New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Compounds and Phenolic Families
2.2. Inositol Phosphates and Trypsin Inhibitors Activity
2.3. Antioxidant Activity
2.4. Effect of Ingredients on Chemical Composition of Analyzed Formulations
3. Materials and Methods
3.1. Formulated Flours Composition
3.2. Extrusion Process Conditions
3.3. Chemical Analysis
3.3.1. Analysis of Total Phenolic Compounds and Phenolic Families
Analysis of Total Phenolic Compounds by QUENCHER Methodology
Analysis of Total Hydroxybenzoic Acids by QUENCHER Methodology
Analysis of Total Hydroxycinnamic Acids by QUENCHER Methodology
Analysis of Total Flavonols by QUENCHER Methodology
3.3.2. Analysis of Non-Nutritional Factors
Analysis of Inositol Phosphates
Analysis of Trypsin Inhibitors Activity
3.3.3. Antioxidant Activity
Folin–Ciocalteu Assay
FRAP Assay
DPPH Assay
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esposito, L.; Casolani, N.; Ruggeri, M.; Spizzirri, U.G.; Aiello, F.; Chiodo, E.; Martuscelli, M.; Restuccia, D.; Mastrocola, D. Sensory Evaluation and Consumers’ Acceptance of a Low Glycemic and Gluten-Free Carob-Based Bakery Product. Foods 2024, 13, 2815. [Google Scholar] [CrossRef] [PubMed]
- Szymandera-Buszka, K.; Gumienna, M.; Jędrusek-Golińska, A.; Waszkowiak, K.; Hęś, M.; Szwengiel, A.; Gramza-Michałowska, A. Innovative application of phytochemicals from fermented legumes and spices/herbs added in extruded snacks. Nutrients 2021, 13, 4538. [Google Scholar] [CrossRef] [PubMed]
- Ciudad-Mulero, M.; Morales, P.; Cámara, M.; Fernández-Ruiz, V. Acceptance of new formulations of extruded gluten free snacks based on pulse flours by Spanish millennial consumers. Sustainability 2022, 14, 3083. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Fernández-Ruiz, V.; Cuadrado, C.; Arribas, C.; Pedrosa, M.M.; Berrios, J.D.J.; Pan, J.; Morales, P. Novel gluten-free formulations from lentil flours and nutritional yeast: Evaluation of extrusion effect on phytochemicals and non-nutritional factors. Food Chem. 2020, 315, 126175. [Google Scholar] [CrossRef]
- Sotelo-Díaz, L.I.; Igual, M.; Martínez-Monzó, J.; García-Segovia, P. Techno-Functional Properties of Corn Flour with Cowpea (Vigna unguilata) Powders Obtained by Extrusion. Foods 2023, 12, 298. [Google Scholar] [CrossRef]
- Dilrukshi, H.N.; Torrico, D.D.; Brennan, M.A.; Brennan, C.S. Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chem. 2022, 389, 133107. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2016, 54, 858–870. [Google Scholar] [CrossRef]
- Acquah, C.; Ohemeng-Boahen, G.; Power, K.A.; Tosh, S.M. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. Front. Sustain. Food Syst. 2021, 5, 681662. [Google Scholar] [CrossRef]
- Chatree, S.; Thongmaen, N.; Tantivejkul, K.; Sitticharoon, C.; Vucenik, I. Role of Inositols and Inositol Phosphates in Energy Metabolism. Molecules 2020, 25, 5079. [Google Scholar] [CrossRef]
- de Lima, V.C.O.; Piuvezam, G.; Maciel, B.L.L.; Morais, A.H.d.A. Trypsin inhibitors: Promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J. Enzym. Inhib. Med. Chem. 2019, 34, 405–419. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Saldívar, S.O.S. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2017, 83, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Varoni, E.M. Pulses, Healthy, and Sustainable Food Sources for Feeding the Planet. Int. J. Mol. Sci. 2017, 18, 255. [Google Scholar] [CrossRef]
- Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ayala-Zavala, J.F.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Agro-industrial fruit byproducts as health-promoting ingredients used to supplement baked food products. Foods 2022, 11, 3181. [Google Scholar] [CrossRef] [PubMed]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Res. Int. 2013, 51, 756–763. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Vega, E.N.; García-Herrera, P.; Pedrosa, M.M.; Arribas, C.; Berrios, J.D.J.; Cámara, M.; Fernández-Ruiz, V.; Morales, P. Extrusion cooking effect on carbohydrate fraction in novel gluten-free flours based on chickpea and rice. Molecules 2022, 27, 1143. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Arumugam, V.; Haugabrooks, E.; Williamson, P.; Hendrich, S. Soluble dietary fiber (Fibersol-2) decreased hunger and increased satiety hormones in humans when ingested with a meal. Nutr. Res. 2015, 35, 393–400. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Guillamón, E.; Pedrosa, M.M. Cooking and sensorial quality, nutritional composition and functional properties of cold-extruded rice/white bean gluten-free fettuccine fortified with whole carob fruit flour. Food Funct. 2020, 11, 7913–7924. [Google Scholar] [CrossRef]
- Bourekoua, H.; Różyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Pomegranate seed powder as a functional component of gluten-free bread (Physical, sensorial and antioxidant evaluation). Int. J. Food Sci. Technol. 2018, 53, 1906–1913. [Google Scholar] [CrossRef]
- Littardi, P.; Rinaldi, M.; Grimaldi, M.; Cavazza, A.; Chiavaro, E. Effect of Addition of Green Coffee Parchment on Structural, Qualitative and Chemical Properties of Gluten-Free Bread. Foods 2020, 10, 5. [Google Scholar] [CrossRef]
- Morales, P.; Cebadera-Miranda, L.; Cámara, R.M.; Reis, F.S.; Barros, L.; Berrios, J.D.J.; Ferreira, I.C.; Cámara, M. Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. J. Funct. Foods 2015, 19, 537–544. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. Foods 2019, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Lucini, L.; Rodriguez, J.M.L.; Barba, F.J.; Giuberti, G. Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chem. 2019, 271, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Mironeasa, S.; Coţovanu, I.; Mironeasa, C.; Ungureanu-Iuga, M. A review of the changes produced by extrusion cooking on the bioactive compounds from vegetal sources. Antioxidants 2023, 12, 1453. [Google Scholar] [CrossRef]
- Oladiran, D.A.; Emmambux, N.M. Nutritional and Functional Properties of Extruded Cassava-Soy Composite with Grape Pomace. Starch-Starke 2018, 70. [Google Scholar] [CrossRef]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Orkić, V.; Guberac, S.; Miličević, B. Food Industry By-Products as Raw Materials in the Production of Value-Added Corn Snack Products. Foods 2021, 10, 946. [Google Scholar] [CrossRef]
- Hossain, A.; Jayadeep, A. Impact of extrusion on the content and bioaccessibility of fat soluble nutraceuticals, phenolics and antioxidants activity in whole maize. Food Res. Int. 2022, 161, 111821. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, C.; Luo, S.; Chen, J.; Gong, E. The Profile and Bioaccessibility of Phenolic Compounds in Cereals Influenced by Improved Extrusion Cooking Treatment. PLoS ONE 2016, 11, e0161086. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Xu, K.; Guo, M.; Mohamedshah, Z.; Ferruzzi, M.G.; Martinez, M.M. Manufacturing the ultimate green banana flour: Impact of drying and extrusion on phenolic profile and starch bioaccessibility. Food Chem. 2019, 297, 124990. [Google Scholar] [CrossRef]
- de Toledo, N.M.V.; Brigide, P.; López-Nicolás, R.; Frontela, C.; Ros, G.; Canniatti-Brazaca, S.G. Higher inositol phosphates and total oxalate of cookies containing fruit by-products and their influence on calcium, iron, and zinc bioavailability by Caco-2 cells. Cereal Chem. 2019, 96, 456–464. [Google Scholar] [CrossRef]
- Udomkun, P.; Tirawattanawanich, C.; Ilukor, J.; Sridonpai, P.; Njukwe, E.; Nimbona, P.; Vanlauwe, B. Promoting the use of locally produced crops in making cereal-legume-based composite flours: An assessment of nutrient, antinutrient, mineral molar ratios, and aflatoxin content. Food Chem. 2019, 286, 651–658. [Google Scholar] [CrossRef]
- Haddad, J.; Allaf, K. A study of the impact of instantaneous controlled pressure drop on the trypsin inhibitors of soybean. J. Food Eng. 2007, 79, 353–357. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of legumes in extrusion cooking: A review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Rathod, R.P.; Annapure, U.S. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT-Food Sci. Technol. 2016, 66, 114–123. [Google Scholar] [CrossRef]
- Rathod, R.P.; Annapure, U.S. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT-Food Sci. Technol. 2017, 80, 121–130. [Google Scholar] [CrossRef]
- Batista, K.A.; Prudêncio, S.H.; Fernandes, K.F. Changes in the Functional Properties and Antinutritional Factors of Extruded Hard-to-Cook Common Beans (Phaseolus vulgaris, L.). J. Food Sci. 2010, 75, C286–C290. [Google Scholar] [CrossRef]
- Adeleye, O.O.; Awodiran, S.T.; Ajayi, A.O.; Ogunmoyela, T.F. Effect of high-temperature, short-time cooking conditions on in vitro protein digestibility, enzyme inhibitor activity and amino acid profile of selected legume grains. Heliyon 2020, 6, e05419. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sandhu, K.S.; Rusu, A.; Trif, M.; Purewal, S.S. Evaluating the Effects of Wheat Cultivar and Extrusion Processing on Nutritional, Health-Promoting, and Antioxidant Properties of Flour. Front. Nutr. 2022, 9, 872589. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, M.; Djordjević, M.; Starowicz, M.; Krupa-Kozak, U. Plant-Based Antioxidants in Gluten-Free Bread Production: Sources, Technological and Sensory Aspects, Enhancing Strategies and Constraints. Antioxidants 2024, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Altan, A.; McCarthy, K.L.; Maskan, M. Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. Int. J. Food Sci. Technol. 2009, 44, 1263–1271. [Google Scholar] [CrossRef]
- Zhang, R.; Khan, S.A.; Chi, J.; Wei, Z.; Zhang, Y.; Deng, Y.; Liu, L.; Zhang, M. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. LWT-Food Sci. Technol. 2018, 88, 64–70. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Tang, J.; Swanson, B.G. Extruded Legumes. US Patent 0145483A1, 19 June 2008. [Google Scholar]
- Del Pino-García, R.; García-Lomillo, J.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Muñiz, P. Adaptation and Validation of QUick, Easy, New, CHEap, and Reproducible (QUENCHER) Antioxidant Capacity Assays in Model Products Obtained from Residual Wine Pomace. J. Agric. Food Chem. 2015, 63, 6922–6931. [Google Scholar] [CrossRef]
- Fogliano, V.; Monti, S.M.; Musella, T.; Randazzo, G.; Ritieni, A. Formation of coloured Maillard reaction products in a gluten-glucose model system. Food Chem. 1999, 66, 293–299. [Google Scholar] [CrossRef]
- Palombini, S.V.; Claus, T.; Maruyama, S.A.; Carbonera, F.; Montanher, P.F.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Optimization of a New Methodology for Determination of Total Phenolic Content in Rice Employing Fast Blue BB and QUENCHER Procedure. J. Braz. Chem. Soc. 2016, 27, 1188–1194. [Google Scholar] [CrossRef]
- Bonoli, M.; Verardo, V.; Marconi, E.; Caboni, M.F. Antioxidant Phenols in Barley (Hordeum vulgare L.) Flour: Comparative Spectrophotometric Study among Extraction Methods of Free and Bound Phenolic Compounds. J. Agric. Food Chem. 2004, 52, 5195–5200. [Google Scholar] [CrossRef]
- Burbano, C.; Muzquiz, M.; Osagie, A.; Ayet, G.; Cuadrado, C. Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology. Food Chem. 1995, 52, 321–325. [Google Scholar] [CrossRef]
- Welham, T.; Domoney, C. Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci. 2000, 159, 289–299. [Google Scholar] [CrossRef]
Sample | HBC (mg GAE/g) | HCC (mg FAE/g) | FC (mg QE/g) | TPC (mg GAE/g) |
---|---|---|---|---|
CR | 4.08 ± 0.40d,B | 0.59 ± 0.06f,B | 0.140 ± 0.013g,B | 12.34 ± 0.26e,B |
CE | 1.62 ± 0.15a,A | 0.34 ± 0.02c,A | 0.084 ± 0.008a,A | 10.26 ± 0.31d,A |
CF#1 | 4.88 ± 0.29e,B | 0.44 ± 0.04e,B | 0.091 ± 0.006cd,A | 11.40 ± 0.08d,B |
EF#1 | 2.17 ± 0.14b,A | 0.29 ± 0.03b,A | 0.125 ± 0.011d,B | 8.29 ± 0.78c,A |
CF#2 | 5.35 ± 0.11f,B | 0.34 ± 0.03bc,B | 0.067 ± 0.007a,A | 14.28 ± 0.07f,B |
EF#2 | 2.32 ± 0.13b,A | 0.22 ± 0.02a,A | 0.102 ± 0.010bc,B | 11.30 ± 0.90e,A |
CF#3 | 5.31 ± 0.25f,B | 0.40 ± 0.04de,B | 0.078 ± 0.007ab,A | 8.53 ± 0.40a,B |
EF#3 | 1.81 ± 0.09a,A | 0.23 ± 0.02a,A | 0.098 ± 0.009bc,B | 7.44 ± 0.31b,A |
CF#4 | 2.66 ± 0.15c,B | 0.38 ± 0.04cde,B | 0.090 ± 0.009cd,A | 9.51 ± 0.50bc,B |
EF#4 | 2.19 ± 0.07b,A | 0.24 ± 0.02a,A | 0.092 ± 0.008ab,A | 6.32 ± 0.33a,A |
CF#5 | 1.91 ± 0.10a,A | 0.31 ± 0.03ab,B | 0.092 ± 0.005bc,A | 13.83 ± 0.49f,B |
EF#5 | 2.35 ± 0.05b,B | 0.21 ± 0.02a,A | 0.094 ± 0.007ab,A | 9.80 ± 0.50d,A |
CF#6 | 4.12 ± 0.32d,B | 0.28 ± 0.03a,B | 0.070 ± 0.006a,A | 8.97 ± 0.05ab,B |
EF#6 | 1.70 ± 0.15a,A | 0.22 ± 0.02a,A | 0.110 ± 0.009c,B | 6.59 ± 0.44a,A |
CF#7 | 2.53 ± 0.12bc,B | 0.44 ± 0.04e,B | 0.120 ± 0.011f,B | 9.70 ± 0.22c,B |
EF#7 | 2.31 ± 0.08b,A | 0.27 ± 0.02b,A | 0.101 ± 0.009bc,A | 6.53 ± 0.38a,A |
CF#8 | 2.22 ± 0.05ab,B | 0.36 ± 0.03bcd,A | 0.100 ± 0.009de,A | 13.84 ± 0.68f,B |
EF#8 | 1.80 ± 0.22a,A | 0.35 ± 0.02c,A | 0.138 ± 0.011e,B | 10.18 ± 0.27d,A |
CF#9 | 2.15 ± 0.03a,A | 0.32 ± 0.03ab,B | 0.106 ± 0.010e,A | 9.21 ± 0.53bc,B |
EF#9 | 3.94 ± 0.17c,B | 0.28 ± 0.03b,A | 0.110 ± 0.010c,A | 7.99 ± 0.04bc,A |
Sample | IP4 | IP5 | IP6 | Total IP | Trypsin Inhibition |
---|---|---|---|---|---|
CR | 0.26 ± 0.01a,A | 0.49 ± 0.01de,A | 2.19 ± 0.27c,A | 2.95 ± 0.27c,A | 5.86 ± 0.16e,B |
CE | 0.27 ± 0.01bc,A | 0.54 ± 0.09d,A | 2.82 ± 0.11f,B | 3.52 ± 0.22e,B | 0.31 ± 0.02de,A |
CF#1 | 0.26 ± 0.01a,A | 0.48 ± 0.03cde,A | 2.24 ± 0.34c,A | 2.97 ± 0.38c,A | 5.89 ± 0.19e,B |
EF#1 | 0.26 ± 0.01ab,A | 0.51 ± 0.04bcd,A | 1.94 ± 0.11d,A | 2.71 ± 0.07c,A | 0.29 ± 0.01cd,A |
CF#2 | 0.26 ± 0.02a,A | 0.46 ± 0.03bcd,A | 2.23 ± 0.13c,B | 2.94 ± 0.12c,B | 6.21 ± 0.27f,B |
EF#2 | 0.28 ± 0.01c,A | 0.48 ± 0.02abcd,A | 1.90 ± 0.04d,A | 2.66 ± 0.07c,A | 0.26 ± 0.02b,A |
CF#3 | 0.25 ± 0.01a,A | 0.51 ± 0.03e,A | 2.15 ± 0.21c,A | 2.91 ± 0.20c,A | 4.40 ± 0.08d,B |
EF#3 | 0.26 ± 0.01ab,A | 0.40 ± 0.27cd,A | 1.66 ± 0.57e,A | 2.32 ± 0.72d,A | 0.30 ± 0.02d,A |
CF#4 | 0.26 ± 0.00a,A | 0.43 ± 0.02ab,A | 1.65 ± 0.06b,A | 2.33 ± 0.06b,A | 2.50 ± 0.11a,B |
EF#4 | 0.25 ± 0.00a,A | 0.50 ± 0.08abcd,A | 1.55 ± 0.13c,A | 2.30 ± 0.19b,A | 0.30 ± 0.02d,A |
CF#5 | 0.25 ± 0.00a,A | 0.41 ± 0.02a,A | 1.75 ± 0.09b,B | 2.41 ± 0.07b,A | 2.47 ± 0.23a,B |
EF#5 | 0.25 ± 0.00a,A | 0.47 ± 0.07abcd,A | 1.56 ± 0.03c,A | 2.28 ± 0.09b,A | 0.28 ± 0.00c,A |
CF#6 | 0.26 ± 0.00a,A | 0.42 ± 0.03ab,A | 1.84 ± 0.17b,A | 2.52 ± 0.20b,A | 2.77 ± 0.09b,B |
EF#6 | 0.25 ± 0.00ab,A | 0.45 ± 0.03abc,A | 1.85 ± 0.18d,A | 2.55 ± 0.18c,A | 0.22 ± 0.01aA |
CF#7 | 0.26 ± 0.01a,A | 0.41 ± 0.05a,A | 1.37 ± 0.07a,B | 2.03 ± 0.08a,B | 2.48 ± 0.09a,B |
EF#7 | 0.26 ± 0.00ab,A | 0.45 ± 0.04abc,A | 0.98 ± 0.08a,A | 1.68 ± 0.08a,A | 0.33 ± 0.01e,A |
CF#8 | 0.26 ± 0.00a,A | 0.41 ± 0.02a,A | 1.83 ± 0.14b,B | 2.50 ± 0.12b,B | 3.58 ± 0.30c,B |
EF#8 | 0.26 ± 0.02ab,A | 0.43 ± 0.05ab,A | 1.25 ± 0.04b,A | 1.87 ± 0.18a,A | 0.31 ± 0.02de,A |
CF#9 | 0.27 ± 0.01a,A | 0.44 ± 0.02abc,A | 1.83 ± 0.18b,B | 2.54 ± 0.20b,B | 3.69 ± 0.33c,B |
EF#9 | 0.26 ± 0.02ab,A | 0.41 ± 0.02a,A | 1.54 ± 0.05c,A | 2.21 ± 0.07b,A | 0.26 ± 0.01b,A |
Sample | Folin–Ciocalteu (mg GAE/g) | DPPH Radical Scavenging Capacity (mg TE/g) | FRAP (mg TE/g) |
---|---|---|---|
CR | 1.104 ± 0.040d,B | 3.199 ± 0.162f,A | 0.879 ± 0.059a,B |
CE | 0.554 ± 0.039a,A | 3.014 ± 0.123d,A | 0.618 ± 0.010a,A |
CF#1 | 1.370 ± 0.074e,A | 2.648 ± 0.122d,A | 1.115 ± 0.108c,A |
EF#1 | 1.464 ± 0.068d,A | 3.133 ± 0.068de,B | 1.464 ± 0.074e,B |
CF#2 | 1.078 ± 0.091d,A | 1.848 ± 0.101a,A | 1.733 ± 0.023e,A |
EF#2 | 0.974 ± 0.043c,A | 3.270 ± 0.072e,B | 1.879 ± 0.057g,B |
CF#3 | 0.937 ± 0.093c,B | 2.361 ± 0.120c,A | 0.921 ± 0.034ab,A |
EF#3 | 0.728 ± 0.067b,A | 2.588 ± 0.026c,B | 0.974 ± 0.094b,A |
CF#4 | 0.825 ± 0.073abc,A | 2.969 ± 0.110e,B | 0.923 ± 0.060ab,A |
EF#4 | 0.908 ± 0.072c,A | 2.564 ± 0.036c,A | 1.471 ± 0.098e,B |
CF#5 | 0.867 ± 0.013abc,B | 2.208 ± 0.084bc,A | 1.067 ± 0.094bc,A |
EF#5 | 0.697 ± 0.056b,A | 2.154 ± 0.052a,A | 1.344 ± 0.011de,B |
CF#6 | 0.808 ± 0.052ab,A | 2.295 ± 0.075c,A | 0.888 ± 0.057a,A |
EF#6 | 0.866 ± 0.071c,A | 2.282 ± 0.148ab,A | 1.068 ± 0.088b,B |
CF#7 | 0.761 ± 0.066a,A | 2.202 ± 0.238bc,A | 1.287 ± 0.113d,A |
EF#7 | 0.871 ± 0.061c,A | 2.341 ± 0.080b,A | 1.246 ± 0.060cd,A |
CF#8 | 0.816 ± 0.024ab,B | 1.995 ± 0.049ab,B | 1.009 ± 0.023abc,A |
EF#8 | 0.743 ± 0.036b,A | 2.366 ± 0.150b,A | 1.203 ± 0.016c,B |
CF#9 | 0.882 ± 0.009bc,B | 1.787 ± 0.028a,A | 1.048 ± 0.078bc,A |
EF#9 | 0.682 ± 0.025b,A | 3.039 ± 0.116d,B | 1.710 ± 0.135f,B |
Fibersol® Content | Passion Fruit Content | Fibersol® Content x Passion Fruit Content | |
---|---|---|---|
Total phenolic content | 0.2224 | 0.5953 | 0.7507 |
Hydroxybenzoic acids | 0.8337 | 0.0396 | 0.0209 |
Hydroxycinnamic acids | 0.0000 | 0.0002 | 0.0000 |
Flavonols | 0.3467 | 0.0002 | 0.0001 |
IP4 | 0.3572 | 0.6945 | 0.8870 |
IP5 | 0.0001 | 0.2849 | 0.4188 |
IP6 | 0.0000 | 0.0321 | 0.0001 |
Total IP | 0.0000 | 0.0076 | 0.0000 |
Trypsin inhibition | 0.1918 | 0.2678 | 0.2741 |
Folin–Ciocalteu | 0.2319 | 0.0000 | 0.0000 |
DPPH | 0.0005 | 0.7130 | 0.7738 |
FRAP | 0.0435 | 0.0001 | 0.0027 |
Sample | Characteristics | |||
---|---|---|---|---|
% Mixture CP:R | % Passion Fruit | % Fibersol® | ||
CR | Control raw flour | 93.75 | 0 | 0 |
CE | Control extruded flour | |||
CF#1 | Control formulation 1 | 68.75 | 20 | 5 |
EF#1 | Extruded formulation 1 | |||
CF#2 | Control formulation 2 | 76.25 | 12.5 | 5 |
EF#2 | Extruded formulation 2 | |||
CF#3 | Control formulation 3 | 83.75 | 5 | 5 |
EF#3 | Extruded formulation 3 | |||
CF#4 | Control formulation 4 | 66.25 | 20 | 7.5 |
EF#4 | Extruded formulation 4 | |||
CF#5 | Control formulation 5 | 73.75 | 12.5 | 7.5 |
EF#5 | Extruded formulation 5 | |||
CF#6 | Control formulation 6 | 81.25 | 5 | 7.5 |
EF#6 | Extruded formulation 6 | |||
CF#7 | Control formulation 7 | 63.75 | 20 | 10 |
EF#7 | Extruded formulation 7 | |||
CF#8 | Control formulation 8 | 71.25 | 12.5 | 10 |
EF#8 | Extruded formulation 8 | |||
CF#9 | Control formulation 9 | 78.75 | 5 | 10 |
EF#9 | Extruded formulation 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciudad-Mulero, M.; Vega, E.N.; García-Herrera, P.; Fernández-Tomé, S.; Pedrosa, M.M.; Arribas, C.; Berrios, J.D.J.; Pan, J.; Leal, P.; Cámara, M.; et al. New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties. Molecules 2025, 30, 1225. https://doi.org/10.3390/molecules30061225
Ciudad-Mulero M, Vega EN, García-Herrera P, Fernández-Tomé S, Pedrosa MM, Arribas C, Berrios JDJ, Pan J, Leal P, Cámara M, et al. New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties. Molecules. 2025; 30(6):1225. https://doi.org/10.3390/molecules30061225
Chicago/Turabian StyleCiudad-Mulero, María, Erika N. Vega, Patricia García-Herrera, Samuel Fernández-Tomé, Mercedes M. Pedrosa, Claudia Arribas, José De J. Berrios, James Pan, Priscila Leal, Montaña Cámara, and et al. 2025. "New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties" Molecules 30, no. 6: 1225. https://doi.org/10.3390/molecules30061225
APA StyleCiudad-Mulero, M., Vega, E. N., García-Herrera, P., Fernández-Tomé, S., Pedrosa, M. M., Arribas, C., Berrios, J. D. J., Pan, J., Leal, P., Cámara, M., Fernández-Ruiz, V., & Morales, P. (2025). New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties. Molecules, 30(6), 1225. https://doi.org/10.3390/molecules30061225