An Engineered Gene Nanovehicle Developed for Smart Gene Therapy to Selectively Inhibit Smooth Muscle Cells: An In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Functionality of the phEGR1-PKCδ Gene
2.2. Characterization of Gene Vehicle (PEI-Au/CHC)
2.3. Efficacy of PEI-Au/CHC/phEGR1-PKCδ Complex
3. Materials and Methods
3.1. Construction of phEGR1-PKCδ
3.1.1. Recombinant Plasmid DNA
3.1.2. Bacterial Culture and DNA Amplification
3.1.3. DNA Extraction and DNA Retardation Assay
3.2. Measurement of Protein Production
3.3. Preparation of the Gene Vehicle
3.3.1. Preparation of CHC
3.3.2. In-Situ Synthesis of PEI-Au Nanoparticles
3.3.3. Quantitative Characterization of the Amine Group for the Gene Vehicles
3.3.4. Assembling the Nanocomplex
3.3.5. Vehicle Characterization
3.4. Plasmid DNA Transfection
3.5. The Efficacy of PEI-Au/CHC/phEGR1-PKCδ Complex
3.5.1. Cell Viability
3.5.2. ECs and SMC Nuclei Morphology
3.5.3. TUNEL Assay
3.5.4. Wound Healing Assay
3.6. The Transfer Effect of the PTCA Balloon Catheter with Gene Vehicle
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SMC | Smooth muscle cell |
EC | Endothelial cell |
PKCδ | Protein kinase C-delta |
phEGR1 | hEGR1 promoter |
PTCA | Percutaneous transluminal coronary angioplasty |
SD | Sprague Dawley |
CAD | Coronary artery disease |
PEI | Polyethylenimine |
CHC | Carboxymethyl hexanoyl chitosan |
FBS | Fetal bovine serum |
PS | Penicillin streptomycin |
GAGs | Glycosaminoglycans |
HAc | Hyaluronic acid |
TEM | Transmission electron microscopy |
TUNEL | Terminal deoxynucleotidyl transferase dUTP nick end labeling |
ROS | Reactive oxygen species |
LPS | Lipopolysaccharides |
DLS | Dynamic light scatter |
IL | Interleukin |
LB | Luria-Bertani |
TAE | Tris-acetate-EDTA |
OCT | Optimal cutting temperature |
DMEM | Dulbecco’s Modified Eagle Medium |
References
- Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangas, G.; Kuepper, F. Restenosis: Repeat narrowing of a coronary artery prevention and treatment. Circulation 2002, 105, 2586–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Ryer, E.J.; Kundi, R.; Kamiya, K.; Itoh, H.; Faries, P.L.; Sakakibara, K.; Kent, K.C. Protein kinase C-δ regulates migration and proliferation of vascular smooth muscle cells through the extracellular signal-regulated kinase 1/2. J. Vasc. Surg. 2007, 45, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Zhou, B.; Lin, X.; Duan, L. Proteomic analysis identifies nuclear protein effectors in PKC-δ signaling under high glucose-induced apoptosis in human umbilical vein endothelial cells. Mol. Med. Rep. 2011, 4, 865–872. [Google Scholar] [PubMed] [Green Version]
- Mischak, H.; Kolch, W.; Goodnight, J.; Davidson, W.; Rapp, U.; Rose-John, S.; Mushinski, J. Expression of protein kinase C genes in hemopoietic cells is cell-type-and B cell-differentiation stage specific. J. Immunol. 1991, 147, 3981–3987. [Google Scholar]
- Takahashi, T.; Shibuya, M. The overexpression of PKCδ is involved in vascular endothelial growth factor-resistant apoptosis in cultured primary sinusoidal endothelial cells. Biochem. Biophys. Res. Commun. 2001, 280, 415–420. [Google Scholar] [CrossRef]
- Kato, K.; Yamanouchi, D.; Esbona, K.; Kamiya, K.; Zhang, F.; Kent, K.C.; Liu, B. Caspase-mediated protein kinase C-δ cleavage is necessary for apoptosis of vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H2253–H2261. [Google Scholar] [CrossRef]
- Li, P.-F.; Maasch, C.; Haller, H.; Dietz, R.; von Harsdorf, R. Requirement for protein kinase C in reactive oxygen species–induced apoptosis of vascular smooth muscle cells. Circulation 1999, 100, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Rubin, E.; Sukhatme, V.; Qureshi, S.; Hallahan, D.; Weichselbaum, R.R.; Kufe, D.W. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc. Natl. Acad. Sci. USA 1992, 89, 10149–10153. [Google Scholar] [CrossRef] [Green Version]
- Hjoberg, J.; Le, L.; Imrich, A.; Subramaniam, V.; Mathew, S.I.; Vallone, J.; Haley, K.J.; Green, F.H.; Shore, S.A.; Silverman, E.S. Induction of early growth-response factor 1 by platelet-derived growth factor in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286, L817–L825. [Google Scholar] [CrossRef]
- Santiago, F.S.; Lowe, H.C.; Kavurma, M.M.; Chesterman, C.N.; Baker, A.; Atkins, D.G.; Khachigian, L.M. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat. Med. 1999, 5, 1438. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Klibanov, A.M. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA 2003, 100, 9138–9143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruponen, M.; Ylä-Herttuala, S.; Urtti, A. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: Physicochemical and transfection studies. Biochim. Biophys. Acta Biomembr. 1999, 1415, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Felgner, P.L.; Ringold, G. Cationic liposome-mediated transfection. Nature 1989, 337, 387–388. [Google Scholar] [CrossRef] [PubMed]
- Behr, J.-P.; Demeneix, B.; Loeffler, J.-P.; Perez-Mutul, J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 1989, 86, 6982–6986. [Google Scholar] [CrossRef] [Green Version]
- Zabner, J.; Fasbender, A.J.; Moninger, T.; Poellinger, K.A.; Welsh, M.J. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 1995, 270, 18997–19007. [Google Scholar] [CrossRef] [Green Version]
- Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Szoka, F. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 1997, 4, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Szoka, F.C. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996, 35, 5616–5623. [Google Scholar] [CrossRef]
- Rivest, V.; Phivilay, A.; Julien, C.; Bélanger, S.; Tremblay, C.; Emond, V.; Calon, F. Novel liposomal formulation for targeted gene delivery. Pharm. Res. 2007, 24, 981–990. [Google Scholar] [CrossRef]
- Gunduz, N.; Ceylan, H.; Guler, M.O.; Tekinay, A.B. Intracellular accumulation of gold nanoparticles leads to inhibition of macropinocytosis to reduce the endoplasmic reticulum stress. Sci. Rep. 2017, 7, 40493. [Google Scholar] [CrossRef] [PubMed]
- Gallud, A.; Klöditz, K.; Ytterberg, J.; Östberg, N.; Katayama, S.; Skoog, T.; Gogvadze, V.; Chen, Y.-Z.; Xue, D.; Moya, S. Cationic gold nanoparticles elicit mitochondrial dysfunction: A multi-omics study. Sci. Rep. 2019, 9, 4366. [Google Scholar] [CrossRef] [Green Version]
- Heo, S.K.; Yun, H.J.; Noh, E.K.; Park, W.H.; Park, S.D. LPS induces inflammatory responses in human aortic vascular smooth muscle cells via Toll-like receptor 4 expression and nitric oxide production. Immunol. Lett. 2008, 120, 57–64. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther. 2017, 24, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargouri, M.; Sapin, A.; Bouali, S.; Becuwe, P.; Merlin, J.; Maincent, P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Technol. Cancer Res. Treat. 2009, 8, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.; Chang, F.-H.; Chen, M.-H. Developing a novel cholesterol-based nanocarrier with high transfection efficiency and serum compatibility for gene therapy. J. Formos. Med. Assoc. 2019, 118, 766–775. [Google Scholar] [CrossRef]
- Berkova, N.; Lair-Fulleringer, S.; Féménia, F.; Huet, D.; Wagner, M.-C.; Gorna, K.; Tournier, F.; Ibrahim-Granet, O.; Guillot, J.; Chermette, R. Aspergillus fumigatus conidia inhibit tumour necrosis factor-or staurosporine-induced apoptosis in epithelial cells. Int. Immunol. 2006, 18, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Mtairag, E.M.; Houard, X.; Rais, S.; Pasquier, C.; Oudghiri, M.; Jacob, M.-P.; Meilhac, O.; Michel, J.-B. Pharmacological potentiation of natriuretic peptide limits polymorphonuclear neutrophil-vascular cell interactions. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1824–1831. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Joo, J.H.; Kim, J.; Lim, H.J.; Kim, S.; Curtiss, L.; Seong, J.K.; Cui, W.; Yabe-Nishimura, C.; Bae, Y.S. Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res. 2013, 99, 483–493. [Google Scholar] [CrossRef] [Green Version]
Items | Amount |
---|---|
DNA for digestion | 1 μg |
Restriction enzyme 1 | 1 U |
Restriction enzyme 2 | 1 U |
10× cut-smart buffer | 5 μL |
Addition of diH2O to total volume | 50 μL |
Items | Amount |
---|---|
Vector DNA | 100 ng |
Insert DNA | 17 ng |
10× ligase buffer | 1 μL |
T4 DNA ligase | 1 U |
Addition of diH2O to total volume | 10 μL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.-Y.; Wang, Y.-C.; Chen, M.-H.; Tung, F.-I.; Chiu, K.-M.; Liu, T.-Y. An Engineered Gene Nanovehicle Developed for Smart Gene Therapy to Selectively Inhibit Smooth Muscle Cells: An In Vitro Study. Int. J. Mol. Sci. 2020, 21, 1530. https://doi.org/10.3390/ijms21041530
Cheng L-Y, Wang Y-C, Chen M-H, Tung F-I, Chiu K-M, Liu T-Y. An Engineered Gene Nanovehicle Developed for Smart Gene Therapy to Selectively Inhibit Smooth Muscle Cells: An In Vitro Study. International Journal of Molecular Sciences. 2020; 21(4):1530. https://doi.org/10.3390/ijms21041530
Chicago/Turabian StyleCheng, Ling-Yi, Yu-Chi Wang, Ming-Hong Chen, Fu-I Tung, Kuan-Ming Chiu, and Tse-Ying Liu. 2020. "An Engineered Gene Nanovehicle Developed for Smart Gene Therapy to Selectively Inhibit Smooth Muscle Cells: An In Vitro Study" International Journal of Molecular Sciences 21, no. 4: 1530. https://doi.org/10.3390/ijms21041530
APA StyleCheng, L.-Y., Wang, Y.-C., Chen, M.-H., Tung, F.-I., Chiu, K.-M., & Liu, T.-Y. (2020). An Engineered Gene Nanovehicle Developed for Smart Gene Therapy to Selectively Inhibit Smooth Muscle Cells: An In Vitro Study. International Journal of Molecular Sciences, 21(4), 1530. https://doi.org/10.3390/ijms21041530