Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes
Abstract
:1. Introduction
2. Results
2.1. Production of IL-8, MCP-1, RANTES, IL-6, TNF-α, and IL-11
2.2. Proliferation
2.3. Localization of NF-κB and p-NF-κB
2.4. Expression of EGFR, p-EGFR, ERK1/2, p-ERK1/2, MMP1, and MMP9
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Electrical Treatment
4.3. ELISA
4.4. Cell Proliferation
4.5. Inmunoblot
4.6. Immunofluorescence
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADSC | Adipose-derived stem cell |
AKT | Protein kinase B |
CCL | C-C motif ligand |
CRET | Capacitive resistive electric transfer |
ECM | Extracellular matrix |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
ELISA | Enzyme-linked immunoassay |
ERK1/2 | Extracellular signal-regulated protein kinases 1 and 2 |
FMR | Fractional microneedling radiofrequency |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
IgG | Immunoglobulin G |
IL | Interleukin |
IPL | Intense pulsed light |
kHz | kilohertz |
MAPK | Mitogen-activated protein kinase |
MCP-1 | Monocyte chemoattractant protein-1 |
MMP | Matrix metalloproteinases |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NP | Nanoparticles |
PDL | Pulsed dye laser |
RANTES | Regulated on activation, normal Tcell expressed and secreted |
Ras | Rat sarcoma virus |
RF | Radiofrequency |
TNF | Tumor necrosis factor |
References
- Falanga, V.; Isseroff, R.R.; Soulika, A.M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic Wounds. Nat. Rev. Dis. Primers 2022, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Rinkevich, Y. Scars or Regeneration?—Dermal Fibroblasts as Drivers of Diverse Skin Wound Responses. Int. J. Mol. Sci. 2020, 21, 617. [Google Scholar] [CrossRef] [PubMed]
- Zinchuk, A.; Holubovska, O.; Shkurba, A.; Hrytsko, R.; Vorozhbyt, O.; Richniak, M.; Herasun, B. Original Inhibition Method of Excessive Synthesis of Pro-Inflammatory Cytokine of Tumour Necrosis Factor α. Cent. Eur. J. Immunol. 2015, 3, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhu, Y.; Wang, Y.; Xiang, W. Intense Pulsed Light Treatment for Inflammatory Skin Diseases: A Review. Lasers Med. Sci. 2022, 37, 3085–3105. [Google Scholar] [CrossRef]
- Erceg, A.; De Jong, E.M.J.G.; Van De Kerkhof, P.C.M.; Seyger, M.M.B. The Efficacy of Pulsed Dye Laser Treatment for Inflammatory Skin Diseases: A Systematic Review. J. Am. Acad. Dermatol. 2013, 69, 609–615.e8. [Google Scholar] [CrossRef]
- Ueltschi, O.; Casola, M.; Rose, L.; Dulmage, B.; Kaffenberger, J. The Use of Photodynamic Therapy in the Management of Darier Disease and Hailey-Hailey Disease: A Systematic Review. Arch. Dermatol. Res. 2024, 316, 610. [Google Scholar] [CrossRef]
- Elmelid, A.; Vandikas, M.S.; Gillstedt, M.; Alsterholm, M.; Osmancevic, A. The Effect of Phototherapy on Systemic Inflammation Measured with Serum Vitamin D-Binding Protein and hsCRP in Patients with Inflammatory Skin Disease. Int. J. Mol. Sci. 2024, 25, 8632. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, M.; Narbutt, J.; Nolberczak, D.; Ciążyńska, M.; Skibińska, M.; Sobolewska-Sztychny, D.; Aubert, D.; Lesiak, A. Prospective Clinical Study: Full-Body Blue Irradiation in the Treatment of Atopic Dermatitis. Dermatol. Ther. 2024, 14, 2631–2643. [Google Scholar] [CrossRef]
- Mohamed, R.K.; Elsayed, N.M.; Mahmoud, S.A.; Gaweesh, Y.Y. Photobiomodulation versus Corticosteroid in the Management of Erosive Oral Lichen Planus: A Randomized Controlled Clinical Trial. BMC Oral Health 2024, 24, 246. [Google Scholar] [CrossRef]
- Fortoul, M.C.; Macias Martinez, B.; Ventura Rodriguez, D.; Dallara, M.; Stelnicki, E.J.; Kamel, G. A Retrospective Review of Laser Therapy for Treatment of Hidradenitis Suppurativa. Ann. Plast. Surg. 2023, 91, 758–762. [Google Scholar] [CrossRef]
- Parodis, I.; Gomez, A.; Tsoi, A.; Chow, J.W.; Pezzella, D.; Girard, C.; Stamm, T.A.; Boström, C. Systematic Literature Review Informing the EULAR Recommendations for the Non-Pharmacological Management of Systemic Lupus Erythematosus and Systemic Sclerosis. RMD Open 2023, 9, e003297. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Darder, I.; Garcías-Ladaria, J.; Llull Ramos, A.; Prados, E.; Vanrell Buse, E.; Montis-Palos, C.; Bauzá Alonso, A.F. Photodynamic Therapy for the Local Control of Refractory Cutaneous Sarcoidosis of the Head: Case Report and Review of the Literature. Photodiagn. Photodyn. Ther. 2022, 39, 102870. [Google Scholar] [CrossRef] [PubMed]
- Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G.; et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics 2023, 13, 1210. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Herrmann, K.; Schöder, H.; Scott, A.M.; Lewis, J.S. Radiotheranostics in Oncology: Current Challenges and Emerging Opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 534–550. [Google Scholar] [CrossRef]
- Meyer, P.F.; de Oliveira, P.; Silva, F.K.B.A.; da Costa, A.C.S.; Pereira, C.R.A.; Casenave, S.; Valentim Silva, R.M.; Araújo-Neto, L.G.; Santos-Filho, S.D.; Aizamaque, E.; et al. Radiofrequency Treatment Induces Fibroblast Growth Factor 2 Expression and Subsequently Promotes Neocollagenesis and Neoangiogenesis in the Skin Tissue. Lasers Med. Sci. 2017, 32, 1727–1736. [Google Scholar] [CrossRef]
- Asci, H.; Savran, M.; Comlekci, S.; Sofu, M.M.; Erzurumlu, Y.; Ozmen, O.; Kaynak, M.; Sahin, M.E.; Taner, R.; Gecin, M. Combined Pulsed Magnetic Field and Radiofrequency Electromagnetic Field Enhances MMP-9, Collagen-4, VEGF Synthesis to Improve Wound Healing Via Hif-1α/eNOS Pathway. Aesthetic Plast. Surg. 2023, 47, 2841–2852. [Google Scholar] [CrossRef]
- Racz, G.B.; Ruiz-Lopez, R. Radiofrequency Procedures. Pain Pract. 2006, 6, 46–50. [Google Scholar] [CrossRef]
- Farì, G.; De Sire, A.; Fallea, C.; Albano, M.; Grossi, G.; Bettoni, E.; Di Paolo, S.; Agostini, F.; Bernetti, A.; Puntillo, F.; et al. Efficacy of Radiofrequency as Therapy and Diagnostic Support in the Management of Musculoskeletal Pain: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- Bonjorno, A.R.; Gomes, T.B.; Pereira, M.C.; Carvalho, C.M.; Gabardo, M.C.L.; Kaizer, M.R.; Zielak, J.C. Radiofrequency Therapy in Esthetic Dermatology: A Review of Clinical Evidences. J. Cosmet. Dermatol. 2020, 19, 278–281. [Google Scholar] [CrossRef]
- Gorgu, M.; Gökkaya, A.; Karabekmez, F.E.; Aytar, O.; Kızılkan, J.; Karanfil, E.; Astarcı, H.M. Effects of Device Variables to Radiofrequency (RF) Applications. J. Cosmet. Laser Ther. 2019, 21, 364–371. [Google Scholar] [CrossRef]
- Min, S.; Park, S.; Yoon, J.; Kwon, H.; Suh, D. Fractional Microneedling Radiofrequency Treatment for Acne-Related Post-Inflammatory Erythema. Acta Derm. Venerol. 2016, 96, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kwon, H.H.; Yoon, J.Y.; Min, S.; Suh, D.H. Clinical and Histologic Effects of Fractional Microneedling Radiofrequency Treatment on Rosacea. Dermatol. Surg. 2016, 42, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Lee, K.H.; Sim, H.J.; Suh, K.S.; Jang, M.S. Treatment of Acne Vulgaris with Fractional Radiofrequency Microneedling. J. Dermatol. 2014, 41, 586–591. [Google Scholar] [CrossRef]
- Nilforoushzadeh, M.A.; Heidari, N.; Heidari, A.; Ghane, Y.; Hosseini, S.; Lotfi, Z.; Jaffary, F.; Nobari, M.N.; Aghamiri, Z.S.; Nobari, N.N. Efficacy and Safety of Radiofrequency in the Treatment of Hidradenitis Suppurativa; a Systematic Review. Lasers Med. Sci. 2024, 39, 139. [Google Scholar] [CrossRef]
- Hasan, A.I.; Hasan, E.F.; Latif, T.M. Effectiveness of Fractionated Microneedle Radiofrequency in Treatment of Seborrheic Dermatitis. Med. J. Babylon 2024, 21, 214–218. [Google Scholar] [CrossRef]
- San, B.H.; Moh, S.H.; Kim, K.K. Investigation of the Heating Properties of Platinum Nanoparticles under a Radiofrequency Current. Int. J. Hyperth. 2013, 29, 99–105. [Google Scholar] [CrossRef]
- Mironava, T.; Simon, M.; Rafailovich, M.H.; Rigas, B. Platinum Folate Nanoparticles Toxicity: Cancer vs. Normal Cells. Toxicol. In Vitro 2013, 27, 882–889. [Google Scholar] [CrossRef]
- Valentim da Silva, R.M.; Barichello, P.A.; Medeiros, M.L.; Mendonça, W.C.M.D.; Dantas, J.S.C.; Ronzio, O.A.; Froes, P.M.; Galadari, H. Effect of Capacitive Radiofrequency on the Fibrosis of Patients with Cellulite. Dermatol. Res. Pract. 2013, 2013, 715829. [Google Scholar] [CrossRef]
- Naranjo, P.; Lopez-Estebaranz, J.; Shoaib, T.; Pinto, H. Non-Ablative Capacitive Resistive 448 kHz Radiofrequency for Wrinkle Reduction Pilot Study. Aesthetic Med. 2020, 6, 41–48. [Google Scholar]
- Martínez-Pascual, M.A.; Sacristán, S.; Toledano-Macías, E.; Naranjo, P.; Hernández-Bule, M.L. Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. Int. J. Mol. Sci. 2024, 25, 7865. [Google Scholar] [CrossRef]
- Pablo, N. Radiofrequency Current at 448 Khz For Female Pattern Hair Loss: Cellular Bases For Redensification Improvement. J Dermatol. Res. 2022, 3, 1–24. [Google Scholar] [CrossRef]
- García Pablo, N. First Assessment of the Proionic Effects Resulting from Non-Thermal Application of 448 kHz Monopolar Radiofrequency for Reduction of Edema Caused by Fractional CO2 Laser Facial Rejuvenation Treatments. J. Surg. 2015, 3, 21. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Paíno, C.L.; Trillo, M.Á.; Úbeda, A. Electric Stimulation at 448 kHz Promotes Proliferation of Human Mesenchymal Stem Cells. Cell Physiol. Biochem. 2014, 34, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bule, M.L.; Toledano-Macías, E.; Naranjo, A.; de Andrés-Zamora, M.; Úbeda, A. In Vitro Stimulation with Radiofrequency Currents Promotes Proliferation and Migration in Human Keratinocytes and Fibroblasts. Electromagn. Biol. Med. 2021, 40, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Morizane, S.; Mukai, T.; Sunagawa, K.; Tachibana, K.; Kawakami, Y.; Ouchida, M. “Input/Output Cytokines” in Epidermal Keratinocytes and the Involvement in Inflammatory Skin Diseases. Front. Immunol. 2023, 14, 1239598. [Google Scholar] [CrossRef]
- Werner, S.; Krieg, T.; Smola, H. Keratinocyte-Fibroblast Interactions in Wound Healing. J. Investig. Dermatol. 2007, 127, 998–1008. [Google Scholar] [CrossRef]
- Jiang, Y.; Tsoi, L.C.; Billi, A.C.; Ward, N.L.; Harms, P.W.; Zeng, C.; Maverakis, E.; Kahlenberg, J.M.; Gudjonsson, J.E. Cytokinocytes: The Diverse Contribution of Keratinocytes to Immune Responses in Skin. JCI Insight 2020, 5, e142067. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Gröne, A. Keratinocytes and Cytokines. Vet. Immunol. Immunopathol. 2002, 88, 1–12. [Google Scholar] [CrossRef]
- Dissemond, J.; Romanelli, M. Inflammatory Skin Diseases and Wounds. Br. J. Dermatol. 2022, 187, 167–177. [Google Scholar] [CrossRef]
- Gillitzer, R.; Goebeler, M. Chemokines in Cutaneous Wound Healing. J. Leukoc. Biol. 2001, 69, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Spandau, U.; Bröcker, E.-B.; Kämpgen, E.; Gillitzer, R. CC and CXC Chemokines Are Differentially Expressed in Erythema Multiforme In Vivo. Arch. Dermatol. 2002, 138, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Appay, V.; Rowland-Jones, S.L. RANTES: A Versatile and Controversial Chemokine. Trends Immunol. 2001, 22, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.Z.; Stevenson, A.W.; Prêle, C.M.; Fear, M.W.; Wood, F.M. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.X.; Elias, J.A. Interleukin-11. Int. J. Biochem. Cell Biol. 1997, 29, 1059–1062. [Google Scholar] [CrossRef]
- Singh, A.; Cho, W.J.; Pulimamidi, V.K.; Mittal, S.K.; Chauhan, S.K. Interleukin-11 Suppresses Ocular Surface Inflammation and Accelerates Wound Healing. Investig. Ophthalmol. Vis. Sci. 2023, 64, 1. [Google Scholar] [CrossRef]
- Albanesi, C.; Pastore, S. Pathobiology of Chronic Inflammatory Skin Diseases: Interplay Between Keratinocytes and Immune Cells as a Target for Anti-Inflammatory Drugs. Curr. Drug Metab. 2010, 11, 210–227. [Google Scholar] [CrossRef]
- Freedberg, I.M.; Tomic-Canic, M.; Komine, M.; Blumenberg, M. Keratins and the Keratinocyte Activation Cycle. J. Investig. Dermatol. 2001, 116, 633–640. [Google Scholar] [CrossRef]
- Eitsuka, T.; Tatewaki, N.; Nishida, H.; Nakagawa, K.; Miyazawa, T. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int. J. Mol. Sci. 2016, 17, 1605. [Google Scholar] [CrossRef]
- Luo, R.; Dai, J.; Zhang, J.; Li, Z. Accelerated Skin Wound Healing by Electrical Stimulation. Adv. Healthc. Mater. 2021, 10, 2100557. [Google Scholar] [CrossRef]
- Lushnikov, K.V.; Shumilina, Y.V.; Yakushina, V.S.; Gapeev, A.B.; Sadov, V.B.; Chemeris, N.K. Effects of Low-Intensity Ultrahigh Frequency Electromagnetic Radiation on Inflammatory Processes. Bull. Exp. Biol. Med. 2004, 137, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Roy Barman, S.; Jhunjhunwala, S. Electrical Stimulation for Immunomodulation. ACS Omega 2024, 9, 52–66. [Google Scholar] [CrossRef]
- Katoh, K. Effects of Electrical Stimulation of the Cell: Wound Healing, Cell Proliferation, Apoptosis, and Signal Transduction. Med. Sci. 2023, 11, 11. [Google Scholar] [CrossRef]
- Friedman, J.; Kraus, S.; Hauptman, Y.; Schiff, Y.; Seger, R. Mechanism of Short-Term ERK Activation by Electromagnetic Fields at Mobile Phone Frequencies. Biochem. J. 2007, 405, 559–568. [Google Scholar] [CrossRef]
- Lu, C.; Kolbenschlag, J.; Nüssler, A.K.; Ehnert, S.; McCaig, C.D.; Čebron, U.; Daigeler, A.; Prahm, C. Direct Current Electrical Fields Improve Experimental Wound Healing by Activation of Cytokine Secretion and Erk1/2 Pathway Stimulation. Life 2021, 11, 1195. [Google Scholar] [CrossRef] [PubMed]
- Shaul, Y.D.; Seger, R. The MEK/ERK Cascade: From Signaling Specificity to Diverse Functions. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2007, 1773, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.O.; Blenis, J. MAPK Signal Specificity: The Right Place at the Right Time. Trends Biochem. Sci. 2006, 31, 268–275. [Google Scholar] [CrossRef]
- Vianale, G.; Reale, M.; Amerio, P.; Stefanachi, M.; Di Luzio, S.; Muraro, R. Extremely Low Frequency Electromagnetic Field Enhances Human Keratinocyte Cell Growth and Decreases Proinflammatory Chemokine Production. Br. J. Dermatol. 2008, 158, 1189–1196. [Google Scholar] [CrossRef]
- Giantulli, S.; Tortorella, E.; Brasili, F.; Scarpa, S.; Cerroni, B.; Paradossi, G.; Bedini, A.; Morrone, S.; Silvestri, I.; Domenici, F. Effect of 1-MHz Ultrasound on the Proinflammatory Interleukin-6 Secretion in Human Keratinocytes. Sci. Rep. 2021, 11, 19033. [Google Scholar] [CrossRef]
- Petit-FrèrePeter, C.; Clingen, P.H.; Arlett, C.F.; Green, M.H.L.; Grewe, M.; Krutmann, J.; Roza, L. Induction of Interleukin-6 Production by Ultraviolet Radiation in Normal Human Epidermal Keratinocytes and in a Human Keratinocyte Cell Line Is Mediated by DNA Damage. J. Investig. Dermatol. 1998, 111, 354–359. [Google Scholar] [CrossRef]
- Hernández-Quintero, M.; Kuri-Harcuch, W.; González Robles, A.; Castro-Muñozledo, F. Interleukin-6 Promotes Human Epidermal Keratinocyte Proliferation and Keratin Cytoskeleton Reorganization in Culture. Cell Tissue Res. 2006, 325, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, H.; Tang, X.; Zhang, M.; Wu, Y.; Zhao, Y.; Lu, C.; Zhao, R. Geniposide Ameliorates Psoriatic Skin Inflammation by Inhibiting the TLR4/MyD88/NF-κB P65 Signaling Pathway and MMP9. Int. Immunopharmacol. 2024, 133, 112082. [Google Scholar] [CrossRef] [PubMed]
- Pastore, S.; Mascia, F.; Mariotti, F.; Dattilo, C.; Mariani, V.; Girolomoni, G. ERK1/2 Regulates Epidermal Chemokine Expression and Skin Inflammation. J. Immunol. 2005, 174, 5047–5056. [Google Scholar] [CrossRef] [PubMed]
- Piipponen, M.; Li, D.; Landén, N.X. The Immune Functions of Keratinocytes in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21, 8790. [Google Scholar] [CrossRef] [PubMed]
- Patruno, A.; Amerio, P.; Pesce, M.; Vianale, G.; Di Luzio, S.; Tulli, A.; Franceschelli, S.; Grilli, A.; Muraro, R.; Reale, M. Extremely Low Frequency Electromagnetic Fields Modulate Expression of Inducible Nitric Oxide Synthase, Endothelial Nitric Oxide Synthase and Cyclooxygenase-2 in the Human Keratinocyte Cell Line HaCat: Potential Therapeutic Effects in Wound Healing: NOS and COX-2 Expression in Keratinocytes Exposed to ELF-EMF. Br. J. Dermatol. 2010, 162, 258–266. [Google Scholar] [CrossRef]
- Fung, K.Y.; Louis, C.; Metcalfe, R.D.; Kosasih, C.C.; Wicks, I.P.; Griffin, M.D.W.; Putoczki, T.L. Emerging Roles for IL-11 in Inflammatory Diseases. Cytokine 2022, 149, 155750. [Google Scholar] [CrossRef]
- Holvoet, S.; Vincent, C.; Schmitt, D.; Serres, M. The Inhibition of MAPK Pathway Is Correlated with Down-Regulation of MMP-9 Secretion Induced by TNF-α in Human Keratinocytes. Exp. Cell Res. 2003, 290, 108–119. [Google Scholar] [CrossRef]
- Michopoulou, A.; Rousselle, P. How Do Epidermal Matrix Metalloproteinases Support Re-Epithelialization during Skin Healing? Eur. J. Dermatol. 2015, 25, 33–42. [Google Scholar] [CrossRef]
- Pocino, K.; Carnazzo, V.; Stefanile, A.; Basile, V.; Guerriero, C.; Marino, M.; Rigante, D.; Basile, U. Tumor Necrosis Factor-Alpha: Ally and Enemy in Protean Cutaneous Sceneries. Int. J. Mol. Sci. 2024, 25, 7762. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Trillo, M.A.; Cid, M.A.; Leal, J.; Ubeda, A. In Vitro Exposure to 0.57-MHz Electric Currents Exerts Cytostatic Effects in HepG2 Human Hepatocarcinoma Cells. Int. J. Oncol. 2007, 30, 583–592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledano-Macías, E.; Martínez-Pascual, M.A.; Cecilia-Matilla, A.; Bermejo-Martínez, M.; Pérez-González, A.; Jara, R.C.; Sacristán, S.; Hernández-Bule, M.L. Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes. Int. J. Mol. Sci. 2024, 25, 10663. https://doi.org/10.3390/ijms251910663
Toledano-Macías E, Martínez-Pascual MA, Cecilia-Matilla A, Bermejo-Martínez M, Pérez-González A, Jara RC, Sacristán S, Hernández-Bule ML. Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes. International Journal of Molecular Sciences. 2024; 25(19):10663. https://doi.org/10.3390/ijms251910663
Chicago/Turabian StyleToledano-Macías, Elena, María Antonia Martínez-Pascual, Almudena Cecilia-Matilla, Mariano Bermejo-Martínez, Alfonso Pérez-González, Rosa Cristina Jara, Silvia Sacristán, and María Luisa Hernández-Bule. 2024. "Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes" International Journal of Molecular Sciences 25, no. 19: 10663. https://doi.org/10.3390/ijms251910663