Association of Granulocyte Colony-Stimulating Factor Treatment with Risk of Brain Metastasis in Advanced Stage Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Prognostic Factors for Brain Metastasis
2.3. Impact of GCSF Treatment on the Risk of Brain Metastasis
2.4. Subgroup Analysis and Interaction p Test on the Main Corresponding Covariates
2.5. Impact of GCSF Treatment Dose and Density on the Risk of Brain Metastasis
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Data Collection and Treatment
4.3. Outcome Assessments
4.4. Statistical Analysis
4.5. Subgroup Analysis and Subgroup Interaction p Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mariotto, A.B.; Etzioni, R.; Hurlbert, M.; Penberthy, L.; Mayer, M. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol. Biomark. Prev. 2017, 26, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare, Taiwan. Available online: https://www.mohw.gov.tw/mp-2.html (accessed on 18 April 2024).
- Surveillance Research Program, National Cancer Institute. SEER*Explorer. Breast Cancer—SEER Survival Rates by Time Since Diagnosis, 2017–2021, by Sex, All Races, All Ages, Distant. 2022. Available online: https://seer.cancer.gov/explorer/ (accessed on 18 April 2024).
- The American Cancer Society Publications, Cancer Facts & Figures. 2023. Available online: https://www.cancer.org/cancer/breast-cancer.html (accessed on 18 April 2024).
- Health Promotion Administration, Ministry of Health and Welfare. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=614&pid=1124 (accessed on 14 April 2023).
- National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 594–608. [Google Scholar]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Bailleux, C.; Eberst, L.; Bachelot, T. Treatment strategies for breast cancer brain metastases. Br. J. Cancer 2021, 124, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Surveillance Research Program, National Cancer Institute. Cancer Stat Facts: Female Breast Cancer Subtypes. Available online: https://seer.cancer.gov/statfacts/html/breast-subtypes.html (accessed on 20 April 2023).
- Lyman, G.H.; Reiner, M.; Morrow, P.K.; Crawford, J. The effect of filgrastim or pegfilgrastim on survival outcomes of patients with cancer receiving myelosuppressive chemotherapy. Ann. Oncol. 2015, 26, 1452–1458. [Google Scholar] [CrossRef]
- Martin, K.R.; Wong, H.L.; Witko-Sarsat, V.; Wicks, I.P. G-CSF—A double edge sword in neutrophil mediated immunity. Semin. Immunol. 2021, 54, 101516. [Google Scholar] [CrossRef]
- Karagiannidis, I.; Salataj, E.; Said Abu Egal, E.; Beswick, E.J. G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine 2021, 142, 155479. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Kamiyama, T.; Yokoo, H.; Shimada, S.; Einama, T.; Wakayama, K.; Orimo, T.; Kamachi, H.; Naka, T.; Mitsuhashi, T.; et al. Hepatocellular carcinoma producing granulocyte colony-stimulating factor: Diagnosis and treatment. Int. Cancer Conf. J. 2019, 8, 12–16. [Google Scholar] [CrossRef]
- Fukui, Y.; Kawashima, M.; Kawaguchi, K.; Takeuchi, M.; Hirata, M.; Kataoka, T.R.; Sakurai, T.; Kataoka, M.; Kanao, S.; Nakamoto, Y.; et al. Granulocyte-colony-stimulating factor-producing metaplastic carcinoma of the breast with significant elevation of serum interleukin-17 and vascular endothelial growth factor levels. Int. Cancer Conf. J. 2018, 7, 107–113. [Google Scholar] [CrossRef]
- Fujita, T.; Ogasawara, Y.; Naito, M.; Doihara, H.; Shimizu, N. Anaplastic Thyroid Carcinoma Associated with Granulocyte Colony-Stimulating Factor: Report of a Case. Surg. Today 2005, 36, 63–67. [Google Scholar] [CrossRef]
- Nakada, T.; Sato, H.; Inoue, F.; Mizorogi, F.; Nagayama, K.; Tanaka, T. The production of colony-stimulating factors by thyroid carcinoma is associated with marked neutrophilia and eosinophilia. Intern. Med. 1996, 35, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, I.; de Santana Van Vilet, E.; Said Abu Egal, E.; Phinney, B.; Jacenik, D.; Prossnitz, E.R.; Beswick, E.J. G-CSF and G-CSFR Induce a Pro-Tumorigenic Macrophage Phenotype to Promote Colon and Pancreas Tumor Growth. Cancers 2020, 12, 2868. [Google Scholar] [CrossRef]
- Vinzens, S.; Zindel, J.; Zweifel, M.; Rau, T.; Gloor, B.; Wochner, A. Granulocyte Colony-stimulating Factor Producing Anaplastic Carcinoma of the Pancreas: Case Report and Review of the Literature. Anticancer Res. 2017, 37, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, F.; Xu, Z.; Chen, C.; Wu, X.; Li, G.; Li, J. Expression of granulocyte colony stimulating factor receptor in human colorectal cancer. Postgrad. Med. J. 2005, 81, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Wei, K.C.; Chen, P.Y.; Lim, M.; Hwang, T.L. Roles of Neutrophils in Glioma and Brain Metastases. Front. Immunol. 2021, 12, 701383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yao, J.; Wei, Y.; Zhou, Z.; Li, P.; Qu, J.; Badu-Nkansah, A.; Yuan, X.; Huang, Y.W.; Fukumura, K.; et al. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci. Transl. Med. 2020, 12, eaaz5387. [Google Scholar] [CrossRef]
- Kohno, S.; Furuta, A.; Arizono, S.; Tokunaga, K.; Nakao, S.; Tanabe, M.; Kataoka, T.R.; Isoda, H.; Togashi, K. Imaging findings of granulocyte colony-stimulating factor-producing tumors: A case series and review of the literature. Jpn. J. Radiol. 2021, 39, 857–867. [Google Scholar] [CrossRef]
- Sheng, Y.; Peng, W.; Huang, Y.; Cheng, L.; Meng, Y.; Kwantwi, L.B.; Yang, J.; Xu, J.; Xiao, H.; Kzhyshkowska, J.; et al. Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J. Leukoc. Biol. 2023, 113, 383–399. [Google Scholar] [CrossRef]
- Fujii, T.; Rehman, H.; Chung, S.Y.; Shen, J.; Newman, J.; Wu, V.; Hines, A.; Azimi-Nekoo, E.; Fayyaz, F.; Lee, M.; et al. Treatment with Granulocyte-colony Stimulating Factor (G-CSF) is not associated with Increased Risk of Brain Metastasis in Patients with De Novo Stage IV Breast Cancer. J. Cancer 2021, 12, 5687–5692. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, C.; Chen, R.; Yuan, S.; Chen, L.; Qiu, X.; Qian, X.; Zhang, X.; Xiao, Z.; Wang, Q.; et al. rhG-CSF is associated with an increased risk of metastasis in NSCLC patients following postoperative chemotherapy. BMC Cancer 2022, 22, 741. [Google Scholar] [CrossRef]
- Yeo, B.; Redfern, A.D.; Mouchemore, K.A.; Hamilton, J.A.; Anderson, R.L. The dark side of granulocyte-colony stimulating factor: A supportive therapy with potential to promote tumour progression. Clin. Exp. Metastasis 2018, 35, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Hollmén, M.; Karaman, S.; Schwager, S.; Lisibach, A.; Christiansen, A.J.; Maksimow, M.; Varga, Z.; Jalkanen, S.; Detmar, M. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology 2015, 5, e1115177. [Google Scholar] [CrossRef] [PubMed]
- Mouchemore, K.A.; Anderson, R.L.; Hamilton, J.A. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J. 2018, 285, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Tzetzo, S.L.; Kramer, E.D.; Mohammadpour, H.; Tzetzo, S.L.; Gurova, K.V.; Knudsen, E.S.; Witkiewicz, A.K. Downregulation of IRF8 in alveolar macrophages by G-CSF promotes metastatic tumor progression. iScience 2024, 27, 109187. [Google Scholar] [CrossRef]
- Tommasi, C.; Airò, G.; Pratticò, F.; Testi, I.; Corianò, M.; Pellegrino, B.; Denaro, N.; Demurtas, L.; Dessì, M.; Murgia, S.; et al. Hormone Receptor-Positive/HER2-Positive Breast Cancer: Hormone Therapy and Anti-HER2 Treatment: An Update on Treatment Strategies. J. Clin. Med. 2024, 13, 1873. [Google Scholar] [CrossRef]
- Ivanova, M.; Porta, F.M.; Giugliano, F.; Frascarelli, C.; Sajjadi, E.; Venetis, K.; Cursano, G.; Mazzarol, G.; Guerini-Rocco, E.; Curigliano, G.; et al. Breast Cancer with Brain Metastasis: Molecular In-sights and Clinical Management. Genes 2023, 14, 1160. [Google Scholar] [CrossRef]
- Chhichholiya, Y.; Ruthuparna, M.; Velagaleti, H.; Munshi, A. Brain metastasis in breast cancer: Focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin. Transl. Oncol. 2023, 25, 1218–1241. [Google Scholar] [CrossRef]
- Nahta, R.; O’Regan, R.M. Therapeutic Implications of Estrogen Receptor Signaling in HER2-Positive Breast Cancers. Breast Cancer Res. Treat. 2012, 135, 39–48. [Google Scholar] [CrossRef]
- Debien, V.; de Azambuja, E.; Piccart-Gebhart, M. Optimizing Treatment for HER2-Positive HR-Positive Breast Cancer. Cancer Treat. Rev. 2023, 115, 102529. [Google Scholar] [CrossRef]
- Giuliano, M.; Trivedi, M.V.; Schiff, R. Bidirectional Crosstalk between the Estrogen Receptor and Human Epidermal Growth Factor Receptor 2 Signaling Pathways in Breast Cancer: Molecular Basis and Clinical Implications. Breast Care 2013, 8, 256–262. [Google Scholar] [CrossRef]
- Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-Positive Breast Cancer: Current Status and Future Perspectives. Nat. Rev. Clin. Oncol. 2011, 9, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Welte, T.; Kim, I.S.; Tian, L.; Gao, X.; Wang, H.; Li, J.; Holdman, X.B.; Herschkowitz, J.I.; Pond, A.; Xie, G. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumor initiation. Nat. Cell Biol. 2016, 18, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.L.; Wang, Z.H.; Chen, X.G.; Han, L.; Gong, G.X.; Chen, Y.P.; Lin, X.Q.; Ma, T.; Chen, H.D. Risk Factors of Brain Metastasis and Prognosis in HER2-Positive Breast Cancer: A Single-Institution Retrospective Analysis from China. Front. Oncol. 2022, 12, 905065. [Google Scholar] [CrossRef] [PubMed]
- Fusco, N.; Sajjadi, E.; Venetis, K.; Gaudioso, G.; Lopez, G.; Corti, C.; Rocco, E.G.; Criscitiello, C.; Malapelle, U.; Invernizzi, M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes 2020, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front. Oncol. 2021, 11, 692142. [Google Scholar] [CrossRef]
- Adamo, V.; Antonuzzo, L.; Danova, M.; De Laurentiis, M.; Marchetti, P.; Pinto, C.; Rosti, G. Supportive therapies in the prevention of chemotherapy-induced febrile neutropenia and appropriate use of granulocyte colony-stimulating factors: A Delphi consensus statement. Support. Care Cancer 2022, 30, 9877–9888. [Google Scholar] [CrossRef]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Patino, C.M. Subgroup analysis and interaction tests: Why they are important and how to avoid common mistakes. J. Bras. Pneumol. 2017, 43, 162. [Google Scholar] [CrossRef]
Characteristics | GCSF (N = 63) | No GCSF (N = 58) | p Value |
---|---|---|---|
Age (mean ± SD) | 63.5 ± 10.7 | 61.2 ± 12.2 | 0.542 |
Female | 63 (100) | 58 (100) | - |
Menopausal status, n (%) | 0.540 | ||
<55 years | 15 (23.8) | 17 (29.3) | |
≥55 years | 48 (76.2) | 41 (70.7) | |
Smoking Status, n (%) | NA | ||
Former/current | 0 | 0 | |
Never | 63 (100) | 58 (100) | |
Hormone receptor status, n (%) | 0.347 | ||
Positive | 38 (60.32) | 40 (68.97) | |
Negative | 25 (39.68) | 18 (31.03) | |
HER2 status, n (%) | 0.715 | ||
Positive | 30 (47.6) | 25 (39.7) | |
Negative | 33 (52.4) | 33 (60.3) | |
TNBC, n (%) | 0.027 * | ||
Positive | 12 (19.1) | 3 (4.76) | |
Negative | 51 (80.9) | 55 (95.24) | |
Hormone treatment, n (%) | 0.717 | ||
Yes | 29 (46.0) | 29 (50.0) | |
No | 34 (54.0) | 29 (50.0) | |
HER2 treatment, n (%) | 0.106 | ||
Yes | 22 (34.9) | 12 (20.9) | |
No | 50 (65.1) | 45 (79.1) | |
Targeted drug therapy, n (%) | 0.828 | ||
Yes | 13 (15.2) | 13 (20.7) | |
No | 41(84.8) | 46 (79.3) | |
Brain metastasis, n (%) | 0.011 * | ||
Yes | 22 (34.9) | 8 (13.8) | |
No | 41 (65.1) | 50 (86.2) | |
Chemotherapy, n (%) | |||
Epirubicin + Cyclophosphamide | 12 (20.6) | 11 (17.2) | 0.588 |
Eribulin | 12 (17.5) | 6 (12.1) | 0.138 |
Taxane/docetaxel | 22 (34.9) | 22 (37.9) | 0.438 |
Others + | 17 (26.9) | 19 (32.8) | 0.659 |
Chemotherapy items ≥ 2 | <0.0001 | ||
<2 | 17 (27.0) | 44 (75.9) | |
≥2 | 46 (73.0) | 14 (24.1) | |
Myelosuppression, n (%) | 0.845 | ||
Yes | 20 (31.7) | 17 (29.3) | |
No | 43 (68.3) | 41 (70.7) | |
Neutropenia, n (%) | 0.003 * | ||
Yes | 25(39.7) | 39 (67.2) | |
No | 38 (60.3) | 19 (32.8) | |
Dosage density (μg/day) | <0.0001 | ||
0 | 0 (0) | 58 (100) | |
<300 | 40 (62.5) | 0 (0) | |
≥300 | 23 (37.5) | 0 (0) | |
Dosage, cumulated (μg) | |||
0 | 0 (0) | 58 (100) | <0.0001 |
≤4500 | 31 (49.2) | 0 (0) | |
>4500 | 32 (50.8) | 0 (0) |
Univariate | Multivariate | ||||
---|---|---|---|---|---|
Variables (Risk Factors) | n (%) | HR (95%CI) | p Value | HR (95%CI) | p Value |
GCSF use | 63 (52.1) | 2.538 (1.127–5.716) | 0.025 * | 2.479(1.023–6.007) | 0.044 * |
Menopause Status | 89 (73.6) | 4.062 (1.968–8.384) | 0.000 * | 3.305 (1.521–7.179) | 0.003 * |
Hormone treatment | 79 (65.3) | 2.713 (1.261–5.836) | 0.011 * | 2.266 (1.025–5.011) | 0.043 * |
Hormone receptor status | 78 (64.5) | 1.557 (0.738–3.285) | 0.245 | -- | |
HER2 treatment | 34 (28.1) | 2.800(1.331–5.889) | 0.007 * | 2.159 (1.013–4.603) | 0.046 * |
HER2 Status | 55 (45.5) | 1.138 (0.543–2.384) | 0.731 | -- | -- |
TNBC | 15 (12.4) | 0.381 (0.142–1.018) | 0.054 * | --- | --- |
Target therapy | 26 (21.5) | 0.600 (0.254–1.414) | 0.243 | -- | --- |
Myelosuppression | 37 (30.6) | 1.392 (0.596–3.251) | 0.445 | --- | --- |
Neutropenia | 46 (38.0) | 3.276 (1.530–7.013) | 0.002 * | 2.418 (1.054–5.548) | 0.037 * |
Dosage, cumulated (μg) | |||||
0 | 58 (47.9) | 1 | 1 | -- | -- |
≤4500 | 30 (24.8) | 1.896(1.223–2.940) | 0.004 * | 1.296 (0.449–3.743) | 0.632 |
>4500 | 33 (27.3) | 1.255(0.817–1.929) | 0.299 | ---- | --- |
Dosage density (μg/day) | |||||
0 | 58 (47.9) | 1 | 1 | -- | --- |
<300 | 40 (33.1) | 1.353(0.868–2.107) | 0.182 | --- | --- |
≥300 | 24 (19.8) | 1.753(1.142–2.691) | 0.010 * | 1.866 (1.212–2.872) | 0.005 * |
No. of Chemotherapy | |||||
<2 | 58(47.9) | 0.664 (0.315–1.398) | 0.281 | --- | ---- |
≥2 | 63 (52.1) | 0.890 (0.431–1.842) | 0.754 | --- | --- |
Total N | Event n% | Non-Adjusted Model HR (95% CI) | p Value | Adjust Model I HR (95%CI) | p Value | Adjusted Model II HR (95%CI) | p Value | |
---|---|---|---|---|---|---|---|---|
GCSF | ||||||||
No GCSF | 58 | 8 (13.8) | 1 | 1 | 1 | |||
GCSF | 63 | 22 (34.9) | 2.538 (1.127–5.716) | 0.025 | 2.812 (1.248–6.338) | 0.013 | 3.144 (1.24–7.98) | 0.016 |
Dosage, cumulated (μg) | ||||||||
≤4500 | 63 | 31 (49.2) | 2.068 (1.263–3.385) | 0.004 | 1.685 (1.09–2.603) | 0.019 | 0.358 (0.120–1.066) | 0.065 |
>4500 | 58 | 32 (55.2) | 0.255 (0.817–1.929) | 0.299 | 1.101 (0.708–1.711) | 0.669 | 0.507 (0.176–1.460) | 0.208 |
p for trend | 0.005 | 0.003 | 0.027 | |||||
Dosage density (μg/day) | ||||||||
<300 | 63 | 40 (63.4) | 1.353 (0.868–2.107) | 0.182 | 1.208 (0.771–1.894) | 0.409 | 0.775 (0.217–2.768) | 0.695 |
≥300 | 58 | 23 (39.7) | 1.753 (1.142–2.691) | 0.010 | 0. 153 (1.004–2.344) | 0.048 | 2.285 (1.224–4.264) | 0.009 |
p for trend | 0.032 | 0.033 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, Y.-S.; Leung, J.H.; Wang, S.-Y.; Leung, H.W.C.; Chan, A.L.F. Association of Granulocyte Colony-Stimulating Factor Treatment with Risk of Brain Metastasis in Advanced Stage Breast Cancer. Int. J. Mol. Sci. 2024, 25, 10756. https://doi.org/10.3390/ijms251910756
Tai Y-S, Leung JH, Wang S-Y, Leung HWC, Chan ALF. Association of Granulocyte Colony-Stimulating Factor Treatment with Risk of Brain Metastasis in Advanced Stage Breast Cancer. International Journal of Molecular Sciences. 2024; 25(19):10756. https://doi.org/10.3390/ijms251910756
Chicago/Turabian StyleTai, Yun-Sheng, John Hang Leung, Shyh-Yau Wang, Henry W. C. Leung, and Agnes L. F. Chan. 2024. "Association of Granulocyte Colony-Stimulating Factor Treatment with Risk of Brain Metastasis in Advanced Stage Breast Cancer" International Journal of Molecular Sciences 25, no. 19: 10756. https://doi.org/10.3390/ijms251910756
APA StyleTai, Y.-S., Leung, J. H., Wang, S.-Y., Leung, H. W. C., & Chan, A. L. F. (2024). Association of Granulocyte Colony-Stimulating Factor Treatment with Risk of Brain Metastasis in Advanced Stage Breast Cancer. International Journal of Molecular Sciences, 25(19), 10756. https://doi.org/10.3390/ijms251910756