Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the monosilylated monomer and preparation of hybrid silica material M1
2.2. Catalytic activity and recyclability of the hybrid material M1 in diene and enyne ring-closing metathesis reactions
Entry | Substrate | Solvent | Heating | T (ºC) | t (h) | Cycle | Conversion % b |
---|---|---|---|---|---|---|---|
1 | 6 | CH2Cl2 | -- | rt | 20 | 1 | 100 |
2 | 6 | CH2Cl2 | Conventional | reflux | 24 | 2 | 100 |
3 | 6 | CH2Cl2 | MWc | 60 | 0.33 | 1 | 100 |
4 | 6 | CH2Cl2 | MWc | 60 | 0.33 | 2 | 97 |
5 | 6 | CH2Cl2 | MWc | 60 | 0.33 | 3 | 94 |
6 | 6 | CH2Cl2 | MWc | 60 | 0.33 | 4 | 79 |
7 | 6 | CH2Cl2 | MWc | 60 | 2.33 | 5 | 77 |
8 | 7 | CH2Cl2 | -- | rt | 24 | 1 | 94 |
9 | 7 | CH2Cl2 | conventional | reflux | 24 | 1 | 100d |
10 | 7 | toluene | -- | rt | 24 | 1 | 88 |
11 | 7 | CH2Cl2 | MWc | 50 | 0.67 | 1 | 84e |
12 | 7 | CH2Cl2 | MWc | 45 | 4 | 2 | 65f |
13 | 8 | CH2Cl2 | conventional | reflux | 22 | 1 | 100 |
14 | 8 | CH2Cl2 | MWc | 60 | 3 | 1 | 100 |
15 | 8 | CH2Cl2 | MWc | 60 | 15 | 2 | 64 |
3. Experimental
3.1. General
3.2. Preparation of the Grubbs-Hoveyda ruthenium alkylidenic complex 4
3.3. Preparation of the monosilylated Grubbs-Hoveyda ruthenium alkylidenic complex 5
3.4. Preparation of the organic-inorganic hybrid silica material M1 derived from 5
3.5. Ring-closing metathesis reaction on diethyl 2,2-diallylmalonate (6) with hybrid silica material M1
3.5.1. Under conventional conditions. Typical procedure (Table 1, entry 1)
3.5.2. Under microwave irradiation. Typical procedure (Table 1, entry 3)
4. Conclusions
Acknowledgements
- Sample Availability: Not available.
References and Notes
- Grubbs, R.H. (Ed.) Handbook of Metathesis, 1st; Wiley-VCH: Weinheim, Germany, 2003; Volume 1-3.
- Armstrong, S.K. Ring Closing Diene Metathesis in Organic Synthesis. J. Chem. Soc., Perkin Trans. 1 1998, 371–388. [Google Scholar] [CrossRef]
- Fürstner, A. Olefin Metathesis and Beyond. Angew. Chem. Int. Ed. 2000, 39, 3012–3043. [Google Scholar] [CrossRef]
- Deshmukh, P.H.; Blechert, S. Alkene metathesis: the search for better catalysts. Dalton Trans. 2007, 2479–2491. [Google Scholar] [CrossRef]
- Samojlowicz, C.; Bieniek, M.; Grela, K. Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands. Chem. Rev. 2009, 109, 3708–3742. [Google Scholar] [CrossRef]
- Deiters, A.; Martin, S.F. Synthesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis. Chem. Rev. 2004, 104, 2199–2238. [Google Scholar] [CrossRef]
- McReynolds, M.D.; Dougherty, J.M.; Hanson, P.R. Synthesis of Phosphorus and Sulfur Heterocycles via Ring-Closing Olefin Metathesis. Chem. Rev. 2004, 104, 2239–2258. [Google Scholar] [CrossRef]
- Gradillas, A.; Pérez-Castells, J. Macrocyclization by Ring-Closing Metathesis in the Total Synthesis of Natural Products: Reaction Conditions and Limitations. Angew. Chem. Int. Ed. 2006, 45, 6086–6101. [Google Scholar] [CrossRef]
- Kotha, S.; Lahiri, K. Synthesis of Diverse Polycyclic Compounds via Catalytic Metathesis. Synlett 2007, 2767–2784. [Google Scholar] [CrossRef]
- Colacino, E.; Martinez, J.; Lamaty, F. Preparation of NHC-Ruthenium Complexes and their Catalytic Activity in Metathesis Reaction. Coord. Chem. Rev. 2007, 251, 726–764. [Google Scholar] [CrossRef]
- Donohoe, T.J.; Fishlock, L.P.; Procopiou, P.A. Ring-Closing Metathesis: Novel Routes to Aromatic Heterocycles. Chem. Eur. J. 2008, 14, 5716–5726. [Google Scholar] [CrossRef]
- Van Otterlo, W.A.L.; De Koning, C.B. Metathesis in the Synthesis of Aromatic Compounds. Chem. Rev. 2009, 109, 3743–3782. [Google Scholar] [CrossRef]
- Poulsen, C.S.; Madsen, R. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes. Synthesis 2003, 1–18. [Google Scholar]
- Diver, S.T.; Giessert, A.J. Enyne Metathesis (Enyne Bond Reorganization). Chem. Rev. 2004, 104, 1317–1382. [Google Scholar] [CrossRef]
- Mori, M. Ruthenium-Catalyzed ROM, RCM and CM of enyne. J. Mol. Catal. A: Chem. 2004, 213, 73–79. [Google Scholar] [CrossRef]
- Hansen, E.C.; Lee, D. Search for Solutions to the Reactivity and Selectivity Problems in Enyne Metathesis. Acc. Chem. Res. 2006, 39, 509–519. [Google Scholar] [CrossRef]
- Villar, H.; Frings, M.; Bolm, C. Ring Closing Enyne Metathesis: A Powerful Tool for the Synthesis of Heterocycles. Chem. Soc. Rev. 2007, 36, 55–66. [Google Scholar]
- Diver, S.T. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis. Coord. Chem. Rev. 2007, 251, 671–701. [Google Scholar] [CrossRef]
- Mori, M. Synthesis of Natural Products and Related Compounds Using Enyne Metathesis. Adv. Synth. Catal. 2007, 349, 121–135. [Google Scholar] [CrossRef]
- Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef]
- Kingsbury, J.S.; Harrity, J.P.A.; Bonitatebus, P.J., Jr.; Hoveyda, A.H. A Recyclable Ru-Based Metathesis Catalyst. J. Am. Chem. Soc. 1999, 121, 791–799. [Google Scholar] [CrossRef]
- Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122, 8168–8179. [Google Scholar] [CrossRef]
- Buchmeiser, M.R. Recent Advances in the Synthesis of Supported Metathesis Catalysts. New J. Chem. 2004, 28, 549–557. [Google Scholar]
- Copéret, C.; Basset, J.-M. Strategies to Immobilize Well-Defined Olefin Metathesis Catalysts: Supported Homogeneous Catalysis vs. Surface Organometallic Chemistry. Adv. Synth. Catal. 2007, 349, 78–92. [Google Scholar] [CrossRef]
- Clavier, H.; Grela, K.; Kirschning, A.; Mauduit, M.; Nolan, S.P. Sustainable Concepts in Olefin Metathesis. Angew. Chem. Int. Ed. 2007, 46, 6786–6801. [Google Scholar] [CrossRef]
- Buchmeiser, M.R. Polymer-Supported Well-Defined Metathesis Catalysts. Chem. Rev. 2009, 109, 303–321. [Google Scholar] [CrossRef]
- Hoveyda, A.H.; Gillingham, D.G.; Van Veldhuizen, J.J.; Kataoka, O.; Garber, S.B.; Kingsbury, J.S.; Harrity, J.P.A. Ru Complexes Bearing Bidentate Carbenes: from Innocent Curiosity to Uniquely Effective Catalysts for Olefin Metathesis. Org. Biomol. Chem. 2004, 2, 8–23. [Google Scholar] [CrossRef]
- Karamé, I.; Boualleg, M.; Camus, J.-M.; Maishal, T.K.; Alauzun, J.; Basset, J.-M.; Copéret, C.; Corriu, R.J.P.; Jeanneau, E.; Mehdi, A.; Reyé, C.; Veyre, L.; Thieuleux, C. Tailored Ru-NHC Heterogeneous Catalysts for Alkene Metathesis. Chem. Eur. J. 2009, 15, 11820–11823. [Google Scholar]
- Allen, D.P.; Van Wingerden, M.M.; Grubbs, R.H. Well-Defined Silica Supported Olefin Metathesis Catalysts. Org. Lett. 2009, 11, 1261–1264. [Google Scholar]
- Zamboulis, A.; Moitra, N.; Moreau, J.J.E.; Cattoën, X.; Wong Chi Man, M. Hybrid materials: versatile matrices for supporting homogeneous catalysts. J. Mater. Chem. 2010. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science; Academic: London, UK, 1990. [Google Scholar]
- Shea, K.J.; Moreau, J.J.E.; Loy, D.; Corriu, R.J.P.; Boury, B. Functional Hybrid Materials; Gómez-Romero, P., Sanchez, C., Eds.; Wiley-VCH: Weinheim, Germany, 2004; p. 50. [Google Scholar]
- Moreau, J.J.E.; Wong Chi Man, M. The Design of Selective Catalysts from Hybrid Silica-Based Materials. Coord. Chem. Rev. 1998, 178-180, 1073–1084. [Google Scholar] [CrossRef]
- Elias, X.; Pleixats, R.; Wong Chi Man, M.; Moreau, J.J.E. Hybrid-Bridged Silsesquioxane as Recyclable Metathesis Catalyst Derived from a Bis-Silylated Hoveyda-Type Ligand. Adv. Synth. Catal. 2006, 348, 751–762. [Google Scholar] [CrossRef]
- Elias, X.; Pleixats, R.; Wong Chi Man, M.; Moreau, J.J.E. Hybrid Organic-Inorganic Materials Derived from a Monosilylated Hoveyda-Type Ligand as Recyclable Diene and Enyne Metathesis Catalysts. Adv. Synth. Catal. 2007, 349, 1701–1713. [Google Scholar] [CrossRef]
- Elias, X.; Pleixats, R.; Wong Chi Man, M. Hybrid Silica Materials Derived from Hoveyda-Grubbs Ruthenium Carbenes. Electronic Effects of the Nitro Group on the Activity and Recyclability as Diene and Enyne Metathesis Catalysts. Tetrahedron 2008, 64, 6770–6781. [Google Scholar] [CrossRef]
- Solans-Montfort, X.; Pleixats, R.; Sodupe, M. DFT Mechanistic Study on Diene Metathesis Catalyzed by Ru-Based Grubbs-Hoveyda Carbenes: The Key Role of π-Electron Density Delocalization in the Hoveyda Ligand. Chem. Eur. J. 2010, 16, 7331–7343. [Google Scholar]
- Coquerel, Y.; Rodriguez, J. Microwave-Assisted Olefin Metathesis. Eur. J. Org. Chem. 2008, 1125–1132. [Google Scholar] [CrossRef]
- Nicks, F.; Borguet, Y.; Delfosse, S.; Bicchielli, D.; Delaude, L.; Sauvage, X.; Demonceau, A. Microwave-Assisted Ruthenium-Catalyzed Reactions. Aust. J. Chem. 2009, 62, 184–207. [Google Scholar] [CrossRef]
- Schmidt, B. Catalysis at the Interface of Ruthenium Carbene and Ruthenium Hydride Chemistry: Organometallic Aspects and Applications to Organic Synthesis. Eur. J. Org. Chem. 2004, 1865–1880. [Google Scholar] [CrossRef]
- Polarz, S.; Völker, B.; Jeremias, F. Metathesis Catalysts in Confining Reaction Fields-Confinement Effects vs. Surface Effects. Dalton Trans. 2010, 39, 577–584. [Google Scholar] [CrossRef]
- Burtscher, D.; Grela, K. Aqueous Olefin Metathesis. Angew. Chem. Int. Ed. 2009, 48, 442–454. [Google Scholar] [CrossRef]
- Hongfa, C.; Tian, J.; Bazzi, H.S.; Bergbreiter, D.E. Heptane-Soluble Ring-Closing Metathesis Catalysts. Org. Lett. 2007, 9, 3259–3261. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Borja, G.; Pleixats, R.; Alibés, R.; Cattoën, X.; Man, M.W.C. Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst. Molecules 2010, 15, 5756-5767. https://doi.org/10.3390/molecules15085756
Borja G, Pleixats R, Alibés R, Cattoën X, Man MWC. Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst. Molecules. 2010; 15(8):5756-5767. https://doi.org/10.3390/molecules15085756
Chicago/Turabian StyleBorja, Guadalupe, Roser Pleixats, Ramón Alibés, Xavier Cattoën, and Michel Wong Chi Man. 2010. "Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst" Molecules 15, no. 8: 5756-5767. https://doi.org/10.3390/molecules15085756