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Abstract: Colorectal cancer (CRC) is often associated with metastasis and recurrence and
is the leading cause of cancer-related mortality. In the progression of CRC, recent studies
have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils
(TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing
to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition.
Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen
species, and cytokines, whereas tumor-suppressing TANs enhance immune responses
by activating T cells and natural killer cells. Understanding the mechanisms underlying
TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed
potential therapeutic targets. This review provides a comprehensive overview of TAN
biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions
of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor
antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for
improving treatment outcomes of CRC.

Keywords: cancer; tumor microenvironment; tumor-associated neutrophil; metastasis;
chemokine

1. Introduction
Colorectal cancer (CRC) is the third most common malignancy worldwide, following

breast and lung cancer, and is the second leading cause of cancer-related death [1]. Due
to the spread of western diets and lifestyle changes, the number of deaths caused by CRC
has increased by over 30% in the past 15 years and is projected to rise by 25% in the
next decade [2,3]. Despite improvements in treatment and screening, the mortality rate
of CRC remains still high, usually due to distant metastasis or postoperative recurrence.
The treatment of CRC primarily includes surgery, chemotherapy, chemoradiotherapy, and
molecular-targeted therapy, with strategies tailored to patients at various stages. Molecular-
targeted drugs, such as vascular endothelial growth factor (VEGF), epidermal growth factor
receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and v-RAF murine
sarcoma viral oncogene homolog B (BRAF), have significantly improved patient survival [4].
Furthermore, immune checkpoint inhibitors targeting programmed cell death protein 1
(PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) have shown promising results in activating T cells to exert antitumor
effects [5]. However, immune checkpoint inhibitors are effective in less than 10% of patients
with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) CRC,
where the tumor microenvironment (TME) is characterized by high T cell infiltration and
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elevated immune checkpoint expression [6]. In contrast, immune checkpoint inhibitors are
ineffective in most patients with microsatellite stable (MSS) and mismatch repair-proficient
(pMMR) CRC [7].

In line with this trend, recent studies have increasingly recognized the crucial role
of the immune system in cancer progression and treatment outcomes, highlighting the
importance of the TME. Among various immune cells, neutrophils have gained attention
for their dual roles in cancer [8]. While traditionally known for their functions in fighting
infections, emerging evidence suggests that neutrophils influence tumor growth, metastasis,
and response to therapy. This has led to a growing interest in understanding the complex
interactions between neutrophils and cancer cells, particularly in the context of CRC. Under-
standing these interactions could unveil novel therapeutic targets and strategies to improve
therapeutic efficacy and patient prognosis. In this review, we provide a comprehensive
overview of the multifaceted roles of neutrophils in CRC (Figure 1).
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Figure 1. Multiple functions of tumor-associated neutrophils (TANs). (A) Recruitment of TANs
by tumor-derived chemokines. (B) Induction of genetic instability through ROS production and
microRNAs (e.g., miR-23a, miR-155), leading to DNA damage. (C) Promotion of extracellular
matrix (ECM) remodeling via degranulation and degradation involving MMPs, Bv8, and S100A8/A9,
facilitating angiogenesis driven by VEGF. (D) Immunosuppression mediated by N2 TANs through
interactions with T cells, NK cells, and T-reg cells, and polarization of macrophages into the M2
phenotype. Created with BioRender.com.

2. Multifaceted Roles of Neutrophils in Cancer
Neutrophils are the first responders to infection and inflammation and are character-

ized by their short lifespan and inability to proliferate. They are pivotal components of
the innate immune system, constituting approximately 70% of all peripheral leukocytes
in humans and 10−20% in mice [9]. In comparison, the adaptive immune system relies
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on T cells and B cells to provide antigen-specific responses and immunological memory.
Neutrophils have a wide range of functions in fighting pathogens, including phagocytosis,
generation of reactive oxygen species (ROS), degranulation with the release of proteases
and cytotoxic granules, recruitment of other immune cells, and the formation of neutrophil
extracellular traps (NETs) [10]. Although the functional importance of neutrophils in can-
cer research has been underestimated, recent studies have highlighted the importance of
neutrophils in cancer pathogenesis, especially in CRC [5,11,12]. Advances in technologies
such as in vivo imaging, high-dimensional transcriptome analysis, single-cell analysis, and
epigenomic analysis have prompted the re-evaluation of neutrophil biology in cancer [13].

The innate immune system contributes to cancer initiation and progression through
inflammation, a concept historically recognized as the Virchow hypothesis. Numerous
studies have reported that peripheral blood neutrophil counts are elevated in patients with
various types of cancers. High frequencies of circulating neutrophils and tumor-infiltrating
neutrophils are strongly associated with poor prognosis in patients with CRC, as evidenced
by the fact that the neutrophil-to-lymphocyte ratio is an independent prognostic indica-
tor [14–16]. Neutrophils not only constitute a predominant population of circulating cells
in the human bloodstream but also exhibit a remarkable tendency to infiltrate the intricate
milieu of the TME in substantial quantities [17]. Notably, neutrophils are found to infiltrate
solid tumors, including CRC [18–20], and intratumoral neutrophils have been reported to
be the most adverse prognostic cell type among all tumor-infiltrating leukocyte popula-
tions based on a pan-cancer evaluation of over 3000 solid tumors comprising 14 different
cancer types. The study utilized CIBERSORT, a computational approach, to infer leukocyte
representation in bulk tumor transcriptomes [19]. The clinicopathological significance of
neutrophil-rich colorectal carcinoma has recently been emphasized, with findings suggest-
ing its impact on patient prognosis and tumor behavior [21]. Tumor-associated neutrophils
(TANs) are recognized as a key component of the TME and are actively involved in various
stages of cancer progression including CRC [5,10].

Nevertheless, in certain contexts, TANs have also been associated with a favorable
prognosis in CRC [20,22,23], although only a limited number of studies have shown that
TANs may inhibit CRC progression, mainly in the early stages of CRC. This will be dis-
cussed further in the following section. The relationship between tumor-infiltrating neu-
trophils and the prognosis remains a topic of debate, and the dual role of neutrophils in
promoting and suppressing cancer remains undeniable.

3. Tumor-Associated Neutrophils (TANs)
The TME is composed of several host cells that suppress or promote cancer aggres-

siveness, including TANs, fibroblasts (cancer-associated fibroblasts: CAFs), macrophages
(tumor-associated macrophages: TAMs), and mesenchymal stem cells [24]. Within the
TME, neutrophils are highly dynamic cells that interact with adaptive immune cells such
as T cells, B cells, natural killer cells, and tumor cells. Depending on the situation, neu-
trophils can exhibit antitumor functions through cytotoxic activity or tumor-promoting
functions by facilitating immunosuppression, angiogenesis, cancer cell motility, epithelial-
to-mesenchymal transition (EMT), and NET formation [10]. Therefore, identifying the
biological events underlying their antitumor and tumor-promoting functions is crucial for
realizing their therapeutic potential [25].

Historically, the understanding of immune cells in cancer has focused primarily on
adaptive immune cells. The classification of immune cells has often followed the “Th1/Th2”
paradigm, which has been extended to other immune cell populations. Among key players,
macrophages received significant attention and were categorized into the “M1/M2” status,
with an antitumorigenic phenotype and a pro-tumorigenic phenotype. Likewise, TANs
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also exhibit considerable plasticity and can be polarized into either an antitumorigenic
“N1” phenotype or a pro-tumorigenic “N2” phenotype, while most studies on neutrophils
in cancer have reported on the pro-tumorigenic role. As research on TANs has progressed,
this hypothesis has been further validated, showing that neutrophils play dual roles that
are closely associated with cancer prognosis [17] (Table 1).

Table 1. Anti-tumor effect and pro-tumor effect of TANs.

Role Year Model Mechanism Reference

Anti-
tumor 2017 Human clinical

samples

Neutrophils enhance the
responsiveness of CD8+ T cells

and
CD66+ cell infiltration in CRC
is associated with increased OS

[20]

2017 AOM/DSS-induced
CAC model

CD177+ neutrophils suppress
epithelial cell

tumorigenesis in
colitis-associated cancer

[26]

2020 Human clinical
samples and PDX

Anti-TGFβ attenuates tumor
growth via polarization of

TANs towards an anti-tumor
phenotype

[27]

Pro-
tumor 2021 Mouse: CT26

Neutrophils acquire
immunosuppressive activity

mediated by FATP2
[28]

2020 2024 Mouse: MC38 and
CMT93

TANs induce T cell
suppression/Angiogenesis in

the TME
[29,30]

2014 Mouse: CMT93
Ccl9 in CRC cells recruit

CCR1+ neutrophils which
produce MMP9

[31]

2019
Mouse: KPN model

Human clinical
samples

NOTCH1 signaling promotes
metastasis

via TGFβ-dependent
neutrophil recruitment.

[32]

2019

Mouse: iKAP, iAP
models, and MC38

Human clinical
samples

Oncogenic KRAS leads to high
expression of CXCL3,

binding CXCR2 on TANs to
promote their migration

[33]

2020

Mouse:
Apc/Cdx2CreERT2

model
Human clinical

samples

Neutrophils suppress
tumor-infiltrating T cells

viamatrix metalloproteinase
mediated activation of TGFβ

[34]

2020 Human clinical
samples and HCT116

NETs promote metastasis via
binding CCDC25

on cancer cells
[35]

2011 KM12L4 human
metastatic CRC cells

Systemic inhibition of
CXCR1/CXCR2 induced

apoptosis
and inhibited angiogenesis in

the liver metastasis

[36]
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N1 neutrophils exhibit increased cytotoxicity and decreased immunosuppressive
capacity by producing tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1
(ICAM-1), ROS, and Fas, while decreasing arginase expression. In contrast, N2 neutrophils
support tumor expansion by expressing arginase, matrix metalloproteinase-9 (MMP-9),
VEGF, and chemokines such as CCL2, CCL5, and CXCL4 [5,24]. Transforming growth
factor-β (TGF-β) signaling promotes the N2 phenotype, whereas the inhibition of TGF-β
signaling induces the antitumoral N1 phenotype [27,37]. Interferon-β (IFN-β), interferon-γ
(IFN-γ), and TNF-α have also been reported to induce the N1 phenotype [38,39].

Surface markers, transcriptional regulators, and cytokine profiles of neutrophils have
not yet been investigated, while the functional plasticity of neutrophils is often related
to their activation states rather than to a specific cellular phenotype [40]. Moreover, neu-
trophils are highly sensitive cells that respond rapidly and variably to host, tissue, and
environmental factors [41,42]. It is also unclear whether intermediate N0 status exists [8].
Finally, it is worth noting that the heterogeneity of TANs extends far beyond the simple
N1/2 classification, with more than nine different subsets already reported [43].

4. Antitumor Role of TANs
TANs exert their inhibitory effect on cancer tissues by directly killing cancer cells

via the secretion of cytotoxic substances, such as ROS, nitric oxide (NO), and neutrophil
elastase (NE). They also exert antitumor effects by expressing co-stimulatory receptors,
including 4-1BBL, OX40L, and CD86, which activate T cells and induce secretion of IFN-
γ [5,44]. H2O2 secreted by neutrophils depends on Ca2+ channels to induce cancer cell
death by modulating the expression of transient receptor potential cation channel subfamily
M member 2, thereby inhibiting cancer cell growth [45]. Signaling through TNF-α receptors
on neutrophils stimulates NO production via hepatocyte growth factor and MET kinase
pathways, resulting in the NO-mediated destruction of tumor cells [46].

N1 TANs also release a variety of chemokines and cytokines that stimulate the prolif-
eration and activation of immune cells, such as T cells, NK cells, and dendritic cells (DCs),
thus initiating antitumor immune responses [47]. Cytokines secreted by TANs include
CCL3, CXCL10, TNF, and interleukin (IL)-12, which contribute to the recruitment and
activation of CD8+ T cells [48]. Studies on human CRC have reported that the interactions
between TANs and CD8+ T cells are associated with improved survival by enhancing T cell
activation and proliferation [20]. In a murine CRC model, neutrophils lacking IL-1 receptor-
associated kinase M (IRAK-M) exhibited reduced expression of PD-L1 and CD11b, whereas
increased levels of CD40 and CD80 enhanced the antitumor immune response of T cells [49].
Furthermore, CD177+ TANs predicted better prognosis in CRC by suppressing epithelial
cell tumorigenesis, as demonstrated in a colitis-associated cancer model [26]. In the early
stages of cancer, TAN subsets from CD11b+CD15highCD10−CD16low immature progenitor
cells exhibit antitumor function, and CD62LlowCD54high neutrophils promote T cell prolif-
eration and IFN-γ release, which activate the antitumor activity of neutrophils [44,50]. IFN
signaling enhances the antitumor activity of neutrophils by upregulating the expression
of TNF, ICAM-1, and CCL3, while downregulating arginase-1 levels [51]. TANs activated
by IFN further boost the activity of NK cells secreting IL-18 and promote DC activation
by releasing TNF [52]. Additionally, neutrophil-derived VEGF-A165b is involved in the
inhibition of angiogenesis [53].

These findings have been validated in early-stage CRC models, where neutrophils
inhibit IL-17−driven inflammation and cancer progression by controlling the bacterial load
and diversity [54]. Neutrophil-specific IL-1 signaling inhibits IL-17−induced intestinal
inflammation and cancer invasion in mice [54,55]. Similarly, blocking IL-1 receptor type 1
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in neutrophils reduces the antibacterial capability, resulting in greater bacterial invasion of
tumors and accelerated inflammation and cancer progression [55].

Although TANs exhibit antitumor effects as described above, these findings have not
been as extensively studied as the tumor-promoting effects discussed in the next section.

5. Role of Neutrophils in Enhancing Tumor Progression
Neutrophils play a critical role in tumor progression. Inflammation is a key factor in

cancer initiation through tissue damage and involves a specific subset of neutrophils that
contributes to cancer pathogenesis. The relationship between inflammation and cancer
has been validated in liver cancer, gastric cancer, and CRC [56,57]. Inflammatory bowel
disease, particularly ulcerative colitis, is associated with an increased risk of developing
CRC, characterized by inflammatory cell infiltration and elevated levels of inflammatory
cytokines (e.g., IL-1β, IL-6, and TNFα) and chemokines (e.g., CCL2, and CXCL1) [58,59].

Neutrophils contribute to tumor development either by directly inducing genetic
instability and promoting cell proliferation or by indirectly suppressing the antitumor
immune response and promoting metastasis [13]. Neutrophils release a variety of factors,
including NE, MMPs, ROS, VEGF, and prokineticin-2 (Bv8), all of which can influence
tumor development.

The direct carcinogenic effects of neutrophils are related to ROS production, leading
to tissue damage and genetic instability, which has been reported to increase mutational
load in inflammation-driven mouse models of intestinal cancer [60]. Excessive ROS pro-
duction by neutrophils is closely associated with NET formation (also known as NETosis),
a process characterized by chromatin decondensation. During this process, the DNA
repair protein PCNA, normally present in the cytoplasm, is translocated to the nucleus
in response to nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ROS
production in humans [61]. Key components, such as Toll-like receptor-9, cyclic GMP-AMP
synthase, and NOD-like receptor protein 3 and 2, which are absent in melanoma, have been
identified as contributors to NET formation [62]. Furthermore, ROS can impair antigen-
specific T cell responses by reducing the expression of the CD3ζ chains on T cells [63].
Tumor-derived factors such as IL-3, IL-6, IL-10, TGF-β, platelet-derived growth factor, and
granulocyte-macrophage colony-stimulating factor (GM-CSF) promote ROS production
in TANs through the STAT3 pathway [64–66]. ROS and peroxynitrite produced by TANs
promoted tumor cell proliferation by causing nitration of T cell receptors on CD8+ T cells
in an MC38 mouse model [67,68]. Recent evidence suggests that miRNAs released by
neutrophils, such as miR-23a and miR-155, contribute to CRC progression by causing
DNA double-strand breaks and inhibiting Rad51-mediated repair, while miR-155 plays a
stage-specific, inhibitory role in early CRC and a promotive role in advanced stages [69–71].

TANs prevent CD8+ T cell infiltration into tumors, promote the expansion of regulatory
T cells, and modulate NK cell activity, thereby contributing to an immunosuppressive tumor
microenvironment. A recent study using clinical samples demonstrated that region-specific
CD16+ neutrophils can promote CRC progression by inhibiting the cytotoxic activity of NK
cells [72]. Granulocytic myeloid-derived suppressor cells (G-MDSCs), also referred to as
polymorphonuclear MDSCs (PMN-MDSCs), are functionally equivalent to TANs, but repre-
sent the complexity of neutrophil heterogeneity within the TME [8]. These cells, which can
be immature or mature myeloid cells, possess strong immunosuppressive properties and
are found in the circulation sites, primary tumor sites, and metastatic sites [73]. In mice, G-
MDSCs, characterized by the expression of CD11b+Gr-1+Ly6G+Ly6Clow, are phenotypically
and morphologically similar to neutrophils. In contrast, monocytic MDSCs (M-MDSCs)
expressing CD11b+Gr-1+Ly6G−Ly6Chigh resemble monocytes. In humans, G-MDSCs are
identified by the markers HLA−DRlow/−CD11b+CD14−CD15+, while M-MDSCs are iden-
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tified by HLA−DRlow/−CD11b+CD14+CD15− [11]. Recently, the scRNA-seq analysis of
neutrophil subsets from tumor-bearing mice identified three populations: classical neu-
trophils, PMN-MDSCs, and activated PMN-MDSCs [28]. The latter two exhibit potent
immunosuppressive activity and are found in tumors at early stages of tumorigenesis
to acquire CD14 expression, which can be a marker to distinguish them from classical
neutrophils [28].

In CRC mouse models, TAN-derived extracellular vesicles also promote cancer pro-
gression, partly by increasing cancer stemness, whereas S100A9-deficient extracellular
vesicles lack this effect [74]. Exosomal components, such as HSPC111 and ADAM17, am-
plify these effects by promoting TAN formation through reprogramming lipid metabolism
and enhancing metastatic potential via E-cadherin cleavage [75,76]. Under the influence of
IL-6, TANs secrete miR-93-5p-containing exosomes that induce M2 macrophage differentia-
tion, thereby increasing the risk of CRC [77]. In advanced CRC, cancer stem cell-derived
exosomes containing triphosphate RNAs prime neutrophils to promote tumor growth,
which can be reversed by depleting neutrophils [78].

The role of microbiota in cancer development is increasingly being recognized, as
discussed in the section on the antitumor role of TANs. Anaerobic bacteria, such as
Pseudomonas aeruginosa and Peptostreptococcus anaerobius, within tumor sites can drive the
recruitment of myeloid cells into the CRC microenvironment, promoting the secretion
of IL-23, which in turn triggers EMT and contributes to chemotherapy resistance [79].
Fusobacterium nucleatum is also implicated in the early stages of inflammatory bowel disease
and colorectal adenoma formation [80]. CRC patients with high levels of F. nucleatum in
the tumor exhibit increased numbers of TANs and decreased numbers of NK cells, thereby
promoting CRC progression [81–83].

These findings underscore the significant tumor-promoting role of TANs, which is
more widely reported than their antitumor effects. Given the critical impact of TANs on
tumor progression, the following sections delve into the mechanisms underlying TAN
recruitment, angiogenesis, and the emerging role of NETs in cancer.

6. Recruitment of TANs
Recruitment of TANs to the TME is a crucial step in establishing an immunosuppres-

sive milieu. Intriguingly, inflammation and tumors share several common mechanisms
of neutrophil recruitment, and the chemokine–chemokine receptor system plays a key
role in tumor progression by facilitating the accumulation of myeloid cells within the
TME. Chemokines are small peptides that bind to G-protein-coupled receptors and are
categorized into four subfamilies—CXC, CC, C, and CX3C—based on differences in the
sequence of the first two conserved cysteines at the N-terminus [84]. The C-C motif sub-
family includes chemokines such as CCL2, CCL5, and CCL15 in humans (CCL9 in mice),
while the C-X-C motif subfamily includes CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7,
CXCL8, and CXCL12. Various chemokine receptors, including CCR1, CXCR2, CCR2, and
CXCR4, interact with their corresponding ligands and play crucial roles in immune cell
trafficking and recruitment under inflammatory and cancerous conditions [40].

In particular, CXCR2 and its ligands (i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL7,
and CXCL8 in humans) play a pivotal role in the initial recruitment of TANs [17]. These
Glu-Leu-Arg+ (ELR+) CXC chemokines are secreted by tumor cells and TANs, suggesting
positive feedback, and are potent promoters of angiogenesis, a topic that will be discussed
in the next section [85]. In mouse models of colitis-associated cancer, the elimination
of neutrophil recruitment by deletion of Cxcr2 reduced overall inflammation, and thus
suppressed tumors [86]. Subsequently, secretion of CXCR2 ligands by inflamed tumor
cells promotes the accumulation of CXCR2+ TANs, which in turn inhibits the cytotoxic
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activity of CD8+ T cells and facilitates tumor progression [87]. In addition, the hypoxic
response in colonic epithelial cells contributes to tumorigenesis in mouse models of colitis-
associated cancer by activating HIF-2α, which further promotes neutrophil recruitment
through the CXCL1−CXCR2-signaling pathway [88]. Although mouse models provide
valuable insights, the biological differences should be considered when translating these
results to human pathology [89].

CCR1, widely expressed on a variety of myeloid cells, is also involved in the recruit-
ment of myeloid cells to the TME. The interaction between CCR1 and its ligands, such
as CCL15 (humans) or CCL9 (mice), facilitates the recruitment of CCR1+ myeloid cells
to primary and metastatic tumor sites. Most of CCR1+ myeloid cells recruited to tumors
are granulocytic-MDSCs and TANs in human CRC samples [90–92]. In preclinical mouse
models, we also demonstrated that the inhibition of CCR1-mediated myeloid cell accu-
mulation suppressed tumor growth and metastasis [29]. Furthermore, the simultaneous
inhibition of CCR1 and CXCR2 expressed on myeloid cells can result in more robust
suppression of tumor growth and metastasis, highlighting the potential of combinational
therapeutic strategies targeting multiple chemokine receptors [30]. In particular, targeting
both CXCR2+ neutrophils and CCR2+ macrophages in pancreatic ductal adenocarcinoma
improves chemotherapeutic efficacy and inhibits myeloid cell recruitment [93].

CXCR4, frequently over-expressed in malignant cells including CRC, also plays a cru-
cial role in the regulation of neutrophil trafficking [94]. Physiologically, CXCR2-mediated
neutrophil migration from the bone marrow to the peripheral blood is antagonized by
CXCR4, which retains neutrophils within the bone marrow by CXCL12-expressing stro-
mal cells [95]. Plerixafor, a small-molecule inhibitor targeting CXCR4, shows promise for
mobilizing hematopoietic stem cells and could enhance the treatment of solid tumors by
inhibiting CXCL12−CXCR4 signaling [96].

Genetic mutations and epigenetic alterations play a critical role in the accumulation
of TANs [97]. A key tumor suppressor gene involved in the TGF-β-signaling pathway is
mothers against decapentaplegic homolog 4 (SMAD4) [98]. Our group has reported that
loss of SMAD4 leads to the recruitment of myeloid cells through two important chemokine
pathways: the CXCL1/8−CXCR2 axis and the CCL9 (mice) or CCL15 (humans), CCR1
axis [29,31,90–92,99]. This promotes CRC invasion and metastasis through the recruitment
of CCR1+ myeloid cells and CXCR2+ neutrophils. In both mice and humans, there is emerg-
ing evidence that Notch 3 signaling plays an important role in regulating the expression of
chemokines leading to the infiltration of TANs into the TME of CRC [100]. Furthermore,
transcriptional profiling reveals that epithelial NOTCH1 signaling promotes metastasis
through TGF-β−dependent neutrophil mobilization by creating a TME reminiscent of
poorly prognostic human CRC subtypes such as consensus molecular subtype 4 and CRC
intrinsic subtype B [32]. In addition, KIAA1199, a protein involved in cell migration and
tumor progression, has been identified as a key regulator of the TGF-β/SMAD3-signaling
pathway. Its activation upregulates CXCL1 and CXCL3, enhances neutrophil recruitment,
and promotes liver metastasis via the CXCR2 axis [101]. Similarly, another prominent ge-
netic alteration in CRC, the Kirsten rat sarcoma viral oncogene homologue gene (KRAS) mu-
tation, can increase the expression of CXCL3, thereby enhancing the migration of CXCR2+

TANs via the CXCL3−CXCR2 axis, and fostering resistance to anti-PD-1 immunotherapy
in mice [33]. In KRAS-mutant CRC mouse models, both pharmacological and genetic
inhibition of CXCR2 counteracts this immunosuppression and hinders tumor progression.
Moreover, SLC25A22, a mitochondrial glutamate transporter, has been identified as a key
player in KRAS-induced immunosuppression by driving CXCL1 transcription and is a
potential therapeutic target [102]. Recent studies have discovered that stem cell markers
such as doublecortin-like kinase (DCLK1) and RNA modification by methyltransferase-like



Int. J. Mol. Sci. 2025, 26, 6 9 of 19

3 (METTL3) also play a role in the recruitment of CXCR2+ TANs to modulate tumor im-
munity through the CXCL1−CXCR2 axis in CRC mouse models [103,104]. These findings
highlight the potential of targeting TANs and their associated pathways as a promising
therapeutic strategy in the treatment of CRC.

7. Role of TANs in Angiogenesis and Metastasis
Angiogenesis, the formation of new blood vessels, is essential for tumor growth

and metastasis. TANs also release a variety of pro-angiogenic factors, such as MMP-9,
VEGF-A, and Bv8, which promote extracellular matrix degradation [24,105–107]. These
factors contribute to metastasis by enhancing angiogenesis, protecting circulating tumor
cells, reactivating dormant cancer cells, and/or helping to mobilize tumor cells to the pre-
metastatic niche [73]. Clusters of neutrophils and circulating tumor cells have been observed
in the circulation of breast cancer patients and mouse models, where tumor cells exhibit
enhanced proliferative potential and increased efficiency in metastasis formation [108].
Recent findings have revealed that tissue-specific reprogramming of neutrophils can lead
to angiogenic specialization, contributing to tumor vascularization in human CRC [109].

IL-8 (also known as CXCL8), the first-reported angiogenic chemokine, binds to its
receptors CXCR1 and CXCR2, which are expressed primarily on neutrophils. CXCR2 is
also expressed on endothelial cells and contributes to angiogenesis through its interaction
with IL-8 [110]. In addition to angiogenesis, IL-8 is involved in cell proliferation, EMT,
NET formation, immunosuppression, and metastasis via several intracellular signaling
pathways [111,112]. IL-8 is considered a tumor-promoting factor and is primarily secreted
by CRC cells in humans [113] but not in mice. TANs also secrete IL-8, which contributes
to a positive feedback loop that amplifies neutrophil recruitment [99]. Elevated serum
IL-8 levels are associated with an increased number of neutrophils within the TME and
have also been identified as independent markers of reduced responsiveness to immune
checkpoint inhibitors [114,115].

Cancer cells produce many factors, including IL-1β, CCL2, TGF-β, IL-6, granulocyte-
colony stimulating factor (G-CSF) and GM-CSF, which affect innate immune cells, including
neutrophils. Numerous studies have revealed that tumor cells or surrounding stroma se-
crete large amounts of G-CSF and GM-CSF, which regulates granulopoiesis by activating
the myeloid transcription factor, C/EBPβ, a member of the CCAAT/enhancer binding pro-
tein (C/EBP) family [40,65,95,116]. Many of these recruited neutrophils are immature and
immunosuppressive, promoting cancer metastasis [117]. In particular, integrin-β2 (CD18),
a molecule expressed by neutrophils, plays a key role in cancer cell metastasis and is specif-
ically associated with liver metastasis in a CRC mouse model [118]. G-CSF upregulates
Bv8 expression in neutrophils, facilitating neutrophil recruitment to tumors and promot-
ing angiogenesis, which ultimately result in resistance to anti-VEGF therapy in tumor
xenografts [119] and spontaneous CRC mouse models [120]. The high expression of lysyl
oxidase-like 4 (LOXL4) in neutrophils reveals a novel mechanism that contributes to resis-
tance to anti-angiogenic therapy [121]. Furthermore, GM-CSF controls the overexpression
of fatty acid transport protein 2 (FATP2) in neutrophils through STAT5 activation, leading
to their immunosuppressive function and accelerated cancer progression in mice [122]. Fur-
ther research has revealed that G-CSF signaling is modulated by IL-23 and IL-17 secreted
by macrophages and T cells in the TME, thereby enhancing neutrophil recruitment and
tumor progression [123].

MMP-9 is a key neutrophil protease that remodels the extracellular matrix to trigger
an “angiogenic switch” and promotes tumor invasion and angiogenesis. In various murine
models, TANs and TAMs are major sources of MMP-9, which is released through degranula-
tion and binding to NETs [24]. NET-associated MMP-9 contributes to vascular dysfunction
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by damaging endothelial cells through cleavage and the activation of pro-MMP-2 [10] and
cleaving laminin, which activates α3β1-integrin signaling and induces the proliferation
of dormant cancer cells [124]. In preclinical models of CRC, neutrophil-secreted MMP-9
was also shown to activate TGF-β−mediated T cell suppression and tumor promotion,
suggesting that targeting either TGF-β receptor or MMP-2/9 inhibitors could be a potential
therapeutic strategy [34].

8. Neutrophil Extracellular Traps (NETs) and Tumor Progression
NETs are web-like filamentous extracellular structures released by neutrophils and

are composed of DNA, histones, and various proteins from neutrophil granules [10]. Neu-
trophils decondense chromatin through a process known as NETosis, which requires
neutrophil elastase activity, myeloperoxidase activity, and histone citrullination. While
neutrophils serve as a defense mechanism by trapping and killing pathogens, NETs have
been linked to various pathological conditions: autoimmune diseases such as rheumatoid
arthritis and systemic lupus erythematosus, chronic conditions like diabetes and atheroscle-
rosis, neurodegenerative diseases such as Alzheimer’s disease, infectious diseases like
coronavirus disease 2019 (COVID-19)-related immune-thrombosis, and acute injuries in-
cluding muscle damage-induced kidney dysfunction, sepsis, and acute lung injury after
burns, as well as in cancer progression and metastasis. NETs are induced in cancer through
a variety of inflammatory molecules, including IL-8, G-CSF, CXCL1, CXCL2, cathepsin C,
and Toll-like receptor (TLR) ligands. NETs contain a variety of proteins that can directly or
indirectly affect cancer cells.

NETs promote tumor growth by promoting metabolic changes within the TME. In
mouse models of metastatic CRC, NET-derived neutrophil elastase activates TLR4 signaling
on tumor cells, enhancing mitochondrial ATP production, and subsequently promoting
primary tumor growth [125]. NET-associated neutrophil elastase stimulates the migration of
human CRC cells through the activation of extracellular signal-regulated kinase (ERK) [126].
NETs interact with coiled-coil domain-containing protein 25 (CCDC25) on tumor cells
and enhance cancer cell motility by activating the integrin-linked kinase (ILK)-β-parvin
pathway [35]. Tandem mass spectrometry analysis of NETs isolated from the blood of
healthy volunteers identified over 500 NET-associated proteins, including integrin family
adhesion molecules (ITGAM, ITGB2, ITGAIIb, and ITGAL) and carcinoembryonic antigen
cell adhesion molecules (CEACAM, CEACAM1, CEACAM6, and CECAM8). CEACAM1,
found in NETs, directly enhances CRC cell adhesion and migration [127]. NETs can also
affect angiogenesis [128], and this mechanism involves the induction of angiopoietin 1
(ANGPT1) and angiopoietin 2 (ANGPT2), potential therapeutic targets for modulating
angiogenesis [129].

Furthermore, NETs contribute to the formation of an immunosuppressive niche by
excluding cytotoxic CD8+ T cells from tumors, and act as a physical barrier that limits
contact between cancer cells and immune cells, such as NK cells and T cells. Studies suggest
that the inhibition of NET formation by deoxyribonuclease I (DNase I) and peptidylarginine
deiminase (PAD4) can enhance the effectiveness of checkpoint inhibitors in vivo [130,131].
Additionally, tumor-associated aged neutrophils (CXCR4+CD62Llow) affected by tumor-
derived nicotinamide phosphoribosyltransferase (NAMPT) form two distinct types of NETs:
mitochondrial-dependent vital NETs, driven by sirtuin (SIRT)1 to release mitochondrial
DNA, and traditional Cit-Histone H3-dependent fatal NETs, which suggest that targeting
the NAMPT–SIRT1–NET axis could be a therapeutic target [132]. NAMPT is involved
in the downstream signaling of the G-CSF receptor and is essential for the tumorigenic
conversion of TANs [133].
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Recently, it has been reported that fibroblast growth factor 19 (FGF19) stimulates
inflammatory cancer-associated fibroblasts (iCAFs), which promote neutrophil infiltration
and facilitate NET formation in the liver metastatic niche. This process, driven by the
release of complement proteins C5a and IL-1β, accelerates the colonization of CRC cells
in the liver [134]. The interaction between NETs and dysregulated gut microbiota is also
essential for the spread of CRC to the liver [135,136]. This process is facilitated by bacterial
translocation from the primary tumor site, which recruits neutrophils via cytokines such as
IL-1β, CCL2, TNF-α, and IL-6, thereby establishing a pre-metastatic niche in the liver [137].
Thus, NETs are gaining attention as a potential therapeutic target because of their crucial
roles in tumor progression and metastasis.

9. Therapeutic Approach and Future Perspective
Inhibiting the polarization of neutrophils toward the N2 phenotype could shift the

balance in favor of antitumor immune response. Converting a ‘cold’ tumor into a ‘hot’
tumor that responds well to immunotherapy remains a critical goal. However, a major chal-
lenge remains in selectively targeting tumor-promoting N2 TANs while sparing antitumor
N1 TANs to preserve the overall immune function. To address microsatellite stable CRC
resistance to the immune checkpoint blockade, combination therapies with chemokine
antagonists that disrupt immunosuppressive signalings have been explored. Targeted
therapies against TANs, such as CXCR2 and dual CXCR1/2 inhibitors, have successfully
augmented immune checkpoint blockade therapy in both preclinical models and clinical
trials [36,130] (Table 2).

Table 2. Clinical trials exploring neutrophil modulation in CRC.

Target Agents Mechanism Other
Interventions Cancer Type Phase Identifier

CCR5

Maraviroc Inhibitor No (Alone) CRC I NCT01736813

Maraviroc Inhibitor Pembrolizumab CRC I NCT03274804

Vicriviroc
(MK-7690) Inhibitor Pembrolizumab CRC II NCT03631407

CXCR1/2

Navarixin Inhibitor Pembrolizumab Various
(including CRC) II NCT03473925

SX-682 Inhibitor Alone or
Nivolumab CRC I/II NCT04599140

CXCR4 Plerixafor Inhibitor No (Alone) Various
(including CRC) I NCT02179970

IL-1R Anakinra Inhibitor LV5FU2 and
Bevacizumab CRC II NCT02090101

STAT3

Napabucasin
(BBI-608) Inhibitor Chemotherapy

(FOLFIRI) CRC III NCT02753127

Danvatirsen
(AZD9150) Inhibitor No (Alone) Various

(including CRC) I/II NCT01563302

Danvatirsen Inhibitor Alone or
Durvalumab

Various
(including CRC) I NCT03394144

IDO1 Epacadostat Inhibitor
Pembrolizumab

and
chemotherapy

Various
(including CRC) I/II NCT03085914

ARG1

INCB001158 Inhibitor Pembrolizumab Various
(including CRC) I NCT02903914

ARG1 vaccine Peptide
vaccine

Adjuvant
Montanide

ISA-51

Various
(including CRC) I NCT03689192

TRAIL
receptor 2 DS-8273a Agonist No (Alone) Various

(including CRC) I NCT02076451

(DR5)
DS-8273a Agonist Nivolmab CRC I NCT02991196

CS-1008 Agonist No (Alone) CRC I NCT01220999
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CCR1-specific inhibitors include J-113863, BX471, and KM5908 [29,30,138–141].
CXCR2-specific inhibitors include AZD5069, GSK1325756 (danirixin), SB225002, SB265610,
and SC656933. Dual CXCR1/2 inhibitors include DF2156A (ladarixin), SCH527123 (navar-
ixin), reparixin (repertaxin), and SX-682 [142]. Although some of these agents, such as
navarixin, SCH527123 and SX-682, were originally developed for other diseases, their
application as anticancer agents, particularly targeting TANs, makes them therapeutic
options for CRC therapy.

In addition to targeting TAN recruitment, other strategies have focused on inhibiting
the immunosuppressive function of TANs within the TME. In a CT26 mouse model of CRC,
the inhibition of phosphoinositide 3-kinases (PI3K)-δ/γ directly targeted the immunosup-
pressive functions of TANs, which also boosted the efficacy of anti-PD-1 therapy [143].
Novel research on melanoma has shown that inhibiting the immunosuppressive receptor
CD300ld, which is specifically upregulated in TANs and activates the STAT3−S100A8/A9
axis, can improve the efficacy of anti-PD-1 therapy by remodeling the tumor immune
microenvironment [144]. A clinical trial, NCT04599140, is investigating the efficacy of
combined treatment with nivolumab and the CXCR1/2 antagonist, SX-682, in patients with
RAS-mutated microsatellite stable CRC [145].

Furthermore, antimicrobial peptides (AMPs) have emerged as potential anticancer
agents that are capable of modulating the immune microenvironment by enhancing neoanti-
gen presentation and immune responses [146,147].

Another approach involves exploiting the plasticity of neutrophils. Mature neutrophils
can be reprogrammed into multipotent progenitors by chemical stimulation, and modula-
tion of this process offers the potential for cancer therapy [148]. For instance, the conversion
of neutrophils into antigen-presenting cells through the engagement of the Fcg receptors has
been shown to potentially enhance antitumor immune responses [149] Recently, chimeric
antigen receptor (CAR) neutrophils have been engineered from pluripotent stem cells using
CRISPR/Cas9 technology. This biomimetic CAR-neutrophil drug delivery system has been
shown to be effective in glioblastoma, offering the potential for broad application in cancer
therapy [150].

In summary, the inhibition of TAN recruitment, expansion, and polarization has shown
promising results in preclinical and clinical settings. Advances in single-cell profiling could
further refine the differentiation of TAN subtypes and improve therapeutic precision while
minimizing side effects. Continued development of neutrophil-targeted therapies has great
potential to improve cancer treatment outcomes.
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