Deregulation of All-Trans Retinoic Acid Signaling and Development in Cancer
Abstract
:1. Introduction
2. ATRA Synthesis within Normal and Cancer Cells
2.1. Colorectal Cancer
2.2. Gastric Cancer
2.3. Lung Cancer
2.4. Oropharyngeal
2.5. Breast Cancer
2.6. Ovarian Cancer
2.7. Pancreatic Cancer
2.8. Prostate Cancer
2.9. Renal Cell Carcinoma
3. RARγ Is Overexpressed by Some Carcinomas
4. MiR Regulation of Retinoic Acid Signaling
4.1. MiR-30a Regulates ATRA Biosynthesis
4.2. MiR-30a-5p Negatively Regulates RARγ Expression and Is a Tumor Suppressor for Various Cancers
5. ATRA Signaling in Cancer
6. The Consequences of Active and Inactive RARγ
7. The Modes of Action of RARγ
8. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clagett-Dame, M.; DeLuca, H.F. The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 2002, 22, 347–381. [Google Scholar] [CrossRef]
- Rhinn, M.; Dolle, P. Retinoic acid signalling during development. Development 2012, 139, 843–858. [Google Scholar] [CrossRef] [Green Version]
- Samarut, E.; Rochette-Egly, C. Nuclear retinoic acid receptors: Conductors of the retinoic acid symphony during development. Mol. Cell. Endocrinol. 2012, 348, 348–360. [Google Scholar] [CrossRef]
- de Thé, H.; Pandolfi, P.P.; Chen, Z. Acute promyelocytic leukemia: A paradigm for oncoprotein-targeted cure. Cancer Cell 2017, 32, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Grimwade, D.; Enver, T. Acute promyelocytic leukmia: Where does it come from? Leukemia 2004, 18, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.H.; Wasik, M.A.; Finan, J.; Rodriguez, R.; Moore, J.; Kamoun, M.; Rennert, H.; Bird, J.; Nowell, P.C.; Salhany, K.E. Evidence for early hematopoietic progenitor cell involvement in acute promyelocytic leukemia. Am. J. Clin. Pathol. 1999, 112, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Chen, Z. Acute promyelocytic leukemia: From highly fatal to highly curable. Blood 2008, 111, 2505–2515. [Google Scholar] [CrossRef] [Green Version]
- Bhutani, T.; Koo, J. A review of the chemopreventative effects of oral retinoids for internal neoplasms. J. Drugs Dermatol. 2011, 10, 1292–1298. [Google Scholar]
- Kelly, W.K.; Osman, I.; Reuter, V.E.; Curley, T.; Heston, W.D.W.; Nanus, D.M.; Scher, H.I. The development of biologic end points in patients treated with differentiation agents: An experience of retinoids in prostate cancer. Clin. Cancer Res. 2000, 6, 838–846. [Google Scholar]
- Pili, R.; Salumbides, B.; Zhao, M.; Altiok, S.; Qian, D.; Zwiebel, J.; Carducci, M.A.; Rudek, M.A. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer 2012, 106, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Cruz, F.D.; Matushansky, I. Solid tumor differentiation therapy—Is it possible? Oncotarget 2012, 3, 559–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conserva, M.R.; Redavid, I.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. RARG gene dysregulation in acute myeloid leukemia. Front. Mol. Biosci. 2019, 6, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, J.E. Stem cell concepts renew cancer research. Blood 2008, 112, 4793–4808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G. The social norm of hematopoietic stem cells and dysregulation in leukemia. Int. J. Mol. Sci. 2022, 23, 5063. [Google Scholar] [CrossRef] [PubMed]
- Vincente-Duenas, C.; Haur, J.; Ruiz-Roca, L.; Ingenhag, D.; Rodriguez-Meira, A.; Auer, F.; Borkhardt, A.; Sanchez-Garcia, I. Tumoral cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy. Semin. Cancer Biol. 2015, 32, 3–9. [Google Scholar] [CrossRef]
- Baltes, S.; Nau, H.; Lampen, A. All-trans retinoic acid enhances differentiation and influences permeability of intestinal Caco-2 cells under serum free conditions. Dev. Growth Differ. 2004, 46, 503–514. [Google Scholar] [CrossRef]
- Liden, M.; Erikson, U. Understanding retinol metabolism: Structure and functions of retinol dehydrogenases. J. Biol. Chem. 2006, 281, 13001–13004. [Google Scholar] [CrossRef] [Green Version]
- Napoli, J.L. Physiological Insights into all-trans retinoic acid biosynthesis. Biochem. Biophys. Acta 2012, 1821, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Kroptova, E.S.; Zinovieva, O.L.; Zyryanova, A.F.; Dybovaya, V.I.; Praolov, V.S.; Beresten, S.F.; Operina, N.Y.; Mashkova, T.D. Altered expression of multiple genes involved in retinoic acid biosynthesis in human colorectal cancer. Path. Oncol. Res. 2014, 20, 707–717. [Google Scholar] [CrossRef]
- Jette, C.; Peterson, P.W.; Sandoval, I.T.; Manos, E.J.; Hadley, E.; Ireland, C.M.; Jones, D.A. The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinal dehydrogenase L. J. Biol. Chem. 2004, 279, 34397–34405. [Google Scholar] [CrossRef] [Green Version]
- Kroptova, E.S.; Zinov’eva, O.L.; Zyranova, A.F.; Chinzonov, E.L.; Afanas’ev, S.G.; Cherdyntseva, N.V.; Berensten, S.F.; lu Oparina, N.; Mashkeva, T.D. Expression of genes involved in retinoic acid biosynthesis in human gastric cancer. Mol. Biol. 2013, 47, 317–330. [Google Scholar] [CrossRef]
- Matsumoto, M.; Yokoyama, H.; Suzuki, H.; Shiraishi-Yokoyama, H.; Hibi, T. Retinoic acid formation from retinol in the human gastric mucosa: The role of class IV alcohol dehydrogenases and its relevance to morphological changes. Am. J. Gastrointest. Liver Physiol. 2005, 289, G429–G433. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, E.S.; Zinovieva, O.L.; Oparina, N.Y.; Prokofjeva, M.M.; Spirin, P.V.; Favorskaya, I.A.; Zborovskaya, I.B.; Lisitsyn, N.A.; Prassolov, V.S.; Mashkova, T.D. Abnormal expression of genes that regulate retinoid metabolism in non-small-cell lung cancer. Mol. Biol. 2016, 50, 220–229. [Google Scholar] [CrossRef]
- Seidensaal, K.; Nollert, A.; Fiege, A.H.; Muller, M.; Fleming, T.; Gunkel, N.; Zaoui, K.; Grabe, N.; Weichert, N.; Weber, K.-J.; et al. Impaired aldehyde dehydrogenase subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavourable prognosis of head and neck squamous cell carcinoma. Mol. Cancer 2015, 14, 204. [Google Scholar] [CrossRef] [Green Version]
- Kostareli, E.; Holzinger, D.; Bogatyrova, O.; Hielscher, T.; Wichmann, G.; Keck, M.; Lahrmann, B.; Grabe, N.; Flechtenmacher, C.; Schmidt, C.R.; et al. HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinoma. J. Clin. Investig. 2013, 123, 2488–2501. [Google Scholar] [CrossRef] [Green Version]
- Bhat, P.V.; Marcinkiewicz, M.; Yuan, L.; Mader, S. Changing patterns of retinal dehydrogenase expression parallel nephron development in the rat. J. Histochem. Cytochem. 1998, 46, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Hayden, L.J.; Satre, M.A. Alterations in cellular retinal metabolism contribute to differential retinoid responsiveness in normal human mammary epithelial cells versus breast cancer cells. Breast Cancer Res. Treat. 2002, 72, 95–105. [Google Scholar] [CrossRef]
- Mira-Y-Lopez, R.; Zheng, W.L.; Kuppumbatti, Y.S.; Rexer, B.; Jing, Y.; Ong, D.E. Retinol conversion to retinoic acid is impaired in breast cancer cells. J. Cell Physiol. 2000, 185, 302–309. [Google Scholar] [CrossRef]
- Williams, S.J.; Cvetkovic, D.; Hamilton, T.C. Vitamin A metabolism is impaired in human ovarian cancer. Gynecol. Oncol. 2009, 112, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-A.; Kwan, H.; Cho, H.; Chung, J.-Y.; Hewitt, S.M.; Kim, J.-H. ALDH1A2 is a candidate tumor suppressor gene in ovarian cancer. Cancer 2019, 11, 1553. [Google Scholar] [CrossRef] [Green Version]
- Bleul, T.; Ruhl, R.; Bulashevska, S.; Karakhanova, S.; Werner, J.; Bazhin, A.V. Reduced retinoids and retinoid receptors’ expression in pancreatic cancer: A link to patient survival. Mol. Carcinog. 2015, 54, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Colvin, E.K.; Susanto, J.M.; Kench, J.G.; Ong, V.N.; Mawson, A.; Pinese, M.; Chang, D.K.; Rooman, I.; O’Toole, S.A.; Segara, D.; et al. Retinoid signaling in pancreatic cancer, injury, and regeneration. PLoS ONE 2011, 6, e29075. [Google Scholar] [CrossRef]
- Pasquali, D.; Thaller, C.; Eichele, G. Abnormal level of retinoic acid in prostate cancer tissues. J. Clin. Endo. Metab. 1996, 81, 2186–2191. [Google Scholar]
- Guo, X.; Nanys, D.M.; Ruiz, A.; Rando, R.R.; Bok, L.J. Reduced levels of retinyl esters and vitamin A in human renal cancers. Cancer Res. 2001, 61, 2774–2781. [Google Scholar] [PubMed]
- Zhan, H.C.; Gudas, L.J.; Bok, D.; Rando, R.; Nanus, D.M.; Tickoo, S.K. Differential expression of the enzyme that esterifies retinol, lecithin:retinol acyltransferase, in subtypes of human renal cancer and normal kidney. Clin. Canc. Res. 2003, 9, 4897–4905. [Google Scholar]
- Idres, N.; Marill, J.; Flexer, M.A.; Chabot, G.G. Activation of retinoic acid receptor-dependent transcription by all-trans-retinoic acid metabolites and isomers. J. Biol. Chem. 2002, 277, 31491–31498. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Marchwicka, A.; Cunningham, A.; Toellner, K.-M.; Marcinkowksa, E. Antagonising retinoic acid receptors increases myeloid cell production by cultured hematopoietic stem cells. Arch. Immunol. Ther. Exp. 2017, 65, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.L.; Song, W.; Zhou, P.; Fu, Q.R.; Lin, C.L.; Chen, Q.X.; Shen, D.Y. Oncogenic retinoic acid receptor gamma knockdown reverses multi-drug resistance of human colorectal cancer via Wnt/beta-catenin pathway. Cell Cycle 2017, 16, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.L.; Luo, Q.; Rui, G.; Zhang, W.; Zhang, Q.Y.; Chen, Q.X.; Shen, D.Y. Oncogenic activity of retinoic acid receptor gamma is exhibited through activation of the Akt/NF-kappaB and Wnt/beta-catenin pathways in cholangiocarcinoma. Mol. Cell. Biol. 2013, 33, 3416–3425. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.D.; Wu, H.; Zhang, H.P.; Lu, N.; Ye, P.; Yu, F.-H.; Zhou, H.; Li, W.G.; Cao, X.; Lin, Y.Y.; et al. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010, 70, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
- Xiu, L.; Zhao, Y.; Li, N.; Zeng, J.; Liu, J.; Fu, Y.; Gao, Q.; Wu, L. High expression of RARG accelerates ovarian cancer progression by regulating cell proliferation. Front. Oncol. 2022, 12, 1063031. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Dou, X.; Zhang, N.; Wen, B.; Zhang, M.; Zhang, Q.; Xu, S.; Zhou, J.; Liu, T. Retinoic acid receptor gamma is required for proliferation of pancreatic cancer cells. Cell Biol. Int. 2023, 47, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Yamakowa, K.; Koyangi-Aoi, M.; Machinaga, A.; Kakiuchi, N.; Hirano, T.; Kodama, Y.; Aoi, T. Blockage of retinoic acid signalling via RARgamma suppressed the proliferation of pancreatic cancer cells by arresting the cell cycle progression in G1-S phase. Cancer Cell Int. 2023, 23, 94. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtseva, A.V.; Nyushko, K.M.; Zaretsky, A.R.; Shagin, D.A.; Kaprin, A.D.; Alekseev, B.Y.; Snezhkina, A.V. Upregulation of Rarb, Rarg, and Rorc Genes in Clear Cell Renal Cell Carcinoma. Biomed. Pharmacol. J. 2016, 9, 967–975. [Google Scholar] [CrossRef]
- Kashyap, V.; Laursen, K.B.; Brenet, F.; Viale, A.J.; Scandura, J.M.; Gudas, L.J. RARgamma is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J. Cell. Sci. 2013, 126 Pt 4, 999–1008. [Google Scholar]
- Samarut, E.; Gaudin, C.; Hughes, S.; Gillet, B.; de Bernard, S.; Jouve, P.-E.; Buffat, L.; Allot, A.; Lecompte, D.; Berekelya, L.; et al. Retinoic acid receptor subtype-specific transcriptomes in the early zebrafish embryo. Mol. Endocrinol. 2014, 28, 200–272. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Liu, S.; Hu, L.; Jia, L.; Wang, H.; Guo, M.; Chen, C.; Liu, Y.; Xu, L. miR30 family: A promising regulator in development and disease. Biomed. Res. Int. 2018, 2018, 9623412. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.-J.; Lin, J.; Zhu, D.; Wang, X.; Brooks, D.; Chen, M.; Chu, Z.-B.; Takoda, K.; Ciccarelli, B.; Admin, S.; et al. miR30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/B-catenin/BCL9 pathway. Cancer Res. 2014, 74, 1801–1813. [Google Scholar] [CrossRef] [Green Version]
- Shial, S.-G.; Hsiao, J.-R.; Chang, H.-J.; Hsu, Y.-M.; Wou, G.-H.; Deng, H.-Y.; Chou, S.-T.; Kuo, C.-C.; Chang, J.-Y. MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J. Biol. Sci. 2020, 27, 46. [Google Scholar]
- Abbasi, A.; Hosseinpourfeizi, M.; Safaralizdeh, R. All-trans retinoic acid-mediated miR-30a up-regulation suppresses autophagy and sensitises gastric cancer cells to cisplatin. Life Sci. 2022, 307, 120884. [Google Scholar] [CrossRef]
- Barrett, A.; Shi, J.Y.; Shirkov, Y.; Brown, G.; Zelent, A.; Petrie, K. Expression of retinoic acid receptor gamma is regulated by miR-30a. Klin. Pediatr. 2023, 235, 002. [Google Scholar]
- Liu, M.; Huang, F.; Zhang, D.; Ju, J.; Wu, X.-B.; Wang, Y.; Wang, Y.; Wu, Y.; Nie, M.; Li, Z.; et al. Heterochromatin protein HP1g promotes colorectal cancer progression is regulated by miR-30a. Cancer Res. 2015, 75, 4593–4604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, S.E.; Elabd, N.S.; El-Kousky, S.M.; Awad, M.F. Down regulation of miR-30a-5p and miR-182-5p in gastric cancer: Clinical impact and survival analysis. Biochem. Biophys. Rep. 2021, 20, 101079. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-F.; Dai, H.; Ou, Q.; Zuo, G.-G.; Liu, C.-A. Overexpression of microRNA-30a-5p inhibits liver cancer cell proliferation and induces apoptosis by tageting MTDH1/PTEN/AKT pathway. Tumor Biol. 2016, 37, 5885–5895. [Google Scholar] [CrossRef]
- Kanthaje, S.; Baikunnje, N.; Kandal, I.; Ratacaram, C.K. Repertoires of MicriRNA-30 family as gate-keeper in lung cancer. Front. Biosci. 2021, 13, 141–156. [Google Scholar]
- Ruan, P.; Tao, Z.; Tan, A. Low expression of miR030a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci. Rep. 2018, 38, BSR20171027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azmi, A.S.; Li, Y.; Aboukameel, A.; Muqbil, I.; Philip, P.A.; Mohammad, R.M. DNA-methylation-caused downregulation of miR30 contributes to the high expression of XPO1 and the aggressive growth of tumors in pancreatic ductal adenocarcinoma. Cancers 2019, 11, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, Y. Long non-coding RNA NORAD contributes to the proliferative, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/B-catenin pathway. Cancer Cell Int. 2020, 20, 571. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cai, L.; Liu, J.; Wang, G.; Li, H.; Wang, X.; Xu, W.; Ren, M.; Feng, L.; Liu, P.; et al. MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physiol. Biochem. 2017, 43, 2405–2419. [Google Scholar] [CrossRef] [Green Version]
- Outeiro-Pinho, G.; Barros-Silva, D.; Aznar, E.; Sousa, A.-I.; Vieira-Coimbra, M.; Oliveira, J.; Goncalves, O.S.; Costa, B.M.; Junker, K.; Henrique, R.; et al. MicroRNA-30a-5pme: A novel diagnostic and prognostic biomarker for clear cell renal carcinoma in tissue and urine samples. J. Exp. Clin. Cancer Res. 2020, 39, 98. [Google Scholar] [CrossRef]
- Fu, J.; Xu, X.; Kang, L.; Zhou, L.; Wang, S.; Lu, J.; Cheng, L.; Fan, Z.; Youan, B.; Tian, P.; et al. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2. Biochem. Biophys. Res. Commun. 2014, 445, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kang, L.; Zhao, W.; Feng, Y.; Liu, W.; Wang, H.; Mai, H.; Huang, J.; Chen, S.; Wang, Y.; et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 2017, 400, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Aure, M.R.; Leivonen, S.; Fleischer, T.; Zhu, Q.; Overgaard, J.; Alsner, J.; Tramm, T.; Louhimo, R.; Alnaes, G.I.; Perala, M.; et al. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol. 2013, 14, R126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhou, M.; Li, K. MicroRNA-30 inhibits the growth of human ovarian cancer cells by suppressing RAB32 expression. Int. J. Immunopathol. Pharmacol. 2022, 36, 1–10. [Google Scholar] [CrossRef]
- Saleh, A.D.; Cheng, H.; Martin, S.E.; Si, H.; Ormanoglu, P.; Carlson, S.; Clavijo, P.E.; Yang, X.; Das, R.; Cornelius, S.; et al. Integrated genomic and functional microRNA analysis identifies miR-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer. Clin. Cancer Res. 2019, 25, 2860–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.W.; Wang, X.; Chao, G.; Wang, D.; Han, S.; Zhang, Y.D.; Luo, C.H.; Wang, H.W.; Jiang, J.J.; Li, C.X.; et al. MiR-30a-5p promotes cholangiocarcinoma cell proliferation through targeting SOCS3. J. Cancer 2020, 11, 3604–3614. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Khillan, J.S. A novel signaling by vitamin A/retinol promotes self renewal of mouse embryonic stem cells by activating PI3K/Akt signaling pathway via insulin-like growth factor-1 receptor. Stem Cells 2010, 28, 57–63. [Google Scholar] [CrossRef]
- Khillan, J.S. Vitamin A/retinol and maintenance of pluripotency of stem cells. Nutrients 2014, 6, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Purton, L.E.; Dworkin, S.; Olsen, G.H.; Walkley, C.R.; Fabb, S.A.; Collins, S.J.; Chambon, P. RAR is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J. Exp. Med. 2006, 203, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.A.; Tallafuss, A.; Yan, Y.-L.; Dudley, L.; Eisen, J.S.; Postlethwait, J.H. Characterization of the retinoic acid receptor genes raraa, rarab and rarg during zebrafish development. Gene Expr. Patterns 2006, 6, 546–555. [Google Scholar] [CrossRef]
- Quintana, E.; Shakleton, M.; Sabel, M.S.; Fuller, D.R.; Johnson, T.M.; Morrison, S.J. Efficient tumour formation by single human melanoma cells. Nature 2008, 456, 593–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatton, T.; Murphy, G.F.; Frank, N.Y.; Yamaura, K.; Waager-Gasser, A.M.; Gasser, M.; Zhan, Q.; Jordan, S.; Duncan, L.M.; Weishaupt, C.; et al. Identification of cells initiating human melanomas. Nature 2008, 451, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Wai, H.A.; Kawakami, K.; Wada, H.; Muller, F.; Vernalis, A.B.; Brown, G.; Johnson, W.E.B. The development and growth of tissues derived from cranial neural crest and primitive mesoderm is dependent on the ligation status of retinoic acid receptor γ: Evidence that retinoic acid receptor γ functions to maintain stem/progenitor cells in the absence of retinoic acid. Stem Cells Dev. 2015, 24, 507–519. [Google Scholar]
- Ying, Q.L.; Stavridis, M.; Griffiths, P.; Li, M.; Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 2003, 21, 183–186. [Google Scholar] [CrossRef]
- Petrie, K.; Urban-Wojciuk, Z.; Sbirkov, Y.; Graham, A.; Hamann, A.; Brown, G. Retinoic acid receptor γ is a therapeutically targetable driver of growth and survival in prostate cancer. Cancer Rep. 2022, 3, e1284. [Google Scholar] [CrossRef] [PubMed]
- Brown, G. Atagonizing RARgamma drives necroptosis of cancer stem cells. Int. J. Mol. Sci. 2022, 23, 4814. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, C.; Cheng, H.; Wu, Y.-L.; Liu, J.; Chen, Z.; Huang, J.-G.; Erickson, R.E.; Chen, L.; Zhang, H.; et al. Targeting to the non-genomic action of retinoic acid-receptor-gamma by acacetin in hepatocellular carcinoma. Sci. Rep. 2017, 7, 348. [Google Scholar] [CrossRef] [Green Version]
- Chefetz, I.; Grimley, E.; Yang, K.; Hong, L.; Vinogradova, E.V.; Suciu, R.; Kovalenko, I.; Karnak, D.; Morgan, C.A.; Chtcherbinine, M.; et al. A pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep. 2019, 26, 3061–3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebollido-Rios, R.; Venton, G.; Sancchez-Redondo, S.; Felip, C.I.; Fournet, G.; Gonzalez, E.; Romero-Fernandez, W.; Esuaela, D.O.B.; Di Stefano, B.; Penarroche-Diaz, R.; et al. Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in non small cell lung cancer. Oncogene 2020, 39, 2756–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, Y.; Yamawaki, K.; Ishiguro, T.; Yoshihara, K.; Ueda, H.; Sato, A.; Ohata, H.; Yoshida, Y.; Minamino, T.; Okamoto, K.; et al. ALDH-dependent glycolytic activation mediates stemness and paclitaxel resistance in patient-derived spheroid models of uterine endometrial cancer. Stem Cell Rep. 2019, 13, 730–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Song, H.; Jiang, L.; Qiao, Y.; Yang, D.; Wang, D.; Li, J. Silybin prevents prostate cancer by inhibited the ALDH1A1 expression in the retinol metabolism pathway. Front. Cell Dev. Biol. 2020, 8, 574394. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Chiu, W.-T.; Young, M.-Y.; Change, T.-H.; Huang, Y.-F.; Chou, C.-Y. Solanum incanum extract downregulates aldehyde dehydrogenase 1-mediated stemness and inhibits tumor formation in ovarian cancer cells. J. Cancer 2015, 6, 1011–1019. [Google Scholar] [CrossRef] [Green Version]
- Kadigamuwa, C.; Choksi, S.; Xu, Q.; Cataisson, C.; Greenbaum, S.S.; Yuspa, S.H.; Liu, Z.G. Role of retinoic acid receptor-gamma in DNA damage-induced necroptosis. iScience 2019, 17, 74–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, N.; De, P.K.; Wang, M.; Zhang, H.; Dobtrota, E.A.; Robertson, K.A.; Durden, D.L. CSK controls retinoic acid receptor (RAR) signaling: A RAR-c-SRC signaling axis is required for neuritogenic differentiation. Mol. Cell Biol. 2007, 27, 4179–4197. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Parra, M.A.; Walia, M.; Sankar, M.; Gronemeyer, H. Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol. Sys. Biol. 2011, 7, 538. [Google Scholar] [CrossRef] [PubMed]
- Chatagnon, A.; Veber, P.; Marin, V.; Bede, J.; Triqueneaux, G.; Semon, M.; Laudet, V.; d’Ache-Buc, F.; Benoit, G. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acid. Res. 2015, 43, 4833–4854. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, V.; Gudas, L.J.; Brenet, F.; Funk, P.; Viale, A.; Scandura, J.M. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J. Biol. Chem. 2011, 286, 3250–3260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, Q.; An, Q.; Zhang, C.; Mohagheghian, E.; Niu, B.; Qi, F.; Wei, F.; Chen, S.; Chen, X.; et al. Synthetic retinoid kills drug-resistant cancer stem cells via inducing RARgamma translocation-mediated tension reduction and chromatin decondensation. Adv. Sci. 2022, 9, 2203173. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holyoake, T.; Jiang, X.; Eaves, C.; Eaves, A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999, 94, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Corbin, A.S.; Agarwal, A.; Loriaux, M.; Cortes, J.; Deininger, M.W.; Druker, B.J. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Investig. 2011, 121, 396–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venton, G.; Perez-Alea, M.; Baier, C.; Pournet, G.; Quash, G.; Labiad, Y.; Martin, G.; Sanderson, F.; Poulin, P.; Suchon, P.; et al. Aldehyde dehydrogenases inhibition eradicated leukaemia stem cells while sparing normal progenitors. Blood Cancer J. 2016, 6, e469. [Google Scholar] [CrossRef]
- Chung, S.S.W.; Wang, X.; Roberts, S.S.; Griffey, S.M.; Reczek, P.R.; Wolgemuth, D.J. Oral administration of a retinoic receptor antagonist reversibly inhibits spermatogenesis in mice. Endocrinology 2011, 152, 2492–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, G.E.; Clay, R.J.; Mezza, L.E.; Bregman, C.L.; Buroker, R.A.; Frantz, J.D. BMS-189453, a novel retinoid receptor antagonist, is a potent testicular toxin. Toxicol. Sci. 2001, 59, 297–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cancer Type | ATRA Synthesis | RARγ is an Oncogene | miR-30a-5p is a Tumor Suppressor |
---|---|---|---|
Breast | No/low ATRA synthesis by human cell lines [27,28] | Expression in human cell lines inhibited proliferation [61] | |
Colorectal | ADH1B, ADH1C, RDHL, RDH5 mRNAs low in patients’ cells and human cell lines [19] RDHL and RDH5 mRNAs low in patients’ cells and human cell lines, low ATRA synthesis by cell lines [20] | Overexpressed in patients’ cells and human cell lines [38] | Low in patients’ cells, suppression in a xenograft model [52] |
Cholangiocarcinoma | Overexpressed in patients’ cells, downregulation reduced tumor xenografts [39] | Tumor promoter, overexpression promoted HCC9810 proliferation [66] | |
Gastric | ADH4, ADH1B, ADH1C, RDHL, ALDH1A1 mRNAs low in patients’ cells [21] | Low in patients’ cells, linked to metastasis [53] | |
Hepatocellular | Overexpressed in patients’ cells, overexpression in HepG2 promoted xenograft growth [40] | Low in patients’ cells, expression in a human cell line inhibited proliferation [54] | |
Lung | ADH1B, ADH3, RDH1, ALDH1A1 mRNAs low in patients’ cells [23] | Low in patients’ cells, a marker of disease progression [55] | |
Oropharyngeal | ALDH1A2 expression low in patients’ cells [24] | Low in patients’ cells, expression in human cell lines inhibited proliferation [56] | |
Ovarian | No ATRA synthesis by human cell lines [29]; ALDH1A2, ALDH1B1, ALDH9A1 mRNAs low in human cell lines [30] | Overexpressed in patients’ cells, knockdown in A2780 reduced xenograft growth [41] | Low in human cell lines, expression inhibited proliferation [64] |
Pancreatic | Low ATRA in patients’ cells [31] | Overexpressed in patients’ cells, required for the proliferation of pancreatic cancer cells [42,43] | Low in patients’ cells, suppression in a xenograft model [57] |
Prostate | Low ATRA within patients’ cells [33] | Low in patients’ cells, expression inhibited human cell line proliferation [58] | |
Renal | Low all-trans retinol and retinyl esters within patients’ cells [34] | Overexpression in patients’ cells [44] | Low in patients’ cells, expression inhibited human cell line proliferation [59] |
Agent | Target | Activity against |
---|---|---|
AGN205728 | RARγ antagonist | Patients’ prostate cancer cells, human cell lines [75,76] |
AGN194310 | Pan-RAR antagonist | Patients’ prostate cancer cells, human cell lines, pediatric patients’ primitive neuroectodermal and astrocytoma tumors [76] |
LY2955303 MM11253 | RARγ antagonists | Panc-1 and PK-1 pancreatic cancer cell lines, patient-derived organoids [43] |
Acacetin | Non-genomic actions of RARγ | Human hepatocellular cancer cell lines [77] |
673A | Inhibits ALDH1A isoforms | Human CD133+ ovarian cancer stem-like cells [78] |
DIMATE | Inhibits ALDH1 and ALDH3 | Small cell lung cancer cell xenografts, human cancer cell lines [79] |
DEAB, NCT-501, disulfiram | Inhibits ALDH1A1 | Spheroid cell formation by patients’ uterine endothelial cancer stem cells, tumorigenesis in vivo (disulphiram) [80] |
Silybin (HY-13748) | Inhibits ALDH1A1 expression | Xenografts of DU145 prostate cancer cell line cells [81] |
Solomargine | Downregulates ALDH1 isoforms expression | Xenografts of A2780CP70 ovarian cancer cell line cells, human cell lines [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, G. Deregulation of All-Trans Retinoic Acid Signaling and Development in Cancer. Int. J. Mol. Sci. 2023, 24, 12089. https://doi.org/10.3390/ijms241512089
Brown G. Deregulation of All-Trans Retinoic Acid Signaling and Development in Cancer. International Journal of Molecular Sciences. 2023; 24(15):12089. https://doi.org/10.3390/ijms241512089
Chicago/Turabian StyleBrown, Geoffrey. 2023. "Deregulation of All-Trans Retinoic Acid Signaling and Development in Cancer" International Journal of Molecular Sciences 24, no. 15: 12089. https://doi.org/10.3390/ijms241512089
APA StyleBrown, G. (2023). Deregulation of All-Trans Retinoic Acid Signaling and Development in Cancer. International Journal of Molecular Sciences, 24(15), 12089. https://doi.org/10.3390/ijms241512089