The AP-2 Family of Transcription Factors—Still Undervalued Regulators in Gastroenterological Disorders
Abstract
:1. Introduction
2. The AP-2 Family in Gastric Cancer (GC)
3. The AP-2 Family in Colorectal Cancer (CRC)
4. The AP-2 Family in Other Gastroenterological Disorders
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jin, C.; Luo, Y.; Liang, Z.; Li, X.; Kołat, D.; Zhao, L.; Xiong, W. Crucial role of the transcription factors family activator protein 2 in cancer: Current clue and views. J. Transl. Med. 2023, 21, 371. [Google Scholar] [CrossRef] [PubMed]
- Kolat, D.; Zhao, L.Y.; Kciuk, M.; Pluciennik, E.; Kaluzinska-Kolat, Z. AP-2δ Is the Most Relevant Target of AP-2 Family-Focused Cancer Therapy and Affects Genome Organization. Cells 2022, 11, 4124. [Google Scholar] [CrossRef]
- Kołat, D.; Kałuzińska, Ż.; Orzechowska, M.; Bednarek, A.K.; Płuciennik, E. Functional genomics of AP-2α and AP-2γ in cancers: In silico study. BMC Med. Genom. 2020, 13, 174. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar]
- Williams, T.; Admon, A.; Lüscher, B.; Tjian, R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes. Dev. 1988, 2, 1557–1569. [Google Scholar] [CrossRef]
- Moser, M.; Imhof, A.; Pscherer, A.; Bauer, R.; Amselgruber, W.; Sinowatz, F.; Hofstädter, F.; Schüle, R.; Buettner, R. Cloning and characterization of a second AP-2 transcription factor: AP-2 beta. Development 1995, 121, 2779–2788. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.A.B.J.; Skinner, A.; Sheer, D.; Williams, T.; Hurst, H.C. Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics 1996, 35, 262–264. [Google Scholar] [CrossRef]
- Cheng, C.; Ying, K.; Xu, M.; Zhao, W.; Zhou, Z.; Huang, Y.; Wang, W.; Xu, J.; Zeng, L.; Xie, Y.; et al. Cloning and characterization of a novel human transcription factor AP-2 beta like gene (TFAP2BL1). Int. J. Biochem. Cell Biol. 2002, 34, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Tummala, R.; Romano, R.-A.; Fuchs, E.; Sinha, S. Molecular cloning and characterization of AP-2ε, a fifth member of the AP-2 family. Gene 2003, 321, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chen, J.; Ruan, X.; Sun, Y.; Zhang, K.; Wang, X.; Li, X.; Gill, D.; Burgess, S.; Giovannucci, E.; et al. Smoking, alcohol consumption, and 24 gastrointestinal diseases: Mendelian randomization analysis. Elife 2023, 12, e84051. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Bennett, K.L.; Romigh, T.; Eng, C. AP-2alpha induces epigenetic silencing of tumor suppressive genes and microsatellite instability in head and neck squamous cell carcinoma. PLoS ONE 2009, 4, e6931. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zeng, L.; Wang, J.; Zhang, X.; Ruan, Q.; Wang, J.; Cui, S.; Yang, D. Reversal of 5-fluorouracil resistance by EGCG is mediate by inactivation of TFAP2A/VEGF signaling pathway and down-regulation of MDR-1 and P-gp expression in gastric cancer. Oncotarget 2017, 8, 82842–82853. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, S.; Zhang, Y.; Wong, K.-C.; Nakatsu, G.; Wang, X.; Wong, S.; Ji, J.; Yu, J. Zinc-finger protein 471 suppresses gastric cancer through transcriptionally repressing downstream oncogenic PLS3 and TFAP2A. Oncogene 2018, 37, 3601–3616. [Google Scholar] [CrossRef]
- Cao, D.; Xu, H.; Li, L.; Ju, Z.; Zhai, B. Molecular characteristics of gastric cancer with ERBB2 amplification. Heliyon 2023, 9, e18654. [Google Scholar] [CrossRef]
- Huang, H.; Xie, L.; Feng, X.; Zheng, Z.; Ouyang, J.; Li, Y.; Yu, J. An integrated analysis of DNA promoter methylation, microRNA regulation, and gene expression in gastric adenocarcinoma. Ann. Transl. Med. 2021, 9, 1414. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lv, L.; Pan, K.; Zhang, Y.; Zhao, J.-J.; Chen, J.-G.; Chen, Y.-B.; Li, Y.-Q.; Wang, Q.-J.; He, J.; et al. Reduced expression of transcription factor AP-2α is associated with gastric adenocarcinoma prognosis. PLoS ONE 2011, 6, e24897. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, L.; Wu, J.; You, J.; Hong, Q.; Ye, F. Transcription factor KLF15 inhibits the proliferation and migration of gastric cancer cells via regulating the TFAP2A-AS1/NISCH axis. Biol. Direct. 2021, 16, 21. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, K.; Min, C.; Zhang, C.; Yang, L.; Zhang, Q.; Tian, Z.; Zhang, M.; Wang, X.; Li, X. Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci. 2023, 114, 63–74. [Google Scholar] [CrossRef]
- Yamashita, S.; Tsujino, Y.; Moriguchi, K.; Tatematsu, M.; Ushijima, T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2′-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci. 2006, 97, 64–71. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Zhao, L.-Y. AP-2 Family of Transcription Factors: Critical Regulators of Human Development and Cancer. J. Cancer Treat. Diagn. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Sun, J.; Du, N.; Li, J.; Zhou, J.; Tao, G.; Sun, S.; He, J. Transcription Factor AP2epsilon: A Potential Predictor of Chemoresistance in Patients With Gastric Cancer. Technol. Cancer Res. Treat. 2016, 15, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-D.; Zhang, J.; Zhuang, M.; Li, W.; Wu, P.-U.; Li, R.-T.; Hu, N.; Bian, B.-X.; Song, Z.-Y.; Wu, F.-L. Efficacy of decitabine-loaded gelatinases-stimuli nanoparticles in overcoming cancer drug resistance is mediated via its enhanced demethylating activity to transcription factor AP-2 epsilon. Oncotarget 2017, 8, 114495–114505. [Google Scholar] [CrossRef]
- Wu, F.-L.; Li, R.-T.; Yang, M.; Yue, G.-F.; Wang, H.-Y.; Liu, Q.; Cui, F.-B.; Wu, P.-Y.; Ding, H.; Yu, L.-X.; et al. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett. 2015, 363, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Kishino, T.; Takahashi, T.; Shimazu, T.; Charvat, H.; Kakugawa, Y.; Nakajima, T.; Lee, Y.-C.; Iida, N.; Maeda, M.; et al. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc. Natl. Acad. Sci. USA 2018, 115, 1328–1333. [Google Scholar] [CrossRef]
- Jingyue, S.; Xiao, W.; Juanmin, Z.; Wei, L.; Daoming, L.; Hong, X. TFAP2E methylation promotes 5-fluorouracil resistance via exosomal miR-106a-5p and miR-421 in gastric cancer MGC-803 cells. Mol. Med. Rep. 2019, 20, 323–331. [Google Scholar]
- Li, Q.; Dashwood, R.H. Activator protein 2alpha associates with adenomatous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell factor transcriptional activity in colorectal cancer cells. J. Biol. Chem. 2004, 279, 45669–45675. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.; O Melnikova, V.; Tellez, C.; Mourad-Zeidan, A.; Blehm, K.; Zhao, Y.-J.; McCarty, M.; Adam, L.; Bar-Eli, M. Loss of AP-2alpha results in deregulation of E-cadherin and MMP-9 and an increase in tumorigenicity of colon cancer cells in vivo. Oncogene 2007, 26, 4049–4058. [Google Scholar] [CrossRef]
- Wang, L.-N.; Yang, Y.-L.; Zhao, L.-Y. TFAP-2: A Special Regulator with Bidirectional Effect in Human Cancer. J. Cancer Immunol. 2021, 3, 035. [Google Scholar] [CrossRef]
- BBogachek, M.V.; Park, J.M.; De Andrade, J.P.; Lorenzen, A.W.; Kulak, M.V.; White, J.R.; Gu, V.W.; Wu, V.T.; Weigel, R.J. Inhibiting the SUMO Pathway Represses the Cancer Stem Cell Population in Breast and Colorectal Carcinomas. Stem Cell Rep. 2016, 7, 1140–1151. [Google Scholar] [CrossRef]
- Li, H.; Goswami, P.C.; Domann, F.E. AP-2gamma induces p21 expression, arrests cell cycle, and inhibits the tumor growth of human carcinoma cells. Neoplasia 2006, 8, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Wajapeyee, N.; Somasundaram, K. Cell cycle arrest and apoptosis induction by activator protein 2alpha (AP-2alpha) and the role of p53 and p21WAF1/CIP1 in AP-2alpha-mediated growth inhibition. J. Biol. Chem. 2003, 278, 52093–52101. [Google Scholar] [CrossRef] [PubMed]
- McPherson, L.A.; Loktev, A.V.; Weigel, R.J. Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J. Biol. Chem. 2002, 277, 45028–45033. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lohr, C.V.; Dashwood, R.H. Activator protein 2alpha suppresses intestinal tumorigenesis in the Apc(min) mouse. Cancer Lett. 2009, 283, 36–42. [Google Scholar] [CrossRef]
- Wang, X.; Luo, X.; Chen, C.; Tang, Y.; Li, L.; Mo, B.; Liang, H.; Yu, S. The Ap-2α/Elk-1 axis regulates Sirpalpha-dependent tumor phagocytosis by tumor-associated macrophages in colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, H.; Liu, L.; Song, H.; Zhang, Y.; Wang, J.; Liu, L.; Xu, T.; Fan, R.; Xu, Y.; et al. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol. Cancer 2021, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, D.; Tai, J.; Chen, S.; Yu, M.; Ren, D.; Wang, L. TFAP2C promotes stemness and chemotherapeutic resistance in colorectal cancer via inactivating hippo signaling pathway. J. Exp. Clin. Cancer Res. 2018, 37, 27. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, S.-M.; Hong, Y.S.; Lee, J.-L.; Kim, J.-E.; Kim, K.-P.; Hong, S.-M.; Jin, D.-H.; Kim, C.W.; Yoon, Y.S.; et al. TFAP2E methylation status and prognosis of patients with radically resected colorectal cancer. Oncology 2015, 88, 122–132. [Google Scholar] [CrossRef]
- Murcia, O.; Jover, R.; Egoavil, C.; Perez-Carbonell, L.; Juárez, M.; Hernández-Illán, E.; Rojas, E.; Alenda, C.; Balaguer, F.; Andreu, M.; et al. TFAP2E Methylation and Expression Status Does Not Predict Response to 5-FU-based Chemotherapy in Colorectal Cancer. Clin. Cancer Res. 2018, 24, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.M.; Wang, Y.; Huang, R.; Liu, Y.P.; Li, X.; Hu, F.L.; Zhu, L.; Wang, F.; Cui, B.-B.; Dong, X.-S.; et al. TFAP2E hypermethylation was associated with survival advantage in patients with colorectal cancer. J. Cancer Res. Clin. Oncol. 2014, 140, 2119–2127. [Google Scholar] [CrossRef]
- Beggs, A.D.; Dilworth, M.P.; Domingo, E.; Midgley, R.; Kerr, D.; Tomlinson, I.P.; Middleton, G.W. Methylation changes in the TFAP2E promoter region are associated with BRAF mutation and poorer overall & disease free survival in colorectal cancer. Oncoscience 2015, 2, 508–516. [Google Scholar] [PubMed]
- He, S.; Shen, J.; Hu, N.; Xu, X.; Li, J. DKK4 enhances resistance to chemotherapeutics 5-Fu and YN968D1 in colorectal cancer cells. Oncol. Lett. 2017, 13, 587–592. [Google Scholar] [CrossRef]
- Cai, X.; Yao, Z.; Li, L.; Huang, J. Role of DKK4 in Tumorigenesis and Tumor Progression. Int. J. Biol. Sci. 2018, 14, 616–621. [Google Scholar] [CrossRef]
- Ebert, M.P.; Tanzer, M.; Balluff, B.; Burgermeister, E.; Kretzschmar, A.K.; Hughes, D.J.; Tetzner, R.; Lofton-Day, C.; Rosenberg, R.; Reinacher-Schick, A.C.; et al. TFAP2E-DKK4 and chemoresistance in colorectal cancer. N. Engl. J. Med. 2012, 366, 44–53. [Google Scholar] [CrossRef]
- Schwenk, R.W.; Vogel, H.; Schurmann, A. Genetic and epigenetic control of metabolic health. Mol. Metab. 2013, 2, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Bandstein, M.; Voisin, S.; Nilsson, E.K.; Schultes, B.; Ernst, B.; Thurnheer, M.; Benedict, C.; Mwinyi, J.; Schiöth, H.B. A Genetic Risk Score Is Associated with Weight Loss Following Roux-en Y Gastric Bypass Surgery. Obes. Surg. 2016, 26, 2183–2189. [Google Scholar] [CrossRef]
- Liu, S.; Wilson, J.G.; Jiang, F.; Griswold, M.; Correa, A.; Mei, H. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study. Gene 2016, 593, 315–321. [Google Scholar] [CrossRef]
- Zada, A.; Kuil, L.E.; de Graaf, B.M.; Kakiailatu, N.; Windster, J.D.; Brooks, A.S.; van Slegtenhorst, M.; de Koning, B.; Wijnen, R.M.H.; Melotte, V.; et al. TFAP2B Haploinsufficiency Impacts Gastrointestinal Function and Leads to Pediatric Intestinal Pseudo-obstruction. Front. Cell Dev. Biol. 2022, 10, 901824. [Google Scholar] [CrossRef]
- Holl, D.; Kuckenberg, P.; Woynecki, T.; Egert, A.; Becker, A.; Huss, S.; Stabenow, D.; Zimmer, A.; Knolle, P.; Tolba, R.; et al. Transgenic overexpression of Tcfap2c/AP-2gamma results in liver failure and intestinal dysplasia. PLoS ONE 2011, 6, e22034. [Google Scholar] [CrossRef] [PubMed]
AP-2 Member | Biological Outcome and Related Mechanism (If Known) | Role of AP-2 | Ref. |
---|---|---|---|
Gastric cancer | |||
AP-2α | Epigallocatechin gallate downregulates the AP-2α/VEGF pathway, inhibiting proliferation and decreasing 5-FU resistance. | Unfavorable | [13] |
ZNF471 and KAP1 induce TFAP2A promoter hypermethylation, which reduces proliferation, migration, and invasion. | Unfavorable | [14] | |
AP-2α facilitates epithelial–mesenchymal transition in ERBB2Amp-type gastric cancer. | Unfavorable | [15] | |
Low AP-2α expression correlates with advanced tumor stage and a poorer prognosis. | Beneficial | [16,17] | |
AP-2γ | AP-2γ is recruited by LINC00857, which enhances FAT1 and promotes tumorigenesis, as well as epithelial–mesenchymal transition. | Unfavorable | [19] |
30-fold upregulation of TFAP2C was noted after treatment with 5-aza-2′-deoxycytidine. | Inconclusive | [20] | |
AP-2δ | AP-2δ mutations correlate with the expression of cancer hallmark genes and drug targets. | Inconclusive | [2] |
AP-2ε | TFAP2E hypermethylation is associated with increased chemoresistance to 5-FU; miR-106a-5p and miR-421 are dependent on TFAP2E methylation status and regulate the expression of E2F1, STAT3, and MTOR, which are associated with 5-FU chemoresistance. | Beneficial | [22,26] |
Colorectal cancer | |||
AP-2α | AP-2α interacts with APC, disrupting the Wnt/β-catenin pathway and inhibiting EMT. | Beneficial | [27] |
AP-2α loss dysregulates E-cadherin and MMP-9, increasing the tumorigenicity. | Beneficial | [28] | |
AP-2α is essential for the PTEN-mediated inhibition of proliferation and cell cycle. | Beneficial | [29] | |
AP-2α mediates anti-tumor effects of SUMO inhibitors by downregulating CD44 and MMP14, restraining tumor stemness. | Beneficial | [30] | |
AP-2α induces cell cycle arrest and apoptosis (p53-dependent or p53-independent manner). | Beneficial | [32,33] | |
AP-2α suppresses intestinal polyp formation and exerts tumor-suppressive effects. | Beneficial | [34] | |
Lactate released by tumor cells can induce the nuclear translocation of AP-2α in TAMs, leading to upregulation of ELK1 and SIRPα, thereby decreasing the phagocytic activity of TAMs and ensuring immune evasion. | Unfavorable | [35] | |
AP-2γ | AP-2γ enhances CircIL4R, whichactivates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis, intensifying proliferation, migration, and invasion. | Unfavorable | [36] |
AP-2γ enhances the expression of Nanog, BMI-1, OCT4, and SOX2, regulating phenotypic traits of stem cells and promoting tumorigenesis. | Unfavorable | [37] | |
AP-2γ expression is positively associated with YAP1 and TAZ, which inhibits the Hippo pathway and increases 5-FU resistance. | Unfavorable | [37] | |
AP-2δ | AP-2δ mutations correlate with the expression of cancer hallmark genes and drug targets. | Inconclusive | [2] |
AP-2ε | TFAP2E hypermethylation is related to low invasion, reduced lymph node metastasis, and favorable prognosis. | Unfavorable | [40] |
AP-2ε inhibits cyclin-dependent kinase 4 and decreases resistance to 5-FU. | Beneficial | [42,43] | |
AP-2ε intensifies Wnt/β-catenin signaling via inhibition of DKK4, which is known to promote 5-FU chemoresistance. | Beneficial | [44] | |
Other gastroenterological disorders | |||
AP-2β | Genetic variants of AP-2β are related to BMI and weight loss in high-fat diet groups. | Inconclusive | [46,47] |
TFAP2B haploinsufficiency decimates enteric neurons and delays gastrointestinal transit time, causing intestinal pseudo-obstruction. | Beneficial | [48] | |
AP-2γ | AP-2γ induces SOX9 and intensifies epithelial progenitor cell expansion, resulting in liver failure and intestinal dysplasia. | Unfavorable | [49] |
AP-2ε | TFAP2E methylation discriminates groups with various risks of cancer; a putative risk marker for esophageal squamous cell cancer. | Inconclusive | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.-J.; Kołat, D.; Kałuzińska-Kołat, Ż.; Liang, Z.; Peng, B.-Q.; Zhu, Y.-F.; Liu, K.; Mei, J.-X.; Yu, G.; Zhang, W.-H.; et al. The AP-2 Family of Transcription Factors—Still Undervalued Regulators in Gastroenterological Disorders. Int. J. Mol. Sci. 2024, 25, 9138. https://doi.org/10.3390/ijms25179138
Yu Y-J, Kołat D, Kałuzińska-Kołat Ż, Liang Z, Peng B-Q, Zhu Y-F, Liu K, Mei J-X, Yu G, Zhang W-H, et al. The AP-2 Family of Transcription Factors—Still Undervalued Regulators in Gastroenterological Disorders. International Journal of Molecular Sciences. 2024; 25(17):9138. https://doi.org/10.3390/ijms25179138
Chicago/Turabian StyleYu, Yi-Jin, Damian Kołat, Żaneta Kałuzińska-Kołat, Zhu Liang, Bo-Qiang Peng, Yun-Feng Zhu, Kai Liu, Jia-Xin Mei, Gang Yu, Wei-Han Zhang, and et al. 2024. "The AP-2 Family of Transcription Factors—Still Undervalued Regulators in Gastroenterological Disorders" International Journal of Molecular Sciences 25, no. 17: 9138. https://doi.org/10.3390/ijms25179138