The Effect of Composition on the Properties and Application of CuO-NiO Nanocomposites Synthesized Using a Saponin-Green/Microwave-Assisted Hydrothermal Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. FT-IR Characterization
2.2. XRD Characterization
2.3. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.4. SEM and TEM Analyses
2.5. UV-Vis Diffuse Reflectance Spectroscopy
2.6. Magnetic Properties
2.7. PNP Catalytic Reduction
3. Materials and Methods
3.1. Materials
3.2. Saponin Extraction
3.3. Microwave-Assisted Hydrothermal Synthesis
3.4. Powder Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautam, P.K.; Singh, A.; Misra, K.; Sahoo, A.K.; Samanta, S.K. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. J. Environ. Manag. 2019, 231, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 2021, 401, 123401. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Bruno, R.; Ferrando-Soria, J.; Armentano, D.; Pardo, E. Metal–organic framework technologies for water remediation: Towards a sustainable ecosystem. J. Mater. Chem. A 2018, 6, 4912–4947. [Google Scholar] [CrossRef]
- Abdullah Sani, N.S.; Ang, W.L.; Mohammad, A.W.; Nouri, A.; Mahmoudi, E. Sustainable synthesis of graphene sand composite from waste cooking oil for dye removal. Sci. Rep. 2023, 13, 1931. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y. Copper and nickel-based oxides delicately tailored via galvanic reaction as electrocatalyst for solid-state direct urea fuel cell. Int. J. Hydrogen Energy 2023, 48, 28882–28890. [Google Scholar] [CrossRef]
- Anitha, S.; Balu, A.R.; Balamurugan, S.; Suganya, M.; Delci, Z.; Karthika, M.; Kayathiri, C.; Chitra Devi, S. A comparative study on the photocatalytic performance of two third order NLO active nanocomposites (NiO-CdO and NiO-CuO) green synthesized using Psidium guajava leaf extract. Inorg. Chem. Commun. 2021, 134, 109073. [Google Scholar] [CrossRef]
- Arun, L.; Karthikeyan, C.; Philip, D.; Unni, C. Optical, magnetic, electrical, and chemo-catalytic properties of bio-synthesized CuO/NiO nanocomposites. J. Phys. Chem. Solids 2020, 136, 109155. [Google Scholar] [CrossRef]
- Sathisha, H.C.; Krishnamurthy, G.; Pari, M.; Soundarya, T.L.; Nagaraju, G. Synthesis and characterization of CuO-NiO nanocomposite for dye degradation and electrochemical sensing of dopamine. Chem. Data Collect. 2023, 48, 101081. [Google Scholar] [CrossRef]
- Bhosale, S.R.; Shinde, S.B.; Bhosale, R.R.; Dhengale, S.D.; Moyo, A.A.; Dhavale, R.P.; Anbhule, P.V. Antibacterial efficacy of NiO composites with CuO nanoclusters via coprecipitation method. Inorg. Chem. Commun. 2023, 155, 111059. [Google Scholar] [CrossRef]
- Anitha, S.; Kayathiri, C.; Karthika, M.; Suganya, M.; Balu, A.R. Potential suitability of NiO-CuO nanocomposite for photoconductive sensor, soft magnetic materials applications and as antimicrobial agent. Mater. Sci. Eng. B 2021, 268, 115143. [Google Scholar] [CrossRef]
- Weldekirstos, H.D.; Habtewold, B.; Kabtamu, D.M. Surfactant-Assisted Synthesis of NiO-ZnO and NiO-CuO Nanocomposites for Enhanced Photocatalytic Degradation of Methylene Blue Under UV Light Irradiation. Front. Mater. 2022, 9, 832439. [Google Scholar] [CrossRef]
- Ramu, A.G.; Kumari, M.L.A.; Elshikh, M.S.; Alkhamis, H.H.; Alrefaei, A.F.; Choi, D. A facile and green synthesis of CuO_NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium. Chemosphere 2021, 271, 129475. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Haq, A.u.; Cerrón-Calle, G.A.; Naqvi, S.A.R.; Westerhoff, P.; Garcia-Segura, S. Green Synthesis of Flower-Shaped Copper Oxide and Nickel Oxide Nanoparticles via Capparis decidua Leaf Extract for Synergic Adsorption-Photocatalytic Degradation of Pesticides. Catalysts 2021, 11, 806. [Google Scholar] [CrossRef]
- Veeman, S.; Karuppuchamy, S. H2O2 assisted hydrothermal and microwave synthesis of CuO–NiO hybrid MWCNT composite electrode materials for supercapacitor applications. Ceram. Int. 2022, 48, 26806–26817. [Google Scholar] [CrossRef]
- Sui, L.; Yu, T.; Zhao, D.; Cheng, X.; Zhang, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Gao, Y.; et al. In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazard. Mater. 2020, 385, 121570. [Google Scholar] [CrossRef] [PubMed]
- Kakani, V.; Ramesh, S.; Yadav, H.M.; Kumar, K.A.; Shinde, S.; Sandhu, S.; Dang Quang, L.N.; Kim, H.S.; Kim, H.-S.; Kim, H.; et al. Facile synthesis of CuO/NiO/nitrogen doped rGO by ultrasonication for high performance supercapacitors. J. Alloys Compd. 2020, 847, 156411. [Google Scholar] [CrossRef]
- Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq. 2018, 261, 208–217. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Kondo, H.; Fan, T.; Zhou, H. Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology 2022, 33, 342002. [Google Scholar] [CrossRef]
- Kumar, P.R.; Prasad, N.; Veillon, F.; Prellier, W. Raman spectroscopic and magnetic properties of Europium doped nickel oxide nanoparticles prepared by microwave-assisted hydrothermal method. J. Alloys Compd. 2021, 858, 157639. [Google Scholar] [CrossRef]
- Muhambihai, P.; Rama, V.; Subramaniam, P. Photocatalytic degradation of aniline blue, brilliant green and direct red 80 using NiO/CuO, CuO/ZnO and ZnO/NiO nanocomposites. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100360. [Google Scholar] [CrossRef]
- Saha, S.; Routray, K.L.; Hota, P.; Dash, B.; Yoshimura, S.; Ratha, S.; Nayak, T.K. Structural, magnetic and dielectric properties of green synthesized Ag doped NiFe2O4 spinel ferrite. J. Mol. Struct. 2024, 1302, 137409. [Google Scholar] [CrossRef]
- Kumar, M.P.; Murugadoss, G.; Kumar, M.R. Synthesis and characterization of CuO–NiO nanocomposite: Highly active electrocatalyst for oxygen evolution reaction application. J. Mater. Sci. Mater. Electron. 2020, 31, 11286–11294. [Google Scholar] [CrossRef]
- Abo Zeid, E.F.; Nassar, A.M.; Hussein, M.A.; Alam, M.M.; Asiri, A.M.; Hegazy, H.H.; Rahman, M.M. Mixed oxides CuO-NiO fabricated for selective detection of 2-Aminophenol by electrochemical approach. J. Mater. Res. Technol. 2020, 9, 1457–1467. [Google Scholar] [CrossRef]
- Archana, V.; Xia, Y.; Fang, R.; Kumar, G.G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors. ACS Sustain. Chem. Eng. 2019, 7, 6707–6719. [Google Scholar] [CrossRef]
- Siddiqui, H.; Parra, M.R.; Pandey, P.; Qureshi, M.S.; Haque, F.Z. Performance evaluation of optimized leaf-shaped two-dimension (2D) potassium doped CuO nanostructures with enhanced structural, optical and electronic properties. Ceram. Int. 2020, 46, 20404–20414. [Google Scholar] [CrossRef]
- Saikia, T.C.; Iraqui, S.; Khan, A.; Rashid, M.H. Sapindus mukorossi seed shell extract mediated green synthesis of CuO nanostructures: An efficient catalyst for C–N bond-forming reactions. Mater. Adv. 2022, 3, 1115–1124. [Google Scholar] [CrossRef]
- Shehata, M.M.; Youssef, W.M.; Mahmoud, H.H.; Masoud, A.M. Sol-Gel Synthesis of NiO/CuO Nanocomposites for Uptake of Rare Earth Elements (Ho, Yb, and Sm) from Aqueous Solutions. Russ. J. Inorg. Chem. 2020, 65, 279–289. [Google Scholar] [CrossRef]
- Yetim, N.K.; Aslan, N.; Sarıoğlu, A.; Sarı, N.; Koç, M.M. Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J. Mater. Sci. Mater. Electron. 2020, 31, 12238–12248. [Google Scholar] [CrossRef]
- Noor, T.; Pervaiz, S.; Iqbal, N.; Nasir, H.; Zaman, N.; Sharif, M.; Pervaiz, E. Nanocomposites of NiO/CuO Based MOF with rGO: An Efficient and Robust Electrocatalyst for Methanol Oxidation Reaction in DMFC. Nanomaterials 2020, 10, 1601. [Google Scholar] [CrossRef]
- Mohanta, J.; Dey, B.; Dey, S. Sucrose-Triggered, Self-Sustained Combustive Synthesis of Magnetic Nickel Oxide Nanoparticles and Efficient Removal of Malachite Green from Water. ACS Omega 2020, 5, 16510–16520. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Hamad, S.M.; Aydın, S.; Ahmed, M.H.; Hussain, F.H.S. Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J. Mater. Sci. Mater. Electron. 2020, 31, 11303–11316. [Google Scholar] [CrossRef]
- Richardson, J.T.; Scates, R.; Twigg, M.V. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl. Catal. A Gen. 2003, 246, 137–150. [Google Scholar] [CrossRef]
- Xiu, Z.; Wang, H.; Cai, C.; Li, C.; Yan, L.; Wang, C.; Li, W.; Xin, H.; Zhu, C.; Zhang, Q.; et al. Ultrafast Glycerol Conversion to Lactic Acid over Magnetically Recoverable Ni–NiOx@C Catalysts. Ind. Eng. Chem. Res. 2020, 59, 9912–9925. [Google Scholar] [CrossRef]
- Mansi, K.; Kumar, R.; Kaur, J.; Mehta, S.K.; Pandey, S.K.; Kumar, D.; Dash, A.K.; Gupta, N. DL-Valine assisted fabrication of quercetin loaded CuO nanoleaves through microwave irradiation method: Augmentation in its catalytic and antimicrobial efficiencies. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100306. [Google Scholar] [CrossRef]
- Tang, C.; Sun, F.; Chen, Z.; Yu, H.; Chen, D.; Liu, Z. Facile synthesis and nanoscale related physical properties of core-shell structured CuO/ZnO nanorods on Si substrate. Appl. Surf. Sci. 2020, 509, 144903. [Google Scholar] [CrossRef]
- Bekru, A.G.; Tufa, L.T.; Zelekew, O.A.; Goddati, M.; Lee, J.; Sabir, F.K. Green Synthesis of a CuO-ZnO Nanocomposite for Efficient Photodegradation of Methylene Blue and Reduction of 4-Nitrophenol. ACS Omega 2022, 7, 30908–30919. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, L.; Zhang, R.; Xu, J.; Xian, F.; Su, J.; Yang, F. Coexistence of ferromagnetism and paramagnetism in ZnO/CuO nanocomposites. Chem. Phys. Lett. 2019, 721, 57–61. [Google Scholar] [CrossRef]
- Mali, S.M.; Narwade, S.S.; Navale, Y.H.; Tayade, S.B.; Digraskar, R.V.; Patil, V.B.; Kumbhar, A.S.; Sathe, B.R. Heterostructural CuO-ZnO Nanocomposites: A Highly Selective Chemical and Electrochemical NO2 Sensor. ACS Omega 2019, 4, 20129–20141. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, P.; Harish, S.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Shimomura, M.; Hayakawa, Y. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: The synergistic effect of photocatalysis for the mineralization of organic pollutant in water. Appl. Surf. Sci. 2019, 484, 884–891. [Google Scholar] [CrossRef]
- Li, Z.; Jia, M.; Abraham, B.; Blake, J.C.; Bodine, D.; Newberg, J.T.; Gundlach, L. Synthesis and Characterization of ZnO/CuO Vertically Aligned Hierarchical Tree-like Nanostructure. Langmuir 2018, 34, 961–969. [Google Scholar] [CrossRef]
- Fang, H.; Guo, Y.; Wu, T.; Liu, Y. Biomimetic synthesis of urchin-like CuO/ZnO nanocomposites with excellent photocatalytic activity. New J. Chem. 2018, 42, 12779–12786. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Li, Y.; Song, Z.; Zeng, W.; Tang, S.; Wang, S.; Zhou, D. Hierarchical heterostructures of nanosheet-assembled NiO-modified ZnO microflowers for high performance acetylene detection. Ceram. Int. 2020, 46, 3574–3581. [Google Scholar] [CrossRef]
- Nithya, S.; Sharan, R.; Roy, M.; Kim, H.H.; Ishihara, T.; Dutta, A. Ni doping in CuO: A highly sensitive electrode for sensing ammonia in ppm level using lanthanum gallate based electrolyte. Mater. Res. Bull. 2019, 118, 110478. [Google Scholar] [CrossRef]
- Plascencia-Hernández, F.; Luna, A.L.; Colbeau-Justin, C.; Santiago, P.; Garcia-Rocha, M.; Valverde-Aguilar, G.; Valenzuela, M.A. Cu2O cubic and polyhedral structures versus commercial powder: Shape effect on photocatalytic activity under visible light. J. Saudi Chem. Soc. 2019, 23, 1016–1023. [Google Scholar] [CrossRef]
- Anjaneyulu, R.B.; Mohan, B.S.; Naidu, G.P.; Muralikrishna, R. ZrO2/Fe2O3/RGO nanocomposite: Good photocatalyst for dyes degradation. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 108, 105–111. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, D.; Ghose, R. Synthesis of nanocrystalline ZnO–NiO mixed metal oxide powder by homogeneous precipitation method. Ceram. Int. 2016, 42, 4090–4098. [Google Scholar] [CrossRef]
- Bayal, N.; Jeevanandam, P. Synthesis of CuO@NiO core-shell nanoparticles by homogeneous precipitation method. J. Alloys Compd. 2012, 537, 232–241. [Google Scholar] [CrossRef]
- Atiq, S.; Javid, M.; Riaz, S.; Naseem, S. Magnetic Phase Transition in Nickel Oxide. Mater. Today Proc. 2015, 2, 5262–5267. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S. Characterization of Copper Oxide Nanoparticles Fabricated by the Sol–Gel Method. J. Electron. Mater. 2015, 44, 3704–3709. [Google Scholar] [CrossRef]
- Pandey, G.; Singh, N.; Rajput, N.; Saini, M.K.; Kothari, S.L.; Prasad, J.; Lamba, N.P.; Chauhan, M.S. Comparative study of NiO/CuO/Ag doped graphene based materials for reduction of nitroaromatic compounds and degradation of dye with statistical study. Sci. Rep. 2024, 14, 2077. [Google Scholar] [CrossRef]
- Baran, T.; Visibile, A.; Busch, M.; He, X.; Wojtyla, S.; Rondinini, S.; Minguzzi, A.; Vertova, A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules 2021, 26, 7271. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Ahmaruzzaman, M. Green synthesis of 2D CuO nanoleaves (NLs) and its application for the reduction of p-nitrophenol. Mater. Lett. 2015, 161, 79–82. [Google Scholar] [CrossRef]
- Al-Yunus, A.; Al-Arjan, W.; Traboulsi, H.; Schuarca, R.; Chando, P.; Hosein, I.D.; Hessien, M. Effect of Synthesis Conditions on CuO-NiO Nanocomposites Synthesized via Saponin-Green/Microwave Assisted-Hydrothermal Method. Nanomaterials 2024, 14, 308. [Google Scholar] [CrossRef] [PubMed]
- Wahba, M.A.; Sharmoukh, W.; Yakout, S.M.; Khalil, M.S. Fast and full spectrum sunlight photocatalysts: Fe/Co or Ni implanted multiferroic LaMnO3. Opt. Mater. 2022, 124, 111973. [Google Scholar] [CrossRef]
- Yarahmadi, M.; Maleki-Ghaleh, H.; Mehr, M.E.; Dargahi, Z.; Rasouli, F.; Siadati, M.H. Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J. Alloys Compd. 2021, 853, 157000. [Google Scholar] [CrossRef]
Sample Code | Vol. of Copper Salt [0.1 M] (mL) | Vol. of Nickel Salt [0.1 M] (mL) |
---|---|---|
100C | 100 | - |
75C25N | 75 | 25 |
50C50N | 50 | 50 |
25C75N | 25 | 75 |
100N | - | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Yunus, A.; Al-Arjan, W.; Traboulsi, H.; Hessien, M. The Effect of Composition on the Properties and Application of CuO-NiO Nanocomposites Synthesized Using a Saponin-Green/Microwave-Assisted Hydrothermal Method. Int. J. Mol. Sci. 2024, 25, 4119. https://doi.org/10.3390/ijms25074119
Al-Yunus A, Al-Arjan W, Traboulsi H, Hessien M. The Effect of Composition on the Properties and Application of CuO-NiO Nanocomposites Synthesized Using a Saponin-Green/Microwave-Assisted Hydrothermal Method. International Journal of Molecular Sciences. 2024; 25(7):4119. https://doi.org/10.3390/ijms25074119
Chicago/Turabian StyleAl-Yunus, Amnah, Wafa Al-Arjan, Hassan Traboulsi, and Manal Hessien. 2024. "The Effect of Composition on the Properties and Application of CuO-NiO Nanocomposites Synthesized Using a Saponin-Green/Microwave-Assisted Hydrothermal Method" International Journal of Molecular Sciences 25, no. 7: 4119. https://doi.org/10.3390/ijms25074119