Altered Expression of Epigenetic and Transcriptional Regulators in ERβ Knockout Rat Ovaries During Postnatal Development
Abstract
:1. Introduction
2. Results
2.1. Changes in Epigenetic Regulators Due to the Loss of ERβ
2.2. Changes in Transcription Factors Due to the Loss of ERβ
2.3. Changes in Downstream Transcripts Due to the Loss of ERβ
2.4. Changes in Epigenetic Regulators During Postnatal Development
2.5. Changes in Transcription Factors During Postnatal Development
2.6. Changes in Downstream Transcripts During Postnatal Development
2.7. Comparisons of DEERs, DETFs, and DEDTs During Postnatal Development
2.8. Changes in Transcripts Related to Follicle Assembly
2.9. Changes in Transcripts Related to Primordial Follicle Activation
2.10. Changes in Transcripts Related to Steroidogenesis
3. Discussion
4. Materials and Methods
4.1. Experimental Model
4.2. RNA Sequencing
4.3. Analysis of RNA Sequencing Data
4.4. Analysis of the Transcript Variants
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.; Liu, J.; Luo, A.; Wang, S. The stromal microenvironment and ovarian aging: Mechanisms and therapeutic opportunities. J. Ovarian Res. 2023, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, J.M.; Pepling, M.E. Primordial Follicle Formation—Some Assembly Required. Curr. Opin. Endocr. Metab. Res. 2021, 18, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Hirshfield, A.N. Development of follicles in the mammalian ovary. Int. Rev. Cytol. 1991, 124, 43–101. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, H.; Gorre, N.; Risal, S.; Shen, Y.; Liu, K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum. Mol. Genet. 2014, 23, 920–928. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, H.; Liu, K. The two classes of primordial follicles in the mouse ovary: Their development, physiological functions and implications for future research. Mol. Hum. Reprod. 2014, 20, 286–292. [Google Scholar] [CrossRef]
- Mork, L.; Maatouk, D.M.; McMahon, J.A.; Guo, J.J.; Zhang, P.; McMahon, A.P.; Capel, B. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol. Reprod. 2012, 86, 37. [Google Scholar] [CrossRef]
- Chakravarthi, V.P.; Dilower, I.; Ghosh, S.; Borosha, S.; Mohamadi, R.; Dahiya, V.; Vo, K.; Lee, E.B.; Ratri, A.; Kumar, V.; et al. ERβ Regulation of Indian Hedgehog Expression in the First Wave of Ovarian Follicles. Cells 2024, 13, 644. [Google Scholar] [CrossRef]
- Niu, W.; Spradling, A.C. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc. Natl. Acad. Sci. USA 2020, 117, 20015–20026. [Google Scholar] [CrossRef]
- Tang, Z.R.; Zhang, R.; Lian, Z.X.; Deng, S.L.; Yu, K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019, 8, 1123. [Google Scholar] [CrossRef]
- Bao, X.; Yan, D.; Yang, J.; Zhang, Z.; Yuan, B. Role of ERβ in the ovary and ovary related diseases. Gene 2024, 927, 148678. [Google Scholar] [CrossRef]
- Chakravarthi, V.P.; Ratri, A.; Masumi, S.; Borosha, S.; Ghosh, S.; Christenson, L.K.; Roby, K.F.; Wolfe, M.W.; Rumi, M.A.K. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: The role of estrogen receptor β. Mol. Cell. Endocrinol. 2021, 528, 111212. [Google Scholar] [CrossRef] [PubMed]
- Khristi, V.; Chakravarthi, V.P.; Singh, P.; Ghosh, S.; Pramanik, A.; Ratri, A.; Borosha, S.; Roby, K.F.; Wolfe, M.W.; Rumi, M.A.K. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol. Cell. Endocrinol. 2018, 474, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Emmen, J.M.; Couse, J.F.; Elmore, S.A.; Yates, M.M.; Kissling, G.E.; Korach, K.S. In vitro growth and ovulation of follicles from ovaries of estrogen receptor (ER)α and ERβ null mice indicate a role for ERβ in follicular maturation. Endocrinology 2005, 146, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Jayes, F.L.; Burns, K.A.; Rodriguez, K.F.; Kissling, G.E.; Korach, K.S. The naturally occurring luteinizing hormone surge is diminished in mice lacking estrogen receptor Beta in the ovary. Biol. Reprod. 2014, 90, 24. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Weihua, Z.; Makinen, S.; Makela, S.; Saji, S.; Warner, M.; Gustafsson, J.A.; Hovatta, O. A role for the androgen receptor in follicular atresia of estrogen receptor beta knockout mouse ovary. Biol. Reprod. 2002, 66, 77–84. [Google Scholar] [CrossRef]
- Chakravarthi, V.P.; Ghosh, S.; Housami, S.M.; Wang, H.; Roby, K.F.; Wolfe, M.W.; Kinsey, W.H.; Rumi, M.A.K. ERβ regulated ovarian kisspeptin plays an important role in oocyte maturation. Mol. Cell. Endocrinol. 2021, 527, 111208. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.E.; Fuller, P.J. Ovarian actions of estrogen receptor-β: An update. Semin. Reprod. Med. 2012, 30, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jefferson, W.N.; Newbold, R.R.; Padilla-Banks, E.; Pepling, M.E. Estradiol, Progesterone, and Genistein Inhibit Oocyte Nest Breakdown and Primordial Follicle Assembly in the Neonatal Mouse Ovary in Vitro and in Vivo. Endocrinology 2007, 148, 3580–3590. [Google Scholar] [CrossRef]
- Chen, Y.; Breen, K.; Pepling, M.E. Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J. Endocrinol. 2009, 202, 407–417. [Google Scholar] [CrossRef]
- Kirigaya, A.; Kim, H.; Hayashi, S.; Chambon, P.; Watanabe, H.; Lguchi, T.; Sato, T. Involvement of estrogen receptor β in the induction of polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol. Zool. Sci. 2009, 26, 704–712. [Google Scholar] [CrossRef]
- Kim, H.; Nakajima, T.; Hayashi, S.; Chambon, P.; Watanabe, H.; Iguchi, T.; Sato, T. Effects of diethylstilbestrol on programmed oocyte death and induction of polyovular follicles in neonatal mouse ovaries. Biol. Reprod. 2009, 81, 1002–1009. [Google Scholar] [CrossRef]
- Kim, H.; Hayashi, S.; Chambon, P.; Watanabe, H.; Iguchi, T.; Sato, T. Effects of diethylstilbestrol on ovarian follicle development in neonatal mice. Reprod. Toxicol. 2009, 27, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthi, V.P.; Ghosh, S.; Roby, K.F.; Wolfe, M.W.; Rumi, M.A.K. A Gatekeeping Role of ESR2 to Maintain the Primordial Follicle Reserve. Endocrinology 2020, 161, bqaa037. [Google Scholar] [CrossRef] [PubMed]
- Lang-Muritano, M.; Sproll, P.; Wyss, S.; Kolly, A.; Hurlimann, R.; Konrad, D.; Biason-Lauber, A. Early-Onset Complete Ovarian Failure and Lack of Puberty in a Woman With Mutated Estrogen Receptor β (ESR2). J. Clin. Endocrinol. Metab. 2018, 103, 3748–3756. [Google Scholar] [CrossRef]
- Vo, K.; Sharma, Y.; Paul, A.; Mohamadi, R.; Mohamadi, A.; Fields, P.E.; Rumi, M.A.K. Importance of Transcript Variants in Transcriptome Analyses. Cells 2024, 13, 1502. [Google Scholar] [CrossRef]
- Wang, J.; Shi, A.; Lyu, J. A comprehensive atlas of epigenetic regulators reveals tissue-specific epigenetic regulation patterns. Epigenetics 2023, 18, 2139067. [Google Scholar] [CrossRef]
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The Human Transcription Factors. Cell 2018, 172, 650–665. [Google Scholar] [CrossRef]
- Pepling, M.E. Follicular assembly: Mechanisms of action. Reproduction 2012, 143, 139–149. [Google Scholar] [CrossRef]
- Umeno, K.; Sasaki, A.; Kimura, N. The impact of oocyte death on mouse primordial follicle formation and ovarian reserve. Reprod. Med. Biol. 2022, 21, e12489. [Google Scholar] [CrossRef]
- Zhang, T.; He, M.; Zhang, J.; Tong, Y.; Chen, T.; Wang, C.; Pan, W.; Xiao, Z. Mechanisms of primordial follicle activation and new pregnancy opportunity for premature ovarian failure patients. Front. Physiol. 2023, 14, 1113684. [Google Scholar] [CrossRef]
- Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells. J. Reprod. Dev. 2012, 58, 44–50. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.K.; Brunswig-Spickenheier, B. Follicular maturation and atresia--possible role of intraovarian regulatory factors. J. Reprod. Fertil. Suppl. 1996, 50, 105–112. [Google Scholar] [PubMed]
- Jozkowiak, M.; Hutchings, G.; Jankowski, M.; Kulcenty, K.; Mozdziak, P.; Kempisty, B.; Spaczynski, R.Z.; Piotrowska-Kempisty, H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge. Cells 2020, 9, 1418. [Google Scholar] [CrossRef]
- Birgersson, M.; Indukuri, R.; Lindquist, L.; Stepanauskaite, L.; Luo, Q.; Deng, Q.; Archer, A.; Williams, C. Ovarian ERβ cistrome and transcriptome reveal chromatin interaction with LRH-1. BMC Biol. 2023, 21, 277. [Google Scholar] [CrossRef] [PubMed]
- Herman, L.; Legois, B.; Todeschini, A.L.; Veitia, R.A. Genomic exploration of the targets of FOXL2 and ESR2 unveils their implication in cell migration, invasion, and adhesion. Faseb J. 2021, 35, e21355. [Google Scholar] [CrossRef] [PubMed]
- Kovács, T.; Szabó-Meleg, E.; Ábrahám, I.M. Estradiol-Induced Epigenetically Mediated Mechanisms and Regulation of Gene Expression. Int. J. Mol. Sci. 2020, 21, 3177. [Google Scholar] [CrossRef]
- Skinner, M.K. Regulation of primordial follicle assembly and development. Hum. Reprod. Update 2005, 11, 461–471. [Google Scholar] [CrossRef]
- Wear, H.M.; McPike, M.J.; Watanabe, K.H. From primordial germ cells to primordial follicles: A review and visual representation of early ovarian development in mice. J. Ovarian Res. 2016, 9, 36. [Google Scholar] [CrossRef]
- Derrar, N.; Price, C.A.; Sirard, M.A. Effect of growth factors and co-culture with ovarian medulla on the activation of primordial follicles in explants of bovine ovarian cortex. Theriogenology 2000, 54, 587–598. [Google Scholar] [CrossRef]
- Rimon-Dahari, N.; Yerushalmi-Heinemann, L.; Alyagor, L.; Dekel, N. Ovarian Folliculogenesis. Results Probl. Cell Differ. 2016, 58, 167–190. [Google Scholar] [CrossRef]
- Nagamatsu, G. Regulation of primordial follicle formation, dormancy, and activation in mice. J. Reprod. Dev. 2021, 67, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Birgersson, M.; Indukuri, R.; Antonson, P.; Nalvarte, I.; Archer, A.; Williams, C. ERβ in granulosa cell tumors and its clinical potential. Endocrinology 2023, 164, bqad063. [Google Scholar] [CrossRef] [PubMed]
- Bardin, A.; Boulle, N.; Lazennec, G.; Vignon, F.; Pujol, P. Loss of ERβ expression as a common step in estrogen-dependent tumor progression. Endocr. Relat. Cancer 2004, 11, 537–551. [Google Scholar] [CrossRef]
- Kidder, G.M.; Vanderhyden, B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010, 88, 399–413. [Google Scholar] [CrossRef]
- Richards, J.S.; Ren, Y.A.; Candelaria, N.; Adams, J.E.; Rajkovic, A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr. Rev. 2018, 39, 1–20. [Google Scholar] [CrossRef]
- Yang, B.; An, Y.; Yang, Y.; Zhao, Y.; Yu, K.; Weng, Y.; Du, C.; Li, H.; Yu, B. The ERβ-cAMP signaling pathway regulates estradiol-induced ovine oocyte meiotic arrest. Theriogenology 2024, 214, 81–88. [Google Scholar] [CrossRef]
- Rumi, M.A.K.; Singh, P.; Roby, K.F.; Zhao, X.; Iqbal, K.; Ratri, A.; Lei, T.; Cui, W.; Borosha, S.; Dhakal, P.; et al. Defining the Role of Estrogen Receptor β in the Regulation of Female Fertility. Endocrinology 2017, 158, 2330–2343. [Google Scholar] [CrossRef]
- Dupont, S.; Krust, A.; Gansmuller, A.; Dierich, A.; Chambon, P.; Mark, M. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 2000, 127, 4277–4291. [Google Scholar] [CrossRef]
- Krege, J.H.; Hodgin, J.B.; Couse, J.F.; Enmark, E.; Warner, M.; Mahler, J.F.; Sar, M.; Korach, K.S.; Gustafsson, J.A.; Smithies, O. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc. Natl. Acad. Sci. USA 1998, 95, 15677–15682. [Google Scholar] [CrossRef]
- Couse, J.F.; Hewitt, S.C.; Bunch, D.O.; Sar, M.; Walker, V.R.; Davis, B.J.; Korach, K.S. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science 1999, 286, 2328–2331. [Google Scholar] [CrossRef]
- Picut, C.A.; Swanson, C.L.; Scully, K.L.; Roseman, V.C.; Parker, R.F.; Remick, A.K. Ovarian follicle counts using proliferating cell nuclear antigen (PCNA) and semi-automated image analysis in rats. Toxicol. Pathol. 2008, 36, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Khristi, V.; Ratri, A.; Ghosh, S.; Pathak, D.; Borosha, S.; Dai, E.; Roy, R.; Chakravarthi, V.P.; Wolfe, M.W.; Karim Rumi, M.A. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol. Cell. Endocrinol. 2019, 490, 47–56. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, K.; Sharma, Y.; Chakravarthi, V.P.; Mohamadi, R.; Bahadursingh, E.S.; Mohamadi, A.; Dahiya, V.; Rosales, C.Y.; Pei, G.J.; Fields, P.E.; et al. Altered Expression of Epigenetic and Transcriptional Regulators in ERβ Knockout Rat Ovaries During Postnatal Development. Int. J. Mol. Sci. 2025, 26, 760. https://doi.org/10.3390/ijms26020760
Vo K, Sharma Y, Chakravarthi VP, Mohamadi R, Bahadursingh ES, Mohamadi A, Dahiya V, Rosales CY, Pei GJ, Fields PE, et al. Altered Expression of Epigenetic and Transcriptional Regulators in ERβ Knockout Rat Ovaries During Postnatal Development. International Journal of Molecular Sciences. 2025; 26(2):760. https://doi.org/10.3390/ijms26020760
Chicago/Turabian StyleVo, Kevin, Yashica Sharma, V. Praveen Chakravarthi, Ryan Mohamadi, Elizabeth S. Bahadursingh, Amelia Mohamadi, Vinesh Dahiya, Cinthia Y. Rosales, Grace J. Pei, Patrick E. Fields, and et al. 2025. "Altered Expression of Epigenetic and Transcriptional Regulators in ERβ Knockout Rat Ovaries During Postnatal Development" International Journal of Molecular Sciences 26, no. 2: 760. https://doi.org/10.3390/ijms26020760
APA StyleVo, K., Sharma, Y., Chakravarthi, V. P., Mohamadi, R., Bahadursingh, E. S., Mohamadi, A., Dahiya, V., Rosales, C. Y., Pei, G. J., Fields, P. E., & Rumi, M. A. K. (2025). Altered Expression of Epigenetic and Transcriptional Regulators in ERβ Knockout Rat Ovaries During Postnatal Development. International Journal of Molecular Sciences, 26(2), 760. https://doi.org/10.3390/ijms26020760