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Janusz Przewocki 1,2,* , Dominik Kossiński 2 , Adam Łukaszuk 3 , Grzegorz Jakiel 4,5 ,
Izabela Wocławek-Potocka 6 , Stanisław Ołdziej 7 and Krzysztof Łukaszuk 2,8

1 Institute of Mathematics, University of Gdansk, 80-308 Gdańsk, Poland
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Abstract: Ageing populations, mass “baby-free” policies and children born to mothers at the age
at which they are biologically expected to become grandmothers are growing problems in most
developed societies. Therefore, any opportunity to improve the quality of infertility treatments
seems important for the survival of societies. The possibility of indirectly studying the quality of
developing oocytes by examining their follicular fluids (hFFs) offers new opportunities for progress
in our understanding the processes of final oocyte maturation and, consequently, for predicting the
quality of the resulting embryos and personalising their culture. Using mass spectrometry, we studied
follicular fluids collected individually during in vitro fertilisation and compared their composition
with the quality of the resulting embryos. We analysed 110 follicular fluids from 50 oocyte donors,
from which we obtained 44 high-quality, 39 medium-quality, and 27 low-quality embryos. We
identified 2182 proteins by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-
MS) using a TripleTOF 5600+ hybrid mass spectrometer, of which 484 were suitable for quantification.
We were able to identify several proteins whose concentrations varied between the follicular fluids
of different oocytes from the same patient and between patients. Among them, the most important
appear to be immunoglobulin heavy constant alpha 1 (IgA1hc) and dickkopf-related protein 3. The
first one is found at higher concentrations in hFFs from which oocytes develop into poor-quality
embryos, the other one exhibits the opposite pattern. None of these have, so far, had any specific links
to fertility disorders. In light of these findings, these proteins should be considered a primary target
for research aimed at developing a diagnostic tool for oocyte quality control and pre-fertilisation
screening. This is particularly important in cases where the fertilisation of each egg is not an option
for ethical or other reasons, or in countries where it is prohibited by law.

Keywords: follicular fluid; proteomics; mass spectrometry; embryo quality; oocyte quality;
immunoglobulin heavy constant alpha 1; keratin type II cytoskeletal 1 protein; dickkopf-related
protein 3; heat shock cognate 71 kDa protein

1. Introduction

A reliable assessment of the developmental potential of oocytes before fertilisation
could significantly change the picture of reproductive medicine. According to the World
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Health Organisation, around 17.5% of couples suffer from infertility, with more than 12%
at the point of fertilisation. It is believed that more than 186 million women currently
have fertility problems worldwide. Similarly, the decision to have a first child has been
significantly delayed across the world, exceeding 31 years of age in developed countries at
the time of childbirth.

Aside from the increasingly widespread fashion for “baby-free” policies among young
adults in developed countries and rare cases of congenital infertility, most fertility problems
are age-related. The causes of the age- and lifestyle-related infertility epidemic include
genetic defects in embryos, decreased sperm parameters, decreased ovarian reserves,
endometriosis, polycystic ovarian syndrome, the hostility of cervical mucus, implantation
disorders, the obstruction of the fallopian tubes, and submucosal myomas. Age-related
infertility is associated with diseases that are virtually non-existent in youth and therefore
do not interfere with achieving pregnancy at the physiologically intended time. This is
supported by data from Hutterian reproduction, where early efforts to get pregnant, the
lack of premarital sex, and the lack of influence of an economic factor on the decision to
obtain a pregnancy result in a fertility problem affecting only about 2% of couples [1].

Due to delayed attempts at pregnancy and the associated factors causing couples to
have lower fertility, in vitro fertilisation is becoming an increasingly common treatment
option. It is the most effective and sometimes the only possible method of treatment.
However, its effectiveness is still far from our expectations, with only limited progress
over the past 20 years. According to its key performance indicators (KPIs) [2] only 75–90%
of the oocytes retrieved during the in vitro fertilisation procedure are at the correct stage
of development. Only about 80% of them will undergo fertilisation, of which 70% will
develop to the cleavage stage by day 3 and 60% will develop to a blastocyst, of which
only about 60% will be of so-called top quality (TQ). As a result, we still lack the tools to
initially assess the quality of collected oocytes. The availability of such information would
significantly enhance the clinical decision-making process, allowing the right number of
cells to be fertilised and helping to predict their development. Furthermore, it would also
help to identify the exact problems affecting individual oocytes, paving the way for their
personalised culture and ultimately improving the quality of the embryos produced.

Several non-invasive methods for assessing oocytes and embryos are currently being
studied. Among these, the most commonly used, mainly due to its low cost and widespread
availability, is the assessment of embryo morphology performed by embryologists or using
automated methods. Metabolomics is also being used experimentally. The metabolic
profiling of culture media containing human oocytes can provide information on the
metabolic state of the cells, although this requires the integration of automated, high-
throughput, real-time metabolomic assessments with microfluidic platforms. However, the
most promising is the analysis of the human follicular fluid (hFF) proteome, which can
provide a set of indicators of oocyte health based on the presence or absence of specific
proteins. It is considered the most promising because of the identification and quantification
of hundreds of proteins in a single assay, providing a broad picture of the biological state
of the oocytes [3]. Proteins are key effectors of cellular function. Unlike genomics, their
presence and concentrations directly affect the functionality of the oocyte and its ability
to develop into further stages. Previous studies have shown that specific protein profiles
in hFF can be correlated with oocyte quality and pregnancy outcomes, offering direct and
functional links with oocyte developmental competence [4,5]. Unfortunately, most studies
to date have failed to address two limitations of follicular fluid spectrometric studies—
their cost and the availability of fluid samples identified and linked to the embryonic
development of the originating oocyte. As a result, most of these studies have been based
on small patient groups and samples of their follicular fluid obtained from the largest
follicle or from pooled follicular fluids from a given patient.

It therefore seems crucial to obtain information linking the proteomic composition of the
follicular fluid with the quality of the oocyte and its development after fertilisation. Hence, the
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aim of this study was to separately examine obtained follicular fluids and identified oocytes
and to assess the subsequent development of embryos derived from them.

2. Results
2.1. Clinical Data of Donors and Quality of the Obtained Embryos

The population of patients included in the study were healthy oocyte donors aged
between 18 and 35 years old. The clinical characteristics of the population are presented in
Table 1. Each donor underwent evaluation in accordance with FDA-mandated regulations,
which included extensive screening for genetic disease carriers and the exclusion of gene
rearrangement diseases through peripheral blood leukocyte karyotyping.

Table 1. A summary of the clinical characteristics of the oocyte donors; values are means (stan-
dard deviation).

Variable Results

No. subjects 50
Age (y) 27.4 (2.3)

BMI (kg/m2) 21.7 (3.3)
AMH (ng/mL) 2.8 (1.5)

Inhibin B 62.3 (30.8)
Day 3 basal FSH 6.3 (4.3)
Day 3 basal LH 7.2 (5.3)

Day 3 basal oestradiol 43.2 (30.4)
DHEAS 226 (72.5)

Testosterone 1.5 (1.7)
SHBG 74.2 (35.4)
AFC 16.7 (6.2)

2.2. Classifications of All Proteins Identified in the Follicular Fluids

Of the 2182 proteins that were identified in the studied hFFs, 484 were quantified.
They were classified based on the Panther database [6] into the following protein classes:
defence/immunity protein—18.9% (92 genes), metabolite interconversion enzyme—12.9%
(62 genes), and protein-modifying enzyme—10.2% (49 genes). The proportion of unclas-
sified proteins was 10.2% (49 proteins). A complete list of the identified classes can be
found in Table A1. The molecular functions of the identified proteins were mostly binding—
160 genes—and catalytic activity—112 genes—as seen in Table A2.

On the basis of biological processes, the quantified proteins were classified as follows:
cellular processes—33.1% (159 genes), response to stimulus—28.7% (138 genes), metabolic
processes—27% (130 genes), and biological regulation—25.8% (124 genes). Other biological
processes whose proteins have been identified can be found in Table A3. A total of 29.9%
(144 genes) could not be classified.

The spectrum of the metabolic pathways was the widest—Table A4. As many as
77.1% (371) of the proteins were not identified in any metabolic process, with the remaining
most involved in blood coagulation, 5.8% (28 proteins); the integrin signalling pathway,
3.3% (16 proteins); the gonadotropin-releasing hormone receptor signalling pathway, 2.1%
(10 proteins); the plasminogen activating cascade, 1.5% (7 proteins); and the Wnt signalling
pathway, 1.5% (7 proteins).

2.3. Proteins Associated with Embryo Quality
2.3.1. Classification of Embryo Quality

The hFF samples obtained were classified according to embryo quality, which was
assessed on the basis of specific developmental features identified by microscopic imaging.
For standardisation purposes, the assessment was performed at Day 5 and Day 6 using the
grading system described in the Istanbul criteria [7]. In the context of this study, embryos
that had reached the blastocyst stage by day 5 and received a grade 1 trophectoderm were
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described as being of good quality. Moreover, embryos reaching the blastocyst stage by
day 6, as well as those exhibiting a grade 2 trophectoderm at day 5 or 6, were classified as
being of fair quality. All embryos that did not fulfil any of the above requirements were
assigned to the poor-quality subgroup. As a result, out of a total of 110 embryos sampled,
44 were classified as good quality, 39 as fair quality, and 27 as poor quality.

2.3.2. Machine Learning-Based Proteomic Analysis

Random Forest classifiers were employed to attempt to distinguish the three subgroups
of embryonic quality based on their measured protein abundances. The classifiers utilised
a Gini impurity as the impurity measure (cf. Section 4.5), defined for any set of samples Q
in the following way:

H(Q) =
3

∑
i=1

pi(1 − pi), (1)

where pi denotes the relative frequency of samples with class i in Q (here the index i
indicates one of “good”, “fair”, or “poor”).

The Random Forest consisted of 50 trees with a maximum depth of 3 to prevent
overfitting. Additionally, the stopping criterion was that the minimum number of samples
per leaf was 30 and the sample weights were inversely proportional to their respective
class sizes. The RFECV algorithm was executed for 30 cycles to calculate the protein scores.
Balanced accuracy was used to score the resulting models.

The derived protein scores were sorted and are shown in Figure 1. Notably, approxi-
mately 20 proteins exhibited disproportionately high scores, standing out from the linear
trend observed for irrelevant proteins. This finding therefore indicates that the concen-
tration of these 20 proteins varies between follicular fluids associated with blastocysts of
different qualities, determined during a morphological assessment (Table 2). Compared
with the follicular fluids of oocytes giving rise to embryos with a poor morphology (FFpoor),
follicular fluids from oocytes associated with blastocysts with a good morphology (FFgood)
contained, among other proteins, higher levels of dickkopf-related protein 3 and heat shock
cognate 71 kDa protein. In contrast, FFpoor were found to have more keratin type II cy-
toskeletal 1, immunoglobulin heavy constant alpha 1, pyruvate kinase PKM, transforming
growth factor-beta-induced protein, multimerin-2, and platelet glycoprotein Ib alpha chain.
Oocytes whose follicular fluids gave rise to blastocysts of an intermediate morphology
(FFf air) were associated with the lowest values of peptidyl-prolyl cis-trans isomerase B,
alpha-mannosidase 2, transforming growth factor-beta-induced protein, ectonucleotide py-
rophosphatase/phosphodiesterase 2, immunoglobulin heavy constant alpha 1, and moesin.
In addition, they also exhibited the highest values of heterogeneous nuclear ribonucleopro-
teins C1/C2. Amongst the 20 proteins identified, dickkopf-related protein 3 appeared to
be the most significant marker of morphological alterations, as it was associated with the
greatest degree of change in abundance between FFgood and FFpoor and the highest protein
score value.

The following steps in the analysis focused on identifying significant differences
in the abundance of each hFF protein between individual patients. This was achieved
by first applying logarithms to the protein abundance values and then calculating their
median from each set of biological replicates taken from a given follicular fluid sample.
The median values obtained were further grouped according to patient ID numbers and
compared using a one-way ANOVA analysis. As determined by this statistical test, the
abundance of dickkopf-related protein 3 was significantly associated with certain patients
(adjusted-R2 = 0.3, F-test p-value = 0.009, no significant heteroscedasticity detected after
the analysis of residuals; residuals followed normal distribution). This was further comple-
mented by an analysis of a single decision tree, in which dickkopf-related protein 3 was
utilised as the top predictor (see Figure A1). As such, the model acted to classify the hFF
samples into those with a high or a low abundance of dickkopf-related protein 3 according
to a specific threshold value that was learned from the data during the training process.
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Most interestingly, the hFF samples with high amounts of dickkopf-related protein 3 were
found to be more likely to give rise to well—rather than poorly— morphologically devel-
oped embryos. The comparison between FFgood and FFpoor yielded an OR = 2.8 and the
result was borderline significant with a p-value = 0.07, as determined from the interaction
term in the Poisson model explaining the observed sample counts in terms of embryo
quality and the indicator of high or low protein abundance.

Table 2. Twenty most significant proteins with fold changes in their median protein abundances
(samples from FFpoor embryos were taken as the reference).

Protein Name Uniprot ID Score log2 FCgood log2 FC f air

Dickkopf-related protein 3 Q9UBP4 321.0 0.43 −0.00047
Transthyretin P02766 197.0 −0.075 −0.29

Immunoglobulin heavy constant alpha 1 P01876 180.0 −0.26 −0.34
Moesin P26038 168.0 −0.15 −0.31

Ectonucleotide pyrophosphatase/phosphodiesterase 2 Q13822 103.0 0.17 −0.35
Heat shock cognate 71 kDa protein P11142 87.0 0.36 0.23

Transforming growth factor-beta-induced protein ig-h3 Q15582 81.0 −0.19 −0.36
Serum paraoxonase/arylesterase 1 P27169 76.0 −0.1 −0.27

Coagulation factor IX P00740 70.0 −0.06 −0.28
Peptidyl-prolyl cis-trans isomerase B P23284 68.0 0.02 −0.53

Keratin, type II cytoskeletal 1 P04264 59.0 −0.36 −0.39
Pyruvate kinase PKM P14618 59.0 −0.24 0.09

Heterogeneous nuclear ribonucleoproteins C1/C2 P07910 58.0 0.18 0.57
Multimerin-2 Q9H8L6 49.0 −0.27 0.04

Platelet glycoprotein Ib alpha chain P07359 37.0 −0.24 −0.21
FRAS1-related extracellular matrix protein 2 Q5SZK8 34.0 0.09 −0.058

Spliceosome RNA helicase DDX39B Q13838 34.0 0.22 0.06
Fetuin-B Q9UGM5 33.0 0.072 0.09

Immunoglobulin kappa variable 6D-21 A0A0A0MT36 32.0 −0.11 −0.083
Alpha-mannosidase 2 Q16706 31.0 −0.31 −0.49

Figure 1. Protein scores calculated with the RFECV algorithm. A comparison of the results obtained
with our target variable (embryo quality) and the random assignment of labels.

Furthermore, an analogous analysis of the abundance of immunoglobulin heavy con-
stant alpha 1 in the hFF samples revealed some additional significant findings. The amount
of the evaluated protein type was found to exhibit a high degree of association with specific
patients (adjusted-R2 = 0.95, F-test p-value < 0.0001, no significant heteroscedasticity de-
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tected after analysis of residuals; residuals followed normal distribution). This relationship
was considerably stronger than that found in case of dickkopf-related protein 3, which is
likely to reflect the sevenfold higher abundance of immunoglobulin heavy constant alpha 1
compared to dickkopf-related protein 3 in hFF samples and the consequently smaller de-
gree of error associated with those measurements. When immunoglobulin heavy constant
alpha 1 was used as the top predictor in a decision tree model (see Figure A2), samples of
hFF classified as having a high abundance of the protein were more likely to lead to the
adverse—rather than good—morphological development of the embryo. The comparison
between FFgood and FFpoor yielded an OR = 0.32 with a p-value < 0.001, as determined from
the interaction term in the Poisson model explaining the observed sample counts in terms
of embryo quality and the indicator of high or low protein abundance.

The effectiveness of a prediction model for the three classes “good”, “fair”, and “poor”
based on the identified set of 20 proteins was estimated to be approximately 42% (we
applied a cross-validation scheme identical to the one used in the RFECV algorithm).

It is crucial to emphasise that even a completely random large set of protein abun-
dances can show patterns purely by chance. In traditional statistical methods, this problem
is mitigated by controlling for the false discovery rate. Here, to make sure that our results
are not random, we compared the calculated scores with the results obtained from the
zero distribution (i.e., the distribution where all features are irrelevant). These scores
were derived from the same features, but with their class labels randomly permuted. The
comparison shown in Figure 1 indicates that the set of proteins is far from random, as
evidenced by the different shape of the score curve. This observation is in line with the
results of the cross-validation, where the calculated balanced accuracy is different from
random (i.e., the expected 33%).

We noticed that only four proteins have scores higher than those calculated from the
zero distribution. However, it is important to note that score values are not independent.
Due to the design of the algorithm, statistically significant proteins will have high score
values at the expense of the scores of irrelevant proteins, resulting in the irrelevant proteins
having much lower scores compared to those in the zero distribution.

2.4. Protein–Protein Interactions

In order to expand the scope of our analysis, the identified list of 20 hFF proteins
was inserted into the STRING Network Software v. 12.0 to identify significant interactions
between proteins within this subset [8]. Such relationships can allow proteins to perform
tasks that individual proteins cannot perform on their own, making protein–protein in-
teractions an essential component of many biochemical cascades and cellular functions.
As presented in Figure 2, a key protein identified in the network was transthyretin (TT)
which assists in the transport of thyroxine and retinol within the developing embryo [9].
Maintaining adequate levels of the former molecule is known to be essential for proper
neurogenesis (the differentiation and maturation of neurons, myelination, and the for-
mation of synaptic connections), the regulation of cellular growth processes, and bone
development [10]. Retinol, on the other hand, influences the spatial and temporal patterns
of the expression of specific genes, which are particularly relevant for the formation of
the foetal heart and eyes [11]. In addition, a relationship between TT and ectonucleotide
pyrophosphatase/phosphodiesterase (ENPP2) was highlighted by the network. The func-
tion of ENPP2 focuses on the regulation of lipid metabolism pathways and may therefore
influence the composition of cellular membranes, as well as signalling pathways, during
embryonic development [12].

Furthermore, a significant degree of interaction was identified between heat shock
protein family A member 8 (HSPA8) and pyruvate kinase M2 (PKM), which are key com-
ponents of cellular stress responses and energy metabolism, respectively. HSPA8 has
previously been shown to play a vital role in preventing inappropriate protein folding
during the synthesis and preservation of protein structures under conditions of cellular
stress—both of these protective effects seem to be of significant importance during em-
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bryonic development, which is characterised by a high rate of cell division and rapid
metabolic changes [13].

Figure 2. A protein–protein interaction network functional enrichment analysis created using
STRING v.12.0. Predicted interactions were summarised using coloured lines: gene co-expression by
a black line, gene neighbourhood by a green line, experimental evidence by a purple line, database
evidence by a light blue line, and text-mining evidence by a yellow line.

3. Discussion

In the present study, we investigated the relationship between the composition of the
proteins detected and quantified in the follicular fluids and the development of embryos
from the derived oocytes. We studied healthy oocyte donors whose cells were fertilised. The
male factor is very important and genetically affects 50% of the material. It is less important
for the metabolism of the embryo, especially up until the third day of development. After
that, full genome activation begins and the influence of the sperm’s DNA becomes visible.

For this reason, we treated the male factor in our study very restrictively. We excluded
any patient whose semen parameters deviated from the norms described in the WHO
Manual 2021. We also took into consideration the issue of sperm DNA fragmentation,
which, in our experience, has a major impact on embryo development. We implemented
the TUNEL method based on cytometry. Whilst the generally accepted norm is less than
15%, in this paper we adopted a value of 12% based on our own observations, as we have
observed that up to this level of fragmentation we obtain the best embryos.

In principle, three scenarios can be considered: studying the whole material; removing
the most abundant proteins so as not to obscure the signal of the less abundant proteins;
and focusing on the most regulatory proteins, such as growth factors, hormones, and key
regulators of metabolic pathways, using labelled proteins, for which we are preparing
an analysis. For our study, we opted for the middle ground—removing proteins with a
significant quantitative advantage by immunodepleting approximately 94% of a total of
14 proteins (albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-
macroglobulin, alpha1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein AII,
complement C3, and transthyretin). We decided to conduct research in this direction
because we wanted to obtain a broad overview of the proteins detectable in hFF with
the intention of evaluating them in the context of predicting the quality of the oocytes
and the resulting embryos. This result has been achieved, as we identified more than
2000 proteins using this approach, and the creation of such a large collection is a very good
result compared to the literature data on hFF [4,14–16]. In order to avoid problems arising
from even small shifts in the chromatogram, calibration peptides (iRT peptides) were added
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to each sample. However, by removing a significant amount of the above proteins, it was
possible to quantify and compare the remaining proteins in the study groups.

This also made it possible to study subtle differences in protein abundance in hFFs
which are associated with embryonic development. The decision to use the Random Forest to
analyse this type of data was based on its ability to detect weak signals in noisy data and also
on several methodological considerations related to the nature of mass spectrometry data.

Firstly, this type of data frequently contains outliers, which can significantly disrupt
the performance of many classification algorithms. Random Forests inherently mitigate
the impact of outliers due to their ensemble approach, where the aggregation of mul-
tiple decision trees reduces the influence of any single aberrant data point on the final
prediction [17]. Moreover, the distribution of protein abundances in our dataset varies
considerably, with many proteins exhibiting log-normal distributions, while others do not
conform to any specific parametric form. Random Forests, as a nonparametric method, do
not impose assumptions about the data’s distribution, making them particularly suitable
for this heterogeneity. Additionally, Random Forests provide interpretable models through
various feature importance metrics, enabling a clearer understanding of the influence of
different proteins on the classification outcomes.

In the field of bioinformatics, it is common to encounter datasets characterised by
a large number of features and a relatively small number of samples, often including
irrelevant variables. Random Forests excel in such high-dimensional settings by effectively
managing and utilising a large number of input variables. This adaptability is crucial for
enhancing predictive accuracy in scenarios with many irrelevant or noisy features.

Random Forests also demonstrate robust predictive performance in the presence of
predominantly noisy variables. The ensemble nature of this algorithm helps in reducing
the risk of overfitting, as the errors of individual trees tend to cancel each other out, thereby
increasing generalisability of the model. Their consistently high predictive power has
positioned Random Forests among the top-performing algorithms in various compara-
tive evaluations. Their ability to extract meaningful insights from complex and noisy
biological datasets highlights their utility and effectiveness in bioinformatics research.
This performance parity, combined with the added benefits of their interpretability and
feature selection, underscores the suitability of Random Forests for tasks requiring both
high accuracy and transparency in decision making [18]. The efficacy of Random Forests
in classifying biological data is well documented. Numerous studies have successfully
applied this method to classify and analyse various types of biological datasets, validating
its robustness and reliability in the domain of bioinformatics [18–21]. Finally, Random
Forests facilitate feature selection, which is crucial for identifying the most relevant genes or
proteins associated with different biological categories. Methods such as Recursive Feature
Elimination (RFE) provide valuable insights into the most influential features within a
dataset, aiding in the interpretation and understanding of bioinformatics data [22–24].

Our findings highlighted several key relationships between protein abundance in hFFs
and embryo quality. Dickkopf-related protein 3 was most abundant in hFFs associated
with the highest quality embryos. In contrast, immunoglobulin heavy constant alpha 1 and
moesin were most abundant in hFFs associated with poor-quality embryos. Transthyretin
had the lowest abundance in hFFs associated with fair-quality embryos.

Interestingly, some proteins, including transthyrethin, exhibited their lowest/highest
abundance in hFFs associated with fair-quality embryos, but higher/lower levels with
both good- and poor-quality embryos. This surprising observation may be explained by
differences in the biological processes that influence the trophectoderm’s quality (which is
associated with fair embryo quality) versus those impacting overall blastocyst development.

Significant differences in protein abundance were observed between the hFFs from
different patients. In some cases, follicular fluids from the same patient had very similar
levels of certain proteins, such as immunoglobulin heavy constant alpha 1. In other cases,
significant variance was not related to individual patients, as seen with dickkopf-related
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protein 3. This pattern might be due to differences in protein abundance and associated
relative measurement error differences, which warrants further investigation.

Unfortunately, most studies to date have failed address two limitations of the spec-
trometric testing of follicular fluid—its cost and the availability of the fluid identified and
linked to the embryonic development of the originating oocyte. Studies to date have relied
on the examination of a single follicular fluid from the largest follicle or of pooled follicular
fluid from a given patient. This introduces two types of bias—when testing fluid from the
largest follicle, only one fluid is tested, and this may often not be representative. Ovulation
stimulation is often an art of compromise between the number of oocytes obtained and their
quality. Quite often, it is necessary to sacrifice the largest follicles (which have exceeded
their optimum size and thus stage of development) to allow the growth of a greater number
of smaller follicles that still need time to mature. Hence, the fluid obtained may come from
a follicle with a worse-than-average prognostic status. At the same time, the development
of the embryos derived from these fluids is not followed, resulting in the loss of a direct
link between the test result and the experimental outcome. On the other hand, combining
hFFs does not allow the results to be linked to embryo development (except in rare cases
where all follicles develop equally), while introducing a lot of contamination into the study
due to mixing fluids containing oocytes at completely different stages of development.

Therefore, the main strength of our study is the material analysed. We were able to
collect hFFs from individual ovarian follicles, label them unambiguously, and link them to
oocyte quality and development after fertilisation through their individual culture. This
allowed us not only to assess the differences in hFF composition between individual donors,
but also to investigate the variability in protein composition between individual follicles
within the same organism.

A limitation of our study, as with most proteomics studies, is the number of samples
tested. Nevertheless, we examined 110 samples, in biological triplicate, from 50 oocyte
donors, which is sufficient to start looking for protein differences between the hFFs from
oocytes from which we obtained embryos of different qualities. Additionally, the chosen
laboratory workflow for the proteomic studies included several factors, such as immun-
odepletion effects and peptide ion suppression, which could have affected the accuracy of
protein quantification. The subsequent analysis used the Random Forest algorithm, which
tends to exclude highly correlated features. These sources of bias may have led to the
omission of some biomarkers in our study.

The evaluation of follicular fluids requires further research and the results should
be collected in databases for comparative re-analysis. Therefore, it seems important to
collect individual follicular fluids and to observe the developing embryos derived from
them. This will make it possible to modify their stimulation according to its progress and
to individualise the culture media according to the metabolic state of the retrieved oocyte.

4. Materials and Methods
4.1. Flow Chart of Patient Recruitment and Fluid Collection and Examination

The study, designed in 2019, was conducted at the Medical University of Gdansk and
the Invicta fertility clinics. Donors were deemed to be eligible for the study when it was
known that the cells would be fertilised with semen meeting the WHO standards. The
women were qualified for in vitro fertilisation due to their willingness to be egg donors. The
exclusion criteria were as follows: patients under 18 years of age and over 35 years of age; a
sperm donor with reduced semen parameters (below WHO 5th edition standards [25]); and
sperm DNA fragmentation, determined cytometrically by the TUNEL method, above 12%.
Cases with abnormal oocyte fertilisation results in previous cycles were also excluded. Due
to the pandemic and difficulties in accessing the material, sample collection was extended
until early 2023. We recruited 75 egg donors to this study. During follicular fluid collection,
in 21 cases individual follicular fluids could not be completely separated from each other.
We excluded these cases from further testing. In four additional cases, there were doubts
about the compatibility of individual oocytes with their follicular fluids due to possible
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mislabelling. We finally included 50 donors in the study, and we individually collected a
total of 388 cumuli and secured follicular fluids from a minimum of 2 and a maximum of
11 of their follicles. We studied 110 follicular fluids from 50 donors, with 2 to 3 fluids per
donor (see Table 3).

Table 3. Flow chart of patient recruitment.

Recruitment
75 patients

Follicular fluids taken separately Mixed follicular fluids
54 patients 21 patients

Confirmed identification of
follicular fluid and associated embryo

Lack of certain identification of
follicular fluids and their oocytes

50 patients 4 patients

Collected follicular fluids and cells
223

Number of follicular fluids tested (maximum 3 per patient)
110

Number of biological repeats
330 (110 × 3)

The experiments conducted are part of the project entitled “Identification of Biomark-
ers of Early Embryonic Development and Pregnancy”, which was approved by the Inde-
pendent Bioethics Committee at the Medical University of Gdansk (decision 62/2016). All
oocyte donors were informed about the protocol and consented to participating in the
study. Their written consent obtained also included their permission to publish data related
to their treatment, provided that patient anonymity was maintained.

4.2. IVF Procedure and Embryo Development
4.2.1. Stimulation

All patients were treated with in vitro fertilisation (IVF) using short-protocol stimula-
tion [26]. Before starting stimulation, ultrasound and hormonal tests were performed to
exclude the presence of dominant follicles and to verify that peripheral blood hormone
levels were as follows: oestradiol below 50 pg/mL, LH below 6 mIU/mL, and proges-
terone below 0.5 ng/mL. Once the effect of a premature recruitment of the dominant
follicle had been ruled out, stimulation with gonadotropins was initiated. Menopausal
gonadotropins (Menopur, Ferring) with equal FSH and LH activity were used. Dosing was
based on the patient’s baseline AMH level (in the range of 150 to 225 IU per day) with
0.05 mg triptorelin administered subcutaneously from the first day of stimulation. On the
eighth day of stimulation, the stimulation dose was adjusted to prepare for oocyte retrieval.
Stimulation was terminated after obtaining at least 3 follicles with a diameter of more than
18 mm, with the administration of 5000 IU of hCG intramuscularly (Pregnyl, MSD) for final
oocyte maturation 36 h before oocyte retrieval.

4.2.2. Oocyte Retrieval (Pick Up) and Collection of Samples

The oocyte retrieval procedure was performed under brief general anaesthesia with
Propofol and Fentanyl. Oocytes were retrieved using disposable oocyte retrieval needles
(Gynemed, Sierksdorf, Germany) under the control of ultrasound images obtained using
the IC-9-RS vaginal transducer and the GE Voluson P6. The fluid collected from the ovarian
follicles was immediately transferred to the embryologist, who continuously reported on
the cumuli obtained so far (clusters of granulosa cells from the released ovarian thalamus
that may contain an oocyte). If no oocyte was obtained from a given follicle, the attempt
was repeated by rinsing the follicle with the same fluid and retrieving it again. After the
procedure, the samples were filtered through a 5 µm mesh at room temperature to remove
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the erythrocytes, white blood cells, and granulosa cells. The fluid was collected and stored
at −20 ◦C for further analysis. The oocytes were kept separately and labelled with the same
number as the collected and frozen fluid.

4.2.3. Embryo Culture

The cumuli obtained were stored under conditions of 6% CO2 and low oxygen pressure
(5% O2) in 37 ◦C in incubators (Labotect C18) inside laminar chambers (Lamil 90 or 120).
All oocytes were stripped of their surrounding granulosa cells—they were subjected to
decoronisation—2 to 5 h after collection. Their maturity was then graded on a scale: mature
cells in the metaphase of their second meiotic division (MII), immature cells in metaphase of
their first meiotic division (MI), immature cells at the germinal vesicle (GV) stage, overripe—
atretic—cells, and no oocyte in the cumulus. Only mature cells were fertilised. Immature
cells, on the other hand, were subjected to further culture in oocyte maturation medium.
After one day, their maturity was assessed and additional mature cells were fertilised. In
vitro fertilisation was performed by micromanipulation (intracytoplasmic sperm injection—
ICSI). The systems used consisted of Nikon Te2000S, U, or E inverted microscopes equipped
with Hoffman modulation contrast using Eppendorf NK2 micromanipulators. Heating
tables (Okolab, Pozzuoli, Italy) were used to provide full heating of the surface of the
ICSI dishes mounted on three-plate microscope tables. Micromanipulator pumps from
Eppendorf (Leipzig, Germany); an air pump to hold the egg (CellTram Air), and an oil
pump with extra precision to deliver the sperm into the oocyte (CellTram vario) were also
used. The entire procedure was carried out with full video documentation, which was
analysed by the embryology team as part of the quality control activities of the procedure.

After fertilisation, the cells were cultured in Labotect C18 incubators for a further
5 to 7 days until full maturation—blastocyst formation—or developmental arrest and the
onset of apoptosis. Their culture was performed in G1 and G2 sequencing media (Vitrolife,
Gothenburg, Sweden). Embryos were assessed on day 1 of culture—the evaluation of fertil-
isation and rejection of abnormally fertilised cells, day 3—the evaluation of cell divisions
(Cummins classification [27]), and day 5—blastocyst maturity (Istanbul criteria).

4.3. Sample Preparation

The experiments included comparative qualitative and quantitative studies and spec-
tral library preparation for the SWATH-MS quantification on our samples. The process of
optimising the sample preparation method and instruments’ operation was carried out in
several steps. The entire process is summarised in Table 4. In brief, after thawing, the hFF
was additionally centrifuged at 1000× g for 10 min to separate all morphological structures
(cellular debris). Working on a chromatographic system with microfluidics, we had to take
additional steps to obtain as many proteins as possible for the library. We used a MARS
14 column (Agilent, Santa Clara, CA, USA) to immunodeplete proteins present at high
concentrations. The samples were not fractionated. Protein concentrations were measured
using a spectrophotometer by quantifying their absorbance at 280 nm. Protein material
was digested with FASP (tripsin) (1:50 enzyme to protein weight ratio) using a standard
Filter-Aided Sample Preparation procedure (FASP) [28] on a Microcon with 30 kDa of
cut-off membrane (Merck-Millipore, Burlington, MA, USA). The Multienzyme Digestion
(MED) FASP procedure involved three consecutive digestions with LysC (1:50), trypsin
(1:100), and chymotrypsin (1:100) (all enzymes from Promega Corporation, Madison, WI,
USA). First, the hFF was lysed using a buffer containing 1% sodium dodecyl sulphate (SDS)
and 50 mM dithiothreitol (DTT) in 100 mM Tris-HCl of pH for 8 for 10 min at 95 ◦C (all
reagents from Sigma-Aldrich, St. Louis, MO, USA). A total of 100 µg of protein was applied
to each filter. Briefly, the filters were washed several times with a buffer containing 8 M
urea in 100 mM Tris-HCl pH 8.5 by centrifugation at 10,000× g for 20 min. Proteins were
alkylated with 55 mM iodoacetamide (IAA, Sigma-Aldrich, St. Louis, MO, USA) for 20 min
at room temperature in the dark. Finally, traces of IAA and urea were washed away with
100 mM Tris-HCl pH 8.5 and the enzyme was added to the filters for overnight digestion
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at 37 ◦C. The resulting peptides were eluted with 100 mM Tris-HCl pH 8.5. In the case
of MED-FASP, the filters were placed in new tubes and the digestion and elution steps
were repeated with different enzymes. Digestion with chymotrypsin was carried out for
3 h in a buffer containing 10 mM CaCl2 in 100 mM Tris-HCl pH 7.8. The resulting prote-
olytic peptides were fractionated by RP-HPLC (Reversed-Phase High-Performance Liquid
Chromatography) at high pHs and desalted using the STAGE (STop And Go Extraction)
tip procedure [29] on in-house prepared tips filled with C18 solid phase (3M™ Empore™,
St. Paul, MN, USA). Briefly, 10 µg of peptide was added to the tip, which was previously
equilibrated with 1% acetic acid in water. After washing, the peptides were eluted with
a buffer containing 60% acetonitrile (ACN)/1% acetic acid in water and evaporated in a
SpeedVac to obtain volumes ready for Mass Spectrometry (MS) measurements (5 µL for Q
Exactive HF-X or 10 µL for Triple TOF 5600+). To avoid problems caused by even small
shifts in the chromatogram, calibration peptides (iRT peptides) were added to each sample.
The iRT (indexed retention time) kit (Biognosys, Zurich, Switzerland) was spiked with
samples used for SWATH-MS spectral library preparation or SWATH-MS quantification at
a 1:10 standard to sample volume ratio to perform retention time calibration. This allowed
for the generation of a collection of over 2000 proteins.

Table 4. Optimisation of sample preparation and SWATH analysis conditions for the TripleTOF
spectrometer.

Steps

Protein fractionation for the library high-pH RP-HPLC, Immunodepletion
Fractionation of peptides for quantitative analysis No
Digestion method FASP (trypsin)
Peptide purification C18 Stage Tips
Method parameters LC 30 min, 8–40% buffer B
Parameters Data-dependent acquisition (DDA) MS 400–1000 Da, 250 ms

MS/MS 100–1500 Da, 100 ms
Cycle time 2.3 s

SWATH Method parameters MS 400–1000 Da, 50 ms
MS/MS 10–1500 Da, 40 ms

Cycle time 1.1 s
Transmission windows 25 window variables in range 400–1000 Da

Results

Total number of proteins identified in the experiments 2182
Number of proteins identified in fractions HMWF/LMWF 2177/14
Number of proteins identified after ultrafiltration 129
Number of quantified proteins 484
Number of proteins quantified with CV < 20% 98

4.4. LC-MS/MS Measurements and Quantitative Data Processing

The LC-MS/MS measurements for the Triple Quad-TOF workflow were acquired on
the TripleTOF 5600+ hybrid mass spectrometer with a DuoSpray Ion Source (AB SCIEX,
Framingham, MA, USA) coupled with the Eksigent microLC (Ekspert MicroLC 200 Plus
System, Eksigent, Redwood City, CA, USA). Samples were loaded onto the LC column
using the CTC Pal Autosampler (CTC Analytics AG, Zwinger, Switzerland), using a
5 µL injection. Buffers A and B constituted of 0.1% (v/v) formic acid in water and ACN,
respectively. LC separations were performed on the ChromXP C18CL column (3 µm,
120 Å, 150 × 0.3 mm; Eksigent, Redwood City, CA, USA) using a gradient of 8–40% Buffer
B over 30 min with a flowrate of 5 µL/min. All measurements were performed in a
positive ion mode. The system was controlled by the Analyst TF 1.7.1 software (AB
SCIEX, Framingham, MA, USA). Data-dependent acquisition (DDA) analyses consisted
of a 250 ms TOF survey scan in the m/z range of 400–1000 Da followed by a 100 ms
Product Ion scan in the m/z range of 100–1500 Da, which resulted in a 2.3 s cycle time. The
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top 20 candidate ions with charge states from 2 to 5 were selected for collision-induced
dissociation (CID) fragmentation with rolling collision energy. Former target ions were
excluded after 2 occurrences for 5 s. SWATH-MS [30] analyses were performed in a looped
product ion mode. A set of 25 variable-width windows was constructed via equalized
ion frequency distribution with the use of SWATHTuner [31] to cover the m/z range of
400–1000 Da. The collision energy of each window was calculated for +2 to +5 charged ions
centred on the window, with a spread of 5. The SWATH-MS1 survey scan was acquired
in high-sensitivity mode in the range of 400–1000 Da at the beginning of each cycle, with
an accumulation time of 50 ms, and it was followed by 40 ms accumulation time high-
sensitivity product ion scans, which resulted in a total cycle time of 1.1 s. The database
search for spectral library construction was performed in ProteinPilot 4.5 software (AB
SCIEX, Framingham, MA, USA) using the Paragon algorithm against the SwissProt Homo
sapiens database (ver. 26.07.2019; 20,428 entries) merged with the iRT standard sequence
and the following parameters: a TripleTOF 5600+ instrument (AB SCIEX, Framingham,
MA, USA); the alkylation of cysteines by iodoacetamide; trypsin enzyme digestion, an
ID focus on biological modifications; the search effort “thorough ID”; and a threshold
of detected proteins [Conf] > 10%. The resulting group file was loaded into MS/MS All
with SWATH Acquisition MicroApp 2.01 in PeakView 2.2 (AB SCIEX, Framingham, MA,
USA) to automatically create a spectral library with the following set parameters: modified
peptides allowed and shared peptides excluded. The library was processed via SWATH-MS
measurements of the samples. Retention time calibration was performed manually with
the use of iRT kit peptides. The maximum number of peptides per protein was 6 and the
extracted ion chromatogram (XIC) parameters were set to a 10 min extraction window
width and 75 ppm XIC width. The sample preparation workflow and the final results are
summarised in Table 4.

There were two normalisation steps involved. First, the spectra of individual samples
were normalised in MarkerView using total area sums. Finally, in the second step, SWATH-
MS intensities were normalised in Perseus at the level of all samples.

4.5. The Random Forest Algorithm

The protein abundances obtained from the SWATH-MS workflow were analysed
using the Random Forest classifier, which is a versatile and powerful ensemble learning
algorithm. Its primary purpose is to create a classification scheme for samples based on
features (such as protein abundances) in order to predict associated labels (e.g., embryo
quality; see Section 2.3.1).

The algorithm works by constructing a multitude of decision trees during training,
each trained on a different random subset of the dataset. By combining the predictions of
these individual trees through averaging, it enhances predictive accuracy and mitigates the
risk of overfitting.

A single decision tree within the Random Forest ensemble is constructed using a
process that involves recursively partitioning the input feature space based on the values
of different features. Here we present an overview of how a single tree is created:

Initialization: The tree starts with a root node that contains a random subset of m0
training samples:

Q0 = {(x, y, w) | x is a vector of features,

y is an associated label and w is the weight of the sample}. (2)

Best feature selection: Let us denote the subset of samples under consideration in the
training phase of the mth node as Qm. First, a random subset Fm containing n features is
created (hyperparameter n is kept fixed throughout training and is usually set to be the
square root of the number of all features). In the next step, the best of the selected features
is found based on a chosen criterion (e.g., a Gini impurity or entropy, cf., Section 2.3.1)
called impurity function H.
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Splitting: The set of samples Qm is split into two subsets—Qle f t
m = {(x, y, w)|xi < tm,i}

and Qright
m = Qm \ Qle f t

m . The feature xi ∈ Fm and the threshold tm,i are selected to minimise
the mean impurity:

G(Qm) =
wle f t

m
wm

H(Qle f t
m ) +

wright
m
wm

H(Qright
m ), (3)

where

wm = ∑
(x,y,w)∈Qm

w, wle f t
m = ∑

(x,y,w)∈Qle f t
m

w, wright
m = ∑

(x,y,w)∈Qright
m

w. (4)

The goal of the chosen criterion metric H is to maximise the homogeneity of the target
variable (i.e., ideally within each subset we would like to have samples belonging mostly
to the same class). This process of splitting the dataset Qm yields two new nodes of the
decision tree and is repeated recursively for each subset Qle f t

m and Qright
m until a stopping

criterion is met.
Stopping Criterion: The recursion stops when one of the following conditions is met:

1. The maximum tree depth is reached;
2. The number of samples in the current node falls below a certain threshold;
3. Further splitting does not lead to significant improvement in the chosen metric.

Leaf Nodes: Once the stopping criterion is met, the current node becomes a leaf node,
and it is assigned a probability distribution based on the distribution of labels.

When making predictions for a new sample using a single decision tree within a
Random Forest ensemble, one of the two following steps are typically followed.

Traversal: The new sample is passed down the tree starting from the root node. At
each node, the tree evaluates a specific feature of the sample based on the splitting threshold
tm,i learned during training. Then, the sample is directed either to the left or right child
node of the current node. This process continues recursively, with the sample traversing
down the tree from one node to another until it reaches a leaf node.

Leaf Node Prediction: Once the sample reaches a leaf node, the tree assigns a proba-
bility distribution associated with the node. If our goal is to predict a single class based on
the feature, the class with the highest probability is taken.

It is important to note that each decision tree in the Random Forest ensemble makes
an independent prediction for the new sample. In classification tasks, the final prediction
of the Random Forest classifier is determined by aggregating the predictions of all the
trees in the ensemble by averaging (note that this approach is slightly different from the
original one, where majority voting is used, see [32]). An advantage of Random Forests
is their ability to rank features by assigning importance to each feature. Typically, the
Mean Decrease in Impurity (MDI) is used as an estimate of feature importance. This can be
defined separately for each feature x in every individual tree T:

MDIT(x) = ∑
m∈T

p(m)∆i(m). (5)

The above sum is calculated over the nodes m splitting the samples Qm into the two subsets
Qle f t

m and Qright
m and using feature x in their splitting criterion. Then, the decrease in

impurity ∆i(m) for node m is calculated to be

∆(m) = H(Qm)−
wle f t

m
wm

H(Qle f t
m )− wright

m
wm

H(Qright
m ). (6)

Next, the weight p(m) of each node considered in the sum is defined as:

p(m) =
wm

w
, (7)
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where w denotes the sum of the weights associated with all samples in the training dataset.
Finally, the feature importance of x over the whole Random Forest is defined by simply

averaging all MDIT(x) for all trees T in the ensemble.

4.6. Recursive Features’ Elimination with Cross-Validation—Algorithm Description

In our analysis, we employed a version of RFECV (Recursive Feature Elimination
with Cross-Validation) implemented in the Python library scikit-learn v1.2.1. This method
requires the classifier used to be capable of computing feature importances, a criterion
met by the Random Forest classifier (cf. Section 4.5). Below is a brief description of
the algorithm:

1. Data Partitioning: The data are divided into folds, where each fold uses samples from
one patient as test data and the remaining samples to train the classifier. The number
of folds equals the number of patients, ensuring each patient’s samples are used as
test data exactly once.

2. Feature Elimination: For each fold, the RFE algorithm begins by iteratively removing
features. First, the classifier is fitted to compute feature importances. Then, the least
important feature is removed, and the model’s score is calculated using the fold’s test
data. This process is repeated until only one feature remains.

3. Score Averaging: The scores calculated for each fold and each number of features
during step 2 are averaged to obtain mean scores as a function of the number of
features. The optimal number of features, n f eatures, is defined as the number with the
highest mean score.

4. Final Model Fitting: Finally, the classifier is fitted over the entire dataset, and the
n f eatures with the highest importance are selected.

5. Iteration: Steps 1 to 4 are repeated a predefined number of times or until only one
feature remains.

This algorithm also allows us to assign scores to the selected features. At each iteration
in step 4, a subset of features is selected. When a feature is selected, its score is incre-
mented by one. Thus, features that persist longer throughout the iterations will accumulate
higher scores.

An original version of the RFE approach evaluates feature importance using a support
vector machine (SVM) model, selecting features for elimination based on their ranked
importance [33]. This method can also be adapted for other models such as Random Forests
(RFs), which have intrinsic mechanisms for evaluating feature importance [34–36].

5. Conclusions

In conclusion, our study of the composition of individually retrieved oocytes and their
follicular fluids, derived from embryos of different qualities, showed that the composition
of their fluids differed depending on the quality of the final developed blastocysts. We iden-
tified the differential abundances of 20 proteins, including immunoglobulin heavy constant
alpha 1 (IgA1hc) and dickkopf-related protein 3. Although these changes were modest,
with the difference of their averages being around 20–30%, our analysis showed that these
subtle differences could lead to significant variations at the extremes of their distribution.
Specifically, the Random Forest algorithm indicated that extreme abundances of certain
proteins could dramatically affect the prognosis of embryo development, doubling the odds
of either a good or poor outcome. These findings open up new opportunities for further
translational research into the significance of the proteins that differentiate blastocysts of
different qualities.
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Appendix A

Table A1. Proteins according to their protein classes.

Protein Class Number of Genes Proportion of Identified Proteins

defence/immunity protein 91 18.9%
metabolite interconversion enzyme 62 12.9%

protein-modifying enzyme 49 10.2%
unclassified 49 10.2%

protein-binding activity modulator 44 9.1%
cytoskeletal protein 24 5.0%

cell adhesion molecule 23 4.8%
transfer/carrier protein 23 4.8%

extracellular matrix protein 20 4.2%
chaperone 15 3.1%

transmembrane signal receptor 13 2.7%
intercellular signal molecule 12 2.5%

scaffold/adaptor protein 11 2.3%
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Table A1. Cont.

Protein Class Number of Genes Proportion of Identified Proteins

RNA metabolism protein 10 2.1%
calcium-binding protein 9 1.9%
membrane traffic protein 8 1.7%

translational protein 6 1.2%
transporter 4 0.8%

chromatin/chromatin-binding or -regulatory protein 3 0.6%
structural protein 2 0.4%

DNA metabolism protein 2 0.4%
gene-specific transcriptional regulator 1 0.2%

Table A2. Proteins classified according to their molecular function.

Molecular Function Number of Genes Proportion of Identified Proteins

unclassified 195 40.5%
binding 160 33.3%

catalytic activity 112 23.3%
molecular function regulator activity 32 6.7%

structural molecule activity 19 4.0%
molecular transducer activity 11 2.3%

antioxidant activity 7 1.5%
transporter activity 6 1.2%

ATP-dependent activity 4 0.8%
translation regulator activity 2 0.4%

cargo receptor activity 1 0.2%
cytoskeletal motor activity 1 0.2%

Table A3. Proteins classified according to their biological function.

Biological Process Number of Genes Proportion of Identified Proteins

cellular process 159 33.1%
unclassified 144 29.9%

response to stimulus 138 28.7%
metabolic process 130 27.0%

biological regulation 124 25.8%
immune system process 88 18.3%

multicellular organismal process 53 11.0%
developmental process 44 9.1%

localization 22 4.6%
biological process involved in interspecies interaction between organisms 17 3.5%

homeostatic process 7 1.5%
locomotion 5 1.0%

detoxification 2 0.4%
growth 2 0.4%

reproductive process 1 0.2%
reproduction 1 0.2%

Table A4. Proteins classified with respect to their function in metabolic pathways.

Metabolic Pathway Number of Genes Proportion of Identified Proteins

Unclassified 371 77.1%
Blood coagulation 28 5.8%
Integrin signalling pathway 16 3.3%
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Table A4. Cont.

Metabolic Pathway Number of Genes Proportion of Identified Proteins

Gonadotropin-releasing hormone receptor pathway 10 2.1%
Plasminogen activating cascade 7 1.5%
Wnt signalling pathway 7 1.5%
Glycolysis 6 1.2%
Cadherin signalling pathway 6 1.2%
Alzheimer disease-presenilin pathway 6 1.2%
Cytoskeletal regulation by Rho GTPase 5 1.0%
Inflammation mediated by chemokine and cytokine 5 1.0%
Angiogenesis 4 0.8%
Huntington disease 3 0.6%
FAS signalling pathway 3 0.6%
Parkinson disease 3 0.6%
p53 pathway 3 0.6%
Apoptosis signalling pathway 3 0.6%
Nicotinic acetylcholine receptor signalling pathway 3 0.6%
CCKR signalling map 3 0.6%
Pentose phosphate pathway 3 0.6%
Muscarinic acetylcholine receptor 2 and 4 signalling pathway 2 0.4%
EGF receptor signalling pathway 2 0.4%
FGF signalling pathway 2 0.4%
Pyruvate metabolism 2 0.4%
B cell activation 2 0.4%
Dopamine receptor mediated signalling pathway 2 0.4%
Axon guidance mediated by semaphorins 2 0.4%
T cell activation 2 0.4%
Vitamin D metabolism and pathway 2 0.4%
Insulin/IGF pathway-protein kinase B signalling pathway 2 0.4%
Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP
kinase cascade 2 0.4%

Fructose galactose metabolism 1 0.2%
Pyrimidine Metabolism 1 0.2%
De novo purine biosynthesis 1 0.2%
Alzheimer disease-amyloid secretase pathway 1 0.2%
Angiotensin II-stimulated signalling through G proteins and
beta-arrestin 1 0.2%

Muscarinic acetylcholine receptor 1 and 3 signalling pathway 1 0.2%
Adrenaline and noradrenaline biosynthesis 1 0.2%
Hypoxia response via HIF activation 1 0.2%
TGF-beta signalling pathway 1 0.2%
Toll receptor signalling pathway 1 0.2%
Nicotine pharmacodynamics pathway 1 0.2%
Cholesterol biosynthesis 1 0.2%
Oxidative stress response 1 0.2%
Heterotrimeric G-protein signalling pathway-rod outer segment
phototransduction 1 0.2%

Androgen/estrogene/progesterone biosynthesis 1 0.2%
Heterotrimeric G-protein signalling pathway-Gi alpha and Gs alpha
mediated pathway 1 0.2%

2-arachidonoylglycerol biosynthesis 1 0.2%
TCA cycle 1 0.2%
ATP synthesis 1 0.2%
Ubiquitin proteasome pathway 1 0.2%
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Protein: Q9UBP4

Samples: 100%

Distribution: [1.0 1.0 1.0]
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Distribution: [0.63 0.13 0.24]
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Distribution: [0.48 0.38 0.14]

Lower Higher

Figure A1. Selected classification tree with dickkopf-related protein 3 as the main node; the condi-
tional distributions in the description of the nodes refer to the probabilities of “good”, “fair”, and
“poor” samples, respectively.

Protein: P01876

Samples: 100%

Distribution: [1.0 1.0 1.0]

Protein: Q15582

Samples: 84%

Distribution: [0.34 0.39 0.27]

Samples: 16%

Distribution: [0.31 0.03 0.66]

Protein: Q9H8L6

Samples: 65%

Distribution: [0.32 0.47 0.21]

Protein: Q9UBP4

Samples: 19%

Distribution: [0.41 0.13 0.46]

Samples: 28%

Distribution: [0.47 0.37 0.16]
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Distribution: [0.2 0.54 0.26]

Samples: 10%

Distribution: [0.24 0.22 0.54]

Samples: 9%

Distribution: [0.57 0.04 0.39]

Lower Higher

Figure A2. Selected classification tree with immunoglobulin heavy chain alpha as the main node; the
conditional distributions in the description of the notes refer to the probabilities of “good”, “fair” and
“poor” samples, respectively.
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