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Abstract: The tissue specificity of DNA methylation refers to the significant differences in
DNA methylation patterns in different tissues. This specificity regulates gene expression,
thereby supporting the specific functions of each tissue and the maintenance of normal
physiological activities. Abnormal tissue-specific patterns of DNA methylation are closely
related to age-related diseases. This abnormal methylation pattern affects the regulation of
gene expression, which may lead to changes in cell function and promote the occurrence of
pathological conditions. By analyzing the differences in these methylation patterns, key
CpG sites for disease diagnosis can be effectively screened. The main goal of this paper is
to use the characteristics associated with tissue-specific abnormal expression and disease
to construct an age-related disease diagnosis model. First, we combined chi-square tests
and logistic regression to identify tissue-specific and disease-specific CpG sites, laying
the foundation for accurate medical diagnosis, and verified the biological relevance of
these CpG sites through enrichment analysis. Then we used the Transformer model to fit
these CpG sites and realized the automatic diagnosis of age-related diseases. Our work
proves that the tissue specificity of DNA methylation has the potential to diagnose age-
related diseases, and proves the scientific nature of our proposed diagnostic method from a
biological perspective.

Keywords: DNA methylation; tissue specificity; disease specificity; CpG site; chi-square
analysis; logistic regression; transformer model

1. Introduction
Age-Related Diseases refers to a class of diseases whose risk of onset gradually in-

creases with age, including a variety of degenerative diseases and cancers. Such diseases
involve complex pathological mechanisms, such as cell aging and tissue function degenera-
tion, which seriously affect the health and quality of life of the elderly [1]. Degenerative
diseases are a class of diseases that involve the gradual loss of tissue and organ function,
such as Alzheimer’s disease and Parkinson’s disease. They are usually related to the
aging process of the body. As the population ages, their incidence and social burden are
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increasing [2,3]. Changes in DNA methylation contribute to the pathology of age-related
diseases [4]. Therefore, it is crucial to study age-related Diseases using the pattern of
DNA methylation.

DNA epigenetics refers to a mechanism that regulates gene expression through re-
versible modification without changing the DNA sequence. It mainly occurs on cytosine
(C) in CpG islands, affecting the accessibility and activity of gene expression, thereby
controlling the functional differentiation of cells [5]. DNA methylation tissue specificity
refers to the differences in the degree of methylation in different tissues. This difference
represents different cell functions and maintains tissue characteristics [6]. Aging affects
DNA methylation in a tissue-specific manner, and such changes have been implicated in
a variety of age-related diseases [7]. Therefore, we can diagnose age-related diseases by
analyzing the tissue-specific patterns of DNA methylation.

With the rapid development of artificial intelligence technology, advanced technologies
such as machine learning have become important tools for DNA methylation data research
and are widely used in the analysis of methylation data to help researchers predict disease
risks and diagnose conditions. Previous work mainly compared the methylation patterns
of normal tissues and corresponding disease tissues, identified disease-specific methylation
changes, and used machine learning models to diagnose diseases [8–10]. These studies
have achieved good results in disease diagnosis, which shows that machine learning
technology has great potential in the task of automatically diagnosing diseases using DNA
methylation data. In recent years, deep learning has also been widely used in the task
of disease diagnosis using DNA methylation data. (Park et al.) [11] used Multilayer
Perceptron (MLP) to achieve automated diagnosis of Alzheimer’s disease. (Liu et al.) [12]
used Artificial Neuron Network(ANN) to diagnose cancer. However, these studies focused
on the numerical differences in DNA methylation patterns between healthy samples and
normal samples in the process of screening key CpG sites, rather than finding key CpG
sites that are truly diagnostically significant.

This study takes advantage of the fact that abnormal tissue-specific DNA methylation
patterns are closely related to age-related diseases and proposes an innovative diagnostic
method for neurodegenerative diseases and multiple cancers. Unlike previous studies
that only compared the numerical differences in DNA methylation patterns between
normal and diseased tissues or only focused on the changes in single CpG sites, this study
combines tissue-specific and disease-specific methylation patterns to explore the synergistic
mechanism of methylation patterns that promote age-related diseases, thereby screening
out CpG sites that are truly diagnostically significant, and verifies the scientific nature of
this diagnostic method from a biological perspective through enrichment analysis. In order
to better utilize the synergistic mechanism between these key CpG sites, we developed
a Transformer-based model combined with a dynamic residual mechanism, which can
capture the complex nonlinear relationship between CpG sites and enhance the model’s
ability to focus on key features. This method not only improves the accuracy and efficiency
of age-ralated disease classification, but also provides new insights into the role of tissue-
specific DNA methylation in disease diagnosis. The uniqueness of this study is that it
incorporates tissue-specific DNA methylation abnormalities into the diagnostic process,
which provides new perspectives and advanced methods compared to other existing
studies in this field, and is of great significance for optimizing diagnostic strategies and
advancing the study of age-related diseases.
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2. Results
2.1. Tissue-Specific Site Validation

Initially, we utilized chi-square analysis to identify CpG sites potentially associated
with specific tissue types from a large-scale dataset. Subsequently, these sites were used
as features to predict the tissue type of samples using a logistic regression model, thereby
verifying the biological and statistical significance of these CpG sites. This experiment aims
to confirm the tissue-specific sites identified by chi-square analysis in terms of accuracy. To
more precisely evaluate the model’s performance, we employed a five-fold cross-validation
method. Specifically, the data were divided into five parts; four were used sequentially
for model training, and the remaining one served for testing. This approach allows us to
calculate the model’s average prediction accuracy across different numbers of CpG sites,
effectively reducing the impact of random factors on the experimental results and providing
a stable and reliable performance evaluation. To visually represent this process and the
results, we utilized a bar chart to record the accuracy of each cross-validation iteration, as
shown in the Figure 1. It displays three evaluative metrics: accuracy, recall, and F1 score,
across five distinct folds. The results indicate that the first, second, third, and fifth folds
achieved a perfect score of 1.0 across all metrics, whereas the fourth fold experienced a
slight reduction in each metric to 0.99. These highly consistent scores substantiate that the
CpG sites we identified are indeed distinctly tissue-specific.

Figure 1. Five-fold cross-validation results for tissue classification based on selected CpG sites.
This bar chart presents the performance metrics—Accuracy, Recall, and F1-Score—across five cross-
validation folds. These results validate the tissue specificity of the CpG sites post-selection.

2.2. Disease-Specific Site Validation

This study employed a logistic regression model to screen for disease-specific CpG
sites from tissue-specific sites, using health status as the label. Through this approach, we
effectively identified a set of CpG sites that are both tissue-specific and disease-specific.
To ensure the stability and reliability of the evaluation results, we conducted a five-fold
cross-validation. For each tissue type, we independently developed a predictive model
and compared the results before and after screening. Additionally, we utilized a bar chart
to intuitively display these comparative results. As shown in the Figure 2, after CpG
site selection, the prediction accuracy for most tissues improved. Specifically, after site
selection for the kidney, saliva, and blood, the median accuracy increased significantly,
while the accuracy for the breast and brain did not improve as much. This is because the
model using all sites had already achieved high accuracy, leaving limited room for further
optimization. In summary, the CpG sites selected by this work are both tissue-specific and
disease-specific.

In order to reflect the differences in methylation levels of specific CpG sites in healthy
and diseased states, this article lists the median of each site in healthy and diseased states,
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namely Median of healthy samples (H_M), Median of disease samples (D_M) and the
magnification (D_M / H_M) and standard error, respectively Standard error for healthy
samples (H_SE) and Standard error of disease samples (D_SE), to show disease-related
methylation changes. As shown in Table 1. For full CpG site information, please see
Supplementary Materials.

Figure 2. Comparison of classification accuracy of different tissue types before and after screening
disease-specific CpG sites. This figure shows the classification accuracy of each tissue before screening
(green) and after screening (orange). The comparison proves that the CpG sites we screened are
specific diseases.

Table 1. Changes of some of the selected methylation sites between disease and health.

Tissue CpG_Site H_M D_M Magnification H_SE D_SE

Breast

cg16732616 0.039 0.4305 11 0.006 0.016
cg14038391 0.04 0.399 9.975 0.006 0.018
cg16781647 0.054 0.3825 7.08 0.006 0.020
cg10136354 0.0565 0.393 6.95 0.006 0.017
cg06616729 0.0755 0.417 5.52 0.005 0.016

Saliva

cg04944784 0.169 0.2935 1.74 0.018 0.016
cg06048169 0.653 0.4225 0.647 0.020 0.020
cg17842918 0.087 0.0655 0.753 0.012 0.013
cg22633036 0.252 0.313 1.242 0.012 0.013
cg15922174 0.137 0.1045 0.763 0.010 0.009

Lung

cg23154059 0.19 0.3385 1.782 0.015 0.013
cg02155658 0.19 0.317 1.668 0.012 0.012
cg05157171 0.106 0.154 1.448 0.007 0.011
cg08454053 0.163 0.236 1.448 0.008 0.010
cg01465169 0.246 0.1445 0.587 0.018 0.015

Whole Blood

cg23627948 0.169 0.3035 1.791 0.017 0.016
cg09703840 0.568 0.7955 1.401 0.026 0.022
cg12575883 0.2415 0.1475 0.611 0.012 0.011
cg11231949 0.086 0.118 1.372 0.009 0.010
cg13532885 0.608 0.384 0.631 0.017 0.018

Brain

cg03440272 0.242 0.33 1.364 0.014 0.014
cg19797896 0.443 0.578 1.305 0.015 0.015
cg22904711 0.167 0.212 1.269 0.006 0.004
cg24648384 0.272 0.344 1.265 0.010 0.009
cg08373528 0.557 0.466 0.837 0.002 0.003

Kidney

cg16507965 0.162 0.21 1.296 0.008 0.007
cg09703840 0.5 0.634 1.268 0.019 0.012
cg24648384 0.272 0.344 1.265 0.010 0.009
cg05522042 0.782 0.581 0.743 0.016 0.016
cg15033013 0.686 0.738 1.076 0.001 0.002
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2.3. Performance of the Diagnostic Model

In order to evaluate and verify the ability of our model to diagnose age-related
diseases in different biological tissues (breast, kidney, lung, saliva, blood, and brain) and
the effectiveness of the dynamic residual module, we trained and evaluated multiple
machine learning models including Logistic Regression, Support Vector Machine (SVM),
random forest, XGBoost and K-Nearest Neighbor (KNN) as well as our proposed model
through a five-fold cross-validation method to ensure that each model can be fully tested
on different tissue datasets. The baseline model refers to the model without the dynamic
residual module. This study effectively demonstrated the diagnostic performance of each
model by drawing and comparing the Receiver Operating Characteristic (ROC) curves and
Area Under the Curve (AUC) values of each model on each tissue dataset, and verified the
effect of the dynamic residual module in improving the diagnostic ability of the model.

As can be seen from Figure 3, our model achieved a result close to 1.0 in breast and
kidney, which means that our model can diagnose breast cancer and kidney cancer very
well. In blood, brain, and lung tissues, our model’s diagnostic effect is better than that of
traditional machine learning models, and the model with the dynamic residual module is
better than the model without the dynamic residual module. In saliva tissue, our model
achieved an AUC value of 0.87, which is better than other models, but compared with other
tissues, it still has room for improvement.

2.4. Independent Testing

In order to test the performance of the model in a real clinical setting, this study
designed an independent test experiment. We first trained four models on lung, brain,
whole blood, and breast tissues using selected CpG sites as features, using all the data
analyzed above as training sets. Then, to test the performance of these models when
processing unknown data, this paper selected four datasets of the same type as the training
set but completely independent for testing. Such independent tests not only evaluate the
performance of the model on new data, but also demonstrate the stability and reliability of
the model when processing similar data in actual clinical applications.

In independent tests of four tissue types, our model achieved an accuracy of 0.96 on
breast and lung tissue samples, showing high reliability and sensitivity. For brain tissue,
the model’s accuracy was 0.97, showing its strong ability to identify Alzheimer’s disease
in brain samples, providing substantial evidence for its potential application in clinical
neuropathology diagnosis. However, for whole blood samples, the model’s accuracy was
0.71, reaching a moderate level, indicating that there is still room for improvement in
performance on blood samples.

2.5. Enrichment Analysis

In our previous work, this paper used a combination of mathematical statistics and
machine learning to screen out CpG sites in various tissues that are both tissue-specific
and disease-specific, and used the Metaspace platform to perform GO (Gene Ontology)
enrichment analysis and KEGG enrichment analysis on the genes corresponding to these
CpG sites, revealing the concentrated expression of these genes in specific biological
functions and their concentrated effects in metabolic pathways and biological signaling
pathways, and at the same time verifying the rationality of the sites we screened from a
biological perspective. In the figure, -log represents the correlation between the sites we
screened and the pathways. The larger the value, the higher the correlation and the darker
the color. Some of the CpG sites we screened and their corresponding genes are shown
in Table 2. For full CpG site information, please see Supplementary Materials.
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Figure 3. The ROC curve shows the performance comparison of our model with other commonly used
machine learning models and baseline models on various tissues. Each figure shows the relationship
between the true positive rate (TPR) and false positive rate (FPR) of different models on specific
tissue samples. The AUC value of each model is proportional to its ability to diagnose the disease.
These figures can intuitively compare the diagnostic ability of different models for the disease. The
red curve is our model.
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Table 2. Gene table corresponding to some of the selected methylation sites.

Tissue CpG_Site Gene

Breast

cg16732616 DMRTA2
cg14038391 —
cg16781647 EMX1
cg10136354 EMX1
cg06616729 AC091076.1

Saliva

cg04944784 GAREM2
cg06048169 PKD1L2
cg17842918 ATP11A
cg22633036 FGFR2
cg15922174 CRB2

Lung

cg23154059 WNT6
cg02155658 PAX1
cg05157171 AL671277.1; HLA-A
cg08454053 AC099684.2; RTN4RL1
cg01465169 ABHD15-AS1; CORO6

Whole Blood

cg23627948 AMZ1
cg09703840 —
cg12575883 COX19
cg11231949 AC023095.1; NKAIN3
cg13532885 SYN1; Z84466.1

Brain

cg03440272 AC233976.1; AL158055.1
cg19797896 AC027644.4; RABGEF1
cg22904711 KCNN4
cg24648384 AMZ1; GNA12
cg08373528 PRPH2

Kidney

cg16507965 ARX
cg09703840 —
cg24648384 AMZ1; GNA12
cg05522042 KIAA0513
cg15033013 PRKCZ

2.5.1. Enrichment Analysis of Brain

GO enrichment analysis of brain tissue is shown in the Figure 4. Among the
tissue−specific and Alzheimer’s disease−specific genes screened in brain tissue, the bio-
logical processes we observed showed a series of biological processes closely related to
brain development and function. Phosphorylation is a key way to regulate protein function
and signal transduction pathways, and its abnormality may lead to imbalances in multiple
neural pathways. (Ferrer et al.) [13] explored the disorder of protein phosphorylation
in brain aging and various stages of AD, pointing out that disordered phosphorylated
proteins can affect synaptic transmission and membrane signal transduction, suggesting
that they may be an early indicator of mild cognitive impairment. GTPase plays an impor-
tant role in regulating intracellular transport, cytoskeleton dynamics and cell proliferation,
and their disorder can lead to abnormalities in neural pathways. (Stankiewicz et al.) [14]
pointed out that Rho family GTPases play a key role in neuronal morphology and survival,
among which Rac GTPase promotes neurite growth and neuronal survival, while Rho
GTPase triggers neurite retraction and neuronal apoptosis. (Rajaei et al.) [15] studied the
conformational changes and GTPase activity of tubulin in the brain tissue of Alzheimer’s
disease patients and found that the GTPase activity in AD patient samples was significantly
higher than that in healthy samples.
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Figure 4. This plot is a GO enrichment analysis of Brain tissue.

KEGG enrichment analysis of brain tissue is shown in the Figure 5. Among the sites
that are both tissue-specific and disease-specific, the pathways enriched in brain tissue
revealed multiple signaling pathways that may be associated with disease progression. The
sphingomyelin signaling pathway plays a key role in regulating cell survival, proliferation,
migration, and apoptosis. Sphingomyelin and its metabolites such as ceramide can transmit
signals through multiple signaling pathways, affecting cell fate and function. In the nervous
system, these molecules are involved in regulating inflammatory responses, neuroprotec-
tion, and cell death, and are associated with the occurrence and development of a variety
of neurodegenerative diseases. In brain diseases, abnormal leukocyte migration may be
associated with neuroinflammation and neurodegeneration. (Mühle et al.) [16] studied
the role of phospholipid synthases in neuropsychiatric health and disease. Sphingomyelin
and its metabolites are involved in multiple signaling pathways that regulate neuronal
survival, proliferation, and differentiation. The Hippo signaling pathway is an important
pathway for regulating organ size, cell proliferation and apoptosis, and controls cell growth
by inhibiting the activity of YAP and TAZ. (Wei et al.) [17] studied the role of the Hippo
signaling pathway in ischemia-related central nervous system diseases and concluded that
the Hippo pathway plays an important role in the pathogenesis of AD by affecting oxidative
stress, inflammatory response, blood−brain barrier integrity, mitochondrial dysfunction
and neuronal cell death.

Figure 5. This plot is a KEGG enrichment analysis of Brain tissue.

2.5.2. Enrichment Analysis of Kidney

GO enrichment analysis of Kidney tissue is shown in the Figure 6. As can be seen
from the figure above, in the gene ontology (GO) enrichment analysis of this kidney tis-
sue, the regulation of renal development, tubular formation, and surfactant homeostasis
directly reflect the basic functions of the kidney, involving the formation, maintenance, and
regulation of filtration function of renal tubules. The positive regulation of cell prolifera-
tion, the regulation of the Wnt signaling pathway, the transfer factor signaling pathway,
and the process of cell migration are related to the characteristics of renal cancer, high-
lighting the key links in the occurrence and development of renal cancer, such as imbal-
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ance in cell cycle regulation, abnormal signal transduction, and changes in cell behavior.
(Wang et al.) [18] summarized the role of the Wnt signaling pathway in kidney develop-
ment and showed that its dysregulated expression can lead to developmental abnormalities
and kidney diseases such as congenital kidney, cystic kidney and renal cancer.

Figure 6. This plot is a GO enrichment analysis of Kidney tissue.

KEGG enrichment analysis of Kidney tissue is shown in the Figure 7. The mTOR
signaling pathway is notable for its central role in regulating cell growth, metabolism,
and autophagy, and is closely related to the proliferation and survival of renal cancer
cells. (Satardey et al.) [19] analyzed the expression patterns of AKT and HIF-1 in the
AKT/mTOR signaling pathway and their prognostic significance and found that these
proteins were highly expressed in renal cancer tissues. Similarly, the MAPK signaling
pathway also plays a key regulatory role in cell proliferation and differentiation, and its
abnormal activation in renal cancer is directly related to the formation and progression of
tumors. (Borelli et al.) [20] found that inhibiting one or more MAPK signaling pathways
can inhibit the growth of renal cell carcinoma by destroying the tumor vascular structure.
This study provides a theoretical basis for developing new treatment strategies for renal
cell carcinoma. The Hippo signaling pathway (hsa04390) has been linked to the regulation
of cell growth and organ size, and its role in kidney development may be reflected in the
dysregulation of growth in renal cancer cells. (Cinar et al.) [21] summarized the role of the
Hippo pathway in prostate cancer, renal cancer and bladder cancer. Its core kinases MST1/2
and LATS1/2 regulate this pathway in mammals by phosphorylating and inactivating
YAP1 signaling. In renal cancer cells, the function of these kinases is often lost, leading
to the overactivation of YAP1 and TAZ. This activation promotes tumor cell proliferation
and metastasis. The insulin signaling pathway plays a role in maintaining blood glucose
homeostasis and regulating renal filtration function, while the oxytocin signaling path-
way may affect the renal water reabsorption mechanism and blood pressure regulation.
(Solarek et al.) [22] found that insulin plays a stimulatory role in the growth and mi-
gration of RCC cells. Although the expression of insulin receptor (IR) in RCC cells was
downregulated, these cells still responded to insulin stimulation through IGF1R.

Figure 7. This plot is a KEGG enrichment analysis of kidney tissue.
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2.5.3. Enrichment Analysis of Saliva

GO enrichment analysis of Saliva tissue is shown in the Figure 8. In the GO enrich-
ment analysis bar chart above, secretion and homogeneous cell adhesion are two biological
processes directly related to the physiological activities and cell-to-cell interactions of the
salivary glands. Secretion is related to the basic functions of the salivary glands, and
homogeneous cell adhesion affects the stability and structural organization of cells in the
salivary glands. (Figura et al.) [23] By studying saliva samples from Parkinson’s patients,
it was found that the salivary proteome composition of PD patients was different from
that of healthy controls, with lower concentrations of proteins involved in the inflamma-
tory process, exosome formation, and adipose tissue formation. Brain development and
negative regulation of mitochondrial membrane potential are associated with Parkinson’s
disease. Impaired brain development may be related to the pathological mechanism of
Parkinson’s disease. Changes in mitochondrial function are associated with the develop-
ment of neurodegenerative diseases and may be related to the abnormal energy metabolism
and oxidative stress observed in the disease. (Kai Yu et al.) [24] The study found that the
Parkinson’s-related genes PINK1 and PINK2 are directly involved in processes such as
mitophagy that maintain mitochondrial health.

Figure 8. This plot is a GO enrichment analysis of Saliva tissue.

KEGG enrichment analysis of Saliva tissue is shown in the Figure 9. Pathways of
aminoacyl-tRNA biosynthesis, Rap1 signaling, phospholipase D signaling, and endocytosis
may be associated with metabolic stress in neurons, disturbances in neural signaling, and
neurotransmitter processing, which reflects the molecular mechanism of neurodegeneration
in Parkinson’s disease. (Corti et al.) [25] found that the p38 subunit is a substrate of
Parkin and that ubiquitination of p38 was abolished by a truncated variant of Parkin
lacking the essential functional domain, whereas p38 is a key structural component of the
mammalian aminoacyl−tRNA synthetase complex. (Stieglitz et al.) [26] summarized the
drugs developed for phospholipase D and proposed that human phospholipase D is not
only a therapeutic target for diseases such as cardiovascular disease and cancer, but also
a therapeutic target for neurodegenerative diseases including Alzheimer’s disease and
Parkinson’s disease.

Figure 9. This plot is a KEGG enrichment analysis of Saliva tissue.
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2.5.4. Enrichment Analysis of Whole Blood

GO enrichment analysis of Whole Blood tissue is shown in the Figure 10. Through
gene ontology analysis of blood samples, we identified multiple biological processes associ-
ated with the physiological functions of blood and Parkinson’s disease. Those related to
blood include maintenance of position, secretion, transport of organic anions and trans-
membrane transport of single atomic cations. Maintenance of position is related to the
distribution and positioning of blood cells in the circulation. The secretion of molecules
involves the release of hormones and other important molecules in the blood. The transport
of organic anions involves the removal of metabolic waste and the regulation of nutrient
delivery. Transmembrane transport of single atomic cations plays an important role in
maintaining blood electrolyte balance. The normal operation of these processes is essen-
tial for maintaining blood biochemical homeostasis. The biological processes associated
with Parkinson’s disease include neuronal projection, synaptic transmission, regulation
of membrane potential, and regulation of synaptic vesicle endocytosis. The development
of neuronal projection is the basis for the formation of neural communication networks,
involving communication and connections between neurons, which may be impaired in
PD, leading to the decline of cognitive and motor functions. Synaptic transmission involves
the transmission of neurotransmitters between synapses. PD patients are impaired in this
process, especially affecting the transmission of dopamine, which is the core mechanism
leading to motor and non−motor symptoms. (Stern et al.) [27] By comparing Parkinson’s
patients and healthy samples, it was found that the synaptic current rate of neurons in PD
patients was severely reduced. The regulation of membrane potential directly affects the
activation state of neurons, and its disorder in PD can further aggravate neurological dys-
function; the regulation of synaptic vesicle endocytosis involves the reabsorption and reuse
of neurotransmitters by nerve cells. During the course of PD, the reuse of neurotransmitter
circulation may be affected, thereby affecting the efficiency and accuracy of neurotransmis-
sion. (Qadri et al.) [28] Studies have found that the mitochondrial membrane potential of
PD patients is significantly reduced, so the mitochondrial membrane potential of peripheral
blood mononuclear cells can be used as a marker for the diagnosis of Parkinson’s disease.

Figure 10. This plot is a GO enrichment analysis of Whole Blood tissue.

KEGG enrichment analysis of Whole Blood tissue is shown in the Figure 11. The gene
pathways mapped to the analysis of whole blood tissue showed that we also enriched
aminoacyl−tRNA biosynthesis in blood tissue, which illustrates its important role in
Parkinson’s disease. Neuroactive ligand−receptor interaction pathways and PD−specific
pathways are directly related to neurotransmitter imbalance and neuroinflammation in the
disease. (Yan Kong et al.) [29] used high-throughput small RNA sequencing technology
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to study the miRNA expression of α−synuclein and found that the expression of these
miRNAs significantly affects the neuroactive ligand−receptor interaction pathway.

Figure 11. This plot is a KEGG enrichment analysis of Whole Blood tissue.

2.5.5. Enrichment Analysis of Lung

GO enrichment analysis of Lung tissue is shown in the Figure 12. Through gene ontol-
ogy analysis of lung samples, we can see the physiological role of the lung in regulating
transmembrane transport of inorganic ions, responding to temperature changes, and main-
taining cell connections and extracellular matrix composition, reflecting its core function
in gas exchange and environmental adaptation. There are also some biological processes
associated with the development of lung cancer, such as membrane depolarization, regula-
tion of transferase activity, inhibition of angiogenic signaling pathways, and changes in
dendritic cell function in the immune response. These biological events reflect the adaptive
mechanisms of tumor cells in proliferation, vascular invasion and escape from immune
surveillance. (Tang et al.) [30] found that the expression of glutathione S-transferase M2
(GST-M2) was silenced by the hypermethylation binding of specific protein 1 (Sp1) in lung
cancer cells, which may lead to the reduction of GST-M2 expression in lung cancer cells.
(Li et al.) [31] analyzed the application and research status of angiogenesis inhibitors in the
treatment of lung cancer, and pointed out that the current anti-angiogenesis drugs targeting
VEGF or receptor tyrosine kinase have a certain effect in the treatment of lung cancer.

Figure 12. This plot is a GO enrichment analysis of lung tissue.

KEGG enrichment analysis of Lung tissue is shown in the Figure 13. From the en-
riched pathways in the figure, we can see that in lung tissue, the glycosaminoglycan
biosynthesis pathway is essential for building lung extracellular matrix and regulating
lung function. (Jenny Wigén et al.) [32] pointed out that glycosaminoglycans regulate cell
activities by binding growth factors and morphogenetic factors and play an important
role in cell differentiation and tissue regeneration. At the same time, the development
of lung cancer may be closely related to the cellular anti-aging mechanisms and regula-
tion of tumor metabolism in lifespan regulation pathways, as well as changes in energy
metabolism and biosynthesis requirements in fructose and mannose metabolic pathways.
(Krause et al.) [33] points out that fructose metabolism provides a carbon source for nu-
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cleotide synthesis, supports the synthesis of DNA and RNA, and promotes the rapid
proliferation of cancer cells.

Figure 13. This plot is a KEGG enrichment analysis of lung tissue.

2.5.6. Enrichment Analysis of Breast

GO enrichment analysis of Breast tissue is shown in the Figure 14. Gene ontology
analysis of breast tissue samples revealed biological processes associated with normal
growth, development, and functional maintenance of the mammary gland, including cell
differentiation, tissue morphogenesis, and growth regulation. There are also some biological
processes that may play a key role in the development of breast cancer, including cell
adhesion, migration ability, and regulation of kinase signaling pathways, which play a role
in the proliferation, invasion, and metastasis of breast cancer cells. In particular, integrin-
mediated regulation of cell adhesion and protein tyrosine kinase signaling pathways are
key factors in regulating tumor growth and metastatic potential. (Menashe et al.) [34]
conducted an in-depth analysis of the whole genome association study of breast cancer
and found that the pathways of key components of the protein kinase signaling cascade
are very important in breast cancer susceptibility.

Figure 14. This plot is a GO enrichment analysis of Brease tissue.

KEGG enrichment analysis of Breast tissue is shown in the Figure 15. Pathways directly
related to breast cancer include central carbon metabolism, cell adhesion molecules, PI3K-
Akt signaling pathway, stem cell pluripotency regulation, viral carcinogenesis, and Hippo
signaling pathway, which play a core role in tumor energy metabolism, cell-cell interaction,
signal transduction, stem cell characteristics, and tumor growth regulation. Breast-related
pathways may involve regulatory pathways for stem cell pluripotency, which is essential
for the development and maintenance of breast tissue. (Sun et al.) [35] found that the PI3K-
AKT signaling pathway is overactivated in breast cancer. AKT phosphorylates and inhibits
salt-induced kinase 1 (SIK1), thereby relieving its inhibition on STAT3 and promoting the
occurrence of breast tumors.
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Figure 15. This plot is a KEGG enrichment analysis of Breast tissue.

3. Discussion
This study used a method combining mathematical statistics with machine learning

to screen out key CpG sites with diagnostic significance at the whole genome level to
ensure that the selected sites are closely related to relevant tissues and age-related diseases,
providing a basis for the development of subsequent diagnostic models. In order to
better fit these sites, we used a Transformer-based method combined with a dynamic
residual mechanism to establish a model that can accurately diagnose specific diseases.
The model showed good performance and generalization ability on the test set, proving
its effectiveness in practical medical applications. The scientific nature of the diagnostic
method proposed in this article was verified from a biological perspective through GO and
KEGG enrichment analysis.

First, this paper used the chi-square test to identify highly significant tissue-specific
CpG sites. Subsequently, we screened these CpG sites for those associated with specific age-
ralated diseases through logistic regression analysis to ensure that the selected sites were
both tissue-specific and disease-specific. (Chad et al.) [9] used an unsupervised clustering
method to study the methylation variability of gene promoter regions, revealing the most
stable promoter regions in specific tissues, which are often associated with genes that are
indispensable for tissue function. However, their study focused on methylation variability
within gene promoter regions rather than individual CpG sites, which may overlook subtle
changes at the CpG site level that may have predictive value for disease. In contrast, our
method targets specific CpG sites and can identify and analyze subtle methylation changes
that may be highly associated with specific diseases. (Emilie et al.) [36] studied the tissue
specificity of DNA methylation in neonatal and placental tissues, emphasizing its signifi-
cance for future epigenetic epidemiological studies. They used Fisher’s exact probability
method to identify methylation regions associated with cell function, movement, signal
transduction, immune response, and embryonic development. This method is suitable
for the analysis of small data sets, but when the sample size is large, the method becomes
complicated and time-consuming. Machine learning technology is good at processing
more complex data sets and patterns, improving the efficiency of extracting useful infor-
mation from large-scale epigenetic data, and achieving effective feature selection, thereby
improving the predictive performance and biological interpretability of the analysis model.
(Yan-Zhe Wang et al.) [37] found that changes in the methylation status of core regulatory
genes may be a potential factor in the onset of diabetic nephropathy, providing potential
molecular targets for early diagnosis and treatment strategies. Although their study recog-
nized differentially methylated sites, it mainly relied on comparing known tissue-specific
patterns and may not have fully utilized machine learning technology to predict the com-
plex relationship between unknown, potentially important methylation sites and disease
states. To overcome the limitations of previous studies, This paper specifically utilized the
high sensitivity of the chi-square test, which is an ideal tool for determining significant
associations between the methylation status of CpG sites and specific tissue types. This
approach enables us to accurately capture tissue-specific sites, laying a solid foundation
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for subsequent in-depth analysis. In addition, logistic regression is known for its strong
predictive power and high output interpretability. It not only generates prediction results
but also clarifies the strength and direction of the impact of each variable on the prediction
through regression coefficients, enhancing our understanding of which CpG sites play a
key role in disease development.

The tissue-specific sites we identified showed a performance close to 1.0 in the logistic
regression model, indicating that the sites we screened were tissue-specific. Further analysis
found that the disease-specific CpG sites further screened by logistic regression had higher
accuracy in various tissues through the verification of logistic regression, indicating that
the sites we screened were also disease-specific. We fitted these sites with a age-ralated
disease diagnosis model and obtained a better AUC value than the traditional machine
learning model, indicating that our model can achieve better diagnostic results. This paper
then located these CpG sites on specific genes and performed GO and KEGG enrichment
analysis to find biological processes, pathways, or functions that were significantly en-
riched at these sites, thereby clarifying the biological significance behind the changes in
gene expression. The main biological processes identified in this study include stem cell
differentiation, cell adhesion, gap junctions, and signal transduction pathways such as
TGF-β, Hippo, and PI3K-Akt, which are critical for cell function and age-ralated disease
progression. Abnormalities in stem cell pathways may lead to neuronal degeneration, while
disruption of cell adhesion and gap junctions is associated with neuronal loss. Notably,
aberrant activation or inhibition of these pathways plays a key role in the pathogenesis of
Alzheimer’s disease and various cancers, including renal and breast cancer. In addition,
alterations in central carbon metabolism and energy metabolism highlight their importance
in disease states, reflecting dysregulation of metabolic waste disposal and energy balance.
The results of enrichment analysis indicate that our proposed diagnostic approach can not
only achieve good results but also has scientific validity from a biological perspective.

Although our method has achieved good results in the task of disease diagnosis, it still
faces some shortcomings. In the task of diagnosing Parkinson’s disease in salivary tissue,
although our model also achieved an AUC value of 0.87, there is still room for improvement
compared with our diagnostic model in other tissues. This may be because saliva samples
are not as sensitive to diseases as other tissues. We will improve the model to better capture
subtle changes in the disease. In experiments where blood samples were independently
tested to verify the generalization ability of our model, our model’s performance in blood
was not as good as other tissues, which shows that there is room for further optimization
of the generalization ability of our model in blood samples. In the future, we will use better
technology to improve the generalization ability of the model in blood tissue.

4. Materials and Methods
4.1. Workflow

The research method flow of this paper is shown in Figure 16. This study first obtained
DNA methylation data from the Gene Expression Omnibus (GEO) database and determined
tissue-specific CpG sites through chi-square analysis. Then, the logistic regression method
was used to further screen out key CpG sites that can accurately diagnose age-related
diseases, and these sites were enriched and analyzed to prove the correctness of the CpG
sites we screened from a biological perspective. Finally, these key sites were used to develop
diagnostic models for five age-related diseases, including breast cancer, kidney cancer, lung
cancer, Alzheimer’s disease, and Parkinson’s disease.
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Figure 16. This figure illustrates the research method framework used in our paper. It shows that
starting from the DNA methylation data of multiple tissues, through chi-square analysis and logistic
regression, CpG sites associated with tissues and diseases are identified, and the correctness of these
sites is verified by enrichment analysis, and a diagnostic model that can distinguish between healthy
and disease states is constructed.

4.2. Datasets

This paper uses 12 public datasets from the Gene Expression Omnibus (GEO) database,
which is established and maintained by the National Center for Biotechnology Information
(NCBI). These datasets were generated using the Illumina Infinium 450k human DNA
methylation microarray. In this study, we included samples from multiple tissues and
biofluids, including kidney, saliva, brain, whole blood, breast, and lung tissues, totaling
1321 samples. We included tissue samples to more accurately screen key CpG sites for
age-related diseases, which directly reflect the occurrence and development of the disease.
Biofluid samples were included because they are easy to obtain, non-invasive, and have
high clinical application potential. Biofluid samples can reflect the indirect effects of
the disease, enrich the expression of disease characteristics, and help improve the broad
applicability and robustness of diagnostic algorithms. By analyzing these samples from
different tissue sources, we aim to reveal genetic variations that are unique to each tissue
and understand the pathobiological mechanisms by which these variations lead to related
degenerative diseases or cancers.The distribution of the data used in this study in each
organization is shown in the Figure 17.

For kidney tissue, we selected three datasets: GSE52955, GSE59157, and GSE61441.
GSE52955 involves genome-wide DNA methylation analysis of normal and tumor tissues
from the urinary system (prostate, kidney, and bladder), from which we selected the kid-
ney data. GSE59157 is designed to compare the epigenomic profiles of clear cell renal
cell carcinoma (ccRCC) tissue with matched normal kidney tissue. GSE61441 contains
genome-wide DNA methylation analysis of normal kidney tissue, nephrogenic quiescence,
and Wilms’ tumor, and we selected the data for normal kidney tissue. For saliva samples,
we used dataset GSE111223, which includes genome-wide DNA methylation analysis of
saliva samples from 128 Parkinson’s disease (PD) patients and 131 control individuals.
This dataset is designed to explore the epigenetic changes associated with PD. For brain
samples, we selected samples with Alzheimer’s disease (AD) and their corresponding
control samples, including two datasets: GSE80970 and GSE59685. GSE80970 consists of
samples taken from the prefrontal cortex and superior temporal gyrus tissues of 147 indi-
viduals with varying degrees of AD pathology. GSE59685 involves cross-tissue methylome
analysis of AD, with samples taken from multiple tissues of 122 donors. Genomic DNA
was isolated from four brain regions in each donor: the entorhinal cortex (EC), superior
temporal gyrus (STG), prefrontal cortex (PFC), and cerebellum (CER). For whole blood
tissue, we selected the GSE72774, which contains 508 whole blood samples, including 289
from PD patients and 219 control samples.To ensure sample balance, we selected 100 PD
samples and 100 control samples. For breast tissue, we used three datasets: GSE52865,
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GSE52270, and GSE60185. GSE52865 provides whole-genome DNA methylation analysis
of normal and tumor breast tissues, including 40 primary breast tumors and 17 normal
breast tissues. GSE52270 includes high-resolution DNA methylation array analysis of
human cancer samples and normal control tissues, from which we selected the breast
cancer samples. GSE60185 contains whole-genome DNA methylation maps of 285 breast
tissue samples, which are divided into normal tissue samples and breast cancer samples.
For lung tissue, we selected two datasets: GSE51077 and GSE63704. GSE51077 contains
36 samples, comprising whole-genome DNA methylation analysis of DNA samples ob-
tained from normal lung tissue and lung cancer tissue. GSE63704 includes lung biopsy
samples obtained via bronchoscopy, comprising 17 lung cancer patients, 37 idiopathic pul-
monary fibrosis patients, 32 chronic obstructive pulmonary disease patients, and healthy
lung samples with specific DNA methylation patterns. We selected lung cancer and healthy
samples for our analysis.

Figure 17. This figure shows the number of data we selected from each organization. The disease
represents the data of the disease state, and Healthy represents the corresponding control group data.
From this figure, we can see that the data we selected is reasonable.

To verify the generalization ability of our model and the accuracy of the screened
sites, we conducted independent tests on four datasets: GSE111629, GSE66695, GSE75008,
and GSE43414. GSE111629 contains whole-genome DNA methylation data from whole
blood samples of Parkinson’s disease (PD) patients, including 335 PD patients and
237 controls. GSE66695 provides whole-genome DNA methylation analysis of normal
and breast cancer samples, consisting of 40 normal samples and 80 breast cancer samples.
GSE75008 contains DNA methylation data from lung tissue, including 40 normal lung
tissue samples and 40 lung cancer samples. GSE43414 is a study focused on preprocessing
methods for methylation array data and includes DNA methylation data from 695 samples
across 11 different groups. From this dataset, we selected brain tissue samples, comprising
61 Alzheimer’s disease samples and 57 control samples.

This paper selected multiple datasets related to age-ralated diseases, covering different
tissue types. Table 3 shows the relationship between each disease and its corresponding
tissue type.

Table 3. Tissue types for each disease.

Tissue Disease

Brain Alzheimer’s
Saliva Parkinson’s

Whole Blood Parkinson’s
Kidney Kidney Cancer
Lung Lung Cancer
Breast Breast Cancer
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4.3. Screening of Key CPG Sites

This study used a two-stage screening approach to identify key CpG sites: first, the
chi-square test was used to screen out CpG sites that were significantly associated with
tissue specificity; then, logistic regression was used to further screen out sites associated
with age-ralated diseases.

To avoid disease-specific effects on CpG sites, we exclusively selected healthy samples
from our datasets. We have a total of m = 450 K CpG sites.

Dhealthy = {Xi, yi | statei = ‘healthy’} (1)

where Xi = [Ci1, Ci2, . . . , Cim] is the feature vector of the i-th sample, representing the
methylation degree of the CpG site in the range [0,1]. yi = [T1, T2, . . . , T6] is the tissue of
origin of the sample.

We selected CpG sites associated with tissue type by calculating the chi-square statistic
and significance of the methylation degree of each CpG site and tissue type y.

χ2(Cj, y) =
m

∑
k=1

6

∑
t=1

(Okt − Ekt)
2

Ekt
(2)

p − value = 1 − Fχ2(χ2, d f ) (3)

where χ2 is the Chi-square statistic, Fχ2 is the cumulative distribution function of the chi-
square distribution,which indicates the probability that χ2 is less than or equal to a certain
value. The df is the degrees of freedom for the chi-square test. The p-value represents the
significance level of the observed χ2.

The smaller the p-value, the more significant the correlation between C and y. When it
is less than 0.05, we believe that there is a significant correlation between Cj and y. In this
task, in order to strictly screen out tissue-specific CpG sites, we set the p-value threshold to
0.01. Therefore, the CpG sites we screened are as follows:

Tissue-Specificity-CpGs = {j | p-value(Cj, y) < τp} (4)

where τp = 0.01 is the threshold of the significance level.
We screened m = 13,158 tissue-specific CpG sites in this way.
We further used logistic regression to analyze the sites identified by the chi-square

test, aiming to extract age-ralated disease-specific CpG sites from these tissue-specific sites.
Logistic regression is a machine learning algorithm for binary classification that predicts the
probability of an outcome variable by linearly combining the predictor variables with their
respective coefficients. We calculated the weights of these predictor variables to determine
the degree of association between each CpG site and the age-ralated disease [38].

Our dataset is all samples, but only the tissue-specific CpG sites selected by the
chi-square test are retained. It is represented as follows:

D = {(Ci, yi, Ti | i = 1, 2, . . . , n)} (5)

yi =

1 disease

0 healthy
(6)

Dhealthy = {(Ci, yi, Ti | yi = 0} (7)

Ddisease = {(Ci, yi, Ti | yi = 1} (8)

D = Dhealthy ∪ Ddisease (9)
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where Ci ∈ R2 is a feature vector of sample i containing m tissue-specific CpG sites, yi is
health/disease labels for sample i.

We then screened the corresponding disease-specific CpG sites in t = 6 tissues.

XTt = [C1, C2, . . . , Cm] (10)

P(yti=1|XTi
) =

1

1 + e−(βo+CT
Ti

β)
(11)

Rank(Cj) = argsort(|β|, descending) (12)

SelectedFeaturesTt
= {(Cj | j ∈ Top 400 by

∣∣β j
∣∣} (13)

where P(yti = 1) is the probability that sample i belongs to the disease state,
β = [β1, β2, . . . , βm] is a feature weight vector for the logistic regression model.

We selected CpG sites that exhibit both tissue specificity and disease specificity using
the above method.

4.4. Diagnosis Model Construction

This study proposed a model based on a Transformer [39] and dynamic residual
mechanism for disease diagnosis using the methylation level of CpG sites.The model aims
to capture the complex nonlinear relationship between CpG sites and enhance the model’s
ability to focus on key features through the dynamic residual mechanism, thereby achieving
efficient and accurate disease classification. The disease diagnosis model we use is shown
in the Figure 18.

Our input data is the methylation level of 400 CpG sites in a single sample, represented
as a feature vector, C = {c1, c2, . . . , ci, . . . , c400} ∈ Rd, Where ci represents the methylation
level of the ith CpG site .To adapt to the Transformer input format, we expand the vector C
in the channel dimension and transform it into C′ = C ∈ R1×d.

The Transformer encoder layer uses a multi-head self-attention mechanism to capture
different dependencies and feature representations from the input sequence. We input
vector C′ into the Transformer encoder layer for feature extraction and obtain a feature
vector containing the global dependencies between CpG sites.

Figure 18. The Model structure. We convert the screened methylation sites into vectors through
Transformer, and then diagnose the disease through MLP.

H = Trans f ormerEncoder(C′) (14)
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where H ∈ R1×d is the output feature of the Transformer encoder and also the input feature
of the dynamic residual layer.It plays a connecting role in the model, connecting the global
feature extraction of the Transformer encoder and the feature optimization of the dynamic
residual layer.

We add a dynamic weight control mechanism based on the fully connected layer to
adaptively adjust the retention and transformation of input features to more effectively
capture complex feature representations. It improves the traditional residual connection
by introducing a gating mechanism to dynamically adjust the weight of the residual path
according to the input data. It consists of two parts: fully connected feature transformation
and gating mechanism.

First, we use the fully connected layer to perform a linear transformation on the input
to extract deeper features. Then we introduce a gating structure to dynamically calculate
the weights of the feature transformation and the residual path, and generate the weight
coefficients through the Sigmoid function. The formula is as follows:

T = FC(H) = HW f c + b f c (15)

G = σ(HWgate + bgate) (16)

where W f c, Wgate ∈ Rd×d are the weight matrices of the fully connected layer and the gating
layer, respectively. G is a gating weight used to dynamically adjust the fusion ratio of
the input feature H and the feature transformation result T. It is the core mechanism of
the dynamic residual layer. By generating weights according to the input data, it flexibly
controls the proportion of the residual path and the feature transformation path. b f c ∈ Rd

is the bias term that appears in the feature transformation of the dynamic residual layer. It
is used to adjust the baseline value of the linear transformation output, giving the model
greater flexibility and learning ability. bgate ∈ Rd is the bias term of the gating mechanism in
the dynamic residual layer, which is used to adjust the value range of the dynamic weight
G, thereby affecting the fusion ratio of the residual path and feature transformation.

We then use the weighted sum of the feature transformation and residual paths to
generate the final output.

O = G · T + (1 − G) · H (17)

where O ∈ Rd is the output of the dynamic residual layer.
We pass the output of the dynamic residual layer through the fully connected layer to

complete the final disease diagnosis task.

y = So f tmax(OWclass + bclass) (18)

where Wclass ∈ Rd×2 are the classifier weights. y ∈ R2 is the probability distribution over
the classes.

Through the above formula description, we show that the model extracts and optimizes
the input 400 CpG site features C and finally completes the disease diagnosis task.

5. Conclusions
This paper uses a combination of chi-square tests and logistic regression to screen

out CpG sites that are both tissue-specific and disease-specific and uses our proposed
age-related disease diagnosis model to fit these sites, which can effectively diagnose these
diseases in various tissues and achieve significant results. These findings illustrate the
potential application of DNA methylation tissue specificity and deep learning models in
medical diagnosis.
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In terms of GO and KEGG enrichment analysis of the screened sites, the study revealed
multiple biological processes and metabolic pathways related to organ function and disease
progression, indicating that our diagnostic method is scientifically based.

Although our proposed diagnostic method has shown good results in most tissues,
there is still room for improvement in saliva datasets, and the generalization ability in
blood tissues also needs to be further strengthened. In the future, we will optimize the
model, better process data, and improve our disease diagnosis model to provide better
diagnostic tools for the clinical field.
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