNNs to estimate the position and scale parameters, 
as shown in Figure 5 and Figure 6, respectively. Since the mean and standard deviation 
functions are relatively simple in form, three channels are used for the middle convolution 
layer. 

U

M0×1
Conv

LeakyReLU

1×1
Conv

3 1

Repmat
1×1

Conv

3
LeakyReLU

0 1
0

MY ×∈

 
Figure 5. Network structure diagram for estimating the location parameters. 



-

-

U

M0×1
Conv

LeakyReLU

1×1
Conv

3 1

Repmat
1×1

Conv

3
LeakyReLU

Λ
0 1

0
MY ×∈

 
Figure 6. Network structure diagram for estimating the scale parameters. 

2.3. BCS Dequantization Process 
The information of the quantized data is not only present in a single quantized value 

but also exists among multiple quantized values. Typically, the dequantization process at 
the decoding end is the inverse of the quantization process at the encoding end. However, 
the proposed quantization process and its inverse process only operate on individual 
quantized values. If dequantization only utilizes the inverse process of the proposed quan-
tization process, it cannot use the correlated information among the multiple quantized 
values. Therefore, we propose adding a measurements’ information correction module to 
extract the measurement correction from the multiple neighboring quantized values. The 
dequantization process is shown in Figure 7.  

+

Scale  parameter 
dequantization

Position  parameter 
dequantization

Inverse process of the 
proposed quantization

01011
01010
10101

01011
01010
10101

Information 
correction module

+

Û

Ŷ

Λ

. /

Y


De-normalization. 2b
β×

3g

 
Figure 7. Structure diagram of the proposed dequantization process. 

The quantization process is built based on the CDF and its inverse process can be 
constructed with the inverse function of the CDF. We adopt the same network architecture 
for the inverse process module. Since the similarity between adjacent image blocks is 

Figure 6. Network structure diagram for estimating the scale parameters.

2.3. BCS Dequantization Process

The information of the quantized data is not only present in a single quantized value
but also exists among multiple quantized values. Typically, the dequantization process at
the decoding end is the inverse of the quantization process at the encoding end. However,
the proposed quantization process and its inverse process only operate on individual
quantized values. If dequantization only utilizes the inverse process of the proposed
quantization process, it cannot use the correlated information among the multiple quantized
values. Therefore, we propose adding a measurements’ information correction module to
extract the measurement correction from the multiple neighboring quantized values. The
dequantization process is shown in Figure 7.
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The quantization process is built based on the CDF and its inverse process can be
constructed with the inverse function of the CDF. We adopt the same network architecture
for the inverse process module. Since the similarity between adjacent image blocks is
significant, we use convolution kernels of 1 × 3 to extract the compensation information
from the neighborhood measurements. In order to improve the information extraction, five
convolution layers are used in the measurement compensation information module and
the inverse process of the proposed quantization. The network structure of the inverse
process of the proposed quantization is shown in Figure 8. The network structure of the
measurement compensation information module is illustrated in Figure 9.
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2.5. Local Normalization and Loss Function 
2.5.1. Local Normalization of Measurements’ Matrix 
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pressed as: 
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2.4. Parameter Quantization and Dequantization

Due to the high similarity between adjacent image blocks, the distribution param-
eters exhibit some similarity. Therefore, we use the same quantization and dequantiza-
tion processes to quantize and dequantize the distribution parameters. To reduce the
extra bits of the side information, we use 1 bit to quantize the side information. The
network structures of quantization and dequantization for the parameters are shown in
Figures 10 and 11, respectively.
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2.5. Local Normalization and Loss Function
2.5.1. Local Normalization of Measurements’ Matrix

The element in the i-th row and j-th column of the measurements’ matrix can be
expressed as:

Yi,j = Φixj =
N

∑
k=1

Φi,kxk,j (11)

where Φi represents the i-th row of the measurement matrix Φ. The grayscale values of the
images are typically represented by 256 levels, the pixel values satisfy the following:

0 ≤ xk,j ≤ 255, xk,j ∈ Z (12)

Combining Equations (11) and (12), we have:

255
N

∑
k=1

min
{

Φi,k, 0
}
≤

N

∑
k=1

Φi,kxk,j ≤ 255
N

∑
k=1

max
{

Φi,k, 0
}

(13)
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Based on Equation (13), we take 255
N
∑

k=1
min

{
Φi,k, 0

}
and 255

N
∑

k=1
max

{
Φi,k, 0

}
as the

minimum and maximum values of Yi,j, which can be expressed as:

Ymax
i,j = 255

N
∑

k=1
max

{
Φi,k, 0

}
Ymin

i,j = 255
N
∑

k=1
min

{
Φi,k, 0

} (14)

Based on Equation (14), each measurement can be normalized, which can be ex-
pressed as:

Ỹi,j =
Yi,j − Ymin

i,j

Ymax
i,j − Ymin

i,j
(15)

According to Equation (14), it is known that the same row of Y shares the same maxi-
mum and minimum values. Therefore, Equation (15) is referred to as the local normalization
method for the measurements’ matrix.

Since Equation (14) only requires computation based on the measurement matrix, the
row normalization method does not require transmitting the maximum and minimum
value. Equation (15) transforms all measurements into real numbers between 0 and 1, and
the input and output of the CNNs in the quantization and the dequantization processes
are also real numbers between 0 and 1. Therefore, the quantization of the measurements’
matrix can be expressed as:

Q[Y] = Round
(

Fq−net

(
Ỹ
)(

2b − 1
))

(16)

where b represents the bit-depth of quantization, and Fq−net represents the CNN in the
quantization process.

At the decoding end, the output value of the dequantization network needs to be
denormalized, which can be represented as:

Ŷ = Fdq−net

(
Q−1

[
Q
[(

Fq−net

(
Ỹ
))]])(

Ymax
i,j − Ymin

i,j

)
+ Ymin

i,j (17)

where Fdq−net represents the CNN in the dequantization process.

2.5.2. Loss Function

The main objective of the proposed method is to optimize the amount of information
retained in the quantized data while minimizing the quantization error. The average
information of data is usually measured by information entropy. However, since the
information entropy depends on probability statistics, it cannot propagate the gradient. In
this paper, we propose a continuous function to estimate the information entropy when
training the network.

The entropy of the quantized measurements’ matrix
⌢
Y can be represented as follows:

H(
⌢
Y) = −∑

k
P(sk) log2(P(sk)) (18)

where P(sk) represents the probability of the symbol sk in
⌢
Y , which requires counting the

number of occurrences of symbol sk.
We can count the numbers greater than sk in the measurements’ matrix by using a step

function, which is defined as follows:

h(x) =
{

1 x ≥ 0
0 x < 0

(19)
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The numbers greater than sk in the measurements’ matrix can be represented as:

∑
i

∑
j

h
(
⌢
Y i,j − sk

)
(20)

The step function h(x) is not differentiable at 0. To ensure differentiability, we use
the sigmoid activation function to approximate h(x). The approximate function can be
represented as follows:

h(x) ≈ sigmoid(ηx) (21)

When η → +∞ , we can get:

sigmoid
(

η

(
⌢
Y i,j − sk + ε

))
=

1
⌢
Y i,j ≥ sk

0
⌢
Y i,j < sk

(22)

where 0 < ε < 1 is used to ensure that the function maps to 1 when
⌢
Y i,j = sk, and we set ε

= 0.5. The parameter η can be used to adjust the variation of the sigmoid function. Based
on practical experience, setting η = 64 can make the output values of the sigmoid function
approach 0 or 1 as much as possible.

Based on Equation (22), the probability greater than sk in the measurements’ matrix
can be represented as:

P(
⌢
Y ≥ sk) ≈

M
∑
i

NB
∑
j

sigmoid
(

η

(
⌢
Y i,j − sk + 0.5

))
MNB

(23)

Assuming that sk+1 > sk, we have:

P(sk) ≈ P(
⌢
Y ≥ sk)− P(

⌢
Y ≥ sk+1)

≈

M
∑
i

NB
∑
j

sigmoid
(

η

(
⌢
Y i,j − sk + 0.5

))
MNB

−

M
∑
i

NB
∑
j

sigmoid
(

η

(
⌢
Y i,j − sk+1 + 0.5

))
MNB

(24)

Based on the above, the computation of information entropy can be estimated as:

H(
⌢
Y) = −∑

k

(
P(

⌢
Y ≥ sk)− P(

⌢
Y ≥ sk+1)

)
log2

(
P(

⌢
Y ≥ sk)− P(

⌢
Y ≥ sk+1)

)
(25)

To simultaneously minimize the quantization error and maximize the information
entropy, the objective function is composed of two parts. The first part is the mean square
error (MSE) between the CS measurements before and after quantization, and the second
part is the information entropy of the quantized measurements. The loss function is
as follows:

Loss = MSE(Y, Ŷ)− λH(
⌢
Y) (26)

where λ > 0 is a parameter that controls the importance of the information entropy of
quantized data. Ŷ represents the dequantized measurements.

3. Results

In this section, we present various experimental results that validate the performance
of our method. The proposed method is primarily implemented through CNNs, which
requires the collection of a training dataset for network training. The training dataset
comprises 200 training images taken from the BSDS500 dataset [32]. Each image has been
cropped into grayscale images of size 256 × 256 with a stride of 60 pixels. The block size
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utilized in BCS is set at 16 × 16. The samples and labels of the training data set are both a
matrix of BCS measurements for each image. The matrix used to collect the measurements
has a sampling rate of 0.8, so the trained network can be applied to any measurements’
matrix with a sampling rate lower than 0.8. Each block typically requires at least ten
measurements to reconstruct an image from the BCS measurements efficiently, so we take
M0 = 10 as the number of the partial measurements.

All CNNs were implemented using the Pytorch framework. We trained the CNNs of
the quantization and dequantization processes together. The batch size was set to 32, with
the optimization process performed using the Adam algorithm, initialized with a learning
rate of 0.001. After the initial training of 10,000 epochs, the learning rate was reduced by a
factor of 10, and all networks were trained for an additional 20,000 epochs. The training
process was conducted on a server powered by an Intel Xeon CPU, a Nvidia RTX 2080Ti
GPU with 11 GB of memory, and 128 GB of DDR4 RAM. The test images consisted of an
APC, aerial, airplane, airport, building, moon surface, tank, and truck, as illustrated in
Figure 12. Publicly available datasets such as Set5 [33] (5 images), Set11 [34] (11 images),
Set14 [35] (14 images), and BSD68 [36] (68 images) were also employed. All experiments
were conducted on an Intel Core i5-8300H CPU @ 2.30GHz, and the proposed method’s
performance was measured using the PSNR of the reconstructed images.
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3.1. Analysis of Measurement Reconstruction Results

In this section, we analyzed the number of reconstruction levels and the quantization
errors of the quantization method.

The current studies on improving CS quantization methods typically focus on sparse
signals, but these methods are not suitable for images with a large number of elements. To
ensure a low complexity of the encoder, the BCS encoder usually uses uniform quantization
and entropy coding to process the BCS measurements. In addition, uniform quantizer is
considered as the optimal quantizer for entropy-coded quantization in data compression
theory [23,24], which is why BCS encoders tend to use uniform quantization and entropy
coding. Currently, the most advanced quantization techniques for BCS of images are
believed to be the prediction quantization method [9] and the progressive quantization
method [10]. However, they essentially improve the coding strategy, while the quantization
method employed is still uniform quantization, which can explore improvements using the
commonly used quantization methods and the proposed method. To simplify the experi-
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mental process, this paper only compares the quantization techniques, using entropy-coded
uniform quantization, µ-law quantization [37,38], and Lloyd–max quantization [39,40] as
benchmarks. The entropy-coded uniform quantization method refers to the use of entropy
coding after performing uniform quantization on the measurements. The codebook for
Lloyd–Max quantization was obtained through offline training.

In scalar quantization methods, the number of reconstruction levels is typically equal
to the number of quantization levels, as shown in Table 1. Table 2 shows the number of
reconstructed levels of the proposed method for eight test images at a measurement rate
of 0.2. Comparison between Tables 1 and 2 shows that the proposed method have more
different elements in the dequantized measurements. This is mainly because the proposed
method utilizes the information of multiple quantized values for the dequantization, which
gives the proposed method the advantage of many-to-many mapping. Moreover, each
row of the measurements’ matrix adopts different maximum and minimum values for
local denormalization. The local normalization approach also increases the number of
reconstruction levels in accordance with the increase in measurement rate.

Table 1. Number of reconstruction levels for scalar quantization methods.

Quantization
Bit-Depth 2 3 4 5 6 7 8

Number of
reconstruction levels 4 8 16 32 64 128 256

Table 2. Number of reconstruction levels for the proposed quantization.

Quantization
Bit-Depth 2 3 4 5 6 7 8

APC 147 236 397 690 1147 1860 2921
Aerial 199 321 559 981 1712 2863 4368

Airplane 181 273 453 724 1122 1644 2336
Airport 186 283 488 845 1483 2545 4009

Building 161 243 414 739 1302 2277 3699
Moon surface 171 270 455 782 1328 2205 3515

Tank 161 241 413 744 1345 2422 3963
Truck 144 227 396 699 1220 2140 3527

Average 168.7 261.7 446.8 775.5 1332.3 2244.5 3542.2

The greater the number of reconstruction levels of dequantized measurements, the
greater the quantization error can be reduced. Tables 3–5 display the MSE of the vari-
ous quantization methods for the measurements quantized with 3-bit, 6-bit, and 8-bit,
respectively.

Table 3. MSE of the measurements quantized with 3-bit.

Image Uniform
Quantization

µ-Law
Quantization Lloyd–Max Proposed

Method

APC 567.30 675.16 493.99 115.76
Aerial 1468.86 1250.97 1223.14 192.34

Airplane 1147.16 1280.45 1279.69 161.52
Airport 704.45 435.69 460.30 155.19

Building 864.87 768.95 629.43 113.59
Moon surface 1327.97 831.08 573.44 115.48

Tank 780.74 730.11 634.44 121.87
Truck 540.80 489.04 486.02 121.88

Average 925.27 807.68 722.56 137.20
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Table 4. MSE of the measurements quantized with 6-bit.

Image Uniform
Quantization

µ-Law
Quantization Lloyd–Max Proposed

Method

APC 6.86 7.15 11.43 2.53
Aerial 17.77 16.11 21.37 3.87

Airplane 14.04 13.86 19.62 3.20
Airport 8.27 5.41 9.03 3.33

Building 11.02 9.78 12.89 2.51
Moon surface 15.11 10.68 11.66 2.58

Tank 9.61 8.58 12.32 2.63
Truck 6.60 5.88 10.21 2.63

Average 11.16 9.68 13.57 2.91

Table 5. MSE of the measurements quantized with 8-bit.

Image Uniform
Quantization

µ-Law
Quantization Lloyd–Max Proposed

Method

APC 0.4194 0.4337 1.8716 0.1742
Aerial 1.0692 1.0155 2.6658 0.2978

Airplane 0.8546 0.8304 2.5470 0.2356
Airport 0.5031 0.3274 1.5868 0.2543

Building 0.6684 0.5927 2.0241 0.1770
Moon surface 0.9308 0.6440 1.8995 0.1778

Tank 0.5884 0.5104 1.9121 0.1980
Truck 0.4032 0.3630 1.7278 0.1902

Average 0.6796 0.5896 2.0293 0.2131

Table 3 shows that when using 3-bit quantization, the proposed method reduces the
MSE by 788.07, 670.48, and 585.35 compared with uniform quantization, µ-law quantization,
and Lloyd–Max quantization, respectively. Similarly, in Table 4, the proposed method
accomplishes a reduced MSE by 8.25, 6.77, and 10.66 when 6-bit quantization is employed.
Table 5 reveals that when 8-bit quantization is applied, the proposed method reduces the
MSE by 0.4665, 0.3765, and 1.8162 compared with uniform quantization, µ-law quantization,
and Lloyd–Max quantization, respectively. Tables 3–5 demonstrate that the proposed
method has a significantly lesser MSE than other quantization methods.

3.2. Analysis of the Impact of Entropy Loss Constraints

In this section, we analyzed the effect of entropy constraint. The parameter λ in the loss
function determines the degree of entropy constraint. In order to analyze the appropriate
value of λ, we only select a few common values for training the CNNs of the quantization
and dequantization processes. Table 6 shows the MSE of the dequantized measurements
and the information entropy of the quantized measurements when 8-bit is used to quantize
the measurements of the BSDS500 dataset.

Table 6. MSE and entropy for different λ.

λ MSE Entropy

0 0.2883 7.2624
0.05 0.2841 7.3376
0.1 0.2867 7.3539
0.2 0.2896 7.3787
0.5 0.3027 7.4487

It can be seen from Table 6 that the entropy constraint can increase the information
entropy of the quantized measurements but it has a slight impact on reducing the MSE of
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the dequantized measurements. When λ = 0.05, the MSE of the dequantized measurements
is the smallest. Therefore, when training the proposed network, we use λ = 0.05.

In addition, it can be observed that the entropies of the quantified measurements are
very close to the bit-depth. Some images may not be compressed when using a fixed code
table for entropy coding. In other words, the measurements quantized by the proposed
method do not need entropy coding.

3.3. Analysis of the Impact of the Measurement Information Correction Module

In this section, we analyzed the impact of the information correction module on the
dequantization process. Table 7 shows the quantization performance of the BSDS500
dataset when different information correction modules are used in the proposed method.
In Table 7, Contrast Scheme 1 did not use a measurement information correction module.
Contrast Scheme 2 used a measurement information correction module composed of three
convolutional layers. Contrast Scheme 3 used a measurement information correction
module composed of six convolutional layers.

Table 7. Quantization performance of different information correction modules.

MSE Entropy

µ-law quantification 1.0941 7.1510
Contrast Scheme 1 0.3298 7.1760
Contrast Scheme 2 0.3027 7.2430
Contrast Scheme 3 0.2841 7.3376

Table 7 reveals that the proposed method has significant advantages over the µ-law
quantization method. Compared with Contrast Scheme 1, the MSE of Contrast Scheme 2 is
reduced by 0.0271, while its entropy is increased by 0.067. Similarly, the MSE of Contrast
Scheme 3 is reduced by 0.0457 and the entropy is increased by 0.1616. These results illustrate
that the information correction module effectively improves the quantization performance.
Furthermore, the information correction module exhibits a stronger correction capability
with the increase of convolutional layers.

3.4. Rate-Distortion Performance Comparison

In this section, we compared the rate-distortion performance of the proposed method
with the entropy-coded uniform quantization, µ-law quantization, and Lloyd–Max quan-
tization. The entropy-coded uniform quantization method refers to the use of entropy
coding after performing uniform quantization on the measurements, which is expressed by
“uniform quantization + entropy coding” in this paper. When drawing the rate-distortion
curve, we traverse multiple quantization bit-depths and sampling rates to encode and
decode the test images. Then, we choose the optimum Bitrate-PSNR points and connect
them with a line. The bit-depth adopts seven values in {2, 3, 4, . . ., 8}, and the sampling rate
chooses 77 values in {0.04, 0.05, 0.06, . . ., 0.8}. The image reconstruction algorithm used is
the BCS-SPL-DCT algorithm [41]. When calculating the bitrate of “uniform quantization +
entropy coding,” the average codeword length of entropy coding is replaced by information
entropy. Figure 13 shows the PSNR curve of the eight test images.

In Figure 13, the proposed method has the best rate-distortion performance on all
eight test images, particularly for the aerial, building, and tank images. The PSNR
curve of “uniform quantization + entropy coding” is better than the µ-law and Lloyd–
Max quantization methods. This observation confirms that the existing quantizers with-
out entropy coding have inferior rate-distortion performance compared with “uniform
quantization + entropy coding”.
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Figure 14 shows the reconstructed images of the eight test images with different
methods at a compression bit rate of 0.1. The Lloyd–Max quantization approach generates
an adaptive quantization dictionary for each image. We do not count the bits of the
quantization dictionary in the compression bit rate of the Lloyd–Max quantization method.
Therefore, the results of the Lloyd–Max quantization method in Figure 14 are equivalent to
the optimal results of the conventional quantizer.
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As shown in Figure 14, the proposed method exhibits the best visual effect and
PSNR, followed by “uniform quantization + entropy coding” and Lloyd–Max quantization.
Compared with “uniform quantization + entropy coding,” for the eight test images, the
PSNR of the proposed method increased by 0.65 dB, 0.44 dB, 1.97 dB, 0.02 dB, 0.46 dB,
0.09 dB, 0.37 dB, and 0.29 dB, respectively. Compared with the Lloyd–Max quantization,
for the eight test images, the PSNR of the proposed method increased by 2.1 dB, 0.75 dB,
1.8 dB, 0.28 dB, 0.78 dB, 1.55 dB, 1.76 dB, and 1.53 dB, respectively.

The four quantization methods were also tested on the four test image datasets, and
the average PSNR curves are shown in Figure 15.

In Figure 15, the average PSNR is the mean of the PSNR of the reconstructed images at
a given bit rate for all images in the dataset. The PSNRs at a given bit rate are obtained by
linear interpolation from the Bitrate-PSNR curve for each image. The given bit rates are set
to {0.1, 0.2, . . ., 1 bpp}. For datasets Set5, Set11, Set14, and BSD68, the average PSNR curve
of the proposed method is better than “uniform quantization + entropy coding,” µ-law
quantization and Lloyd–Max quantization. Particularly, at a low bit rate (around 0.1 bpp),
the proposed method’s PSNR is much higher than the other methods.

The datasets SunHays80 [42] and Urban100 [43] have been extended for testing (all
data are converted to grayscale images with 256 × 256). The quality of reconstruction is
evaluated by the peak signal to noise ratio (PSNR) and the structural similarity (SSIM)
between the reconstructed image and the original image. Table 8 shows the PSNRs and
SSIMs of the four datasets at a bit rate of 0.1 bpp. Table 9 shows the PSNRs and SSIMs of
the four datasets at a bit rate of 0.2 bpp.

For all images of the six datasets, when the bitrate is set to 0.1 bpp, the proposed
method, “uniform quantization + entropy coding,” µ-law quantization, and Lloyd–Max
quantization achieve average PSNRs of 19.69 dB, 19.24 dB, 17.54 dB, and 18.67 dB, respec-
tively. Compared with “uniform quantization + entropy coding,” the proposed method
improves the PSNR by an average of 0.45 dB without entropy coding. The proposed
method, “uniform quantization + entropy coding,” µ-law quantization, and Lloyd–Max
quantization achieve average SSIMs of 0.1855, 0.1739, 0.1408, and 0.1547 respectively. Com-
pared with “uniform quantization + entropy coding,” the proposed method improves the
SSIM by an average of 0.0116 without entropy coding.



Entropy 2024, 26, 468 19 of 23

Entropy 2024, 26, x FOR PEER REVIEW 19 of 24 
 

 

T
an

k
 

    

 22.55 dB 17.92 dB 21.16 dB 22.92 dB 

T
ru

ck
 

    

 23.20 dB 19.28 dB 21.96 dB 23.49 dB 

 
Uniform Quantization + 

Entropy Coding 
µ-law Quantization 

Lloyd–Max Quantiza-

tion 
Proposed Method 

Figure 14. Visual comparison of different methods at a compression bit rate of 0.1. 

The four quantization methods were also tested on the four test image datasets, and 

the average PSNR curves are shown in Figure 15. 

  
(a) Set5 (b) Set11 

  

(c) Set14 (d) BSD68 

Figure 15. Average PSNR curves of test image sets. Figure 15. Average PSNR curves of test image sets.

Table 8. The PSNRs of the four datasets at a bit rate of 0.1 bpp.

Set5 Set11 Set14 BSD68 SunHays80 Urban100 Average

Uniform Quantization +
Entropy Coding

PSNR 19.59 18.21 18.81 19.49 19.32 20.01 19.24
SSIM 0.2117 0.1526 0.1769 0.1547 0.1361 0.2117 0.1739

µ-law Quantization
PSNR 17.79 16.17 16.72 17.40 17.30 19.86 17.54
SSIM 0.1546 0.1176 0.1336 0.1080 0.1001 0.2311 0.1408

Lloyd–Max Quantization PSNR 19.12 17.79 18.27 18.97 18.75 19.12 18.67
SSIM 0.1909 0.1355 0.1587 0.1328 0.1196 0.1909 0.1547

Proposed Method PSNR 20.22 18.61 19.17 20.00 19.90 20.25 19.69
SSIM 0.2229 0.1672 0.1875 0.1636 0.1489 0.2229 0.1855

For all images of the six datasets, when the bitrate is set to 0.2 bpp, the proposed
method, “uniform quantization + entropy coding,” µ-law quantization, and Lloyd–Max
quantization achieve average PSNRs of 21.27 dB, 21.09 dB, 20.88 dB, and 20.93 dB, respec-
tively. Compared with “uniform quantization + entropy coding,” the proposed method
improves the PSNR by an average of 0.18 dB without entropy coding. The proposed
method, “uniform quantization + entropy coding,” µ-law quantization, and Lloyd–Max
quantization achieve average SSIMs of 0.2738, 0.2683, 0.2543, and 0.2567, respectively. Com-



Entropy 2024, 26, 468 20 of 23

pared with “uniform quantization + entropy coding,” the proposed method improves the
SSIM by an average of 0.0055 without entropy coding.

Table 9. The PSNRs of the four datasets at a bit rate of 0.2 bpp.

Set5 Set11 Set14 BSD68 SunHays80 Urban100 Average

Uniform Quantization +
Entropy Coding

PSNR 22.26 19.41 20.32 21.27 20.99 22.26 21.09
SSIM 0.3246 0.2269 0.2653 0.2421 0.2260 0.3246 0.2683

µ-law Quantization
PSNR 22.00 19.28 20.15 21.05 20.84 21.94 20.88
SSIM 0.3127 0.2100 0.2516 0.2275 0.2096 0.3141 0.2543

Lloyd–Max Quantization PSNR 22.03 19.34 20.22 21.11 20.87 22.03 20.93
SSIM 0.3127 0.2168 0.2542 0.2298 0.2139 0.3127 0.2567

Proposed Method PSNR 22.43 19.6707 20.55 21.42 21.13 22.43 21.27
SSIM 0.3249 0.2421 0.2725 0.2473 0.2313 0.3249 0.2738

Across all images in the six datasets, the proposed method demonstrates superior
performance compared to standard uniform quantization combined with “uniform quanti-
zation + entropy coding,” as well as the µ-law and Lloyd–Max quantization schemes.

3.5. Analysis of Computational Complexity

On the encoding side, the calculation of the proposed quantization method involves
four networks: the position parameter estimation network, the scale parameter estimation
network, the parameter quantization network, and the measurement quantization network.
The network structure of the position parameter estimation network and scale parameter
estimation network are identical, as shown in Table 10. Similarly, the network structures
of the parameter quantization and measurement quantization are identical, as shown in
Table 11.

Table 10. Detailed network structures of parameter estimation.

Convolution
Layer Kernel Size Stride Input

Channels
Output

Channels
Activation
Function

Conv1 10 × 1 1 1 3 LeakyReLU
Conv2 1 × 1 1 3 3 LeakyReLU
Conv3 1 × l 1 3 1 -

Table 11. Detailed network structures of the quantization process.

Convolution
Layer Kernel Size Stride Input

Channels
Output

Channels
Activation
Function

Conv1 1 × 1 1 l 6 LeakyReLU
Conv2 1 × 1 1 6 6 LeakyReLU
Conv3 1 × 1 1 6 1 g3

The position and scale parameters are derived from partial measurements Y0 ∈ R10×NB .
According to Table 10, convolutional layer 1 requires around 10 × NB × 3 multiplications
and 10 × NB × 3 additions, convolutional layer 2 requires 3 × NB × 3 multiplications and
3× NB × 3 additions, and convolutional layer 3 requires 3× NB multiplications and 3× NB
additions. In total, location parameter estimation and scale parameter estimation need
about 84NB times multiplications, 84NB times additions, and 12NB times LeakyReLU
operations.

According to Table 11, to quantize a parameter or measurement, the quantization
network typically requires 48 times multiplications, 48 times additions, 12 times LeakyReLU
operations, and one time g3 operation. For the measurements’ matrix Y ∈ RM×NB , the
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numbers of measurements and parameters that need to be quantized are M × NB and
2NB, respectively. In total, it is necessary to compute (2 + M)48NB times multiplications,
(2 + M)48NB times additions, (2 + M)NB times LeakyReLU, and (2 + M)NB times g3.

The proposed method requires approximately the same number of multiplication
and addition operations, and the activation function to be computed only involves linear
operations. Since addition is much faster than multiplication in practical operations, we
only compared the number of multiplication operations. With an image size of 256 × 256
and a block size of 16 × 16, the total number NB of blocks would be 256. Assuming that the
measurement rate of BCS is 0.1, each block obtains 26 measurements. Each measurement
needs about 256 times multiplications and 255 times additions, and the calculation of
measurements is about 26 × 256NB times multiplications and 26 × 255NB times additions.
The proposed quantization method requires 660NB times multiplications, 660NB times
additions, 156NB times LeakyReLUs, and 12NB times g3. Compared with the calculation
for BCS measurements, the calculation of the proposed quantization process is about 9.92%
of that of the BCS measurements.

4. Conclusions

In this paper, we propose a BCS measurement quantization method based on CNNs.
The method uses a CNN based on measurements’ CDF to map BCS measurements into
quantized data following a uniform distribution. The block measurements’ distribution
parameters are quantized as the side information of the encoder. In dequantization, a CNN
based on information correction is designed by using the correlations between the BCS mea-
surements. The proposed method uses partial measurements to extract parameter features
and jointly optimizes the CNNs of the quantization and dequantization. The experimental
results indicate that the proposed quantization method has better performance than joint
uniform quantization and entropy coding.

In the future, investigating the performance of our method under adverse conditions,
such as noisy or blurred inputs, is critical for real-world deployment. While the CNNs
have shown remarkable performance, their computational and memory requirements are
points for consideration. Exploring lightweight CNN architectures, pruning techniques,
and hardware acceleration strategies would be instrumental in making our method more
practical for resource-constrained devices.
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