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Abstract: Flexible strain sensors have a wide range of applications in the field of health monitoring
of seismic isolation bearings. However, the nonmonotonic response with shoulder peaks limits their
application in practical engineering. Here we eliminate the shoulder peak phenomenon during
the resistive-strain response by adjusting the dispersion of conductive nanofillers. In this paper,
carbon black (CB)/methyl vinyl silicone rubber (VMQ) composites were modified by adding a silane
coupling agent (KH550). The results show that the addition of KH550 eliminates the shoulder peak
phenomenon in the resistive response signal of the composites. The reason for the disappearance
of the shoulder peak phenomenon was explained, and at the same time, the mechanical properties
of the composites were enhanced, the percolation threshold was reduced, and they had excellent
strain-sensing properties. It also exhibited excellent stability and repeatability during 18,000 cycles of
loading–unloading. The resistance-strain response mechanism was explained by the tunneling effect
theoretical model analysis. It was shown that the sensor has a promising application in the health
monitoring of seismic isolation bearings.

Keywords: carbon black; silane coupling agents; silicone rubber; structural health monitoring;
shoulder peak

1. Introduction

Structural health monitoring (SHM) of seismic isolation bearings plays a vital role in
ensuring the health and safety of bridges [1]. Evaluating the health of bridge structures is
necessary to reduce repair costs, maintenance costs, and to demonstrate structural safety [2,3].
The sensing system is the key to realizing the health monitoring of bridge structure, and
the traditional metal material strain sensors have the disadvantages of poor tensile ability,
limited application range, and difficulties in continuous monitoring [4]. Therefore, the
preparation of a flexible strain transducer with good stability and a monotonic resistance
response signal is crucial for the health monitoring of seismic isolation bearings.

Conductive polymer composite (CPC) flexible strain sensors have received much
attention in recent years. CPC strain sensors consisting of a conductive filler and a polymer
matrix have been widely used for human motion monitoring [5–7], structural health
monitoring [8,9], and health care [10,11]. Conductive filler is an important component in the
preparation of flexible strain sensors. The use of metal nanowires [12] and nanoparticles [13]
as conductive fillers can significantly improve the electrical conductivity of composites,
but the interaction between the rubber matrix and these fillers is weak, resulting in poor
mechanical properties. In addition, these fillers are expensive, increasing the cost of the
material. Conductive carbon materials (carbon nanotubes (CNTs) [14], graphene (GR) [15],
carbon black (CB) [16], etc.) have the advantages of light weight, flexibility and high
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conductivity and are ideal candidates for the preparation of conductive polymer composites
with excellent overall performance. Flexible polymers with high elongation at the break,
such as polydimethylsiloxane (PDMS) [17,18], thermoplastic polyurethane (TPU) [19,20],
natural rubber (NR) [21], and methyl vinyl silicone rubber (VMQ) [7,22], are usually chosen
as the matrix materials. Among them, methyl vinyl silicone rubber (VMQ) has excellent
resilience and very good aging resistance and is often used as a substrate for flexible
strain sensors.

Compared with other conductive fillers, CB has the advantages of a large, specific sur-
face area, low cost, and good reinforcing properties, and it is widely used in the preparation
of flexible conductive composites. For example, Huang et al. [23] used ultrasound-assisted
dip coating to prepare three-dimensional, lightweight piezoresistive-sensing materials by
coating PUs with a mixture of carbon nanotube CNTs and CB. The sensor exhibits fast
response (65 ms), instant recovery, and excellent stability and repeatability. Zheng et al. [24]
prepared CNT-CB/PDMS flexible strain sensors using solution mixing and casting molding.
The results show that the sensor exhibits high stretchability and a wide-strain sensing range
(~300% strain). It exhibits excellent repeatability, good stability, and excellent durability
(2500 cycles at 200% strain) in stretch–release cycles. However, the phenomenon of shoulder
peak was observed in the resistance response signals of the above studies. The shoulder
peak phenomenon is the nonmonotonic resistance change signal of the sensor during cyclic
loading and unloading. The peak that occurs when the strain reaches its maximum is the
main peak, and the peak that occurs during the unloading phase is the shoulder peak.
This nonmonotonic resistive response signal affects the reproducibility and durability of
the resistive response signal, which brings difficulties in signal processing and real-time
monitoring and severely limits the practical application of strain sensors in structural health
monitoring. Therefore, it is important to eliminate the shoulder peak phenomenon and
prepare highly stable sensors for the health monitoring of seismic isolation bearings.

Conductive fillers tend to aggregate due to their own van der Waals forces, further
exacerbating the difficulty of uniformly dispersing conductive materials in an elastic
matrix. Silane coupling agents have low surface energy and can be evenly distributed
on the treated surface, thus improving compatibility and dispersion between dissimilar
materials. Han et al. [25] used a silane coupling agent (KH570) to modify CNT to fabricate
CNT/PDMS composites via a continuous thermal spinning strategy. Through the KH570
modification of CNT modification, the aggregation between CNTs was effectively reduced
so that the CNTs could be uniformly dispersed in the PDMS matrix. The composites
have the advantages of a wide sensing range (0–100%), excellent fatigue resistance, high
linearity and good mechanical properties, and good tensile repeatability (50% strain for
1000 cycles). Chen et al. [26] prepared CNTs-KH550/PDMS composites with dual-sensing
layers using a simple and scalable coating method, one sensing layer being a CNT-PDMS
conductive layer and the other sensing layer being an ultrasensitive conductive layer with
a multicracked structure composed of CNTs and a silane coupling agent (KH550). Since the
crack-expanded sensing mechanism of this sensor dominates the sensing behavior of the
CNT-KH550 layer, it thus exhibits the advantages of an ultra-low sensing range (0.01%), a
fast response time (68 ms), and a good reproducibility of 10,000 stretch–release cycles. In
summary, the silane coupling agent helps the conductive filler to be uniformly dispersed
in the matrix and construct a more organized conductive network. Therefore, KH550 is
used to modify CB, and the modified CB contains a large number of alkoxyl groups, which
helps CB to be uniformly dispersed in VMQ through hydrogen bonding, improving the
compatibility between CB and VMQ, and forming a more ordered and tightly packed
conductive network, which improves the stability and durability of the strain sensor.

In this study, CB/VMQ and CB-KH550/VMQ conductive composites were prepared
with a solution method using silane coupling agent (KH550)-modified carbon black (CB) as
conductive filler and silicone rubber (VMQ) as a matrix. The dispersion of the conductive
fillers in the VMQ matrix was analyzed using SEM images and EDS energy spectra. FTIR
and Raman were utilized to explore the interfacial interaction between the filler and matrix.
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In addition, the effect of the synergistic effect of CB and KH550 on the resistance-strain
response properties of the composites under cyclic strain was also investigated. The reason
for eliminating the shoulder peak phenomenon is explained, and a theoretical model
for quantitatively analyzing the corresponding properties of the force electrical force is
established, which is helpful for conductive composites for health monitoring of seismic
isolation bearings.

2. Results and Discussion
2.1. Mechanical Properties of Two Composites

Figure 1a illustrates the stress–strain curve of the CB-KH550/VMQ composite. It is
clearly seen that a good linear relationship between stress–strain is presented regardless
of the CB content. As the CB content increases, the slope of the curve increases, proving
that the stiffness of the composite increases. Figure 1b demonstrates the tensile strength
of the two composites, and the results show that the tensile strength of CB-KH550/VMQ
composite increases with the increase in filler, and the maximum value is 8.58 MPa, which
is 1.4 times more than that of CB/VMQ composite. In CB/VMQ composites, when the CB
content reaches 4%, the tensile strength decreases gradually with the increase in CB content,
which is due to the agglomeration of CB particles that impedes the continuity of CB in the
VMQ matrix. In CB-KH550/VMQ composites, on the other hand, the surface modification
of KH550 enhances the compatibility and dispersion of CB with the VMQ matrix, the CB
content increases, and the CB can be uniformly dispersed in the matrix, so the tensile
strength shows a monotonically increasing trend. From Figure 1c, it can be seen that the
elongation at the break of both CB-KH550/VMQ composites is higher than that of CB/VMQ
composites. The elongation at the break of CB-KH550/VMQ composites is higher than that
of CB/VMQ composites, as seen in Figure 1c. Figure 1d shows Young’s modulus of the
two composites, and it is clearly seen that, with the increase in the conductive filler content,
Young’s modulus of the CB-KH550/VMQ composite rises to 0.81 MPa, which is an increase
of 6.4% compared with that of the CB/VMQ composite, indicating that the resistance to
deformation of the CB-KH550/VMQ composite is improved. The KH550-modified CB
contains a large number of alkoxyl groups, which helps the CB to be uniformly dispersed
in the VMQ through hydrogen bonding. Figure 1e,f, demonstrate the cyclic stress–strain
curves for both composites at 50% strain. A clear hysteresis loop is observed in the first
cycle (C1) curve, and a large amount of residual strain is present. From the first cycle (C1)
to the second cycle (C2), the stress and hysteresis return line area decreases. Figure 1g,h,
show the residual strain of the composite after the first loading–unloading. The resilience
of the composite is evaluated by ER = ε−εR

ε × 100%, where ε is the strain, and εR is the
residual strain after the first cycle of unloading. The results show that the residual strain of
the composites modified by KH550 increases, and the ER of the composites decreases from
94.42% to 92.24%, which is due to the increase in the stiffness of the composites modified
by KH550, so the ER decreases.

2.2. Strain Sensing Properties of Composite Materials
2.2.1. Resistance-Strain Response under Static Loading

Figure 2a demonstrates the typical percolation behavior of the two composites as the
bulk conductivity increases with the increase in conductive fillers [27]. According to the
statistical percolation theory [28], the relationship between the electrical conductivity of the
composite and the conductive filler is shown in the following equation:

σ = σ0 (ϕ − ϕc)
t, (1)

In Equation (1), σ is the volumetric conductivity of the composite at a certain nanofiller
content, σ0 is the scale factor,ϕ is the mass fraction of nanofiller in the conductive composite,
ϕc is the percolation threshold of the conductive composite, and t is the dimensionality of
the conductive network, which is 1.3 and 2.0 for the two- and three-dimensional conductive
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networks, respectively. The ϕc of CB/VMQ and CB-KH550/VMQ composites are 3.51 wt%
and 3.39 wt%, respectively. It is clearly seen that the use of KH550-modified CB filler reduces
the percolation threshold of the composites by 3.4% as compared to CB/VMQ composites.
Based on the linear relationship of the fitted data of CB/VMQ and CB-KH550/VMQ,
the composites in Figure 2a yield t 3.48 and 3.82, respectively, which proves that both
composites form a three-dimensional tunneling conductive network [29].

Molecules 2024, 29, x FOR PEER REVIEW 4 of 17 
 

 

 

 
Figure 1. (a) Stress–strain curves of CB-KH550/VMQ composites; (b–d) tensile strength, elongation 
at break and Young’s modulus of CB/VMQ and CB-KH550/VMQ composites; (e,f) cyclic stress–
strain curves of CB/VMQ and CB-KH550/VMQ composites at 50% strain; (g,h) first cycle stress–
strain curves of CB/VMQ and CB-KH550/VMQ composites first cyclic stress–strain curves. 

2.2. Strain Sensing Properties of Composite Materials 
2.2.1. Resistance-Strain Response under Static Loading 

Figure 2a demonstrates the typical percolation behavior of the two composites as the 
bulk conductivity increases with the increase in conductive fillers [27]. According to the 

Figure 1. (a) Stress–strain curves of CB-KH550/VMQ composites; (b–d) tensile strength, elongation at
break and Young’s modulus of CB/VMQ and CB-KH550/VMQ composites; (e,f) cyclic stress–strain
curves of CB/VMQ and CB-KH550/VMQ composites at 50% strain; (g,h) first cycle stress–strain
curves of CB/VMQ and CB-KH550/VMQ composites first cyclic stress–strain curves.



Molecules 2024, 29, 2740 5 of 15

Molecules 2024, 29, x FOR PEER REVIEW 5 of 17 
 

 

statistical percolation theory [28], the relationship between the electrical conductivity of 
the composite and the conductive filler is shown in the following equation: 

σ = σ0(φ −  φc)
t, (1) 

In Equation (1), σ is the volumetric conductivity of the composite at a certain 
nanofiller content, σ0 is the scale factor, φ is the mass fraction of nanofiller in the 
conductive composite, φc is the percolation threshold of the conductive composite, and t 
is the dimensionality of the conductive network, which is 1.3 and 2.0 for the two- and 
three-dimensional conductive networks, respectively. The φc of CB/VMQ and CB-
KH550/VMQ composites are 3.51 wt% and 3.39 wt%, respectively. It is clearly seen that 
the use of KH550-modified CB filler reduces the percolation threshold of the composites 
by 3.4% as compared to CB/VMQ composites. Based on the linear relationship of the fitted 
data of CB/VMQ and CB-KH550/VMQ, the composites in Figure 2a yield t 3.48 and 3.82, 
respectively, which proves that both composites form a three-dimensional tunneling 
conductive network [29]. 

 
Figure 2. (a) Electrical conductivity of the two composites versus nanofiller content; (b) resistance-
strain response curves and GF values of the two composites at a strain of 100%. 

To avoid large agglomeration of fillers and to ensure good sensing performance of 
the sensors, two composites with a CB content of 6% were selected to analyze the 
resistance–strain response curves (∆R/R0, where R0 is the initial resistance, R is the test 
resistance, and ∆R = R − R0) under static loading as well as the two phases of the linear 
fitting (0–50%, 50–100%), as shown in Figure 2b. The sensitivity of the composites was 
evaluated using GF = (ΔR/R0)/ε, with ε being the strain. It is clearly seen that the resistance 
of the two composites increases linearly with the increase in strain; in addition, the GF 
values of the two composites are lower, which is because the two composites undergo 
localized deformation and destruction of the conductive network only in the linear 
response region, which hinders the formation of effective conductive channels and leads 
to their lower sensitivity. 

2.2.2. Resistance-Strain Response under Dynamic Loading 
The dynamic resistance-strain response properties of the two composites are 

demonstrated in Figure 3, respectively, and it is clearly seen that there is an obvious 
shoulder phenomenon in CB/VMQ composites, and the shoulder phenomenon is 
prevalent in conductive polymer composites [7,21,30,31]. The shoulder effect was 
significantly eliminated by KH550-modified composites. 

Figure 2. (a) Electrical conductivity of the two composites versus nanofiller content; (b) resistance-
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To avoid large agglomeration of fillers and to ensure good sensing performance of the
sensors, two composites with a CB content of 6% were selected to analyze the resistance–
strain response curves (∆R/R0, where R0 is the initial resistance, R is the test resistance,
and ∆R = R − R0) under static loading as well as the two phases of the linear fitting
(0–50%, 50–100%), as shown in Figure 2b. The sensitivity of the composites was evaluated
using GF = (∆R/R0)/ε, with ε being the strain. It is clearly seen that the resistance of
the two composites increases linearly with the increase in strain; in addition, the GF
values of the two composites are lower, which is because the two composites undergo
localized deformation and destruction of the conductive network only in the linear response
region, which hinders the formation of effective conductive channels and leads to their
lower sensitivity.

2.2.2. Resistance-Strain Response under Dynamic Loading

The dynamic resistance-strain response properties of the two composites are demon-
strated in Figure 3, respectively, and it is clearly seen that there is an obvious shoulder
phenomenon in CB/VMQ composites, and the shoulder phenomenon is prevalent in con-
ductive polymer composites [7,21,30,31]. The shoulder effect was significantly eliminated
by KH550-modified composites.

To explain the shoulder peak phenomenon, the resistance–strain curves in the 8th
cyclic loading of two composites were selected from Figure 3. In Figure 4a, it is seen that the
resistance of CB/VMQ composites shows a clear upward trend with increasing strain. This
is because as the strain increases, the CB packing spacing that constitutes the conductive
network increases, leading to the continuous destruction of the conductive network, and
the resistance increases and strain unloading, the conductive network reconstruction, and
the resistance decreases. At the same time, due to the viscoelasticity of the matrix [22], the
conductive network continues to be disrupted, and the phenomenon of shoulder peaks
occurs. Therefore, the reason for the shoulder peak phenomenon is considered to be
the competition between the destruction and reconstruction of the conducting network
during cyclic loading–unloading and the viscoelastic nature of the matrix [30]. However,
as shown in Figure 4b, the CB-KH550/VMQ composite maintains a linear increase during
loading, and a monotonic decrease during unloading without shoulder peaks. To further
explain the shoulder peak phenomenon, the area of the region of the hysteresis effect of the
composite was evaluated by using IH = |AS−AR|

AS
, where AS and AR are the areas of tension

and unloading in the resistance–strain curves, respectively. IH1 and IH2 are the areas of
the region of hysteresis effect during the stretch-unloading process of CB/VMQ, and CB-
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KH550/VMQ composites, respectively. The results show that the IH2 of CB-KH550/VMQ
composites is lower than the IH1 of CB/VMQ composites, and the larger the value of IH,
the more obvious the hysteresis effect is, the higher the residual resistance is, and the worse
the resistive response signal recovery is. Therefore, CB modified by KH550 forms a more
compact conductive network, which helps to reduce the hysteresis effect, thus eliminating
the shoulder peak phenomenon.
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Figure 4. (a,b) Resistance-strain response of CB/VMQ, CB/VMQ composites at strain of 30% for the
8th cycle of loading–unloading.

Figure 5a demonstrates the resistance–strain response curve of the CB-KH550/VMQ
composite, which exhibits excellent repeatability and stability with increasing strain. As
shown in Figure 5b, the CB-KH550/VMQ composite obtains a response time of 66 ms
at a small strain of 1% and a tensile rate of 200 mm/min, which is faster compared to
other composites [25,32–35], and the shorter response time means that the composites can
respond to the external stimuli quickly. Meanwhile, the stabilized resistance response of
strain sensors under different tensile rates is also very important in practical engineering
applications. As shown in Figure 5c, the resistance-strain response of the composites
at 50% tensile strain, with different rates, is investigated. It is clear that the resistance-
strain response remains stable as the rate increases, confirming that the sensing behavior
is not affected by the rate. Figure 5d–h demonstrates the resistance-strain response of
CB-KH550/VMQ composites at 10%, 20%, 30%, 40%, and 50% strain, respectively, and it
is clear that the resistance change is consistent with the strain change. The 100 cycles of
loading–unloading resistance signals for different strains remain stable without significant
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fluctuations, demonstrating excellent stability. To further test the long-term resistance-
response behavior of the CB-KH550/VMQ composite, 18,000 loading–unloading cycles at
50% strain are presented in Figure 5j. It is clearly seen that the resistance-response signal of
the composite is always stable. As can be seen from the locally enlarged image, no shoulder
peak phenomenon was observed in 18,000 cycles, indicating that the composite material has
excellent stability and durability. The maximum and minimum values of resistance for the
selected cycles (1st, 3000th, 6000th, 9000th, 12,000th, 15,000th, and 18,000th) were studied
to assess the relative resistance changes, as shown in Figure 5i. The maximum resistance
decreases as the number of cycles increases, which is due to the effect of hysteresis effect.
After several loading–unloading cycles, the maximum and minimum resistance values
change weakly and show excellent reversibility, which is because the composite is affected
by pre-stretching [36].
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of CB-KH550/VMQ composites at different rates; (d–h) resistive response of CB-KH550/VMQ
composites for 100 cycles at strains of 10%, 20%, 30%, 40%, and 50%; (i) statistics of the maximum and
minimum resistive values of CB-KH550/VMQ composites for 18,000 tensile–release cycles at a strain
of 50%; and (j) resistive response of CB-KH550/VMQ composites for 18,000 cycles at a strain of 50%.

2.3. Dispersion and Interface Effects of Composites

Figure 6a–h show the SEM images and EDS energy spectra of CB/VMQ composites
and CH-KH550/VMQ composites before and after 50% strain stretching, and the S element,
which is unique to carbon black, is visible in the energy spectra. From Figure 6a–d, it
can be seen that the CB in the CB/VMQ composites before stretching showed an obvious
agglomeration phenomenon, and the gap between the CB increased after stretching, the
conductive network was seriously damaged, and the energy spectra show that the con-
ductive channels were obviously reduced after stretching, which is one of the important
reasons for the shoulder peak phenomenon in the resistive strain-response performance.
As can be seen in Figure 6e–h, the uniform distribution of S elements is clearly seen in the
energy spectrograms before stretching, which confirms that the KH550-modified CB in
the CB-KH550/VMQ composites is uniformly dispersed, and the conductive network is
kept intact after stretching, and the energy spectrograms show that most of the conductive
channels are kept intact, which is one of the important reasons for the disappearance of the
shoulder peak effect.
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Figure 6. (a,b) SEM image and EDS energy spectra of CB/VMQ composites before stretching;
(c,d) SEM image and EDS energy spectra of CB/VMQ composites after 50% strain stretching;
(e,f) SEM image and EDS energy spectra of CB-KH550/VMQ composites before stretching; (g,h) SEM
image and EDS energy spectra of CB-KH550/VMQ composites after 50% strain stretching.

Figure 7 shows the absorbance curves of the composites within the FTIR spectral
wavelengths 600~3200 cm−1. The peaks at 2962 cm−1 and 659 cm−1 are attributed to the
stretching vibrations of Si-CH3 and Si-C. The bending vibration of C-O-C produces the
peak at 1257 cm−1. The peaks at 1006 cm−1 and 1005 cm−1 are attributed to the stretching
vibration of Si-O-Si. The characteristic peak of CB-KH550/VMQ composites shifted from
1006 cm−1 to 1005 cm−1 as seen in the local zoomed-in image, which is consistent with the
changes concluded in other studies [37], and the change is attributed to the formation of
hydrogen bonding between the residual oxygen-containing groups of the nanofillers and
the Si-O-Si groups in the silicone rubber matrix, which facilitates the compatibility.

To further investigate the interfacial interaction between the filler and matrix, Raman
spectra of CB/VMQ and CB-KH550/VMQ composites are shown in Figure 8a. The D peak
is used to characterize the disordered structure and defects in carbon materials, and the
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G peak is attributed to the stretching vibrational mode of the bonds within the carbon
atom faces, and its peak intensity is also related to defects. It can be seen that the D peak
of the composite modified with KH550 is shifted from 1333.52 cm−1 to 1338.53 cm−1,
and the G peak is shifted from 1588.60 cm−1 to 1596.69 cm−1, which indicates that the
vibration of the D peak and the G peak of the composite is strengthened, which improves
the interfacial interactions between the conductive filler and the matrix. In addition, the
ratio of D peak and G peak intensities (ID/IG) can be used to evaluate the structural integrity
and interfacial strength of the composites and to correctly estimate the ID/IG ratios; the
Raman spectra were deconvoluted. The maximum height values of D and G peaks were
obtained with reverse convolution, and it was found that the ID/IG values of CB/VMQ and
CB-KH550/VMQ composites were 1.05 and 1.09, respectively, which were similar to those
of the two composites, indicating that the KH550 did not damage the carbon structure of
the composites.
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The XPS spectra of CB/VMQ and CB-KH550/VMQ composites are shown in Figure 8b.
The fine scans of silicon and carbon are shown in Figure 8c–f. The binding energies in the
Si 2p spectra of the CB-KH550/VMQ composites changed significantly, with the Si-O bond
and Si-O-Si bond shifted from 101.1 eV and 101.9 eV to 101.3 eV and 102.0 eV, respectively,
indicating that the carbon black has strong interfacial interactions with the silane coupling
agent. The C 1s spectrum of the unmodified composite has three peaks at 283.6 eV, 284.2 eV,
and 284.7 eV, belonging to C=C, C-O, and C=O, respectively. The C=C, C-O, and C=O
of the modified composite are shifted to 283.7 eV, 284.3 eV, and 284.8 eV. Similar to the
results of other studies [25], the peaks of C=C, C-O, and C=O were only slightly shifted
after modification with silane coupling agents, suggesting that the chemical modification
of KH550 by silicon can still be detected on CB.
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2.4. Strain Sensing Mechanism

In studying the resistance-strain relationship of CB-KH550/VMQ composites, we
constructed a hypothetical schematic to simulate the stretch–unload process. Figure 9a
demonstrates the initial state of KH550-modified CB in the VMQ matrix, in which the
carbon black particles are uniformly distributed to form a stable conductive network. As
shown in Figure 9b, during the stretching stage, the gap between the carbon black particles
increases with the increase in strain, resulting in a change of the conductive network
structure. In the unloading stage, when the external force is removed, the spacing between
the fillers shrinks and the conductive network structure gradually recovers, as shown
in Figure 9c. The Krauss model was used to evaluate the composite tensile-unloading
resistance response:

N1 =
N0

1
+

(
ε

εc

)(
ε

εc

)2m
, (2)

ρ ∝ (N)−nε , (3)

∆R
R0

=
ρ

ρ0
(ε+ 1)2 − 1 =(ε+ 1)2

(1+
(
ε

εc

)2m
)−1

−nε

− 1, (4)

where N1 is the total number of interparticle connections per volume during stretching,
N0 is the initial number of interparticle connections per volume, m is a constant related
to the network structure, εc is a constant for yield strain, and nε is the scaling index.
Equation (4) better characterizes the resistance–strain relationship in the tensile stage of
the composite. During the release process, fracture and destruction of the conductive
network occur simultaneously. Some of the disrupted conducting networks are irreversible,
resulting in a higher resistance than the initial value. The following equation is employed to
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describe the change in the number of interparticle N2 connections during the release phase
due to the complex reconfiguration of the interparticle connections and the irreversible
conductive network.

N2(t) = N0

(
k1 − k2e−Kt

)
= N0

(
k1 − k2e−K ε

έ

)
, (5)

where k1, k2 and K are constants associated with the process of reformation of interparticle
connections, and έ is the strain rate. From Equations (3)–(5), the ∆R

R0
of the release phase is

∆R
R0

= (ε+ 1)2

(1 +
(
ε

εc

)2m
)−1

+ k1 − k2e−K ε
έ

−nε

− 1. (6)
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Figure 9. (a–c) Changes of the conductive network of the composites throughout the cycling pro-
cess; (d) resistance of the experimental results versus the theoretical results for the tensile stage of
CB-KH550/VMQ and CB/VMQ composites; (e) resistance of the experimental results versus the
theoretical results for the unloading stage of CB-KH550/VMQ and CB/VMQ composites (black color
indicates theoretical predictions, red color indicates experimental results).

The experimental results and theoretical predictions of the resistance strain of CB-
KH550/VMQ composites during the loading–unloading cycle are shown in Figure 9d,e,
which indicate that the model can describe the experimental data well. The fitting parame-
ters are shown in Table 1.

Table 1. Parameters of the fitted strain curves of the two composites.

Filler m εc nε k1 k2 K

CB-KH550 1.834 0.047 0.283 0.119 0.177 0.134
CB 48.127 67.158 25.225 0.998 0.998 0.043

For CB/VMQ and CB-KH550/VMQ composites, the different values of m indicate
that the conductive network structures of the two composites are different, and nε/εc is
consistent with the variation rule of GF values. The reconfiguration process between the
particles of the conductive network structure is affected by k1, k2, and K, which leads to
changes in the resistance-strain response.
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3. Materials and Methods
3.1. Materials

Methyl vinyl silicone rubber (VMQ): grade 110-2s, density 1.1 g/cm3, molecular
weight 6.2 × 105 g/mol, Nanjing Dongjue Silicone Co., Ltd., Nanjing, China. Carbon black
(CB): oil absorption value 330 m2/g, particle size 12 nm, Chengdu Organic Chemical Co., Ltd.,
Chengdu, China. Silicon dioxide (SiO2): purity > 99.8%, specific surface area 300 m2/g,
particle size 7–40 nm, Shanghai McLean Biochemical Technology Co., Ltd., Shanghai, China.
Hydroxyl silicone oil (HPMS): analytically pure, Anhui Aida Silicone Oil Co., Ltd., Bengbu,
China. Dicumyl peroxide (DCP): analytically pure, Jiangsu Qiangsheng Chemical Co., Ltd.,
Changshu, China. Ethyl acetate (EA): analytically pure, Tianjin Beichen Fangzheng Reagent
Factory, Tianjin, China.

3.2. Preparation of CB-KH550/VMQ Composites

The CB/VMQ and CB-KH550/VMQ composites were prepared using a solution
method. The preparation process is shown in Figure 10a; the experimental ingredients were
formulated as shown in Table 2. The process was as follows: (1) CB, SiO2 and KH550 were
mixed in 200 mL ethyl acetate (EA) and sonicated at 100 W for 1 h to obtain the modified
CB dispersion; (2) 4 g of unvulcanized silicone rubber was added into 200 mL EA and
mechanically stirred for 1 h to obtain the silicone rubber dispersion; (3) the HPMS, CB, and
VMQ dispersions were mixed and sonicated at 100 W for 30 min to obtain the composite;
and (4) the temperature was increased to 50 ◦C, DCP was added to the composite, the
solvent was removed with a vacuum, and the resulting mixture was vulcanized at 10 Mpa
and 170 ◦C for 10 min to obtain a CB-KH550/VMQ composite. Finally, the vulcanization
molding was followed by 4 h of two-stage vulcanization at 200 ◦C under atmospheric
pressure. Figure 10b shows the photographs of the composites in the original, tensile,
flexural, and torsional conditions.
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Table 2. The formula of two composites (wt%).

Materials Content

VMQ 100
CB Variable X (X = 0, 1, 2, 3, 4, 5, 6, 7, 8)

KH550 Variable Y (Y = X/4)
SiO2 20

HPMS 4
DCP 2

3.3. Characterization

The dispersion of CB in the VMQ matrix was observed using scanning electron mi-
croscopy (SEM, TESCAN, Brno, Czech Republic). The interfacial interaction between
VMQ and CB was analyzed using Fourier Transform Infrared Spectroscopy (FTIR, Bruker
Tensor 27, Karlsruhe, Germany) in the wave number range 600~3200 cm−1. The interfa-
cial effects of the composites were analyzed using a Raman spectrometer (Raman, Ren-
ishaw invia, Ilford, UK) with a laser wavelength of 532 nm and a wave number range of
1000–1800 cm−1. The surface elements of composite materials were studied using X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Waltham, MA, USA). The
resistance of the composites was measured using a 34410A digital multimeter (Keysight
Technologies, Inc., Santa Rosa, CA, USA), and the composites were intercepted into strips of
40 mm × 10 mm × 1 mm, and three sets of 60 s resistance values were taken as the average
value. The formula for the conductivity of the composite material is shown below:

σ = 1/ρ = L/RS, (7)

where σ is the conductivity (S/m), ρ is the resistivity (Ω-m), L is the length of the composite
(m), R is the volume resistance (Ω), and S is the cross-sectional area of the composite (m2).
An electronic universal testing machine (DDL10, Changchun Testing Machine Research
Institute Co., Ltd., Changchun, China) was used to conduct tensile tests to test the me-
chanical properties of dumbbell-shaped composites, with a tensile rate of 200 mm/min−1,
and three sets of experimental data were tested to take the average value. The composites
(40 mm× 10 mm× 1 mm) were fixed on an electronic universal testing machine to perform
resistance-strain response tests under dynamic cyclic loading, and the resistance signals
varied during the tests were collected using a digital multimeter. The schematic diagram of
the experimental test setup is shown in Figure 10c.

4. Conclusions

In this paper, the shoulder peak phenomenon in the resistance response signal of
the composite material is eliminated by adding KH550, and the following conclusions
are drawn:

(1) The percolation thresholds of CB/VMQ and CB-KH550/VMQ composites are
3.51 wt% and 3.39 wt%, respectively, and both composites form three-dimensional
tunneling conductive networks;

(2) The addition of KH550 increased the tensile strength, elongation at the break and
Young’s modulus of the composites. The tensile strength, elongation at the break and
Young’s modulus were increased from 6.12 MPa, 803.7% and 0.75 MPa to 8.58 MPa,
961.7% and 0.81 MPa, respectively;

(3) Compared with the CB/VMQ composites, the shoulder peak phenomenon was not
observed in the resistance-strain response properties of CB-KH550/VMQ composites.
Meanwhile, the reason for the disappearance of the shoulder phenomenon was ex-
plained by the hysteresis effect and the comparison of SEM images and EDS energy
spectra before and after stretching;

(4) An analytical model of resistance-strain response was developed, and the comparison
of experimental results and theoretical predictions shows that the model can better
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characterize the relationship between resistance and strain in the composite material
during the tensile-unloading stage.
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