Study of Oligonucleotides Access and Distribution in Human Peripheral Blood Mononuclear Cells
Abstract
:1. Introduction
2. Results
2.1. Dose Selection of Different Sized Cy5-Oligonucleotide (ON*) Uptake by Leukocytes from Human Whole Blood
2.2. Culture Medium Selection Based on Leukocyte Viability along Time
2.3. Leukocyte Nuclear Access of Fluorescent FITC-ON
2.4. Kinetics of FITC-ON Internalization in Leukocytes
2.5. Fluorescence Intensity of FITC-ON in Leukocytes
2.6. Access of FITC-ON to Regulatory T Cells
3. Discussion
4. Materials and Methods
4.1. Antibodies
4.2. Oligonucleotides (ONs)
4.3. ON Dose-Response Study in Human Whole Blood
4.4. Comparative Study of Culture Medium Survival
4.5. Intracellular Location of FITC-ON Fluorescence by Fluorescence Microscopy
4.6. ON Uptake Kinetics in Human Whole Blood
4.7. Determination of ON* Access to CD4 and CD8 T Cells According to Their Foxp3 Expression
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, C.F. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu. Rev. Med. 2019, 70, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Quemener, A.M.; Bachelot, L.; Forestier, A.; Donnou-Fournet, E.; Gilot, D.; Galibert, M.-D. The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip. Rev. RNA 2020, 11, e1594. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.T.; Baker, B.F.; Crooke, R.M.; Liang, X.-H. Antisense technology: An overview and prospectus. Nat. Rev. Drug Discov. 2021, 20, 427–453. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Casimersen: First Approval. Drugs 2021, 81, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Tarn, W.-Y.; Cheng, Y.; Ko, S.-H.; Huang, L.-M. Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021, 13, 2015. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Veedu, R.; Diermeier, S. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int. J. Mol. Sci. 2021, 22, 3295. [Google Scholar] [CrossRef]
- Batista-Duharte, A.; Sendra, L.; Herrero, M.J.; Téllez-Martínez, D.; Carlos, I.Z.; Aliño, S.F. Progress in the Use of Antisense Oligonucleotides for Vaccine Improvement. Biomolecules 2020, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of Antisense Drugs. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 81–105. [Google Scholar] [CrossRef]
- Shadid, M.; Badawi, M.; Abulrob, A. Antisense oligonucleotides: Absorption, distribution, metabolism, and excretion. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1281–1292. [Google Scholar] [CrossRef]
- Tapia-Calle, G.; Born, P.A.; Koutsoumpli, G.; Gonzalez-Rodriguez, M.I.; Hinrichs, W.L.J.; Huckriede, A.L.W. A PBMC-Based System to Assess Human T Cell Responses to Influenza Vaccine Candidates In Vitro. Vaccines 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Busetto, S.; Trevisan, E.; Patriarca, P.; Menegazzi, R. A single-step, sensitive flow cytofluorometric assay for the simulta-neous assessment of membrane-bound and ingested Candida albicans in phagocytosing neutrophils. Cytometry A 2004, 58, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuutila, J.; Lilius, E.-M. Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytom. Part A 2005, 65, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Reyes, E.M.; Bates, P.J. Characterizing Oligonucleotide Uptake in Cultured Cells: A Case Study Using AS1411 Aptamer. Methods Mol. Biol. 2019, 2036, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Linnane, E.; Davey, P.; Zhang, P.; Puri, S.; Edbrooke, M.; Chiarparin, E.; Revenko, A.S.; MacLeod, A.R.; Norman, J.C.; Ross, S.J. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res. 2019, 47, 4375–4392. [Google Scholar] [CrossRef]
- Stein, C.A.; Hansen, J.B.; Lai, J.; Wu, S.; Voskresenskiy, A.; Høg, A.; Worm, J.; Hedtjärn, M.; Souleimanian, N.; Miller, P.; et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 2010, 38, e3. [Google Scholar] [CrossRef] [Green Version]
- Crooke, S.T.; Wang, S.; Vickers, T.A.; Shen, W.; Liang, X.-H. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 2017, 35, 230–237. [Google Scholar] [CrossRef]
- Miguel, A.; Sendra, L.; Noé, V.; Ciudad, C.J.; Dasi, F.; Hervas, D.; Herrero, M.J.; Aliño, S.F. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma. OncoTargets Ther. 2017, 10, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Batista-Duharte, A.; Sendra, L.; Herrero, M.; Portuondo, D.; Téllez-Martínez, D.; Olivera, G.; Fernández-Delgado, M.; Javega, B.; Herrera, G.; Martínez, A.; et al. Foxp3 Silencing with Antisense Oligonucleotide Improves Immunogenicity of an Adjuvanted Recombinant Vaccine against Sporothrix schenckii. Int. J. Mol. Sci. 2021, 22, 3470. [Google Scholar] [CrossRef]
- Järver, P.; Dondalska, A.; Poux, C.; Sandberg, A.S.; Bergenstråhle, J.; Sköld, A.E.; Dereuddre-Bosquet, N.; Martinon, F.; Pålsson, S.; Zaghloul, E.; et al. Single-Stranded Nucleic Acids Regulate TLR3/4/7 Activation through Interference with Clathrin-Mediated Endocytosis. Sci. Rep. 2018, 8, 15841. [Google Scholar] [CrossRef]
- Pålsson, S.A.; Dondalska, A.; Bergenstråhle, J.; Rolfes, C.; Björk, A.; Sedano, L.; Power, U.F.; Rameix-Welti, M.A.; Lundeberg, J.; Wahren-Herlenius, M.; et al. Single-Stranded Oligonucleo-tide-Mediated Inhibition of Respiratory Syncytial Virus Infection. Front. Immunol. 2020, 11, 580547. [Google Scholar] [CrossRef]
- Wu, X.; Lin, M.; Li, Y.; Zhao, X.; Yan, F. Effects of DMEM and RPMI 1640 on the biological behavior of dog perioste-um-derived cells. Cytotechnology 2009, 59, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierson, B.A.; McGLAVE, P.B.; Hu, W.-S.; Miller, J.S. Natural Killer Cell Proliferation Is Dependent on Human Serum and Markedly Increased Utilizing an Enriched Supplemented Basal Medium. J. Hematotherapy 1995, 4, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Arodin Selenius, L.; Wallenberg Lundgren, M.; Jawad, R.; Danielsson, O.; Björnstedt, M. The Cell Culture Medium Affects Growth, Phenotype Expression and the Response to Selenium Cytotoxicity in A549 and HepG2 Cells. Antioxidants 2019, 14, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, Y.-P.; Lin, C.-C.; Perng, I.-M.; Shen, Y.-C.; Chuang, C.-K.; Liao, S.-K. Culture Medium Induced Morphological Changes of Melanoma Cells Associated with Change in Sensitivity to Lysis by Lymphokine-Activated Killer Cells. Cancer Biother. Radiopharm. 1997, 12, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Van Amersfoort, E.S.; Van Strijp, J.A. Evaluation of a flow cytometric fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by polymorphonuclear leukocytes. Cytometry 1994, 17, 294–301. [Google Scholar] [CrossRef]
- Loike, J.D.; Silverstein, S.C. A fluorescence quenching technique using trypan blue to differentiate between attached and ingested glutaraldehyde-fixed red blood cells in phagocytosing murine macrophages. J. Immunol. Methods 1983, 57, 373–379. [Google Scholar] [CrossRef]
- Lacroix, A.; Vengut-Climent, E.; de Rochambeau, D.; Sleiman, H.F. Uptake and Fate of Fluorescently Labeled DNA Nanostructures in Cellular Environments: A Cautionary Tale. ACS Central Sci. 2019, 5, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Qin, S.; Si, W.; Wang, A.; Xing, B.; Gao, R.; Ren, X.; Wang, L.; Wu, X.; Zhang, J.; et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 2021, 374, abe6474. [Google Scholar] [CrossRef]
- Blank, C.U.; Haining, W.N.; Held, W.; Hogan, P.G.; Kallies, A.; Lugli, E.; Lynn, R.C.; Philip, M.; Rao, A.; Restifo, N.P.; et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 2019, 19, 665–674. [Google Scholar] [CrossRef]
ON- | Lymphocytes | Neutrophiles | Monocytes | ON- | T cells | B cells | NK cells | ON- | CD4+ T cells | CD8+ T cells | CD4-CD8- T cells | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Avg. | SD | Avg. | SD | Avg. | SD | Time | Avg. | SD | Avg. | SD | Avg. | SD | Time | Avg. | SD | Avg. | SD | Avg. | SD |
0 | 75.93 | 40.02 | 51.58 | 57.50 | 1.89 | 0.94 | 0 | 51.53 | 24.25 | 10.33 | 7.32 | 13.67 | 8.56 | 0 | 36.07 | 19.54 | 11.93 | 4.80 | 3.51 | 1.25 |
15 m | 105.18 | 69.69 | 7.16 | 8.34 | 1.06 | 1.87 | 15 m | 73.34 | 44.39 | 13.32 | 10.92 | 18.60 | 14.75 | 15 m | 49.00 | 31.16 | 20.97 | 12.71 | 3.36 | 3.24 |
30 m | 80.50 | 38.95 | 2.44 | 2.85 | 0.14 | 0.28 | 30 m | 58.90 | 23.97 | 8.41 | 6.36 | 13.37 | 8.90 | 30 m | 39.95 | 19.04 | 15.47 | 4.55 | 3.45 | 1.14 |
45 m | 66.18 | 28.18 | 1.24 | 2.08 | 0.00 | 0.00 | 45 m | 49.05 | 17.74 | 6.38 | 4.34 | 10.94 | 6.36 | 45 m | 33.14 | 14.03 | 13.08 | 3.57 | 2.89 | 1.50 |
60 m | 39.37 | 13.68 | 0.41 | 0.78 | 0.05 | 0.10 | 60 m | 37.46 | 5.07 | 3.83 | 2.44 | 6.10 | 3.10 | 60 m | 26.25 | 5.61 | 9.51 | 2.64 | 1.72 | 0.47 |
24 h | 23.38 | 20.55 | 0.04 | 0.08 | 0.00 | 0.00 | 24 h | 18.46 | 15.47 | 3.16 | 3.23 | 1.83 | 2.02 | 24 h | 13.10 | 11.65 | 4.65 | 3.45 | 0.57 | 0.54 |
48 h | 26.70 | 23.99 | 0.00 | 0.00 | 0.00 | 0.00 | 48 h | 22.50 | 19.48 | 2.99 | 3.18 | 2.26 | 3.03 | 48 h | 15.42 | 14.08 | 6.07 | 4.64 | 0.60 | 0.52 |
72 h | 14.07 | 10.72 | 0.00 | 0.00 | 0.00 | 0.00 | 72 h | 13.23 | 10.35 | 0.45 | 0.53 | 0.84 | 1.01 | 72 h | 10.63 | 9.92 | 2.19 | 2.58 | 0.47 | 0.61 |
96 h | 18.30 | 21.75 | 0.00 | 0.00 | 0.00 | 0.00 | 96 h | 16.46 | 20.80 | 0.22 | 0.43 | 0.43 | 0.86 | 96 h | 11.95 | 13.64 | 5.73 | 6.77 | 0.43 | 0.86 |
7 d | 3.38 | 3.91 | 0.00 | 0.00 | 0.00 | 0.00 | 7 d | 3.23 | 4.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7 d | 2.18 | 2.98 | 0.93 | 0.94 | 0.13 | 0.15 |
ON+ | Lymphocytes | Neutrophiles | Monocytes | ON+ | T cells | B cells | NK cells | ON+ | CD4+ T cells | CD8+ T cells | CD4-CD8- T cells | |||||||||
Time | Avg. | SD | Avg. | SD | Avg. | SD | Time | Avg. | SD | Avg. | SD | Avg. | SD | Time | Avg. | SD | Avg. | SD | Avg. | SD |
0 | 7.86 | 7.13 | 93.13 | 62.77 | 10.50 | 6.50 | 0 | 8.12 | 4.43 | 1.80 | 1.08 | 1.43 | 0.80 | 0 | 5.17 | 3.23 | 2.39 | 1.24 | 0.56 | 0.39 |
15 m | 39.32 | 23.47 | 183.54 | 75.35 | 22.30 | 13.98 | 15 m | 26.37 | 14.38 | 8.51 | 7.01 | 4.70 | 2.85 | 15 m | 18.07 | 10.96 | 7.14 | 4.07 | 1.15 | 0.96 |
30 m | 42.59 | 24.28 | 172.56 | 73.61 | 15.96 | 9.97 | 30 m | 29.61 | 17.16 | 7.19 | 3.97 | 7.09 | 4.88 | 30 m | 19.79 | 12.50 | 6.61 | 3.18 | 1.78 | 0.41 |
45 m | 46.38 | 19.16 | 166.69 | 35.81 | 17.65 | 8.51 | 45 m | 29.87 | 11.35 | 8.42 | 3.52 | 8.09 | 4.64 | 45 m | 19.48 | 10.37 | 8.28 | 2.18 | 2.27 | 0.55 |
60 m | 45.52 | 14.17 | 130.28 | 20.84 | 14.02 | 5.74 | 60 m | 29.94 | 8.11 | 7.38 | 2.75 | 6.15 | 4.88 | 60 m | 18.89 | 7.12 | 8.43 | 1.67 | 2.64 | 1.05 |
24 h | 27.29 | 20.03 | 52.96 | 22.72 | 3.14 | 2.23 | 24 h | 16.08 | 8.72 | 3.60 | 3.65 | 7.57 | 7.87 | 24 h | 9.92 | 7.49 | 4.23 | 1.81 | 1.93 | 0.70 |
48 h | 33.79 | 29.94 | 43.43 | 46.27 | 0.94 | 1.25 | 48 h | 19.56 | 16.94 | 3.69 | 3.69 | 10.04 | 11.18 | 48 h | 14.74 | 13.13 | 4.38 | 2.69 | 2.76 | 2.28 |
72 h | 35.97 | 15.66 | 33.78 | 38.40 | 0.00 | 0.00 | 72 h | 27.85 | 12.55 | 2.52 | 2.10 | 6.86 | 3.31 | 72 h | 19.34 | 10.43 | 8.99 | 7.12 | 1.19 | 1.52 |
96 h | 27.16 | 18.81 | 7.06 | 2.12 | 0.00 | 0.00 | 96 h | 22.72 | 14.60 | 1.77 | 1.54 | 4.75 | 5.43 | 96 h | 16.13 | 11.30 | 5.82 | 3.01 | 2.05 | 1.33 |
7 d | 18.27 | 7.07 | 0.00 | 0.00 | 0.00 | 0.00 | 7 d | 17.72 | 6.16 | 0.12 | 0.24 | 0.44 | 0.71 | 7 d | 12.80 | 5.33 | 4.04 | 2.17 | 0.88 | 0.73 |
ON+/Q | Lymphocytes | Neutrophiles | Monocytes | ON+/Q | T cells | B cells | NK cells | ON+/Q | CD4+ T cells | CD8+ T cells | CD4-CD8- T cells | |||||||||
Time | Avg. | SD | Avg. | SD | Avg. | SD | Time | Avg. | SD | Avg. | SD | Avg. | SD | Time | Avg. | SD | Avg. | SD | Avg. | SD |
0 | 47.44 | 26.79 | 33.50 | 23.11 | 7.99 | 6.55 | 0 | 4.89 | 3.06 | 0.32 | 0.26 | 0.71 | 0.46 | 0 | 2.67 | 1.74 | 1.53 | 1.35 | 0.70 | 0.78 |
15 m | 170.35 | 98.82 | 139.75 | 79.88 | 18.59 | 14.90 | 15 m | 10.09 | 4.39 | 0.98 | 0.72 | 1.40 | 0.98 | 15 m | 7.23 | 5.40 | 2.31 | 0.83 | 1.18 | 1.06 |
30 m | 231.13 | 168.53 | 175.59 | 110.83 | 24.97 | 30.07 | 30 m | 24.19 | 23.75 | 3.34 | 4.17 | 4.56 | 3.68 | 30 m | 16.84 | 19.94 | 4.81 | 3.95 | 2.52 | 1.08 |
45 m | 262.29 | 166.86 | 198.16 | 108.45 | 32.74 | 40.20 | 45 m | 15.72 | 15.94 | 3.37 | 3.01 | 6.00 | 4.55 | 45 m | 13.03 | 8.50 | 6.01 | 4.66 | 2.66 | 1.82 |
60 m | 156.96 | 38.35 | 110.90 | 24.16 | 14.95 | 9.42 | 60 m | 22.03 | 8.08 | 5.27 | 7.22 | 3.90 | 2.35 | 60 m | 12.65 | 6.09 | 6.40 | 2.16 | 3.00 | 0.98 |
24 h | 74.35 | 25.85 | 41.22 | 10.62 | 6.55 | 3.67 | 24 h | 17.77 | 13.65 | 3.44 | 4.48 | 5.52 | 6.15 | 24 h | 9.61 | 8.90 | 5.39 | 3.40 | 2.83 | 1.64 |
48 h | 57.24 | 8.07 | 34.14 | 0.16 | 1.37 | 1.94 | 48 h | 17.33 | 5.80 | 0.83 | 0.47 | 3.58 | 0.96 | 48 h | 8.96 | 3.69 | 6.08 | 1.22 | 2.29 | 0.88 |
72 h | 23.21 | 4.30 | 9.73 | 1.51 | 0.00 | 0.00 | 72 h | 9.75 | 4.96 | 1.07 | 0.74 | 2.81 | 1.39 | 72 h | 5.26 | 3.67 | 3.68 | 1.69 | 0.82 | 0.40 |
96 h | 25.77 | 13.44 | 5.26 | 2.76 | 0.00 | 0.00 | 96 h | 17.71 | 8.98 | 0.20 | 0.35 | 2.84 | 2.46 | 96 h | 12.85 | 8.12 | 3.86 | 1.47 | 1.18 | 1.08 |
7 d | 14.99 | 2.95 | 0.00 | 0.00 | 0.00 | 0.00 | 7 d | 14.99 | 2.95 | 0.00 | 0.00 | 0.00 | 0.00 | 7 d | 9.95 | 3.29 | 3.31 | 0.80 | 1.72 | 1.84 |
CD4+CD25+Foxp3+ | ||||||
---|---|---|---|---|---|---|
Low | High | |||||
Time | Cells/ul ± SD | % of CD4 | Cells (% of Foxp3+) | FI | Cells (% of Foxp3+) | FI |
1h | 77.8 ± 40.3 | 3.3 | 84.6 | 513.2 ± 27.7 | 15.4 | 1532.4 ± 182.5 |
2d | 5.2 ± 2.4 | 1.5 | 70.1 | 594.4 ± 147.7 | 29.9 | 1442.2 ± 468.1 |
4d | 4.3 ± 2.9 | 1.0 | 92.6 | 438 ± 89.6 | 7.4 | 434.8 ± 595.5 |
7d | 1.6 ± 1.4 | 1.7 | 100.0 | 522.7 ± 92.5 | 0.0 | 0.0 ± 0.0 |
CD8+Foxp3+ | ||||||
Low | High | |||||
Time | Cells/ul ± SD | % of CD8+ | Cells (% of Foxp3+) | FI | Cells (% of foxp3+) | FI |
1h | 43.7 ± 63.4 | 5.03 | 85.27 | 485.5 ± 31.5 | 14.73 | 1263.4 ± 776.7 |
2d | 4.5 ± 5.0 | 2.20 | 74.38 | 346.0 ± 205.3 | 25.62 | 520.6 ± 761.2 |
4d | 6.6 ± 8.6 | 2.42 | 78.26 | 373.0 ± 219.1 | 21.74 | 286.4 ± 640.4 |
7d | 20.5 ± 17.6 | 33.0 | 98.13 | 404.0 ± 8.5 | 1.9 | 312.3 ± 541.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Delgado, M.; Sendra, L.; Herrero, M.J.; Olivera-Pasquini, G.G.; Batista-Duharte, A.; Aliño, S.F. Study of Oligonucleotides Access and Distribution in Human Peripheral Blood Mononuclear Cells. Int. J. Mol. Sci. 2022, 23, 5839. https://doi.org/10.3390/ijms23105839
Fernández-Delgado M, Sendra L, Herrero MJ, Olivera-Pasquini GG, Batista-Duharte A, Aliño SF. Study of Oligonucleotides Access and Distribution in Human Peripheral Blood Mononuclear Cells. International Journal of Molecular Sciences. 2022; 23(10):5839. https://doi.org/10.3390/ijms23105839
Chicago/Turabian StyleFernández-Delgado, Manuel, Luis Sendra, María José Herrero, Gladys G. Olivera-Pasquini, Alexander Batista-Duharte, and Salvador F. Aliño. 2022. "Study of Oligonucleotides Access and Distribution in Human Peripheral Blood Mononuclear Cells" International Journal of Molecular Sciences 23, no. 10: 5839. https://doi.org/10.3390/ijms23105839
APA StyleFernández-Delgado, M., Sendra, L., Herrero, M. J., Olivera-Pasquini, G. G., Batista-Duharte, A., & Aliño, S. F. (2022). Study of Oligonucleotides Access and Distribution in Human Peripheral Blood Mononuclear Cells. International Journal of Molecular Sciences, 23(10), 5839. https://doi.org/10.3390/ijms23105839