Indole-2-Carboxamide as an Effective Scaffold for the Design of New TRPV1 Agonists
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. In Vitro Characterization
3. Discussion
4. Experimental Section
4.1. Materials and Methods
4.2. TRPV1 and TRPA1 Channel Assay
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (Transient Receptor Potential) Ion Channel Family: Structures, Biological Functions and Therapeutic Interventions for Diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef] [PubMed]
- Menigoz, A.; Boudes, M. The Expression Pattern of TRPV1 in Brain. J. Neurosci. 2011, 31, 13025–13027. [Google Scholar] [CrossRef] [PubMed]
- Maximiano, T.K.E.; Carneiro, J.A.; Fattori, V.; Verri, W.A. TRPV1: Receptor Structure, Activation, Modulation and Role in Neuro-Immune Interactions and Pain. Cell Calcium 2024, 119, 102870. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 Ion Channel Determined by Electron Cryo-Microscopy. Nature 2013, 504, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zheng, J. Understand Spiciness: Mechanism of TRPV1 Channel Activation by Capsaicin. Protein Cell 2017, 8, 169–177. [Google Scholar] [CrossRef]
- Saito, S.; Tominaga, M. Evolutionary Tuning of TRPA1 and TRPV1 Thermal and Chemical Sensitivity in Vertebrates. Temperature 2017, 4, 141–152. [Google Scholar] [CrossRef]
- Nozadze, I.; Tsiklauri, N.; Gurtskaia, G.; Tsagareli, M.G. Role of Thermo TRPA1 and TRPV1 Channels in Heat, Cold, and Mechanical Nociception of Rats. Behav. Pharmacol. 2016, 27, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Willis, W.D. The Role of TRPV1 Receptors in Pain Evoked by Noxious Thermal and Chemical Stimuli. Exp. Brain Res. 2009, 196, 5–11. [Google Scholar] [CrossRef]
- González-Ramírez, R.; Chen, Y.; Liedtke, W.B.; Morales-Lázaro, S.L. TRP Channels and Pain. In Neurobiology of TRP Channels; CRC Press: Boca Raton, FL, USA, 2017; pp. 125–148. [Google Scholar] [CrossRef]
- Chahl, L.A. TRPV1 Channels in the Central Nervous System as Drug Targets. Pharmaceuticals 2024, 17, 756. [Google Scholar] [CrossRef] [PubMed]
- Marrone, M.C.; Morabito, A.; Giustizieri, M.; Chiurchiù, V.; Leuti, A.; Mattioli, M.; Marinelli, S.; Riganti, L.; Lombardi, M.; Murana, E.; et al. TRPV1 Channels Are Critical Brain Inflammation Detectors and Neuropathic Pain Biomarkers in Mice. Nat. Commun. 2017, 8, 15292. [Google Scholar] [CrossRef] [PubMed]
- Alawi, K.; Keeble, J. The Paradoxical Role of the Transient Receptor Potential Vanilloid 1 Receptor in Inflammation. Pharmacol. Ther. 2010, 125, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, O.M.E.; Mózsik, G. Capsaicin, The Vanilloid Receptor TRPV1 Agonist in Neuroprotection: Mechanisms Involved and Significance. Neurochem. Res. 2023, 48, 3296–3315. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, A.; Vasamsetti, B.M.K.; Park, J.-H. A Comprehensive Review of Capsaicin: Biosynthesis, Industrial Productions, Processing to Applications, and Clinical Uses. Heliyon 2024, 10, e39721. [Google Scholar] [CrossRef]
- Raisinghani, M.; Pabbidi, R.M.; Premkumar, L.S. Activation of Transient Receptor Potential Vanilloid 1 (TRPV1) by Resiniferatoxin. J. Physiol. 2005, 567, 771–786. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, T.L.; Olawale, F.; Olisah, C.; Adetunji, A.E.; Aremu, A.O. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front. Oncol. 2022, 12, 908487. [Google Scholar] [CrossRef]
- Chapa-Oliver, A.; Mejía-Teniente, L. Capsaicin: From Plants to a Cancer-Suppressing Agent. Molecules 2016, 21, 931. [Google Scholar] [CrossRef] [PubMed]
- Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, Cancer and Immunity—Implication of TRPV1 Channel. Front. Oncol. 2019, 9, 1087. [Google Scholar] [CrossRef]
- Caballero, J. A New Era for the Design of TRPV1 Antagonists and Agonists with the Use of Structural Information and Molecular Docking of Capsaicin-like Compounds. J. Enzyme Inhib. Med. Chem. 2022, 37, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Knotkova, H.; Pappagallo, M.; Szallasi, A. Capsaicin (TRPV1 Agonist) Therapy for Pain Relief. Clin. J. Pain. 2008, 24, 142–154. [Google Scholar] [CrossRef]
- Aiello, F.; Badolato, M.; Pessina, F.; Sticozzi, C.; Maestrini, V.; Aldinucci, C.; Luongo, L.; Guida, F.; Ligresti, A.; Artese, A.; et al. Design and Synthesis of New Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channel Modulators: Identification, Molecular Modeling Analysis, and Pharmacological Characterization of the N-(4-Hydroxy-3-Methoxybenzyl)-4-(Thiophen-2-yl)Butanamide, a Small Molecule Endowed with Agonist TRPV1 Activity and Protective Effects against Oxidative Stress. ACS Chem. Neurosci. 2016, 7, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Brizzi, A.; Maramai, S.; Aiello, F.; Baratto, M.C.; Corelli, F.; Mugnaini, C.; Paolino, M.; Scorzelli, F.; Aldinucci, C.; De Petrocellis, L.; et al. Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress. Int. J. Mol. Sci. 2022, 23, 13580. [Google Scholar] [CrossRef]
- Romeo, I.; Brizzi, A.; Pessina, F.; Ambrosio, F.A.; Aiello, F.; Belardo, C.; Carullo, G.; Costa, G.; De Petrocellis, L.; Frosini, M.; et al. In Silico -Guided Rational Drug Design and Synthesis of Novel 4-(Thiophen-2-yl)Butanamides as Potent and Selective TRPV1 Agonists. J. Med. Chem. 2023, 66, 6994–7015. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical Importance of Indoles. Molecules 2013, 18, 6620–6662. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Su, M. Indole and Indoline Scaffolds in Drug Discovery. In Privileged Scaffolds in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 147–161. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Schiano Moriello, A.; Fontana, G.; Sacchetti, A.; Passarella, D.; Appendino, G.; Di Marzo, V. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels. Br. J. Pharmacol. 2014, 171, 2608–2620. [Google Scholar] [CrossRef] [PubMed]
- Iwaoka, E.; Wang, S.; Matsuyoshi, N.; Kogure, Y.; Aoki, S.; Yamamoto, S.; Noguchi, K.; Dai, Y. Evodiamine suppresses capsaicin-induced thermal hyperalgesia through activation and subsequent desensitization of the transient receptor potential V1 channels. J. Nat. Med. 2016, 70, 1–7. [Google Scholar] [CrossRef]
- Dewaker, V.; Sharma, A.R.; Debnath, U.; Park, S.T.; Kim, H.S. Insights from molecular dynamics simulations of TRPV1 channel modulators in pain. Drug Discov. Today 2023, 28, 103798. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Liu, S.; Zhai, W.; Jiang, L.; Ma, Y.; Zhang, Z.; Wang, B.; Shao, I.; Qian, H.; Zhao, F.; et al. Novel dual-target FAAH and TRPV1 ligands as potential pharmacotherapeutics for pain management. Eur. J. Med. Chem. 2024, 267, 116208. [Google Scholar] [CrossRef]
- Jiang, X.; Tiwari, A.; Thompson, M.; Chen, Z.; Cleary, T.P.; Lee, T.B.K. A Practical Method for N-Methylation of Indoles Using Dimethyl Carbonate. Org. Process. Res. Dev. 2001, 5, 604–608. [Google Scholar] [CrossRef]
- Brizzi, A.; Aiello, F.; Marini, P.; Cascio, M.G.; Corelli, F.; Brizzi, V.; De Petrocellis, L.; Ligresti, A.; Luongo, L.; Lamponi, S.; et al. Structure–Affinity Relationships and Pharmacological Characterization of New Alkyl-Resorcinol Cannabinoid Receptor Ligands: Identification of a Dual Cannabinoid Receptor/TRPA1 Channel Agonist. Bioorg. Med. Chem. 2014, 22, 4770–4783. [Google Scholar] [CrossRef] [PubMed]
- Ursu, D.; Knopp, K.; Beattie, R.E.; Liu, B.; Sher, E. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur. J. Pharmacol. 2010, 641, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Milkiewicz, K.L.; Marsilje, T.H.; Woodworth, R.P.; Bifulco, N.; Hangauer, M.J.; Hangauer, D.G. The Design, Synthesis and Activity of Non-ATP Competitive Inhibitors of Pp60c-Src Tyrosine Kinase. Part 2: Hydroxyindole Derivatives. Bioorg. Med. Chem. Lett. 2000, 10, 483–486. [Google Scholar] [CrossRef] [PubMed]
- La Regina, G.; Silvestri, R.; Gatti, V.; Lavecchia, A.; Novellino, E.; Befani, O.; Turini, P.; Agostinelli, E. Synthesis, Structure–Activity Relationships and Molecular Modeling Studies of New Indole Inhibitors of Monoamine Oxidases A and B. Bioorg. Med. Chem. 2008, 16, 9729–9740. [Google Scholar] [CrossRef] [PubMed]
- Hangauer, D.G. Bicyclic Compositions and Methods for Modulating a Kinase Cascade. US2008004241A1, 3 January 2008. [Google Scholar]
- Ölgen, S.; Çoban, T. Synthesis and Antioxidant Properties of Novel N-Substituted Indole-2-Carboxamide and Indole-3-Acetamide Derivatives. Arch. Pharm. 2002, 335, 331–338. [Google Scholar] [CrossRef]
- Brizzi, A.; Aiello, F.; Corelli, F. Ligandi TRPV1. N° 0001424275 (FI 2014 A000096), 24 April 2014. [Google Scholar]
- Li, W.; Ma, Y.; Ju, H.; Huang, W. Amine Compound Containing Aromatic Ring, and Preparation Method and Application Thereof. CN104098479B, 10 February 2016. [Google Scholar]
- Schiano Moriello, A.; De Petrocellis, L.; Vitale, R.M. Fluorescence-Based Assay for TRPV1 Channels. Methods Mol. Biol. 2023, 2576, 119–131. [Google Scholar] [CrossRef] [PubMed]
Nr | n | R1 | R2 | TRPV1 Eff. b % | TRPV1 EC50 (μM) | TRPV1 IC50 (μM) c | TRPA1 Eff. d % | TRPA1 EC50 (μM) | TRPA1 IC50 (μM) e |
---|---|---|---|---|---|---|---|---|---|
5a | 0 | -OH | -H | 54.1 ± 0.1 | 2.3 ± 0.1 | 10.0 ± 3.9 | <10 | n.a. | >100 |
5b | 1 | -H | -H | <10 | n.a. f | >100 | <10 | n.a. | >100 |
5c | 1 | -OH | -H | 47.2 ± 0.3 | >10 | >50 | <10 | n.a. | >100 |
5d | 1 | -OCH3 | -H | <10 | n.a. | >50 | 39.1 ± 3.5 | >50 | >100 |
5e | 1 | -F | -H | <10 | n.a. | >100 | 42.8 ± 1.8 | 23.7 ± 2.1 | >50 |
5f | 1 | -OH | -OCH3 | 66.8 ± 1.3 | 0.56 ± 0.08 | 1.03 ± 0.09 | n.t. g | n.t. | n.t. |
5g | 1 | -Cl | -Cl | <10 | n.a. | >100 | n.t. | n.t. | n.t. |
5h | 1 | -F | -F | <10 | n.a. | >100 | 68.4 ± 5.1 | 19.1 ± 3.1 | >50 |
5i | 2 | -OH | -OH | 37.3 ± 0.1 | 8.1 ± 0.10 | 2.1 ± 0.10 | n.t | n.t | n.t |
6a | 0 | -OH | -H | 64.9 ± 0.6 | 0.34 ± 0.01 | 0.72 ± 0.08 | 42.9 ± 0.5 | 22.7 ± 1.7 | >50 |
6b | 0 | -F | -H | 34.4 ± 4.5 | 3.5 ± 2.1 | 6.9 ± 2.6 | 78.6 ± 9.7 | 2.0 ± 1.1 | 5.2 ± 0.4 |
6c | 1 | -H | -H | <10 | n.a. | >50 | <10 | n.a. | >50 |
6d | 1 | -OH | -H | 27.6 ± 0.3 | 1.1 ± 0.1 | 19.2 ± 6.7 | <10 | n.a. | >100 |
6e | 1 | -OCH3 | -H | <10 | n.a. | >10 | 81.3 ± 1.8 | 20.3 ± 1.1 | >50 |
6f | 1 | -F | -H | <10 | n.a. | >100 | 100.6 ± 11.1 | 20.4 ± 6.9 | 33.5 ± 3.2 |
6g | 1 | -OH | -OCH3 | 73.2 ± 0.4 | 0.0365 ± 0.0011 | 0.0535 ± 0.048 | 59.8 ± 1.6 | >50 | >100 |
6h | 1 | -Cl | -Cl | <10 | n.a. | 16.4 ± 0.5 | n.t | n.t | n.t |
6i | 1 | -F | -F | <10 | n.a. | >100 | 76.1 ± 2.6 | 10.9 ± 0.9 | 32.2 ± 3.2 |
6j | 2 | -OH | -OH | 70.8 ± 0.6 | 0.18 ± 0.05 | 0.26 ± 0.02 | n.t | n.t | n.t |
capsaicin | 78.6 ± 0.6 | 0.0053 ± 0.0004 | 0.0080 ± 0.0003 | ||||||
AITC | 65.9 ± 0.5 b | 1.41 ± 0.04 | 1.71 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maramai, S.; Mugnaini, C.; Paolino, M.; Schiano Moriello, A.; De Petrocellis, L.; Corelli, F.; Aiello, F.; Brizzi, A. Indole-2-Carboxamide as an Effective Scaffold for the Design of New TRPV1 Agonists. Molecules 2025, 30, 721. https://doi.org/10.3390/molecules30030721
Maramai S, Mugnaini C, Paolino M, Schiano Moriello A, De Petrocellis L, Corelli F, Aiello F, Brizzi A. Indole-2-Carboxamide as an Effective Scaffold for the Design of New TRPV1 Agonists. Molecules. 2025; 30(3):721. https://doi.org/10.3390/molecules30030721
Chicago/Turabian StyleMaramai, Samuele, Claudia Mugnaini, Marco Paolino, Aniello Schiano Moriello, Luciano De Petrocellis, Federico Corelli, Francesca Aiello, and Antonella Brizzi. 2025. "Indole-2-Carboxamide as an Effective Scaffold for the Design of New TRPV1 Agonists" Molecules 30, no. 3: 721. https://doi.org/10.3390/molecules30030721
APA StyleMaramai, S., Mugnaini, C., Paolino, M., Schiano Moriello, A., De Petrocellis, L., Corelli, F., Aiello, F., & Brizzi, A. (2025). Indole-2-Carboxamide as an Effective Scaffold for the Design of New TRPV1 Agonists. Molecules, 30(3), 721. https://doi.org/10.3390/molecules30030721