Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Characteristics of IONPs Obtained by Co-Precipitation Method
2.1.1. SEM-EDS
2.1.2. XPS
2.2. Characterization of IONPs Using the Brunauer–Emmett–Teller (BET) Analysis
2.3. Optimizing Chlorophyll a Extraction from Plant Extracts
2.3.1. Adsorption Isotherm
2.3.2. The Adsorption Kinetics
2.3.3. The Influence of Water on the Sorption Efficiency
2.4. Confirmation of Selective Sorption of Chlorophyll a on IONPs
2.4.1. HPLC Analysis
2.4.2. The FT-IR/PAS Spectra
2.5. Interactions with Solvent
2.6. Isolation of Lutein from the Acetone Extract of Urtica dioica L.
2.7. Applicability of the Procedure of Chlorophyll Removal/Lutein Isolation
2.7.1. Mentha piperita L. Acetone Extract
2.7.2. Urtica dioica L. Dried 80% Ethanol Extract
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Iron Oxide Nanoparticle (IONP) Synthesis
4.3. Collection of Plant Material and Sample Preparation
4.4. MSPE of Photosynthetic Pigments from Plant Extracts
4.5. The Experimental Adsorption Isotherm
4.6. HPLC Analysis
4.7. Quantification of Chlorophyll a and Lutein
4.7.1. HPLC
4.7.2. Spectrophotometry
4.8. FT-IR/PAS Measurements
4.9. XPS Measurements
4.10. Nitrogen Adsorption/Desorption Isotherm
4.11. Mathematical Modeling
4.12. Molecular Dynamics Simulations
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Zeng, Y.; Pu, X.; Yang, J.; Du, J.; Yang, X.; Li, X.; Li, L.; Zhou, Y.; Yang, T. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings. Oxid. Med. Cell Longev. 2018, 2018, 3232080. [Google Scholar] [CrossRef]
- Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J. 2004, 3, 19. [Google Scholar] [CrossRef]
- Ryan, A.A.; Senge, M.O. How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics. Photochem. Photobiol. Sci. 2015, 14, 638–660. [Google Scholar] [CrossRef]
- Mares, J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu. Rev. Nutr. 2016, 36, 571–602. [Google Scholar] [CrossRef]
- Mares-Perlman, J.A.; Millen, A.E.; Ficek, T.L.; Hankinson, S.E. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J. Nutr. 2002, 132, 518S–524S. [Google Scholar] [CrossRef] [PubMed]
- Lem, D.W.; Davey, P.G.; Gierhart, D.L.; Rosen, R.B. A Systematic Review of Carotenoids in the Management of Age-Related Macular Degeneration. Antioxidants 2021, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Baswan, S.M.; Marini, A.; Klosner, A.E.; Jaenicke, T.; Leverett, J.; Murray, M.; Gellenbeck, K.W.; Krutmann, J. 13035 Multiple carotenoids supplementation enhances human skin protection against ultraviolet A–induced skin pigmentation: A random-ized, double-blind, placebo-controlled clinical trial. J. Am. Acad. Dermatol. 2020, 83, AB4. [Google Scholar] [CrossRef]
- Flieger, J.; Raszewska-Famielec, M.; Radzikowska-Büchner, E.; Flieger, W. Skin protection by photosynthetic carotenoid pigments. Int. J. Mol. Sci. 2024, 25, 1431. [Google Scholar] [CrossRef] [PubMed]
- Balić, A.; Mokos, M. Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants 2019, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Zerres, S.; Stahl, W. Carotenoids in human skin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158588. [Google Scholar] [CrossRef]
- Bajaj, Y.P.S. Medicinal and Aromatic Plants I; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Algan, A.H.; Gungor-Ak, A.; Karatas, A. Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspective. Pharmaceutics 2022, 14, 1852. [Google Scholar] [CrossRef]
- Jeffrey, S.W. Paper-chromatographic separation of chlorophylls and carotenoids from marine algae. Biochem. J. 1961, 80, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Buckle, K.A.; Rahman, F.M.M. Separation of chlorosphyll and carotenoid pigments of capsicum cultivars. J. Chromatogr. A 1979, 171, 385–391. [Google Scholar] [CrossRef]
- Khachik, F.; Beecher, G.R.; Whittaker, N.F. Separation, identification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. J. Agric. Food Chem. 1986, 34, 603–616. [Google Scholar] [CrossRef]
- Luque de Castro, M.D.; Priego-Capote, F. Ultrasound assistance to liquid-liquid extraction: A debatable analytical tool. Anal. Chim. Acta 2007, 583, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Gure, A.; Megersa, N.; Retta, N. Ion-pair assisted liquid–liquid extraction for selective separation and analysis of multiclass pesticide residues in environmental waters. Anal. Methods 2014, 6, 4633. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, L.; Tamiji, Z.; Khoshayand, M.R. Applications and opportunities of experimental design for the dispersive liquid-liquid microextraction method—A review. Talanta 2018, 190, 335–356. [Google Scholar] [CrossRef]
- Perovani, I.S.; Barbetta, M.F.S.; Duarte, L.O.; de Oliveira, A.R.M. Determination of polyfluoroalkyl substances in biological matrices by chromatography techniques: A review focused on the sample preparation techniques-Review. J. Chromatogr. Open 2023, 3, 100082. [Google Scholar] [CrossRef]
- Grau, J.; Azorín, C.; Benedé, J.L.; Chisvert, A.; Salvador, A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J. Sep. Sci. 2022, 45, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Kuklenyik, Z.; Ye, X.; Needham, L.L.; Calafat, A.M. Automated solid-phase extraction approaches for large scale biomonitoring studies. J. Chromatogr. Sci. 2009, 47, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, M.Á.; Canals, A. Magnetic deep eutectic solvents in microextraction techniques. TrAC Trends Anal. Chem. 2022, 146, 116500. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, G.; Gao, M.; Huang, X.; Xu, D. Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Crit. Rev. Anal. Chem. 2020, 50, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Batlokwa, B.S.; Mokgadi, J.; Majors, R.; Turner, C.; Torto, N.A. A Novel Molecularly Imprinted Polymer for the Selective Removal of Chlorophyll from Heavily Pigmented Green Plant Extracts prior to Instrumental Analysis. J. Chem. 2013, 2013, 540240. [Google Scholar] [CrossRef]
- Tatarczak-Michalewska, M.; Flieger, J.; Kawka, J.; Płaziński, W.; Klepka, T.; Flieger, P.; Szymańska-Chargot, M. Polymers Sorption Properties towards Photosynthetic Pigments and Fungicides. Materials 2021, 14, 1874. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.M.; Leite, A.C.; Coutinho, J.A.P.; Freire, M.G. Chlorophylls Extraction from Spinach Leaves Using Aqueous Solutions of Surface-Active Ionic Liquids. Sustain. Chem. 2021, 2, 764–777. [Google Scholar] [CrossRef]
- Phaisan, S.; Yusakul, G.; Sakdamas, A.; Taluengjit, N.; Sakamoto, S.; Putalun, W. A Green and Effective Method Using Oils to Remove Chlorophyll from Chromolaena odorata (L.) R.M. King & H. Rob. Songklanakarin J. Sci. Technol. 2020, 42, 1084–1090. [Google Scholar] [CrossRef]
- Savvidou, M.G.; Tsiaka, T.; Zoumpoulakis, P.; Maggiorou, E.; Tyrovolas, K.; Molino, A.; Hristoforou, E.; Ferraro, A. Separation and Concentration of Astaxanthin and Lutein from Microalgae Liquid Extracts Using Magnetic Nanoparticles. Magnetochemistry 2022, 8, 80. [Google Scholar] [CrossRef]
- Al-Arjan, W.S.; Al-Saeed, S.; Nazir, S.; Da’na, E. Synthesis of porous chlorophyll coated SiO2/Fe3O4 nanocomposites for the photocatalytic degradation of organic pollutants. React. Kinet. Mech. Catal. 2022, 135, 555–570. [Google Scholar] [CrossRef]
- Leite, A.C.; Ferreira, A.M.; Morais, E.S.; Khan, I.; Freire, M.G.; Coutinho, J.A.P. Cloud point extraction of chlorophylls from spinach leaves using aqueous solutions of non-ionic surfactants. ACS Sustain. Chem. Eng. 2018, 6, 590–599. [Google Scholar] [CrossRef]
- Sibel, B.; Zeynep, M.; Tuğba, T.; Rükan, G. Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles. J. Nanopart. Res. 2016, 18, 3496. [Google Scholar] [CrossRef]
- Rocha-Santos, T.A.P. Sensors and Biosensors Based on Magnetic Nanoparticles. TrAC Trends Anal. Chem. 2014, 62, 28–36. [Google Scholar] [CrossRef]
- Pelaz, B.; Jaber, S.; de Aberasturi, D.J.; Wulf, V.; Aida, T.; de la Fuente, J.M.; Feldmann, J.; Gaub, H.E.; Josephson, L.; Kagan, C.R.; et al. The state of nanoparticle-based nanoscience and biotechnology: Progress, promises, and challenges. ACS Nano 2012, 6, 8468–8483. [Google Scholar] [CrossRef]
- Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015, 16, 8070–8101. [Google Scholar] [CrossRef]
- Flieger, J.; Pasieczna-Patkowska, S.; Żuk, N.; Panek, R.; Korona-Głowniak, I.; Suśniak, K.; Pizoń, M.; Franus, W. Characteristics and Antimicrobial Activities of Iron Oxide Nanoparticles Obtained via Mixed-Mode Chemical/Biogenic Synthesis Using Spent Hop (Humulus lupulus L.) Extracts. Antibiotics 2024, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 12085802, Chlorophyll a. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/12085802 (accessed on 21 February 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5281243, Lutein. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Lutein (accessed on 21 February 2024).
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef]
- Zamzam, N.; Kaucikas, M.; Nurnberg, D.J.; Rutherford, A.W.; van Thor, J.J. Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I. Phys. Chem. Chem. Phys. 2019, 21, 1224. [Google Scholar] [CrossRef]
- Siwińska-Ciesielczyk, K.; Bartlewicz, O.; Bartczak, P.; Piasecki, A.; Jesionowski, T. Functional titania–silica/chlorophyllin hybrids: Design, fabrication, comprehensive physicochemical characteristic and photocatalytic test. Adsorption 2019, 25, 485–499. [Google Scholar] [CrossRef]
- Olivo-Alanís, D.; Montserrat Atilano-Camino, M.; García-González, A.; Humberto-Álvarez, L.; Bernardo García-Reyes, R. Chlorophyll-sensitized phenolic resins for the photocatalytic degradation of methylene blue and synthetic blue wastewater. J. Sol-Gel Sci. Technol. 2021, 100, 538–554. [Google Scholar] [CrossRef]
- Li, X.; Zhou, R.; Xu, K.; Xu, J.; Jin, J.; Fang, H.; He, Y. Rapid Determination of Chlorophyll and Pheophytin in Green Tea Using Fourier Transform Infrared Spectroscopy. Molecules 2018, 23, 1010. [Google Scholar] [CrossRef] [PubMed]
- Selan, O.T.E.; Hawu, H.N.; Poy, L.; Cunha, T.D.; Darmakusuma, D. The substitution of Mg2+ with Mn2+/4+ metal ions in chlorophyll structure isolated from Gliricidia sepium leaves. J. Phys. Conf. Ser. 2017, 2017, 012002. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar]
- Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and Characterization of Iron Oxide Nanoparticles for Phenyl Hydrazine Sensor Applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Zarur, A.J.; Ying, J.Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000, 403, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Raul, P.K.; Devi, R.R.; Umlong, I.M.; Banerjee, S.; Singh, L.; Purkait, M. Removal of fluoride from water using iron oxide-hydroxide nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 3922–3930. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Yang, C.; Tian, X.; Luo, W.; Nie, Y.; Wang, Y. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Khabibullin, V.R.; Chetyrkina, M.R.; Obydennyy, S.I.; Maksimov, S.V.; Stepanov, G.V.; Shtykov, S.N. Study on Doxorubicin Loading on Differently Functionalized Iron Oxide Nanoparticles: Implications for Controlled Drug-Delivery Application. Int. J. Mol. Sci. 2023, 24, 4480. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-M.; Kang, M.-S.; Choi, G.-E.; Kim, Y.-J.; Bae, C.-H.; Yu, Y.-B.; Jeong, Y.-I. Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated Poly(ethylene glycol)-g-Chitosan Copolymer. Int. J. Mol. Sci. 2021, 22, 13169. [Google Scholar] [CrossRef]
- Balas, M.; Predoi, D.; Burtea, C.; Dinischiotu, A. New Insights into the Biological Response Triggered by Dextran-Coated Maghemite Nanoparticles in Pancreatic Cancer Cells and Their Potential for Theranostic Applications. Int. J. Mol. Sci. 2023, 24, 3307. [Google Scholar] [CrossRef]
- Gharibkandi, N.A.; Żuk, M.; Muftuler, F.Z.B.; Wawrowicz, K.; Żelechowska-Matysiak, K.; Bilewicz, A. 198Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 5282. [Google Scholar] [CrossRef]
- Batool, F.; Kanwal, S.; Kanwal, H.; Noreen, S.; Hodhod, M.S.; Mustaqeem, M.; Sharif, G.; Naeem, H.K.; Zahid, J.; Gaafar, A.-R.Z. Ecofriendly Synthesis of Magnetic Composites Loaded on Rice Husks for Acid Blue 25 Decontamination: Adsorption Kinetics, Thermodynamics, and Isotherms. Molecules 2023, 28, 7124. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ortiz, J.R.; Gonzalez, C.; Esquivel, K. Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes 2022, 10, 2282. [Google Scholar] [CrossRef]
- Shahid, H.; Shah, A.A.; Shah Bukhari, S.N.U.; Naqvi, A.Z.; Arooj, I.; Javeed, M.; Aslam, M.; Chandio, A.D.; Farooq, M.; Gilani, S.J.; et al. Synthesis, Characterization, and Biological Properties of Iron Oxide Nanoparticles Synthesized from Apis mellifera Honey. Molecules 2023, 28, 6504. [Google Scholar] [CrossRef] [PubMed]
- Gul, W.; Alrobei, H.; Shah, S.R.A.; Khan, A. Effect of Iron Oxide Nanoparticles on the Physical Properties of Medium Density Fiberboard. Polymers 2020, 12, 2911. [Google Scholar] [CrossRef]
- Waseem, M.; Munsif, S.; Rashid, U.; Imad-ud-Din. Physical properties of α-Fe2O3 nanoparticles fabricated by modified hydrolysis technique. Appl. Nanosci. 2014, 4, 643–648. [Google Scholar] [CrossRef]
- Mpelane, S.; Mketo, N.; Bingwa, N.; Nomngongo, P.N. Synthesis of mesoporous iron oxide nanoparticles for adsorptive removal of levofloxacin from aqueous solutions: Kinetics, isotherms, thermodynamics and mechanism. Alex. Eng. J. 2022, 61, 8457–8468. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C. Kinetics and Thermodynamics of Beta-carotene and Chlorophyll Adsorption onto Acid-activated Bentonite from Xinjiang in Xylene Solution. J. Hazard. Mater. 2009, 171, 582–587. [Google Scholar] [CrossRef]
- Pohndorf, R.S.; Cadaval, T.R.S.; Pinto, L.A.A. Kinetics and Thermodynamics Adsorption of Carotenoids and Chlorophylls in Rice Bran Oil Bleaching. J. Food. Eng. 2016, 185, 9–16. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwak, S.-Y. Functional Mesoporous Silica with Controlled Pore Size for Selective Adsorption of Free Fatty Acid and Chlorophyll. Micropor. Mesopor. Mat. 2020, 306, 110410. [Google Scholar] [CrossRef]
- Sabah, E. Decolorization of Vegetable Oils: Chlorophyll-a Adsorption by Acid-activated Sepiolite. J. Colloid Interface Sci. 2007, 310, 1–7. [Google Scholar] [CrossRef]
- Ribeiro, M.; Lourenço, P.; Monteiro, J.; Ferreira-Dias, S. Kinetics of Selective Adsorption of Impurities from a Crude Vegetable Oil in Hexane to Activated Earths and Carbons. Eur. Food Res. Technol. 2001, 213, 132–138. [Google Scholar] [CrossRef]
- Agostiano, A.; Cosma, P.; Trotta, M.; Monsù-Scolaro, L.; Micali, N. Chlorophyll a Behavior in Aqueous Solvents: Formation of Nanoscale Self-Assembled Complexes. J. Phys. Chem. B 2002, 106, 12820–12829. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health 2017, 32, 111–117. [Google Scholar] [CrossRef]
- Bruckmann, F.S.; Schnorr, C.; Oviedo, L.R.; Knani, S.; Silva, L.F.O.; Silva, W.L.; Dotto, G.L.; Bohn Rhoden, C.R. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, 27, 6261. [Google Scholar] [CrossRef]
- Praveen, A.; Khan, E.; Ngiimei, D.S.; Perwez, M.; Sardar, M.; Gupta, M. Iron Oxide Nanoparticles as Nano-adsorbents: A Possible Way to Reduce Arsenic Phytotoxicity in Indian Mustard Plant (Brassica juncea L.). J. Plant Growth Regul. 2018, 37, 612–624. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Rai, D.K. Evaluation of the impact of chlorophyll removal techniques on polyphenols in rosemary and thyme by-products. J. Food Biochem. 2020, 44, e13148. [Google Scholar] [CrossRef] [PubMed]
- Huma, Z.-E.; Jayasena, V.; Nasar-Abbas, S.M.; Imran, M.; Khan, M.K. Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J. Food Process. Pres. 2018, 42, e13450. [Google Scholar] [CrossRef]
- Yasuda, M.; Oda, K.; Ueda, T.; Tabata, M. Physico-chemical chlorophyll-a species in aqueous alcohol solutions determine the rate of its discoloration under UV light. Food Chem. 2019, 277, 463–470. [Google Scholar] [CrossRef]
- Doan, L. Modifying Superparamagnetic Iron Oxide Nanoparticles as Methylene Blue Adsorbents: A Review. ChemEngineering 2023, 7, 77. [Google Scholar] [CrossRef]
- Doan, L.; Nguyen, L.T.; Nguyen, N.T.N. Modifying Superparamagnetic Iron Oxides Nanoparticles for Doxorubicin Delivery Carriers: A Review. J. Nanopart. Res. 2023, 25, 73. [Google Scholar] [CrossRef]
- Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S.B. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 2014, 368, 207–229. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef]
- Stroet, M.; Caron, B.; Visscher, K.M.; Geerke, D.P.; Malde, A.K.; Mark, A.E. Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. J. Chem. Theory Comput. 2018, 14, 11–5834. [Google Scholar] [CrossRef] [PubMed]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 12–4026. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces. The Jerusalem Symposia on Quantum Chemistry and Biochemistry; Pullman, B., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 14. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar] [CrossRef]
- Heinz, T.N.; van Gunsteren, W.F.; Hünenberger, P.H. Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. J. Chem. Phys. 2001, 115, 1125–1136. [Google Scholar] [CrossRef]
Sample | Peak | BE (eV) | FWHM (eV) | Intensity (%) |
---|---|---|---|---|
Fe-nps | FeOOH peak 1 | 711.0 | 1.47 | 25.1 |
FeOOH peak 2 | 712.0 | 1.47 | 25.3 | |
FeOOH peak 3 | 713.0 | 1.47 | 18.5 | |
FeOOH peak 4 | 714.0 | 1.47 | 9.6 | |
pre-peak | 709.3 | 1.27 | 3.0 | |
surface peak | 715.2 | 2.30 | 9.5 | |
sat 1 | 720.3 | 3.18 | 9.0 |
Method | Constant | Quantity in the Monolayer | Surface Area | Molecular Cross-Sectional Area | Correlation Coefficient |
---|---|---|---|---|---|
Langmuir | 106.638 1/mmHg | 19.291 cm3 g−1 STP 1 | 83.963 ± 0.858 m2 g−1 | 0.1620 nm2 | 0.9984 |
BET | 256.731 | 34.779 cm3 g−1 STP 1 | 151.377 ± 1704 m2 g−1 | 0.1620 nm2 | 0.9996 |
Cumulative Surface Area of Pores | Cumulative Volume of Pores | Average Diameter of Pores | |||
---|---|---|---|---|---|
Adsorption | Desorption | Adsorption | Desorption | Adsorption | Desorption |
143.947 m2 g−1 | 181.145 m2 g−1 | 0.2373 cm3 g−1 | 0.2715 cm3 g−1 | 6.5942 nm | 5.9961 nm |
Time | ΔA [%] | % Acetone in Water | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100% | 90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | ||
10 min | 662 nm | 34.75 | 2.73 | 5.42 | 3.05 | 4.39 | 50.00 | 79.44 | 81.11 | 78.29 | 75.42 |
452 nm | 40.69 | 0.16 | 0.21 | 0.35 | 17.93 | 76.99 | 76.07 | 73.99 | 51.86 | 56.53 | |
20 min | 662 nm | 59.17 | 0.11 | −3.62 | 5.91 | 55.34 | 88.08 | 90.56 | 85.46 | 90.36 | 81.99 |
452 nm | 44.39 | 0.05 | 1.86 | 3.68 | 30.18 | 83.59 | 81.77 | 78.03 | 68.22 | 66.22 | |
60 min | 662 nm | 84.65 | 1.53 | −0.11 | 47.09 | 70.43 | 93.35 | 92.50 | 92.73 | 95.25 | 98.48 |
452 nm | 56.81 | 3.62 | 15.14 | 20.07 | 60.79 | 91.49 | 86.34 | 90.20 | 87.54 | 87.06 | |
120 min | 662 nm | 90.62 | −1.03 | −0.21 | 47.95 | 89.83 | 79.44 | 81.11 | 78.29 | 75.42 | 64.34 |
452 nm | 58.39 | 5.71 | 13.48 | 21.56 | 87.62 | 94.93 | 88.06 | 92.52 | 94.97 | 95.48 |
Solute | Water | Acetone | Difference | ||||
---|---|---|---|---|---|---|---|
Coulomb | LJ | Sum | Coulomb | LJ | Sum | ||
Chlorophyll | −106.3 | −259.9 | −366.2 | −73.7 | −469 | −542.7 | −176.5 |
Carotene | −31.2 | −239.1 | −270.3 | −18.5 | −331.8 | −350.3 | −80 |
Lutein | −60.8 | −244 | −304.8 | −38 | −345.7 | −383.7 | −78.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flieger, J.; Żuk, N.; Pasieczna-Patkowska, S.; Kuśmierz, M.; Panek, R.; Franus, W.; Baj, J.; Buszewicz, G.; Teresiński, G.; Płaziński, W. Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles. Int. J. Mol. Sci. 2024, 25, 3152. https://doi.org/10.3390/ijms25063152
Flieger J, Żuk N, Pasieczna-Patkowska S, Kuśmierz M, Panek R, Franus W, Baj J, Buszewicz G, Teresiński G, Płaziński W. Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles. International Journal of Molecular Sciences. 2024; 25(6):3152. https://doi.org/10.3390/ijms25063152
Chicago/Turabian StyleFlieger, Jolanta, Natalia Żuk, Sylwia Pasieczna-Patkowska, Marcin Kuśmierz, Rafał Panek, Wojciech Franus, Jacek Baj, Grzegorz Buszewicz, Grzegorz Teresiński, and Wojciech Płaziński. 2024. "Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles" International Journal of Molecular Sciences 25, no. 6: 3152. https://doi.org/10.3390/ijms25063152
APA StyleFlieger, J., Żuk, N., Pasieczna-Patkowska, S., Kuśmierz, M., Panek, R., Franus, W., Baj, J., Buszewicz, G., Teresiński, G., & Płaziński, W. (2024). Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles. International Journal of Molecular Sciences, 25(6), 3152. https://doi.org/10.3390/ijms25063152